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A spectral flux method for solving the Boltzmann equation 
Muhammad A. Alam, Mark A. Stettler, and M. S. Lundstrom 
School of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907 

(Received 13 July 1992; accepted for publication 21 January 1993 ) 

A spectral method for solving the Boltzmann equation by the scattering matrix approach is 
presented, The algoritlun discussed can be used to simulate both bulk and device properties with 
arbitrary field profiles. Although the primary goal is to reduce the data storage problem of the 
scattering matrix approach, many of the concepts and mathematical properties developed may 
be useful for other traditional spectral methods as well. 

I. INTRODUCTION 

Nonequilibrium effects such as velocity overshoot and 
hot-electron injection over barriers are becoming increas- 
ingly important for submicrometer devices.’ The tradi- 
tional drift diffusion equation, which is based on a quasi- 
equilibrium approximation of the Boltzmann equation, 
does not simulate these hot-electron properties well. Dur- 
ing the last few years, therefore, a number of different 
schemes have been proposed to solve the space-dependent 
Boltzmann equation for high-field regions. These schemes 
include the Monte Carlo tec.hnique,’ spectral methods,3>4 
hydrodynamic approaches,s’6 etc. Each of these techniques 
has its own merits and limitations; for example, the Monte 
Carlo method is remarkably accurate, but it is computa- 
tionally inefficient and inherently noisy; the hydrodynamic 
approach is very efficient, but it does not have accuracy 
comparable to Monte Carlo. Spectral methods provide di- 
rect solution to the Boltzmann equation and do not make 
as many untested assumptions as hydrodynamic codes do. 
So far, a number of promising results have been reported3 
using this approach; however, this technique has not yet 
found wide use for general purpose device simulation. 

Recently, a new technique called the scattering matrix 
approach (SMA) has been proposed.7’8 It shows accuracy 
comparable to Monte Carlo while retaining the elegant 
flexibility of the hydrodynamic codes. The modular nature 
of this approach makes it suitable for semiclassical as well 
as quantum-device simulation. However, the SMA in its 
present form has a major limitation: It requires consider- 
able computer memory. In this approach, one precomputes 
a set of scattering matrices for a thin semiconductor slab 
under different electric-field strengths and stores the ma- 
trices as a library to be used subsequently in device simu- 
lation. The elements of these scattering matrices represent 
the scattering of particles from one momentum st.ate to 
another while transmitting across the slab. For realistic 
device simulation, momentum space must be resolved into 
a large number of rectangular bins. Since the number of 
scattering matrix elements increases as the square of the 
number of momentum bins, storing them in computer 
memory becomes increasingly difficult. To reduce the li- 
brary size, therefore, it is desirable to have a more effic.ient 

scheme of momentum space representation in terms of ba- 
sis functions. 

The choice of the basis function to represent the mo- 
mentum space is motivated by the shape of the distribution 
function.g With a proper choice of basis functions, one 
should be able to represent the distribution function with 
relatively few coefficients. The basis functions available for 
simulation purposes include numerical basis functions, 
nonorthogonal basis functions, orthogonal basis functions, 
etc. The physical motivation of using orthogonal polyno- 
mials as basis functions is that at low fields the distribution 
function is approximately Maxwellian, which can be ade- 
quately represented by a few Hermite polynomials. Also, 
the coefficients of the orthonormal functions are inherently 
optimized in the least-squares sense. This is the essence of 
the spectral method. At higher fields, the distribution func- 
tion becomes highly asymmetric and one needs an increas- 
ingly greater number of coefficients to represent the distri- 
bution function. 

The purpose of this article is to investigate the issues 
involved in a spectral method for fluxes and to study its 
usefulness. We show that the required algorithm is not 
trivial, indeed, the basic ideas presented here may prove 
useful for other spectral approaches as well. The rationale 
behind the choice of the basis function and the complete- 
ness of the chosen set is discussed in Sec. II, along with a 
discussion on the orthogonal transformation. In Sec. III we 
show that even though a simple c.hange of basis functions is 
suffic.ient to simulate bulk characteristics, the transformed 
matrices do not obey the usual cascading rules; therefore, 
the matrices must be properly transformed for device sim- 
ulation. In Sec. IV we discuss the computation of various 
quantities of interest such as carrier concentration, average 
velocity, etc. In Sec. V, we present some example calcula- 
tions and in Sec. VI we summarize and conclude with a 
brief discussion. 

