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The ability to generate novel hypotheses is an important problem-solving capacity of 
humans. This ability is vital for making sense of the complex and unfamiliar world we live in. 
Often, this capacity is characterized as an inference to the best explanation—selecting the 
“best” explanation from a given set of candidate hypotheses. However, it remains unclear 
where these candidate hypotheses originate from. In this paper we contribute to computa-
tionally explaining these origins by providing the contours of the computational problem 
solved when humans generate hypotheses. The origin of hypotheses, otherwise known 
as abduction proper, is hallmarked by seven properties: (1) isotropy, (2) open-endedness,  
(3) novelty, (4) groundedness, (5) sensibility, (6) psychological realism, and (7) computational 
tractability. In this paper we provide a computational-level theory of abduction proper that 
unifies the first six of these properties and lays the groundwork for the seventh property of 
computational tractability. We conjecture that abduction proper is best seen as a process of 
deep analogical inference.

1. INTRODUCTION
In order to interact with their (social) environment, human 
beings are continuously faced with the problem of making 
sense of the world they live in. The capacity to formulate 
an explanation for a given observation is called abductive 
inference (Peirce, 1974). This type of inference is inherently 
uncertain and fallible, which is contrasted by deductive 
inference where the inferences are truths derived from the 
observation using deduction rules. Abductive inference is 
considered to be a central part of human cognition (Chater 
& Oaksford, 2000; Fodor, 1983; Haselager, 1997; Peirce, 
1974). Often, this capacity is characterized as an inference to 
the best explanation (IBE)—selecting the “best” explanation 
from a set of candidate hypotheses (Chater, 1999; Chater & 
Manning, 2006; Glass, 2007; Holland, Holyoak, Nisbett, & 
Thagard, 1986; Lipton, 1991; Thagard, 1988, 2000; van der 
Helm, 2000). However, accounts of IBE assume that the set 
of candidate hypotheses is given, and therefore they do not 
explain the origin of the set of candidate hypotheses, also 
known as abduction proper (Fodor, 2000; Perfors, 2012). 

Recently, there has been an increased interest among cog-
nitive scientists in developing accounts that do explain the 
origin of candidate hypotheses (Gentner & Colhoun, 2010; 
Goodman, Mansinghka, Roy, Bonawitz, & Tenenbaum, 
2008; Goodman, Tenenbaum, & Gerstenberg, 2015; Lake, 
Salakhutdinov, & Tenenbaum, 2015; Tenenbaum, Griffiths, 
& Kemp, 2006). In this paper we will contribute to these 
efforts by unifying seven necessary properties of abduction 
proper in one theory.

The question “where do candidate hypotheses come 
from?” can be illustrated with problems solved during 
human communication. For example, imagine two friends in 
a loud and crowded pub. From across the crowd one friend 
sees the other making a gesture: she puts the fingertips of her 
hands together to form a triangular shape. The observer real-
izes that his friend is going home. The capacity for generating 
and understanding communicative signals showcases sev-
eral key properties of the origin of hypotheses. We highlight 
seven necessary properties of sets of candidate hypotheses: 
isotropy, open-endedness, novelty, groundedness, sensibility, 
psychological realism, and computational tractability.

http://dx.doi.org/10.7771/1932-6246.1197
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Isotropy: Any knowledge that a person has can potentially be 
relevant for making the abductive inference (Fodor, 1983). In the 
context of the example above, even seemingly unrelated knowl-
edge about role-playing games might be relevant. Knowing that 
role-playing games include wizards wearing pointed hats, and 
the friend likes role-playing games, then one may hypothesize 
that she is inviting us to come play a game with her.

Open-endedness: The set of candidate hypotheses can con-
tain each hypothesis that a person can in principle generate 
(Goodman, 1983). That is, it contains all hypotheses that can 
be generated (in all possible ways) based on all knowledge a 
person possesses, which in principle can be infinitely many 
(Fodor & Pylyshyn, 1988). For example, your friend’s ges-
ture may mean home or wizard, but it could also mean roof, 
house, logical and, diving, ship, wedging, beak, space shuttle, 
diving, hat, etc.

Novelty: The set of candidate hypotheses can contain hypoth-
eses that a person has never generated before (Fodor, 1983; 
Goodman, 1983). For example, this may be the first time 
one has encountered a “going home” gesture; hence the 
hypothesis about its meaning has to be generated de novo. 
This implies that the meaning of a gesture cannot always be 
inferred by a simple look-up table or priming mechanism 
(Pickering & Garrod, 2004, 2013). If it cannot be inferred as 
such, it has to be generated de novo.

Groundedness: A candidate hypothesis must have a well-
defined relation to a representation of the observation that 
is to be explained (Lakoff & Johnson, 2003). There are two 
types of observations that abduction proper can explain: 
perceptual observations such as the gesture from the exam-
ple, and internal “observations” such as the scientific con-
clusion that some elementary particle must exist. Assuming 
that both types of observation are explained by the same 
abduction proper capacity, that capacity minimally needs to 
be able to account for hypotheses being grounded into per-
ceptual representations. In the case of perceptual observa-
tions, this property can be construed as classic groundedness 
(Barsalou, 1999). Whereas groundedness requires the exis-
tence of some well-defined relationship between observation 
and hypothesis, sensibility (see next) requires that the nature 
of that  relationship is explanatory.

Sensibility: A common criticism of accounts of IBE is that pick-
ing the “best” hypothesis need not return a “good” hypothesis 
if the set does not contain any “good” hypotheses (what has 
been called “the best of a bad lot” by van Fraasen, 1985; and 
also by Kuipers, 2000). This criticism can be addressed by 
asserting that the set of candidate hypotheses contains only 
sensible candidate hypotheses. A “sensible” hypothesis is not 
just grounded in the sense above, but in principle (in some 

context) each candidate hypothesis must be able to explain 
the observation (Kuipers, 2000; van Fraasen, 1985).

Psychological realism: The computational processes that sup-
port abduction proper must be psychologically realistic. 
Whether or not a computational characterization of abduc-
tion proper has this property is an empirical question. 
When it does, the set of candidate hypotheses is naturally 
constrained to those hypotheses that can (in principle) be 
inferred by humans.

Computational tractability: Although much of human cogni-
tion is computationally impressive, ultimately it is bounded 
by limited computational power. This implies that any com-
putational account of abductive inference must be computa-
tionally tractable (Frixione, 2001; van Rooij, 2008). From a 
theoretical perspective, this property seems antagonistic to 
isotropy and open-endedness, yet it is necessary if the theory 
is to explain how resource-bounded humans can perform 
abduction proper.

In this paper we present a computational-level theory 
(Bechtel & Shagrir, 2015; Blokpoel, 2017; Marr, 1982) that 
aims to unify these seven properties. We propose this unifi-
cation can be achieved by viewing the origin of hypotheses 
as a process of deep analogical inference. Whereas a single 
analogical inference finds one structural relation between 
two representations, deep analogical inference allows many 
consecutive and branching analogical inferences that lead 
to sets of candidate hypotheses. In the main paper, we 
focus on our theoretical contributions. We present a formal 
characterization of abductive inference and the origin of 
 hypotheses. Throughout the paper, we will highlight how the 
 computational-level theory incorporates these properties. 
For an illustrative case study on how the theory can explain 
abduction proper in communication, we refer the reader to 
the Appendix where we show how deep analogical inference 
can explain the interpretation of a communicative signal in 
a director-matcher-type communication game (de Ruiter, 
Noordzij, Newman-Norlund, Hagoort, & Toni, 2007).

1.1. ABDUCTIVE INFERENCE
To understand the nature of the origin of hypotheses, it is 
necessary to understand how this origin relates to IBE. 
Unless one assumes that all candidate hypotheses are pre-
defined, there must be some process that works either before 
or in tandem with IBE, providing the candidate hypoth-
eses. This generative process is called abduction proper 
(Haselager, 1997; Lipton, 1991). Both abduction proper and 
IBE together make up abductive inference. Following nota-
tional conventions from computer science (see Ausiello et al.,  
1999; and also see van Rooij, Wright, & Wareham, 2012), 
we can characterize abductive inference as an input–output 
mapping:
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Complete Abductive Inference (informal)
Input: Evidence e and knowledge K.
Output: The hypothesis h, where h = Inference to the 
Best Explanation (e, Abduction Proper(e, K)).

