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Importance of space-charge effects in resonant tunneling devices 
M. Cahay, M. McLennan, S. Datta, and M. S. Lundstrom 
School of Electrical Engineering, Purdue University, West Lafayette, lndiana 47907 

(Received 5 November 1986; accepted for publication 6 January 1987) 

The consideration of space charge in the analysis of resonant tunneling devices leads to a 
substantial modification of the current-voltage relationship. The region of negative differential 
resistance (NDR) is shifted to a higher voltage, and broadened along the voltage axis. 
Moreover, the peak value of current prior to NDR is reduced, leading to a reduction in the 
predicted peak-to-valley ratio. An approach is presented to include space-charge effects, and a 
recently fabricated GaAs-Alx Gal _ x As structure is analyzed, to underscore the importance of 
a self-consistent electrostatic potential in theoretical calculations. 

Since the pioneering work ofTsu and Esaki, 1,2 there has 
been a growing interest in double-barrier resonant tunneling 
devices. Structures grown by both molecular beam epitaxy 
(MBE)3 and metalorganic chemical vapor deposition 
(MOCVD)4 have been reported with improving peak-to
valley ratios, exhibiting negative differential resistance 
(NDR) at room temperature. It has often been suggested,-7 
that the presence of electrons could substantially affect the 
shape of the electrostatic potential in the devices, since the 
well acts as a dynamic trap for the tunneling electrons. Some 
authors have estimated that modifications of 10 meV or 0.1 
eV could occur :in the conduction-band energy profile.5

,6 

Very recently, a quantitative calculation illustrating the ef
fect of space charge on the current-voltage (l- V) character
istic has been reported,S However, as discussed later, our 
results are significantly different; this is possibly because of 
two assumptions made in Ref. 8 that are different from our 
model. In this letter, we investigate the space-charge effects 
in resonant tunneling devices and perform a fully self-consis
tent calculation of an J- V characteristic. We compare our 
results to the usual approach, in which space-charge effects 
are completely neglected, and the application of an external 
bias is assumed to result in a linear voltage drop across the 
device. Hereafter, the latter approach will be referred to as 
"Hatband theory." 

In equilibrium, the inclusion of self-consistency is 
achieved as follows. The conduction-band profile is initially 
assumed to be the "fiatband" profile, including only the var
iations due to band-gap discontinuities for the differing ma
terials. Electron density can be calculated by solving the 
Schrodinger equation; this result modifies the net charge 
density in the device, and in turn, leads to a new solution for 
electrostatic potential from the Poisson equation. The calcu
lations for electron density and electrostatic potential are 
performed iteratively, until the electrostatic potential con
verges to a final solution. For structure under bias, a linear 
voltage drop applied to the equilibrium solution serves as an 
initial guess, and iteration is continued until self-consistency 
is established. The funy self-consistent potential is then used 
to calculate current density. 

Following Vassell et al., 7 we calculate the electronic cur
rent of a device by solving the Schrodinger equation, with the 
usual ':,0undary conditions for plane-wave solutions. I The 
effective-mass variation across the device is included by re
quiring everywhere the continuity of the wave function, and 

its first derivative divided by the electron effective mass. The 
transmission coefficient T is then obtained using the trans
fer-matrix technique,2.7 from which the current density can 
be deduced using 

em"" i'" loo J = -A dE! dE,T(E1,E,) [feE) - feE + eV»), 
2n-fr 0 0 

(1) 

where E[ and E, are, respectively, the longitudinal and trans
verse component of the electron total energy E; fCE) is the 
Fermi-Dirac distribution function; V is the bias applied 
across the structure; and m~ is the electron effective mass in 
the contact. This is the same formula used in the fiatband 
theory; however, we perform the calculation of electrostatic 
potential, and hence the transmission coefficient, self-consis
tently, To save computation time, we follow Vassell et aU 
and assume that the transverse energy E, is equal to its ther
mal average, k sT. Hence, the transmission coefficient be
comes a function oflongitudinal energy only, and the inte
gration over transverse energy can be performed analytical
ly. This same assumption also applies in the derivation of 
electron density. 