II. THEORY 

A. Choke of basis function 

According to the SMA, a transport problem can be 
viewed as a scattering problem (Fig. 1) which relates the 
fluxes incident on a slab of thickness hx to the fluxes 
emerging from the slab by 
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FIG. 1. A schemstic diagram of the incident and scattered fluxes of a thin 
semiconductor 4nb. [q represents the scattering matrix that relates the 
fluxes. 

[“‘:“:x;‘“‘I=[~ ;:I [,-;Fq , (1) 

where J’ and J- are particle fluxes represented by PX 1 
column vectors resolved into bins in momentum space and 
t+, r; ) t-, and r+ are PXP submatrices with elements 
describing the particle exchange among various bins of mo- 
mentum space. Here P is the number of modes in momen- 
tum space and the electric field is assumed to be oriented 
along the negative z direction and electron transport is 

The desired basis functions for the SMA should have 

assumed. By definition, Jt is the positive flux stream with 

two properties: (i) The functions must be defined over half 
of momentum space along the k, direction, since the funo 
tions to be expanded are flux functions; and (ii) the basis 

k,> 0 and J- is the negative flux stream with k, < 0. There- 

functions should have basically a Maxwellian distribution 

fore, the tlux function is defined over the semi-infinite space 

over their independent variables kZ and k; however, none 
of the orthogonal basis functions arising from Sturm- 

of momentum space in the z direction. This property of the 

Liouville equations simultaneously satisfy both those re- 
quirements. For example, Laguerre polynomials are de- 

flux functions will make necessary a few modifications of 

fined over the appropriate interval, however, they do not 
have the correct distribution over momentum space. Her- 

the standard spectral method discussed in the literature.3 

mite polynomials, while having the correct distribution 
function, are orthogonal over the interval 00 to - to. 

To resolve this problem, we fictitiously extend the pos- 
itive (negative) flux function to the negative (positive) 
velocity range making it an even function in velocity. This 
redefined flux function can be expanded by a basis set con- 
sisting of only even-order Hermite polynomials (EOHP). 
Bach element of this set is a product of two even Hermite 
polynomials, one along the longitudinal momentum k, and 
the other along the transverse momentum kp The set is 
both orthogonal and complete for all possible flux func- 

tions. A proof of these properties is given in Appendix A. 
The odd basis functions do not contribute anything to this 
expansion because their overlap integral with the even flux 
functions are zero. 

6. Orthogonal transformation 

Let us simplify the notation of Eq. ( 1) by labeling the 
scattered fluxes as J, the incident fluxes as Jin, and the 
scattering matrix as [Ml. In this new notation, Eq. ( 1) 
becomes 

(4) = EM 1 (Jin). (2) 

In Ref. 7, a rectangular basis function was assumed 
and the elements of [M] were computed using Monte 
Carlo simulation by injecting a large number of particles 
within each bin of momentum space and then counting the 
number of transmitted and reflected particles in other bins. 

Let us also define an orthogonal matrix [B] with each 
column defining one element of the EOHP set. The re- 
quired orthogonal, similarity transformation is given by 

where Ji represents the coefficient vector of the scattered 
fluxes in Hermite polynomial representation and [M’] de- 
notes the corresponding coefficient matrix. One should 
note that an orthogonal transformation preserves the trace 
and the determinant of a matrix because the eigenvalues 
are not changed under such a transformation.‘* This prop- 
erty will be very useful in our subsequent analysis. Note 
that the orthogonal transformation has an elegant physical 
interpretation. One can evaluate the elements of [&?] by 
injecting a flux of carriers weighted by the normalized or- 
thogonal basis function into a thin semiconductor slab and 
resolving the outscattered fluxes (both transmitted and re- 
flected) into elements of the EOHP set. 

In principle, the matrix [B] is an infinite matrix be- 
cause the elements of the set of EOHP are infinite. In 
practice, however, one can do away with all but a few 
polynomials. Thus the matrix [BJ turns out to be a rectan- 
gular matrix of order NXP, where N is the number of 
polynomials and P is the number of rectangular grid 
points. Since N can be a very small number, one can now 
store a much smaller matrix [N’], reducing the computer 
memory problem discussed in Sec. I. However, since the 
basis function is no longer rectangular, we shall face some 
unique problems in its use for device simulation, and 
straightforward application of the algorithm present in 
Ref. 7 is no longer possible. We address this issue in the 
following section. 