Based on observed evidence e and all internal knowledge K, 
the cognizer generates a hypothesis h that can explain the 
evidence. Complete abductive inference is based on two 
sub-functions: Inference to the Best Explanation(.) 
and Abduction Proper(.). Note that Inference to the 
Best Explanation requires Abduction Proper to provide 
a set of candidate explanations. Furthermore, because the 
theory is a functional characterization, we can characterize 
Inference to the Best Explanation and Abduction 
Proper separately, even if algorithmically the two functions 
might be intricately intertwined. To continue, Inference to 
the Best Explanation can be characterized as follows:

Inference to the Best Explanation (informal)
Input: Evidence e and a set of candidate hypotheses H.
Output: The hypothesis h ∈ H that best explains e.

The nature of IBE has been extensively debated (Glass, 2007; 
Hanson, 1958; Hobbs, 2004; Lipton, 1991; Peirce, 1974; 
Thagard, 1991) and many characterizations of the notion 
of “best” have been proposed, such as “most probable” and 
“most likely” (Lipton, 1991), “most coherent” (Glass, 2007; 
Thagard, 2000), “simplest” (Chater, 1999; van der Helm, 
2000), or mixtures of these (Holland et al., 1986; Thagard, 
1988). Regardless of the nature of IBE, its functioning crit-
ically depends on the presumed availability of a set of can-
didate hypotheses H. Without a set of candidate hypotheses 
H from which to pick the best, IBE does not do anything. 
This is theoretically problematic, because we cannot always 
presuppose that a set of candidate hypotheses H is given. 
Therefore, a complete account of abductive inference should 
also specify the origin of hypotheses, i.e., abduction proper:

Abduction Proper (informal)
Input: Evidence e and knowledge K.
Output: A set of candidate hypotheses H based on e and K.

Characterized in this way, the input–output mapping of 
abduction proper is underspecified because it does not spec-
ify the relationship between a set of candidate hypotheses 
and the evidence and knowledge. In this paper, we build on 
the structure-mapping theory (SMT) of analogy to specify 
exactly this relationship.

1.2. THE ANALOGICAL ORIGIN OF HYPOTHESES
Analogical reasoning has been conjectured to lie at the core of 
the human capacity for understanding the world around them, 
sometimes with a strong emphasis on embodied–embedded 
cognition (Lakoff & Johnson, 1999, 2003), in particular in 

domains that require creative leaps such as language learn-
ing and understanding (Gentner & Christie, 2010), concept 
learning (Gentner, 2010), (insight) problem solving (Gick 
& Holyoak, 1980, 1983), similarity judgment (Gentner & 
Markman, 1997; Gentner & Medina, 1998), scientific expla-
nation (Gentner et al., 1997), perception (Chalmers, French, 
& Hofstadter, 1992; Hesse, 1974; Hofstadter & Sander, 2013), 
and generalization (Christie & Gentner, 2010). Given that 
these domains all involve the generation of hypotheses, it 
suggests that analogical reasoning may be at the foundation 
of abduction proper.

The goal of this paper is to characterize abduction proper 
at Marr’s (1982) computation level and to unify six proper-
ties (excluding computational tractability). Hence, the theory 
that we present is a characterization of the what of abduction 
proper, and not yet the how (Bechtel & Shagrir, 2015). In 
the last few decades, many accounts of analogical reasoning 
have been proposed across different levels of explanation. 
Examples include Tabletop (French & Hofstadter, 1992), 
Copycat (Hofstadter, 1996), ACME (Holyoak & Thagard, 
1989), LISA (Hummel & Holyoak, 1997), and SMT (Gentner, 
1983) and its associated Engine (Falkenhainer, Forbus, & 
Gentner, 1989). For extensive overviews, see French (2002) 
and Gentner & Forbus (2011). We will build our theory on 
SMT, as it is one of the few theories that includes a compu-
tational-level characterization. Researchers interested in 
developing algorithmic-level models of abduction proper— 
models that explain how the inferences are computed—can 
use the model that we present as a constraining guide on 
possible algorithmic-level theories (cf. Blokpoel, 2017).

The SMT of analogy is a good choice to characterize abduc-
tion proper (Gentner, 1983; Gentner & Colhoun, 2010; Gentner 
& Smith, 2013), because SMT already has the potential to cover 
three of the seven necessary properties, i.e., novelty, sensibil-
ity, and psychological realism. First, a candidate hypothesis in 
SMT consists of an analogical match between two (relational) 
representations and possible (projected) inferences from one to 
the other. Because analogical matches and inferences can cross 
domains, a candidate hypothesis can result in representations 
that are novel. The classical solar system to atom analogy illus-
trates this nicely, where the explanation for planetary revolution 
is transferred by analogy to explain electron revolution in an 
atom (see Gentner, 1983). Second, analogy makes a reasonable 
operationalization of sensibility. If, in an analogical inference, 
one of the two representations is that of an observation, then 
the resulting hypothesis can be used to explain that observation 
by analogy. In the example from the Introduction, the repre-
sentation resulting from observing the gesture by a friend may 
match with the representation of home. One can thus explain 
her gesture, by analogy, as meaning home. Third, SMT has 
much empirical evidence supporting it and it has been used to 
model cognition in various domains (Bowdle & Gentner, 2005; 
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Forbus, Gentner, Everett, & Wu, 1997; Forbus, Gentner, & Law, 
1995; Gentner, 1989, 2003a; Gentner & Christie, 2010; Gentner 
& Markman, 1997; Kuehne, Forbus, Gentner, & Quinn, 2000; 
Lovett, Gentner, & Forbus, 2006; Wolff & Gentner, 2011). This 
contributes to the psychological realism of the processes postu-
lated by SMT. Hence, if the set of candidate hypotheses consists 
only of hypotheses generated by SMT processes, the set is natu-
rally constrained in the sense that it excludes candidate hypoth-
eses that are outside the scope of the psychologically plausible 
processes.

This leaves four properties yet unexplained: isotropy, 
open-endedness, groundedness, and computational tractability. 
We propose an extension of SMT that uses its key processes of 
analogical matching and projection to generate a set of candidate 
hypotheses through deep analogical inference. We conjecture 
that sets of candidate hypotheses may be built through recursive 
analogical matching and projection, which we call deep analogi-
cal inference. This extension of SMT will impart three additional 
properties to the theory (isotropy, open-endedness, and ground-
edness), and set the stage for addressing the final property: com-
putational tractability. It does so in the following ways. First, all 
candidate hypotheses generated by deep analogical inference 
are potentially grounded, because deep analogical inference 
guarantees a relationship between the observation and the can-
didate hypothesis, and the representation of the observation can 
be perceptual in nature. Second, the set of candidate hypotheses 
is also open-ended, as the characterization includes all possible 
hypotheses a person can in principle generate. Third, isotropy is 
guaranteed because all knowledge representations available to a 
person serve as a potential link in the chain of deep analogical 
inference. Finally, by formalizing the theory at the computa-
tional level, we will lay the groundwork for investigating under 
which conditions it is computationally tractable (cf. van Rooij, 
2008; van Rooij, Evans, Müller, Gedge, & Wareham, 2008).

In the next section we review alternative accounts of 
abduction proper, after which we cover the key processes of 
SMT that the theory of deep analogical inference extends.

1.3. CURRENT ACCOUNTS OF ABDUCTION PROPER
Accounts that aim to explain abduction proper other than the 
one presented in this paper exist. Although some accounts 
may have the potential to unify the seven necessary prop-
erties, it is not yet clear if or how they do that. Proponents 
of these accounts may find it valuable to investigate to what 
extent these properties are already incorporated, or ensure 
that they are in future iterations of their accounts.

Church: Church (Goodman et al., 2008) is a modeling 
 framework capable of generating hypotheses by perform-
ing probabilistic inference over computational expressions 
(λ-calculus). Because λ-calculus is Turing-complete, there are 
no restrictions on the hypotheses that Church can generate. 

An argument can be made that Church incorporates the 
isotropy, open-endedness, and novelty properties. However, 
it is not clear how it can incorporate the groundedness, sen-
sibility, psychological realism, and computational tractability 
properties as this is left to modelers using the framework.