The electron density is calculated by considering two 
streams of electrons impinging from the contacts. For elec
trons incident from the left, we have a density given by 

r + oodk 
n 1 ~r(z) = _zl¢~';T(Z)12if-r(k_), 

.10 2rr Z' B G 

wh.ere 

(Yl-r(kz ) 

(2) 

_ m~kBT [ (Ej-Ec(O) -f?k;/2m~)] 
- 2 In 1 + exp , 

.,m ksT / 
(3) 

E c (0) being the bottom of the conduction band in the left 
contact, which is hereafter taken as a reference point, i.e., 
Ee (0) = O. Following a similar derivation, the charge den
sity associated with electrons impinging from the right is 
given by an expression similar to Eq. (2); however, the wave 
function must be calculated for the opposite flow of elec
trons, and the factor (Y(kz )must be referenced to the conduc
tion-band edge in the right contact, Ec (L). 

The modification of the electrostatic potential due to the 
electron density is then calculated by solving the Poisson 
equation between the two contacts: 
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!(E(Z) ~<P(z») = - q[N ~ (z) - N A (Z) - n(z)], 

(4) 

allowing for a position-dependent dielectric constant ECz), 

In Eq. (4), ¢(z) is the electrostatic potential, and N A' N Ii 
are the ionized acceptor and donor impurity concentrations 
throughout the device. As many as 15 iterations are some
times required between Eqs. (2) and (4) to obtain current 
densities with three significant figures. 9 

Figure 1 (a) shows the cross section of a resonant tun
neling device fabricated by Ray et al., 4 which we have chosen 
to examine. The structure is typical of those proposed or 
fabricated, with heavily doped contacts (2 X 1018 em- 3

) for 
a large resonant tunneling current, and undoped "spacer" 
layers on either side of the double barrier region. The inclu
sion of spacer layers has several advantages. First, the spacer 
layers tend to reduce the migration of impurities from the 
contact regions to the resonant tunneling region, thereby 
reducing impurity scattering in the barrier and well regions. 
Second, a greater degree of symmetry in the conduction
band energy profile is maintained, since an applied bias is 
dropped across a longer, undoped region. As Ricco and Az
bel pointed out, [0 asymmetry in the conduction-band profile 
degrades the peak in resonant transmission, reducing the 
resonant tunneling effect. Finally, the presence of spacer lay
ers pronounces the upward shift of the conduction-band pro
file in the undoped region, reducing the component of ther-
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FIG. 1. (a) Structure fabricated by Ray eta!. (Ref. 4). Contact regions are 
GaAs doped 2X 10'" cm -3 (Te); spacer regions are undoped GaAs; har
riers are undoped Al" .• ,GlIo"As; and the well is undoped GaAs. (b) Equi
librium conduction·band profiles for self-consistent and ftatband calcula
tions. 
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mionic emission current over the top of the barriers. This 
upward shift is explicitly taken into account in our self-con
sistent calculations, and is illustrated for the equilibrium 
case in Fig. l(b). 

The current-voltage characteristics calculated for the 
structure of Fig. 1 (a) are presented in Fig. 2, showing both 
self-consistent and flatband results. Note that the position of 
NDR is higher along the voltage axis for the self-consistent 
case. The consideration of space-charge shifts the conduc
tion-band edge upward in the undoped regi.on, pushing the 
quasi-bound state in the well farther from the conduction
band edge in either contact [see Fig. 1 (b) ] . Since the voltage 
at which NDR is observed depends on this distance, an up
ward shift of the quasi-bound state causes a translation of 
NDR along the voltage axis. Moreover, the magnitude of 
this translation wiU be approximately twice that of the quasi
bound state shift, since it requires a bias of approximately 
twice the height of the quasi-bound state above the conduc
tion-band edge in the contact to observe NDR. For the struc
ture of Fig. 1, the upward shift of the quasi-bound state due 
to the consideration of space charge is approximately 0.042 
e V, leading to a translation in the NDR region of nearly 0.1 
V, relative to flatband calculations. 