Iii. SIMULATION PROCEDURE 

A. Bulk simulation 

Bulk material properties were simulated in Ref. 7 by 
using periodic boundary conditions. Mathematically, this 
is equivalent to fmding the eigenvector of the scattering 
matrix corresponding to the eigenvalue 1.’ Therefore, so- 
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lution of the bulk properties from reduced library matrices entiate it from the orthogonal coefficient matrix (OCM) 
[Jf’] involves two steps. First, the matrix is solved for [.‘I. The OFM is Markovian and preserves flux according 
eigenvector corresponding to the eigenvalue 1, i.e., to the standard cascading rules. 

[M’] (JL, = (Jk,. (4) 

Second, one returns to a rectangular basis function using 
the transformation 

ub)=[BIu& (5) 
where J, is the eigenvector in the rectangular basis and 
JL is the eigenvector solved from the reduced matrix l&f’] 
itself. One can compute all relevant bulk properties from Jb 
using the Eqs. (8)-(12) of Ref. 7. One should note that 
step 2 of the procedure is not necessary, because from the 
vector Ji one can in principle solve for all the physical 
parameters. However, use of step 2 simplifies calculation 
and evaluation of various integrals. 

It should be noted that if the-number of polynomials is 
small, then the column sum of [M] will not be exactly 1 as 
required by the cascading rules of Markov matrices. The 
reason is the numerical error associated with describing the 
emerging fluxes by a small number of orthogonal polyno- 
mials. In these cases, a proper resealing of the coefficients 
will be sufficient for flux convergence. 

Once iteration is completed, a vector is specified in 
between each pair of semiconductor slabs. In order to re- 
late the coefficients of these vectors to the fluxes in between 
the slabs, we need to establish the following matrix prop- 
erty. Let Fj and c> be the elements of the incident flux 
vector for OFM and OCM, respectively. These elements 
are related to each other by 

B. Device simulation 

For a complete solution of the device properties using 
the SMA, the device is first divided into many thin slabs 
and then a constant electric field is assigned to each of 
these slabs in such a way that it approximates the field 
profile of the entire device. The scattering matrices corre- 
sponding to these thin slabs are cascaded to simulate 
steady-state properties of the device. The rules for cascad- 
ing matrices are given by Eq. (2) in Ref. 7; however, these 
rules apply only to Markov matrices as discussed in Ref. 8. 
Since the orthogonal transform of the Markov matrix [M] 
is not Markovian (its columns do nut sum to unity), these 
cascading rules are not suitable for the reduced matrices 
[M’]. There are two possible resolutions to this problem. 
First, one can develop a set of new cascading rules which 
preserves flux, cascade the matrices [M’] using these new 
rules, and compute internal fluxes for the devices. Alter- 
natively, _one can transform the matrix [Iw’] to a Markov 
matrix [-&f], cascade the system using standard cascading 
rules (i.e., Ref. 7)) and once the fluxes are computed relate 
the internal fluxes computed from the [iM] to those fluxes 
that would have been computed by cascading ma&ix [-&$‘I. 
We shall the follow the second approach. 

In this subsection, we shall state the key results only. 
Details of the schem_e are given in Appendix B. First, we 
transform [M’] to [LM] by 

[-ii] =.v[M’], (6) 
where the matrix elements are given by 

[ iiifj] = [ mij( Wi/Wj) ] 2 (7) 

where m;i is the transmission coefficient from the orthog- 
onal modej to the orthogonal mode i and Wi and 1~1~ are the 
areas under the curve of the ith andjth elements of EOHP, 
respectively, i.e., 

co cc 
U!, = 

s I 
%,&,k,)dk, dk, - (8) 

--cc --m 

The new scattering matrix [$I given by Eq. (7) will be 
referred to as an orthogonal flux matrix (OFM) to differ- 

Fj=C>(Wj/Wl). (9) 

Corresponding to these incident fluxes, the resulting scat- 
tered fluxes Fi and q[ are given by 

c 10) 

and 

(11) 

Using Eqs. (7) and (9), one can show that the elements of 
the scattered fluxes, j$ and qi are related to each other by 

Fl=q;(uvwl). (12) 

This important relation helps to translate the results com- 
puted using one set of basis functions to those correspond- 
ing to the other basis set. A corollary to this pr0pert.y is 
that the eigenvectors corresponding to eigenvalue 1 for the 
two matrices given by Eq. (7) are related to each other by 

F+=Ci(W/Wlj, (13) 

where & and ci are the elements of the eigenvectors of the 
orthogonal flux matrix and the orthogonal coefficient ma- 
trix, respectively. Once the elements of the vector JL, i.e., 
q;, are obtained by repeated application of the above prop- 
erties, one can use Eq. (5) to compute fluxes in rectangular 
basis function and subsequently obtain all relevant physical 
parameters using Eqs. (8)-( 12) of Ref. 7. 