Hierarchical Bayesian models: Hierarchical Bayesian models 
(Lake et al., 2015; Tenenbaum, Kemp, Griffiths, & Goodman, 
2011) form a modeling framework that can generate hypoth-
eses by virtue of grammar or programming-language struc-
tures that are built in. Hierarchical Bayesian models are 
meant to bridge symbolic representations with probabi-
listic computations. In principle, like Church, hierarchical 
Bayesian models as a framework have the capacity to unify 
all seven necessary properties. However, whether or not they 
do that depends crucially on the structures being able to gen-
erate the right sets of hypotheses. The approach, so far, seems 
not to have focused on identifying which structures lead to 
the seven properties.

Structure-mapping theory and engine: As mentioned, SMT 
(Gentner, 1983) can explain three properties: novelty, sen-
sibility, and psychological realism. To explain the remaining 
properties, the theory needs to be extended. Although there 
is room for debate as to what extent algorithmic-level incar-
nations of SMT incorporate some of the properties, to our 
best knowledge none of the four remaining properties have 
been addressed at the computational level.

2. STRUCTURE-MAPPING THEORY
The groundwork for the model of abduction proper given in 
this paper lies in SMT. According to SMT (Gentner, 1983), 
analogical reasoning consists of finding analogical matches 
between a base and target and then projecting inferences from 
the base to the target. Analogical matches are determined 
by finding structural overlap between two relational repre-
sentations. These three concepts are used to characterize the 
theory Analogical Abduction Proper: relational repre-
sentations, analogical matches, and projection. We briefly 
introduce them here.

2.1. RELATIONAL REPRESENTATION
Knowledge in SMT is represented relationally, i.e., knowl-
edge is represented in terms of objects, attributes, functions, 
and most importantly relations. Objects such as Ball, Red 
and Mary may form the basic elements of a representation 
such as “A girl named Mary kicked the red ball.” Attributes 
and functions such as isGirl(.) and isSphere(.) are relations 
that can have only one object as their argument and they 
return, respectively, true or false or an ordinal value. Finally, 
relations such as hasColor(.,.) and kicked(.,.) can take two 
or more arguments which can be other relations, attributes, 
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functions, or objects. Using these building blocks, one can 
define relational representations. For example:

(1) Kicked (isGirl (Mary), hasColor (isSphere (Ball), Red))

2.2. ANALOGICAL MATCHING
An analogical match is defined as the structural overlap 
between two relational representations. The overlap consists 
of correspondences between entities in both representations. 
Some entities, like objects, attributes, and functions, can cor-
respond to any entity of the same type. Relational entities, 
however, can only correspond to entities of the same type 
and with the same label. Furthermore, matches in SMT have 
to be structurally consistent (Gentner, 1983) in the sense that 
matches have to satisfy the following two constraints:

1. 1:1 correspondence: Each entity that is part of the match 
can only be part of one correspondence.

2. Parallel connectivity: If an entity is part of the match, then 
all its arguments should also be part of the match.

Analogical matching can, for example, explain how another 
child, James, can believe that kicking a can is good pretend 
play for playing soccer (i.e., kicking a round ball). The follow-
ing relational representation matches to Representation (1), 
because kicked(.,.) corresponds and so do all its arguments.

(2)  kicked (isBoy (James), hasColor (isCylindrical (Can),  
Silver))

Note that this match (and analogical matches in general) only 
works because structural overlap is guaranteed and because 
labels of objects, attributes, and functions can be ignored. 
This is how SMT can explain why analogical inferences can 
transcend domains, yet remain sound.

A high-quality analogical match is one that has high sys-
tematicity. Systematicity is assumed to be higher the more 
the analogical match is interconnected and the more deeply 
nested substructures it contains (Clement & Gentner, 1991; 
Forbus & Gentner, 1989; Gentner, 1983, 1989). There is 
much empirical evidence that SMT accurately captures how 
humans make analogical inferences (see Gentner, 2010; 
Gentner & Colhoun, 2010; Gentner & Smith, 2013).

2.3. INFERENCE PROJECTION AND VARIABLE INSTANTIATION
Based on an analogical match, it is possible to transfer infor-
mation from one representation (the base) to the other (the 
target). The main constraint on projections is that the pro-
jected part of the base has to connect to at least one attribute, 
function, or relation in the overlapping structure. Additional 
projection constraints exist, e.g., based on goal relevance 
(Spellman & Holyoak, 1996), adaptability (Keane, 1996), and 
support and/or extrapolation (Forbus et al., 1997; Gentner, 

2003b; Wareham, Evans, & van Rooij, 2011). An important 
feature of projections is that they can transfer knowledge 
from one domain to another, because analogical matches 
can cross domains. Consider the following extension to 
Representation 1:

(1a)  is (kicked (isGirl (Mary), hasColor (isSphere (Ball), 
Red)), PlayingSoccer)

Representation 1a also matches Representation 2, because 
kicked(.,.) corresponds. Based on that match is(.,Playing-
Soccer) can be projected onto Representation 2 (indicated in 
bold), further modeling how James can pretend-play soccer 
with a tin can.

(2a)  is(kicked (isBoy (James), hasColor (isCylindrical 
(Can), Silver)), PlayingSoccer)

In addition to projection there is a second way to transfer 
knowledge from the base to the target representation called 
variable instantiation (Gentner & Medina, 1998). With vari-
able instantiation, objects in the target representation can be 
replaced by objects from the base representation if they ana-
logically match. A target object that is replaced in this way 
can be seen, in a sense, as a variable that is instantiated by the 
value from the base object.

2.4. CANDIDATE HYPOTHESIS
An analogical match, a projection, and a variable instantia-
tion can be combined to form a candidate hypothesis. Such 
a hypothesis is a quintuple 〈b,t,m,ρ,ι〉, where b is the base 
representation, t the target representation, m the analogical 
match between them, ρ a projection function that transfers 
structure from b to t, and ι an instantiation function that 
replaces objects in t with objects from b. This structure is a 
candidate hypothesis, because there is no guarantee that the 
information transformed onto the target is correct. This is 
not a problem for the purpose of characterizing abduction 
proper, because abduction proper precisely is about gener-
ating hypotheses, whereas IBE is about selecting the best 
hypothesis.

The processes and concepts from SMT are the basic 
operators used in the computational-level characteriza-
tion of Analogical Abduction Proper. Analogical 
Abduction Proper goes beyond SMT, because it charac-
terizes a set of candidate hypotheses compared to a single 
candidate hypothesis.

3. ABDUCTION PROPER BY DEEP ANALOGICAL INFERENCE
Using the formal notions of representation, matching, infer-
ence projection, and variable instantiation from SMT, we can 
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formally characterize Analogical Abduction Proper. The 
foundation of Analogical Abduction Proper lies in the 
recursive application of analogical matching and inference pro-
jection. We call this Deep Analogical Inference because it 
consists of (potentially) many consecutive analogical infer-
ences. Analogical Abduction Proper unifies six out of the 
seven necessary properties. Three are derived properties from 
SMT: novelty, sensibility, and psychological realism. Three 
more properties come by virtue of the extension: isotropy, 
open-endedness, and groundedness. Finally, in the discussion 
section we reflect on how the extension lays the groundwork 
for satisfying computational tractability. We highlight the rele-
vant parts of the theory for each property. We explain the the-
ory in a top-down manner so that it is clear what role each 
sub-function plays in the function in which it is contained.

We start by defining a candidate hypothesis as a quintu-
ple 〈b,t,m,ρ,ι〉. Here, m is an analogical match between two 
 relational representations b and t, ρ is the related inference 
projection, and ι is the variable instantiation. We start by pro-
viding a formal characterization of Analogical Abduction 
Proper and then continue by formalizing each sub-function.

Analogical Abduction Proper
Input: A relational representation of evidence e and a 
set of relational representations of knowledge K.
Output: A complete set of candidate hypotheses H, 
where H = Analogical

k K∈
∪

Candidate Hypotheses(e, K, k).

Compared to the informal definition from the Introduction 
we add the assumption that e is a relational representation 
of evidence and that K is a set of relational representations 
of all knowledge. All candidate hypotheses in the output are 
based on the evidence e, which guarantees that all candidate 
hypotheses are grounded. The output is based on Analogical 
Candidate Hypotheses, which returns all possible candidate 
hypotheses for e relative to a core k. The complete set of can-
didate hypotheses is the unified set of all possible candidate 
hypotheses for all cores k ∈ K. This is the first part of the theory 
that contributes to its isotropy, i.e., by considering all cores.