Returning to Fig. 2, we note that the inclusion of self
consistency has broadened the NDR region. In the self-con
sistent calculation, current density reaches a maximum 
when the quasi-bound state level is well above the conduc
tion-band edge in the contact. This is illustrated in Fig. 3, 
which presents plots of the conduction-band profile at biases 
corresponding to current maxima (points P and Q of Fig. 2) 
for (a) fiatband and (b) self-consistent calculations. After 
the maximum current is attained, therefore, a larger addi
tional bias is required in the self-consistent case to pull the 
resonant level below the conduction-band edge in the con
tact, and reach the point of minimum current. The result is a 
broadening of the self-consistent NDR region, compared to 
the flatband solution. 

Finally, the peak curent of the NDR region is reduced 
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FIG. 2. Current-volta!;.:: characteristics (both selt:comistent and Hatband 
results) for the structure of rig. 1, at 300 K. Note that the inclusion of self. 
consistency has shifted the position ofNDR to a higher bias, and broadened 
the characteristic. In addition, the peak current is reduced for the self-con
sistcn! calculation, 
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FIG. 3. Conduction-band profile for biases of current maxima, for (a) fiat
band analysis (point P of }<'ig. 2) and (b) self-consistent analysis (point Q of 
Fig. 2). The level of the quasi-bound state is well above the conduction-band 
edge in the contact, for the self-consistent case. 

for the self-consistent calculation. Since the onset of NDR 
occurs at a higher bias in the self-consistent case, the trans
mission coefficient is severely degraded. Current is maxi
mized when the product of a degrading transmission peak 
and an increasing flux ofincident electrons is maximized. As 
mentioned above, this occurs when the quasi-bound state 
energy is well above the conduction-band edge in the con
tact. For the structure of Fig. 1, the vaney currents in both 
self-consistent and flatband analyses are nearly equal. The 
reduction in peak current, therefore, leads to an overall re-

614 Appl. Phys. Lett., Vol. 50, No.1 0,9 March 1987 

duction in the peak-to-valley ratio for the self-consistent re
sult. For the ftatband analysis, the peak-to-valley ratio is 
10.6:1, this is reduced to 4.95:1 for self-consistent calcula
tions. 

Similar calculations have been published quite recent
ly,R leading to similar conclusions. However, there are two 
assumptions made in Ref. 8 that are different from ours. 
First, the electron density is calculated quantum mechani
cally only in the quantum well and the barriers; outside the 
barriers, such as in the buffer regions and in the contacts, the 
electron density is calculated classically. In our calculations, 
the electron density is calculated quantum mechanically 
everywhere in the device. Second, in Ref. 8 the transverse 
energy E, of the electrons is assumed to be zero while we 
replace E, by its thermal average k B T. On applying our tech
nique to the device considered in Ref. 8, we find a peak cur
rent density lower by a factor of 3. Furthermore, the upward 
shift in voltage of the self-consistent ND R region, compared 
to the fiat band result, is reduced by a factor of 4. This high
lights the sensitivity of J- V calculations, with respect to 
space-charge effects. 

Although the inclusion of self-consistency improves 
agreement between theory and experiment, meaningful 
comparison must await a more precise knowledge of device 
parameters ( e.g, doping densities, interface and bulk 
charges, contact resistances, etc.), and a realistic treatment 
of carrier scattering. It has recently been suggested that se
quential tunneling, rather than coherent resonant tunneling, 
is the relevant mechanism for the operation of quantum-well 
diodes. 11 However, an analysis of this effect requires a prop
er treatment of carrier scattering within the device, and re
mains a goal of future research. Nevertheless, the conclu
sions of this work emphasize the importance of space-charge 
effects in the analysis of resonant tunneling devices. 

This work was supported by the Semiconductor Re
search Corporation under contract 86-07-089. 
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