The spectral flux method can be briefly summarized as 
follows. We begin with a 2Px2P scattering matrix [M] 
computed for P rectangular momentum bins. A set of N’gP 
even-order Hermite polynomials is then selected, and a 
~Mx 2N coefficient matrix [M’] is evaluated from Eq. (3 ). 
Since [1M’J is not Markovian, the normal cascading rules 
for the scattering matrices do not apply, so [M’] is trans- 
formed to [M] according to Eq. (7). The transformed 
Markovian scattering matrices are then cascaded, and the 
steady-state fluxes v_ersus position are obtained. From the 
steady-state fluxes Jb, we find the coefficient vector from 
Eq. ( 12). Finally, we transform back to the rectangular 
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Velocity Field Characteristics Energy Field Characteristics 

0 Monte Carlo 
*3 polynomials 
+ 5 polynomials 

103 104 to5 

Electric Field (volts/cm) 

FIG. 2. Velocity field curve computed from the spectral flux method with 
three and five coetlicients. Also shown are the Monte Carlo results for 

FTG. 3. Average energy vs electric field computed from the three- and 

comparison. 
five-coefficient spectral flux method. Monte Carlo results are also shown 
for comparison. 

basis using Eq. (51, and evaluate the quantities of interest 
according to the prescriptions given in Ref. 7. 

IV. RESULTS 

To illustrate the spectral scattering matrix approach, 
we present some sample calculations. First, we consider 
simulation results for bulk silicon. In Fig. 2, we show the 
velocity versus field curve computed from the spectral 
method. We also show Monte Carlo results based on Ref. 
11. Three and five coefficient spectral methods show rea- 
sonable agreement with the Monte Carlo simulation. For 
the energy versus field curve shown in Fig. 3, agreement 
with Monte Carlo data is less satisfactory. However, at low 
fields the agreement is much closer. At low fields, the dis- 
tribution function is almost symmetric, therefore a few co- 
efficients are sufficient to represent the distribution func- 
tion. However, at high fields one needs more coefficients to 
maintain the y;lme level of accuracy because the distribu- 
tion function becomes more asymmetric. A comparison of 
the five-coefficient energy versus field curve to that of the 
three-coeilicient energy illustrates this point. 

Next we present a simple non-self-consistent simula- 
tion of high-field electron transport for a model silicon 
device whose field profile is shown in Fig. 4(a). In Fig. 
4(b), the velocity profile is shown as a function of position. 
If we compare the results with Monte Carlo simulation, we 
see that nonstationary transport in the device is well sim- 
ulated. However, the five-coefficient spectral method is not 
suitable for energy simulation at very high fields. More 
coefficients will systematically improve the agreement. 

0 Monte Carlo 
A 3 polynomials 
+ 5 polynomials 0 

0 

0 
+ + 

t 
P A A A 

Electric Field (volts/cm) 

V. CONCLUSIONS 

We have presented a spectral flux method for solving 
the Boltzmann equation within the SMA framework. This 
method was shown to be useful both for space-dependent 
and space-independent simulations. Systematic improve- 
ment of the simulation results is possible by increasing the 
number of coefficients of the orthogonal polynomials. 

For the scattering matrix approach, the significant re- 
duction of the memory size is possible for fields below 10 
kV/cm. At higher fields, due to the asymmetry of the dis- 
tribution function, the saving in memory may not be sig- 
nificant. 

Instead of using orthogonal basis functions, as we have 
done in this article, it is possible to use numerical 
nonorthogonal basis functions for device simulation. One 
possible choice could be a set consisting of bulk flux func- 
tions computed for different electric fields. Fluxes corre- 
sponding to an intermediate field can be obtained by a 
linear interpolation of the elements of the numerical bulk 
flux functions. The only problem of this approach is that 
since the numerical basis functions are not orthogonal, the 
expansion coefficients will not be optimized in the least- 
squares sense. lo Optimizing the coefficients in the least- 
squares sense will add additional complication to the pro- 
cess. However, once the coefficients are obtained, the 
device simulation algorithm developed in this article will 
apply regardless of the choice of the basis functions. There- 
fore, we have chosen to concentrate on orthogonal polyno- 
mials to clarify the basic concepts involved in using the 
spectral flux method. 
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FIG. 4. (a) The electric-field profile for the sample cakulation. (b) 
Average velocity xx position within the device. The solid line represents 
the Monte Carlo simulation results and the dotted line is from the simu- 
iation using the spectral method. 
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APPENDIX A: ORTHOGONALITY AND 
COMPLETENESS OF THE BASIS FUNCTIONS 

Let the set of polynomials formed by the product of 
two even-order Hermite polynomials be denoted by 
~o(k)Ho(M, &(k,)H,(k,,, H2U$u&(k,L.. f H,,(k,) 
H,,(kJ * * - . We show that this set is orthogonal over the 
interval 0 and 00 and this set is complete for the flux 
functions. 