Analogical Candidate Hypotheses
Input: A relational representation of evidence e, a set of 
relational representations of knowledge K, and a rela-
tional representation of a core k.
Output: A set of candidate hypotheses (relative to k) Hk, 
where

H e k mk = 〈 ′ ′ 〉, , , , ι∪∪
M
P
I

Analogical Candidate Hypotheses outputs a set of can-
didate hypotheses for e relative to a core k. These candidate 

hypotheses 〈 ′ ′ 〉e k m, , , ,ρ ι  are based on every analogical 
match m, projection ρ, and instantiation ι that can be found 
between all possible representations of the evidence e and 
all possible representations of the core k. We characterize 
all possible representations of a base representation with 
Deep Analogical Inference (D), which outputs all rep-
resentations that can be built from the base representation 
by recursively making analogical inferences using all pieces 
of knowledge in K. This is the second part of the theory that 
contributes to its isotropy, i.e., by considering all candidate 
hypotheses between all possible representations of evidence 
and knowledge. Note that each hypothesis contains a well-
defined relation between the core and the evidence e (see 
also Figures 1 and 2). Hence, the theory is grounded even in 
the classical sense since the evidence can (but need not) be 
perceptual (Forbus, Gentner, Markman, & Ferguson, 1998). 
Furthermore, Analogical Candidate Hypotheses out-
puts an open-ended set of candidate hypotheses in the sense 
that the set contains all hypotheses that can be generated 
based on all knowledge a person possesses.

As explained in the previous section, SMT allows for any 
part of the base that connects to the match to be transferred 
and instantiated onto the target. Exactly how much is projected 
and instantiated is still debated in the literature (Gentner & 
Colhoun, 2010; Gentner & Smith, 2013), but various proposals 
for characterizations have been made based on goal relevance 
(Spellman & Holyoak, 1996), adaptability (Keane, 1996), and 
support and/or extrapolation (Forbus et al., 1997; Gentner, 
2003b; Wareham et al., 2011). At the time of writing there are 
two options for the theory. The first option is to choose one 
of the (debated) proposals and (possibly incorrectly) assume 
that it produces the relevant projections and instantiations. 
However, which projections and instantiations are relevant 
may vary wildly, hence the debate. The second option defines 
Match( , )′ ′e k , Proj( , , )′ ′e k m  and Inst( , , )′ ′e k m  such that they 
actually return all possible matches, projections, and instantia-
tions between ′e  and ′k  that conform to SMT in general. In this 
way, the theory does not exclude potentially relevant candidate 
hypotheses. Here we choose the second option.

The final two pieces of the puzzle are Deep Analogical 
Inference and Analogical Augmentation.

Deep Analogical Inference (D)
Input: A relational representation a and a set of 
relational representations K.
Output: The set of all possible representations of a 
 relative to K:

    D a K

a k K

if a k

k K

k K

( , )

( ) ( , ), ),

( , )
,=

∪

∃ ≠

∈
∅

∈

AA a, k (AA

 AA
otherwise

D


∅∅










 (1)



7 2018 | Volume 11docs.lib.purdue.edu/jps

M. Blokpoel, et al. Deep Analogical Inference

Analogical Augmentation (AA)
Input: Two relational representations a and k.
Output: Given the analogical match m = Match(k, a) 
with the highest systematicity, return ′ =a aρ( ), where  
ρ ∈ Proj(k,a,m) is the biggest possible projection. If no 
match is possible, return ∅.

The second, given representations a and k, returns an aug-
mentation of a by finding the most systematic match with k 
and projecting the biggest structure possible from k to a. Deep 
Analogical Inference recursively applies Analogical 
Augmentation (AA) as often as possible. Thereby, it returns 
the set of all possible representations of a. The third and final 
part of the theory that contributes to its isotropy is that deep 
analogical inference returns sets of representations that are 
based on all possible sequences of analogical inferences (i.e., 
match and projection) with all knowledge. This also contrib-
utes to the theory being open-ended. Figure 1 provides an 
illustration of Deep Analogical Inference.

The four formal characterizations (Analogical Abduc-
tion Proper, Analogical Candidate Hypotheses, Deep 
Analogical Inference, and Analogical Augmenta-
tion) presented in this section together form a complete 

theory of Abduction Proper that unifies six of the seven 
necessary properties. Figure 2 provides an illustration of 
Analogical Candidate Explanations. It shows how 
analogical matches and projections between representations 
from two spaces of reconceptualized representations (one 
space for the evidence e and one for the core k) make up a 
set of candidate hypotheses relative to the core k. Analogi-
cal Abduction Proper combines each subset of candidate 
hypotheses for all k ∈ K.

4. DISCUSSION
In this paper we have proposed that the origin of hypotheses 
(otherwise known as abduction proper) may lie in deep ana-
logical inference. We identified seven necessary properties 
that any account of abduction proper should have: isotropy 
(Fodor, 1983), open-endedness (Goodman, 1983), novelty 
(Fodor, 1983; Goodman, 1983), groundedness (Barsalou, 
1999; Lakoff & Johnson, 2003), sensibility (Kuipers, 2000; 
van Fraassen, 1985), psychological realism, and compu-
tational tractability (Frixione, 2001; van Rooij, 2008). We 
characterized abduction proper based on processes from 
the SMT of analogy. This characterization, called analogical 

Analogical Augmentation

Relational Representation
a

b

c

d2

d1

d3

Figure 1.
Deep Analogical Inference D. By recursively applying Analogical Augmentation to the relation-
al representation a, this function characterizes all possible representations of a. The gray sequence 
highlights one such representation path: a analogically matches to some knowledge k and can be 
augmented via analogical projection into b. Then b is similarly transformed into c and c into d1, d2, and 
d3. Finally, the d’s do not match to any knowledge k ∈ K which ends the recursion. Here, we can  observe 
that if a is a perceptual representation, then each representation built on top of a is grounded in  
(i.e., has a well-defined relationship with) a by virtue of the transitive analogical relation.
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abduction proper, has six out of seven properties and lays 
the groundwork for pursuing the computational tractability 
of abduction proper. This opens up two new research lines: 
the development of and integration with theoretical accounts 
of knowledge acquisition and solving the paradox of tracta-
ble abductive inference. Before we cover these research lines, 
we first explain how analogical abduction proper covers six 
 necessary properties of abduction proper.

4.1. NECESSARY PROPERTIES OF ABDUCTION PROPER
The computational-level theory of analogical abduction 
proper unifies six out of seven necessary properties of abduc-
tion proper under one theory. We briefly summarize these 
properties and explain how analogical abduction proper 
satisfies them.

Isotropy: Abduction proper is isotropic in the sense that 
any knowledge that a person has is potentially relevant for 
some candidate hypothesis. Analogical abduction proper is 
isotropic because the set of candidate hypotheses it char-
acterizes contains all hypotheses that can be generated 
through deep analogical inference using every possible 

knowledge representation available. This means that if a 
piece of knowledge is possibly relevant, it will be part of at 
least one deep analogical inference path leading to a candi-
date hypothesis.

Open-endedness: A set of candidate hypotheses is open-ended 
if it contains all hypotheses a person can in principle infer. 
Analogical abduction proper generates the set of all possible 
candidate hypotheses based on all possible deep analogical 
reconceptualizations and is therefore open-ended.

Novelty: A set of candidate hypotheses is novel if it can 
contain hypotheses that an individual has never generated 
before. Because analogical abduction proper is based on ana-
logical inference, it can transfer knowledge from one domain 
to another, thereby reconceptualizing representations which 
can lead to candidate hypotheses that the individual has 
never generated before.

Grounded: For hypotheses to be grounded, any hypothesis 
needs to contain some well-defined relationship between the 
representation of the observation and its explanation. Each 
candidate hypothesis in analogical abduction proper consists 

Figure 2.
Analogical Abduction Proper. Analogical matches and projections between representations from two 
spaces of all possible representations make up a set of candidate hypotheses relative to the core k. On the 
left is the space of all possible representations for the evidence e and on the right is the space for the core 
k. The complete figure would include multiple of these analogy “networks,” namely one for each core k ∈ K. 
This figure also illustrates how candidate hypotheses can be grounded in perception.

all possible representations of evidence e all possible representations of core k

analogical match
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of an analogical match and inference between (deeply) recon-
ceptualized knowledge and (deeply) reconceptualized obser-
vation. Therefore, analogical abduction proper is grounded, 
even in the classical sense given that the observation might 
be perceptual in nature.

Sensible: A sensible candidate hypothesis is one that can 
be used to explain an observation. In analogical abduction 
proper, all candidate hypotheses are sensible, as they can 
relate the observation via (deep) analogical inference to a 
concept. Because analogical inference is only possible when 
structural overlap between representations exists, the model 
avoids candidate hypotheses where anything goes.

Psychological realism: Analogical abduction proper is con-
strained by the processes that underlie SMT. This means that 
the set of candidate hypotheses is constrained to those can-
didate hypotheses that can be generated through analogical 
matching and projection. The model is empirically supported 
to the extent that its component processes from SMT have 
considerable empirical support (Bowdle & Gentner, 2005; 
Forbus et al., 1995, 1997; Gentner, 1989, 2003a; Gentner & 
Christie, 2010; Gentner & Markman, 1997; Kuehne et al., 
2000; Lovett et al., 2006; Wolff & Gentner, 2011). In addition, 
we illustrated with an empirical case study how one might 
explain observations of abduction proper as it occurs in a 
communicative game (see the Appendix).

Computational tractability: Despite analogical abduction 
proper being constrained by psychological realism and 
sensibility, the sets of candidate hypotheses it generates 
are extremely large, potentially even infinite, due to isot-
ropy and open-endedness. Although at first sight one may 
reject the theory for this computational intractability, we 
believe rejection to be too strong a response. The fact that 
many theories of abductive inference (including analog-
ical abduction proper) are computationally intractable 
(Bylander, Allemang, Tanner, & Josephson, 1991; Nordh & 
Zanuttini, 2005) can be seen as a sign that cognitive science 
is currently unable to solve Fodor’s frame problem: How 
can abductive inference be isotropic, yet computationally 
explained (Fodor, 2000)? Where Fodor was pessimistic 
about the chances of computational cognitive science fully 
solving this problem, we are not and propose a way forward 
in the section below.

4.2. COMPUTATIONAL TRACTABILITY OF ABDUCTIVE INFERENCE
It is well known that IBE can be computationally intracta-
ble (e.g., NP-hard or worse) even for hypothesis spaces that 
are closed and predefined (Abdelbar & Hedetniemi, 1998; 
Kwisthout, 2011; Thagard, 2000; Thagard & Verbeurgt, 
1998). Inference to the best explanation over open-ended 
hypothesis spaces, such as those generated by analogical 

abduction proper, can potentially make IBE more diffi-
cult to compute. However, it is not an option to exclude 
abduction proper from our theories as it is inherently part 
of abductive inference. This leads to a paradox. People can 
make abductive inferences quickly, but our best theories of 
complete abductive inference cannot explain how people 
can be so quick.

We think that the approach is far from defeated and that 
the apparent intractability is no reason to reject analogical 
abduction proper, including its unification of six necessary 
properties. The reason for our optimism is based on the fact 
that computational intractability is not a property of the size 
of the search space (even if it is infinite), but of the ability to 
search that space efficiently. In fact, it is known that certain 
functions can become tractable when their search space is 
appropriately constrained by adding structure to it that can 
be exploited for efficient search (Downey & Fellows, 1999). 
This is the basis of a methodology called parameterized 
complexity analysis. It can be used to analyze under which 
 constraints a computational-level characterization can be 
tractable (Blokpoel, Kwisthout, van der Weide, Wareham, & 
van Rooij, 2013; van Rooij, 2008; van Rooij et al., 2008). It 
has already been successfully applied to analyze models of 
analogy (van Rooij et al., 2008; Wareham et al., 2011) and 
communication (Blokpoel et al., 2012; van Rooij et al., 2011). 
This type of analysis can only be applied to well-defined 
formal computational-level models, such as the one we pre-
sented in this paper. Hence, although our theory is not (yet) 
computationally tractable, it opens up the possibility for 
future exploration of ways in which its search-space can be 
constrained to render it tractable. Such an exploration might, 
for example, lead to understanding how structure in the set 
of candidate hypotheses (by virtue of sensibility) may con-
strain IBE and render it tractable.

4.3. KNOWLEDGE ACQUISITION
Our model crucially depends on the availability of the set 
of all knowledge K to guarantee isotropy. One might argue 
that we have shifted the burden of explaining where candi-
date hypotheses come from to explaining where knowledge 
comes from. Knowledge acquisition is, however, a different 
explanatory target. Even if a fully satisfactory and agreed 
upon account of knowledge acquisition existed, that account 
would only explain where knowledge comes from, not how 
knowledge is used to form candidate hypotheses that explain 
the observations.

The set of knowledge does constrain which candidate 
hypotheses can be generated. This means that knowledge 
acquisition may play a constraining role in the theory of 
analogical abduction proper. Hence, it is important in future 
research on abduction proper to understand the nature of 
knowledge acquisition.
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5. CONCLUSIONS
The human capacity for generating hypotheses is a phenom-
enon that is difficult to characterize, mainly because any 
such characterization will have to be isotropic, open-ended, 
novel, grounded, sensible, psychologically realistic, and 
computationally tractable. We have provided a computation-
al-level characterization based on deep analogical inference 
that unifies six of the seven necessary properties and lays the 
groundwork for pursuing the seventh, i.e., computational 
tractability. We believe that this contribution is fundamental 
to taking the next step towards fully explaining abduction 
proper, as it establishes firm ground to address future chal-
lenges: integrating IBE and abduction proper, developing 
algorithmic-level explanations of abductive inference, inte-
grating theories of knowledge acquisition, and solving the 
paradox of tractable abductive inference.
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APPENDIX: A CASE STUDY OF DEEP ANALOGICAL INFERENCE
These supplementary materials illustrate a case study for 
the computational theory presented in the main paper. We 
first explain the target phenomenon: the interpretation of an 
innovative communicative signal in a communication game. 
We then show how a candidate hypothesis can be generated 
by using deep analogical inference. We assume that readers 
are familiar with the theory as presented in Sections 2 and 3 
in the main paper.

A.1. A WINDOW INTO ABDUCTION PROPER: THE TACIT COMMUNICA-
TION GAME
The ability to generate novel hypotheses is difficult to 
isolate and study empirically; however, the phenome-
non of communicative innovations provides a window 
into abduction proper. Communicative innovations 
are novel signals that have novel meanings (Stolk et al., 
2013b); hence they require communicators and listen-
ers to generate (novel) hypotheses about their meaning. 
They may occur when interlocutors do not have conven-
tionalized signals available. Unfortunately, communica-
tive innovations are often interspersed with conventional 
signals in daily communication, making it difficult to 
cleanly observe hypothesis generation. Interest in study-
ing the capacity to generate and understand novel sig-
nals has led to the emergence of a research field called 
experimental semiotics. Experimental semioticians have 
developed many experimental paradigms to isolate and 
study phenomena related to the emergence of commu-
nicative innovations (de Ruiter et al., 2010; Galantucci, 
2009; Galantucci & Garrod, 2011; Garrod & Doherty, 
1994; Kirby, Cornish, & Smith, 2008). These phenom-
ena range from pair interactions (de Ruiter et al., 2010; 
Galantucci, 2009) to communities and the evolution of 
communication systems (Kirby et al., 2008) and from 
developmental capacities (Stolk, Hunnius, Bekkering, 
& Toni, 2013a) to neural mechanisms (Noordzij et al., 
2010; Stolk et al., 2013b). We focus on observations from 
the Tacit Communication Game (TCG) for two reasons. 
First, the TCG was developed to study the emergence of 
novel signals and recipient design in pair interactions. It 
therefore provides a clear view on abduction proper as it 
underlies communication by communicative innovations 
without adding influences of (cultural) evolution and 
development. Second, it is one of the most well-studied 
semiotic paradigms, offering a solid empirical platform 
for isolating instances of abduction proper in human 
communication (Blokpoel et al., 2012; de Ruiter et al., 
2010; Noordzij et al., 2010; Stolk et al., 2013a, 2013b, 
2014; Stolk, Verhagen, & Toni, 2016; Volman, Noordzij, 
& Toni, 2012).