Hermite polynomials are orthogonal over the interval 
m to - CQ. Therefore, even-order functions must as well be 
orthogonal over the same interval, i.e., 

m m 

s I 
H2 mLWi2 ,Jkz)H~~(kt)H2 k(kzj& dk 

--cc -co 

=s mnlk * (AlI 

Also, even-order Hermite polynomials are symmetric 
over change of sign of the variable, i.e., Hzp( k,) =Hzp 
x ( -k,) . Therefore, each element of the above set is sym- 
metric for the change of sign of either or both the variables 
k, and X-, Using these two facts 

co ?? 
ss &nWHz h$)Hz .WHz k(kz)dk, dk, (AZ) 

0 0 

la 02 
=4 -* s s 

H,,tk,jH,.(k~)H2z(kr)H2k(k,)dkrdk, -* 

t.43) 

: =- 
s 

m H2,tkt)Hz~(k,)dk, 
s 

ra &n(k,)H2d6E,)dlc, 
m --m 

(Ah) 

I 
S =5 mnlk* (A5) 

The above equation proves that even order Hermite 
Polynomials are orthogonal over the range 0-03. 

The completeness of this set for the flux functions can 
be proved by noting that flux functions are defined only 
over one quadrant (i.e., k, k, > 0 or k, k, < 0). Therefore, 
one can make an even extension of this function over the 
other quadrant requiring 

f’tkt,k,)=f”(-kk,kz)=f+[k,-kJ=f+(-kk,-kz), 
Here the plus sign refers to the positive flux stream. This 
extension is simply due to mathematical convenience and it 
does not have any physical significance. Since any even 
function can be completely and uniquely described by a set 
of even fun&ions, the above set is complete for the flux 
functions. 

APPENDIX B: REDEFINITION OF THE SCATTERING 
MATRICES 

For a rectangular basis function we know that 

[“:ii;y’]=[; ;‘] [J-;;$j], (Bl) 

such that 

J$(x+dx)= &,&JifCx), 
i 

assuming J- (x+dx) equals zero. Next, consider the scat- 
tering matrix in terms of orthogonal polynomials: 
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~j:;$y = 1; !+I g++q . (B3) 

We seek to relate Eq. (Bl) to Eq. (B3). 
Consider 3 continuous mode pP If 1V electrons are in- 

jected in the continuous mode 1, then the injected flux in 
that mode is given by 

.w  

52’(x) = 
Zip_ lPi(ui)J,+ Cx)  

g&(h) * 
(B4) 

Here ni is an index to rectangular bins and P is the maxi- 
mum number of rectangular bins. The corresponding 
emerging flux in the rectangular basis function is 

Jt (xfdx) = 
8rx lt,&p[( Vi)JT (X) 

rnL lpI(ui) ’ 
V35) 

assuming that j- (x+&z) to be zero. This transmitted flux 
can be decomposed into a set of orthogonal polynomials 
with the following coefficients: 

(7,= j, p,nCvk)Jk+ (x+dx). 036) 

The flux carried by the mode with coefficient c, is 

&%I-dx) -cm s p,(v)d3u, 
P 

$((x-{-dx) = c p,(uk)Jk+(x+dx) p&)d3u, 
k=l s 

WI 

&x+dx)= 
( 

; ;: ,+=I iZl Pm(Uk)~&P~(~i)J~ (~1 

&MJ~d3Q 
x Jph.dd3v * 

If the injected flux per mode is 1, i.e., Jkf (x) = 1, then 
the transmission coefficient is given by 

=*$$. 

Note that Eq. (Bl 1) follows from Bq. (BlO) by using Eq. 
(8) and by using the definition of [M’] from Eq. (3). 
Although, we considered only the transmission submatrix 
for illustrative purposes, such 3 relation can be proved for 
all other submatrices of the scattering matrix of Eq. ( 1) 3s 
well. This, therefore, completes the proof of Eq. (7). 
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