The TCG is a collaborative task between two participants. 
To solve the task both participants need certain information, 
but information is unevenly distributed. This means that one 
of the participants (the sender) has to confer information to 
the other participant (the receiver) such that he can solve his 
part of the joint task. To prevent participants having direct 
access to conventionalized signals, the TCG has communi-
cators design signals in an unconventional medium. This 
means that senders are required to generate communica-
tive innovations and receivers are required to understand 
those innovations. Both communicating and understand-
ing require the ability to generate genuinely novel candidate 
hypotheses. In this section we give details of both the TCG 
paradigm and the observations that will form the basis of the 
case study.

Paradigm: In the TCG, two players cooperate to solve 
a joint task: placing two tokens, each controlled by one 
player, correctly on a game board. The 3  ×  3 game board 
has nine locations and each player’s token (identified by a 
color) can vary in shape (see Figure A1). Furthermore, one 
of the players—and only one—receives privileged infor-
mation about the correct placement of the two tokens in 
each trial. This player is the sender and she has to share this 
privileged information with the other player, the receiver, 
in order to successfully play the game. Movement is done 
in turns: first the sender moves her token, then the receiver 
may move his token, after which a trial ends. Player tokens 
start at the center of the board and players can move only 
orthogonally and rotate clockwise 90 degrees1. This means 
that one movement sequence of the sender contains both 
communicative (i.e., the signal) and instrumental move-
ments (i.e., moving to her goal placement). The TCG is an 
experimental semiotic paradigm precisely because senders 
have to generate a signal in an unconventional medium, 
i.e., by moving and rotating their token on a game board. 
As explained earlier, this requires senders to generate com-
municative innovations, because they cannot simply use 
conventionalized signals that they have learned for other 
mediums. Consequently, it requires the receiver to be able 
to understand communicative innovations. Given that gen-
erating and understanding of communicative innovations 
require the ability to generate novel candidate hypotheses, 
the novel signals and meanings observed in TCG exper-
iments are good subjects for our case study of analogical 
abduction proper. We detail some of these signals and their 
meanings later in this section.

A trial of the TCG breaks down into the following 
sequence (see also Figure A2):

1. Preparation: Both players are shown their respective 
tokens for this trial.
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2. Informing/planning: The sender is presented with the tar-
get positions of both herself and the receiver and she is 
given time to plan her actions.

3. Communicating: The sender’s token is placed in the 
center location of the board and she is given time to 
execute her planned movement using orthogonal 

movement and rotation (note that the circle cannot 
rotate). During this step the receiver observes the send-
er’s token movement.

4. Task completion: The receiver’s token is placed in the cen-
ter location of the board and he is given time to move and 
rotate his token to what he believes is the correct location 

Figure A1.
The Tacit Communication Game. (a) The game is played with the following components: 
three different shaped tokens for each player (circle, rectangle, and equilateral triangle) 
and a 3 × 3 game board. The starting position for both players is in the center. (b) The 
sender has access to privileged information (unavailable to the receiver) about the correct 
placement of both tokens.

Sender’s tokens

Token placement
information
(privileged)

Receiver’s tokens

Receiver’s view

Sender’s view

(a) (b)

1.  Preparation

2.  Informing/planning

3.  Communicating

4.  Task completion

5.  Feedback

✓

Figure A2.
Turn order. Each turn consists of five steps. Tokens can be moved freely in orthogonal directions, and onto other 
tokens should they be on the board. They can, if the shape shows it, also be rotated by increments of 90°.
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Table A1.
The wide variety of signals and their meanings in the Tacit Communication Game. This list is compiled from observations made by 
de Ruiter et al. (2010) and Blokpoel et al. (2012). Here S-token and R-token stand for sender’s and receiver’s token shape, respectively. 
These columns indicate with which token shapes (circle, rectangle, or triangle) the signal has been observed.

Signal Variant S-token R-token Description 
Wiggle Apex C R, T Repetitive motion along an axis from A to B means 

the apex should point to B. 
Opposite C R, T Repetitive motion along an axis from A to B, where 

one repetition means the apex should point to B and 
two repetitions mean the opposite orientation. 

Rotate C R, T The number of repetitive motions is the number of 
times the receiver should rotate his token. 

Exit to point From target location C, R, T R, T The direction in which the sender leaves the target 
location is the receiver’s orientation. 

From start location C, R, T R, T The direction in which the sender leaves the start 
location is the receiver’s orientation. 

Mirror Exact match C, R, T C, R, T Using the same shaped token, a pause in the 
receiver’s target location and orientation signals the 
receiver’s target. 

Non-match C, R, T C, R, T Using a different shaped token, a pause in the 
receiver’s target location and (as closely matched) 
orientation signals the receiver’s target.

Motion to point C T A fast motion from one side of the board to the 
receiver’s target location signals orientation. 

Rotate to rotate C R, T The number of times the sender rotates signals the 
number of times the receiver should rotate his token. 

and orientation based on the communicator’s observed 
movement.

5. Feedback: Both players receive confirmation on whether 
or not they solved the joint task. The task is solved when 
both players’ tokens are in their correct location and ori-
entation as shown in Step 2. If both tokens are correctly 
placed, both players are notified by a green check mark. 
If at least one token is misplaced, then the trial is lost and 
both players are notified by a red cross. Note that the play-
ers do not receive feedback on what would have been the 
correct location and orientation.

We next review key observations of the TCG, including 
specific communicative innovations, which offer a window 
into abductive inference including abduction proper.

Key observations: We have already explained that due to the 
unconventional nature of the communication medium in 
the TCG, senders have to use communicative innovations. 
Players have been observed to generate a wide variety of 
communicative innovations (see Table A1 for an overview of 
TCG signals). This variety is reflected most obviously in the 

signal itself, but more importantly in the signal’s meaning, of 
which any one signal can have many. To appreciate this sec-
ond observation we have to define the concept of “meaning” 
in the context of the TCG.

Even though there are only 3 × 3 × 4 (board width × 
board height × maximum number of different orientations) 
possible configurations for a token, there are many different 
ways to represent a token in a position (e.g., “token at (3,2),” 
“circle on a board,” “blue 1 cm by 2 cm object on white 3 cm 
by 3 cm square with 1 mm black border,” etc.). This means 
that, if the meaning of a signal is a hypothesis about the 
sender’s intended meaning, then all of the different repre-
sentations of the signal and concept lead to uniquely differ-
ent meanings. This is reflected in the TCG, where signals 
that look identical can have different behavioral replies on 
the receiver’s side (Stolk et al., 2013b). It also, counterintu-
itively, suggests that the same behavioral response on the 
receiver’s part can be the result of different meanings. If the 
latter should be the case, then the observed diversity is actu-
ally an underestimate of the true diversity of communicative 
innovations.
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In many studies, TCG players begin the game with easy 
trials, i.e., trials where both players have identically shaped 
tokens. This allows communicators to successfully use “mir-
ror” signals. They can move their own token to the receiver’s 
correct location and orientation, then pause, and then con-
tinue to their own position. While one can argue whether or 
not this signal and its meaning is a communicative innova-
tion, the more interesting communicative behaviors emerge 
when the shape of the sender’s token has less rotational 
options than that of the receiver’s token shape. For example, 
a circle cannot show rotations. A circle thus has fewer rota-
tional options than a triangle, which can be oriented in four 
different configurations. The trials where senders play with 
circle tokens and receivers play with triangle tokens result 
clearly in communicative innovations.

One such communicative innovation is called the “wiggle” 
and this communicative behavior has been observed in many 
different studies (de Ruiter et al., 2010; Newman-Norlund  
et al., 2009; Stolk et al., 2013b). The wiggle is a communica-
tive innovation generated by senders to indicate location and 
orientation of a receiver’s token, when the sender’s token has 
less rotational freedom than that of the receiver. For example, 
in trials where the sender has to use a circle (which cannot 
show rotations) to communicate the orientation of a triangle 
(which has four orientations), often—but not always—send-
ers adopt a wiggle signal. Figure A1b displays an example of 
the information given to a sender on such a trial. The wig-
gle signal consists of the communicator pausing her token at 
the receiver’s target location to convey that his token should 
be positioned there. Then, unable to orient her own circular 
token, the sender uses repetitive movements along an axis to 
signal the orientation of the receiver’s triangle (see Figure A3).  
This signal, however, can mean various things within the con-
text of the game. For instance, it can mean the pointing direc-
tion of a triangle (“wiggle apex”), or the number of times a 
receiver needs to perform a “rotate” action (“wiggle rotate”), 
or even the opposite of the pointing direction depending on 
the number of repetitions (“wiggle opposite”; see Table A1).

In order for these communicative innovations to be gener-
ated or understood candidate meanings have to be generated 
de novo. The possible meanings of these innovations are not 
predefined, and they are also open-ended. These properties 
are best observed with the wiggle. Therefore, we will use the 
wiggle as a case study for Analogical Abduction Proper 
in the next section.

A.2. AN EMPIRICAL TEST CASE: GENERATING THE MEANING OF A 
“WIGGLE”
As seen in the previous section, the wiggle signal can be inter-
preted in different ways. We first sketch informally how the 
“wiggle apex,” “wiggle opposite,” and “wiggle rotate” meanings 
can be hypothesized by analogical abduction proper. Then we 
present a more detailed and formal analysis of the wiggle apex 
meaning. It is important to note that we will limit our case 
study to a single augmentation path (the gray annotation in 
Figure 1 in the main text) and single candidate hypothesis 
(the gray dashed line in Figure 2 in the main text). The key 
point here is not to show an entire hypothesis space (as this 
would require too many pages), but to show that Analogical 
Abduction Proper can in principle generate novel candi-
date hypotheses. It will become clear that, given a large knowl-
edge base, it can generate a set of candidate hypotheses.

Informal wiggle analysis: Tables A2, A3 and A4 illustrate possi-
ble augmentations that can be performed on representations 
of the signal and cores such that a candidate meaning can be 
hypothesized by finding a match (and projecting structure) 
between the augmented representations. Generating one 
possible meaning hypothesis starts with two representations, 
one of the signal and one of a possible core. Each consecu-
tive row is an augmentation of the previous representation 
with some knowledge via Analogical Augmentation 
(depicted by ⇝). On the final row (match level) an analogical 
match between the reconceptualized evidence and reconcep-
tualized core is found. This final match, including a potential 
projection and instantion, is a candidate hypothesis about 
the meaning of the signal.

(a)

Step 1
long pauze

quick step

Step 2
Step 3

(b)

Figure A3.
Zooming in on the wiggle signal. The two locations in the time steps in (b) are parts of the  
(a) bigger 3 × 3 board.
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Table A2.
Wiggle apex: augmentation and analogical match sketch.

Representations of evidence e Representations of core k
Lowest level (1)  timed sequence of circle locations (1)  equilateral triangle  

augment with symmetry ⇝
(2)  equilateral triangle with axis of symmetry  

augment with apex⇝
 
     augment with lines

(3)  triangle with axis and apex  
augment with alignment ⇝

(2)  path  
 
augment with alignment

(4)  triangle with apex, aligned to frame of 
reference by axis  
augment with base ⇝

(3)  path aligned to frame of reference  
 
augment with start location

(5)  triangle aligned to frame of reference by axis, 
with apex and base  
augment with location ⇝

(4)  path aligned with start  
 
augment with direction

(6)  triangle aligned to frame of reference by axis, 
with apex and location  
augment with direction ⇝

(5)  vector with starting location  
augment with orientation

(7)  pointing triangle with location augment with 
orientation ⇝

Match level (6)  vector with start and orientation            ⇔ (8)  triangle with location and orientation

From these sketches we can already make some interesting 
observations. The first observation is that the  augmentations 
that are required to reconceptualize representations to find 
a candidate hypothesis are not trivial. The second observa-
tion is that the same core representation can lead to differ-
ent candidate hypotheses, e.g., the “wiggle apex” and “wiggle 
opposite” candidate meanings start with the same core rep-
resentation. The third observation is that multiple different 
core representations can form the basis of different candi-
date meanings, e.g., the “wiggle apex” and “wiggle rotate” 
are based on two different core representations. Finally, each 
candidate hypothesis is grounded in perception, because it 
is an analogy between a reconceptualized representation of 
observed evidence and knowledge.

Formal wiggle apex analysis: We now present a formal analy-
sis of the “wiggle apex” strategy to illustrate Analogical 
Abduction Proper. For each candidate hypothesis, 
Analogical Abduction Proper consists of two parts: 
perform deep analogical inference on the evidence and core 
representations, then find possible analogical inferences 
between the resulting representations. In this case study we 
first show a representation that results from deep analogi-
cal inference of the observed evidence, i.e., the actual move-
ments of the sender token on the board. Second, we assume 
that a similar process has been done for the core concept “tri-
angle” and illustrate an analogical inference between the two.

Note that we use specific representations in the formal 
analysis. This, however, does not mean that we commit to 
these representations being “true.” In fact, we would argue 
that many different representations are psychologically plau-
sible. This is accommodated for in Analogical Abduction 
proper, because it is agnostic about the content of the rep-
resentations. Furthermore, the main point here is to show 
that knowledge that is inherently not about the TCG can be 
part of the deep analogical inference to generate a candidate 
hypothesis that can explain the observed wiggle apex signal.

Representations of evidence and core: We start by introduc-
ing the representation of the signal. This representation  
(see Figure A4) involves a number of objects, attributes, 
functions, and relations. We list these and their interpre-
tation below. Because these representations are quite large, 
we will use a graphical notation for readability. A relation 
is depicted by its label and two or more arrows pointing to 
its arguments. An attribute or function only has one argu-
ment, and objects are leaves.

Objects
1. Board: represents the TCG board.
2. (3,3) and (3,2): represent two locations on the TCG 

board.
3. FoR: “Frame of Reference” represents an abstract spatial/

geometrical frame.
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4. N and S: “North” and “South” part of the frame.
5. S1,… and A1,…: States and actions.
6. Circle: The circle token.

Attributes
1. delay (a): there is a delay of a milliseconds caused by 

the action.

Table A3.
Wiggle opposite: augmentation and analogical match sketch.

Representations of evidence e Representations of core k
Lowest level (1)  timed sequence of circle locations augment 

with lines ⇝
(1)  equilateral triangle  

(2)  path  
augment with alignment

 
        augment with symmetry ⇝

(3)  path aligned to frame of reference  
 
augment with start location

(2)  equilateral triangle with axis of symmetry  
augment with apex ⇝

(4)  path aligned with start  
augment with direction ⇝

(3)  triangle with axis and apex  
augment with alignment ⇝

(5)  vector with starting location  
 
augment with orientation

(4)  triangle with apex, aligned to frame of 
reference by axis  
augment with base ⇝

(6)  vector with start and orientation  
 
augment with symmetry

(5)  triangle aligned to frame of reference by axis, 
with apex and base  
augment with location ⇝

(7)  vector with start and orientation  
and a symmetrical path  
augment with counting

(6)  triangle aligned to frame of reference by axis, 
with apex and location  
augment with direction ⇝

(8)  vector with start and orientation  
and a number  
augment with odd/even reverse ⇝

(7)  pointing triangle with location  
 
augment with orientation ⇝

Match level (9)  vector with start and orientation possibly    ⇔ 
reversed

(8)  triangle with location and orientation

S1 A1 S2

Circle

exists exists exists

transition-by-action

A2 S3

transition-by-action

line

N S

is-on is-on

north-of

FoR
delay

shorter

delay

is-atis-at is-at

Board
A B

is-on is-on

Figure A4.
Relational representation of the evidence. Graphical representation of the representation of the observed 
sender signal.
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Relations
1. is-on (a,b): location a is on the board b.
2. north-of (a,b): location a is spatially north of loca-

tion b.
3. shorter (a,b): time a is shorter than time b.
4. exists (a,b): object a exists in state b.
5. is-at (a,b): the object that exists in this state a is at 

location b on the board.
6. transition-by-action (a,b,c): action b transi-

tions state a into state c.

In Figure A4 we can see that the communicator’s behavior is 
represented with two board locations (3,2) and (3,3) that 
lie on a board. These locations are both communicative and 
there is a line between them. This line has an orientation and 
is directed. Its starting point is (3,3) and the orientation 
is represented by the fact that it aligns with a north–south 
frame of reference, directed north.

Augmenting the evidence representation: In this section we 
show how a process of deep analogical inference can create 
a representation that can lead to a candidate hypothesis. We 
illustrate how this process works for the perceptual represen-
tation of the communicator’s signal. The same process can 
build a novel representation of the core.

The perceptual representation of the signal e that forms 
the target of the example augmentation only includes the 
communicator’s movement over the board (using simple 
spatial and temporal relations). This representation is based 
on a discretized concept of time, i.e., there is a sequence 
of states and actions. In each state there exists a circle at a 
location on the board. Between these states there is a cer-
tain time-delay: if there is a delay of 0.5 seconds between S1 

and S2, then the world is in state S1 for 0.5 seconds and then 
transitions to state S2. Additionally, there is a representation 
of the board and of a frame of reference. For readability we 
limit the representation to the parts involved in the analogy. 
Figure A5 again shows the evidence representation in black. 
It also shows (in different colors) each individual augmenta-
tion that is needed to generate the structure that will be part 
of the candidate hypothesis.

Each augmentation is performed by first matching 
to a representation of knowledge k ∈ K and then pro-
jecting the biggest possible structure over from that 
 knowledge representation k, increasing the richness of the 
signal  representation e. Figure A6 contains all the basic 
knowledge representations used in the deep analogical 
 inference with the following sequence of augmentations:  
(1) Communicative pause, (2) Communicative, (3) Lines, (4) 
Align line, (5) Location, (6) Starting point, (7) Direct line, 
and (8) Orient. The basic knowledge representations do not 
contain any knowledge specifically about the TCG. They do 
make use of several new objects and relations. We list these 
below and afterwards give an intuitive interpretation of the 
knowledge representations.

Objects
1. Communicative: represents an abstract conceptualiza-

tion of communicative aspects of the behavior (e.g., this 
can represent segmentation information).

Relations
1 is-comm (a,b): concept a is communicative.
2 Line (a,b): there exists a line between location a and b. 

Note that this relation is not ordered, i.e., line (a,b) ≡ 
line (b,a).

Table A4.
Wiggle rotate: augmentation and analogical match sketch.

Representations of evidence e Representations of core k
Lowest level (1)  timed sequence of circle locations  

 
augment with lines ⇝

(1)  object controlled with directional pad and 
rotate object button augment with 2D space 
⇝

(2)  path  
augment with location ⇝

 
  augment with lines ⇝

(3)  path to location  
 
augment with symmetry ⇝

(2)  controller for moving object in 2D space and 
rotate object button  
augment with lines ⇝

(4)  path to location then symmetrical path  
 
augment with counting ⇝

(3)  controller for moving object along path and 
rotate object button  
augment with counting

Match level (5) path to location and number                      ⇔ (4)  controller for moving object along path and a 
button to rotate object a number of times
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S1 A1 S2

Circle

exists exists exists

transition-by-action

A2 S3

transition-by-action

line

N S

is-on is-on

north-of

FoR

delay

shorter

delay

is-atis-at is-at

Board
A B

is-on is-onCommunicative

is-comm

is-comm line

aligns-withlocation

start-point

has-direction

orientation

axis-of

direction-of

Figure A5.
The final augmented representation of a wiggle. Each color shows a different analogical augmentation.

3 start-point (a,b): location a is a starting point with 
property b.

4 location (a,b): object a is a location with property b.
5 has-direction (a,b): line a is directed to part of the 

frame b.
6 aligns-with (a,b): line a aligns with axis of the 

frame b.
7 orientation (a,b,c): two locations a and c that are 

connected by line b have an orientation.
8 axis-of (a,b): axis b of the frame applies to orientation a.
9 direction-of (a,b): orientation a is directed to part 

of the frame b.

Intuitive interpretations
1 Communicative pause: “If a state/action takes more time 

compared to the state/action that comes after it, this state/
action is communicative.”

2 Communicative: “If a state/action is communicative, then 
the location the object is in at that state is communicative.”

3 Lines: “If an object is first in location 1 and then in location 2, 
then one can think of a line being between those locations.”

4 Align line: “If there are two lines between two pairs of 
locations that have a similar relationship (e.g., north-of) 
then these two lines align.”

5 Location: “If an object exists in a communicative location 
and stays there longer than in its next location, then that 
location is hypothesized to be the location.”

6 Starting point: “If two locations on a line are communi-
cative and one of them communicates the location, then 
that location is the start point of the movement along 
that line.”

7 Direct line: “If a line with a start point aligns with a line 
in a different frame of reference, then that line has a direc-
tion towards the second location of that other frame of 
reference.”

8 Orient: “If a line has a particular direction, then it can be 
thought of as having an orientation. Here, orientation is a 
direction along a particular axis with respect to a different 
frame of reference.”

To start deep analogical inference we first augment the 
evidence representation (black representation in Figure 
A5) with Communicative pause. This involves, first, find-
ing an analogical match between Communicative pause 
and the perceptual representation, and then projecting 
over the biggest possible structure. In this case, the rela-
tion is-comm and object Communicative are projected 
over. The other knowledge representations keep augment-
ing the representation in a similar fashion, enriching the 
representation of the communicator’s signal. Eventually, 
the sequence of augmentations leads to the representation 
that was used previously in this section to generate a can-
didate hypothesis about the meaning of the communica-
tor’s signal.
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Figure A6.
The knowledge representations that are used for augmenting the wiggle representation.
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Candidate hypothesis for “wiggle apex.” A candidate 
hypothesis is based on an analogical match between an aug-
mented representation of evidence and an augmented rep-
resentation of a core. Next we introduce the representation 
of the core which represents the concept of a triangle that 
points (see black representation in Figure A7). It is presup-
posed that this representation is the result of deep analogical 
inference and it includes new attributes:

Attributes
1. is-point (a): object a is a point.
2. is-apex (a): object a is an apex.
3. is-base (a): object a is a base.

The triangle representation consists of three points (P1 (the 
apex), P2, and P3) and a base (Base). These objects are all 
located on an object, i.e., the abstract triangle. There are 
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Figure A7.
Candidate hypothesis. Parts annotated in red are structures that have been projected or variable-instantiated. They 
represent the location of the triangle (3,3) and its orientation (“pointing north”).
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(a) A representation of a candidate hypothesis (meaning) including the projection and variable instantiations.
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three lines, the sides of the triangle, and an additional line 
from the base to the apex representing the axis of symme-
try. The base and the apex are communicative, because addi-
tional information about these triangle properties is what 
gives the triangle its location (conceptualized as location of 
the base), orientation, and direction (conceptualized as an 
alignment of the axis of symmetry with an axis of the frame 
of reference).

The evidence and core representations presented here 
analogically match. This match corresponds to the cognizer 
understanding that the behavior and candidate meaning are 
analogous. This, however, is not enough to explain how the 
signal is hypothesized to have a specific meaning, i.e., we know 
that the “the repetitive movement along an axis is analogous 
to the pointing of the apex” but we do not know the specific 
location and orientation of the triangle. To hypothesize these 
specifics we need to project relational structures onto and 
instantiate variables in the core representation from the rep-
resentation of the signal, based on the analogical match.

In our example we only show one possible projection and 
variable instantiation, i.e., the red structures in Figure A7a. 
We project the spatial relation between the base and apex 
from the base representation of sender behavior to the target 

representation of triangle. In addition, we instantiate vari-
ables: A→N, B→S, and Base→(3,3). These inferences make 
the candidate meaning more specific, because they contain 
information that the triangle apex should be north of the 
base and that the axis should align to the north–south axis of 
the frame of reference.

The candidate hypothesis we illustrated in this section is 
only possible by virtue of a process of deep analogical infer-
ence and the knowledge used. Given different representations, 
analogical abduction proper would generate completely dif-
ferent candidate hypotheses. This illustrates how analogical 
abduction proper can in principle generate sets of candidate 
hypotheses. As argued in the main text, this process is isotro-
pic, open-ended, novel, grounded, sensible, and psychologi-
cally realistic.

NOTES
1 Rotation is immediate (not animated), therefore a circle does 

not appear to rotate and rectangles appear to be in the same 
orientation after two rotations. Correctness of orientation is 
evaluated relative to the appearance of the orientation, not 
the number of times the player has rotated.
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