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Advanced manufacturing strategies have enabled the large-scale, economical, and efficient 

production of electronic components that are an integral part of various consumer products 

ranging from simple toys to intricate computing systems; however, the circuitry for these 

components is (by and large) produced via top-down lithography and is thus limited to planar 

surfaces. The present work demonstrates the use of reconfigurable soft micro-reactors for the 
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patterned deposition of conductive copper traces on flat and embossed 2D substrates as well 

as 3D substrates made from different commodity plastics.  Using localized, flow-assisted, 

low-temperature, electroless deposition, copper traces were deposited, which, when combined 

with various off-the-shelf components, enabled the fabrication of simple electronic circuits 

and antennas.  The application of this solution-phase method to the patterned deposition of 

functional inorganic materials selectively on different 2D/3D polymeric substrates will 

provide simple, inexpensive processing opportunities for the fabrication of electronic devices 

with non-traditional form factors when compared to relatively complicated manufacturing 

methods such as laser-directed structuring.  Further, this approach to the patterned 

metallization of different commodity plastics offers unique design opportunities applicable to 

the fabrication of 3D traces and interconnect devices, and other free-form electronics with less 

structural “bloat” and weight (by directly coating support elements with circuitry and thus 

eliminating the need for dedicated circuit boards). 

 

1. Introduction 

Despite the advanced capabilities of top-down lithography in processing a diversity of 

materials with a range of functionalities (e.g., electronic, magnetic, etc.), it remains a 

challenge to adapt these processes to the precise placement/deposition of materials on non-

planar and three-dimensional (3D) surfaces.  In the present work, we wish to design a process 

that simplifies the rational deposition of conductive traces on non-planar and 3D surfaces, is 

compatible with commercial materials (e.g., structural commodity plastics), and that is 

broadly useful for many applications (e.g., 3D circuits, free-form electronics, etc.). 

Specifically, we used soft, bi-layered stretchable microfluidic reactors, which take 

advantage of the compressibility of elastomeric materials to create reversible seals,
[1]

 to 

deposit conductive metallic traces, directly, onto flat polymer surfaces with textured finishes, 

relief patterns, as well as those with 3D features/geometries via localized, flow-assisted, 
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solution-phase electroless deposition.  This approach has two unique characteristics: (i) 

desired patterns of conductive traces can be generated through the rational design of the 

channel network within the soft reactors, and (ii) necessary additions to the patterned traces 

that are needed to complete a circuit can be achieved by reorienting the soft micro-reactor (or 

reactors of different designs) for successive depositions (or etching steps).  Further, we 

demonstrated that the deposited traces, in combination with various off-the-shelf components, 

enabled the fabrication of planar/non-planar circuits of different functionalities (e.g., LED 

displays, simple detectors, and antennas).  The ability to selectively deposit functional 

inorganic materials (the focus in this work was conductive copper traces, but other materials 

are potentially accessible using different chemistry) using flow-based, low-temperature, 

aqueous-phase synthesis can provide alternative manufacturing techniques that offer simple, 

inexpensive processing opportunities, especially for the fabrication of devices with non-planar 

form factors.  For example, this approach can be used to fabricate 3D electronic circuits and 

antennas for communication devices, biomedical instruments, and automotive components 

with greater flexibility in their space-filling geometries.  

Metallization of plastics imbibes the useful electric, magnetic, and inductive properties of 

metals to these materials.  Compared to electroplating,
[2]

 which may result in the build-up of 

material at the edges and corners of the target substrate, and requires power supplies and 

conductive substrates, electroless plating has several advantages: it (i) is a simple one-pot, 

solution-based approach that uses a redox reaction to deposit metal directly, (ii) is cost 

effective, as it does not involve power supplies and other instrumentation, (iii) is applicable to 

the generation of uniform coatings on complicated shapes, and (iv) is able to coat non-

conductive substrates, such as plastics and polymers.
[3]

  In addition to its ability of metallizing 

non-conductive surfaces (e.g., polymers), electroless deposition has key practical advantages 

over other popular metallization techniques, such as chemical vapor deposition,
[4]

 thermal 

spray methods,
[5]

 and physical vapor deposition,
[6]

 including: the ability to (i) deposit 
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inorganic material selectively on the substrates without the need for lithography, and (ii) 

operate using simple, low-cost processing equipment.  These characteristics make electroless 

deposition applicable to a diversity of substrates including metals, numerous plastics (e.g., 

polycarbonate, acrylonitrile-butadiene-styrene),
[3,7]

 glass,
[8]

 and elastomeric materials.
[9]

  The 

metallization of polymers or plastics, as a mature subset of electroless deposition in general, is 

critical to the fabrication of PCBs that are ubiquitous in electronics, and more generally to the 

manufacture of, for example, decorative or protective coatings, packaging paper, etc.
[10]

   

Electroless copper deposition (ECD, which is the focus of this work) generally involves 

three essential steps: surface pre-treatment, activation, and deposition (Fig. S1, see S.I. 

text).
[11]

  Several pre-treatment methods have been reported to improve the adhesion of the 

metal particles to the polymeric substrate, including the use of plasmas, lasers,
[12]

 and 

chemical etching.  Activation of the surfaces, which simultaneously aids adhesion and 

promotes film formation, has been achieved using colloidal seed layers that provide favorable 

sites for copper nucleation and growth in subsequent deposition step, where Pd-Sn seeds are 

established activator particles that have proven to be highly effective for enhancing copper 

deposition.
[13]

 

ECD can be applied to the formation of 3D metal traces and interconnect devices that 

enable non-traditional forms of electronic devices. This 3D ECD is typically achieved 

following substrate activation that is based on 3D, patterned laser ablation,
[12,14]

 which 

requires sophisticated instrumentation (such as multi-axis electronically controlled 

goniometers) and associated processing conditions.  Alternative strategies for the fabrication 

of 3D interconnects that involve 3D printing of metallic inks,
[15]

 fused deposition 

modelling,
[16]

 hydroprinting of silver nanoparticles,
[17]

 pop-up assemblies created using pre-

straining of elastomeric substrates,
[18]

 or networks of liquid metal wires
[19]

 have been reported; 

however most of these approaches still require specialized instruments (e.g., 3D printers with 
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multiaxial movement) or are limited to certain types of materials.  The reported approach 

circumvents many of these technical necessities. 

From a scalability and sustainability standpoint, ECD possesses several distinct 

advantages in the formation of conformal metallic coatings—characteristics that drove us to 

use ECD in the current report.
[20]

  The challenge in adapting ECD to patterning traces in 2D 

and 3D without the aid of lasers-based activation schemes is spatially confining where the 

chemical processes occur (the use of polydopamine was demonstrated to deposit copper traces 

on 2D substrates)
[21]

.  Herein, we overcome this challenge through the use of bi-layered 

microfluidic channel networks, “soft micro-reactors” which were easily sealed via 

compressive stress, to a range of planar and non-planar surfaces.
[1c]

  We fabricated the “soft 

micro-reactors” in combinations of a stiff silicone (polydimethylsiloxane, PDMS) and a soft 

silicone (Ecoflex®) using 3D printing and soft lithography.
[22]

  We could then flow 

appropriate reagents through the compression-sealed soft micro-reactors to facilitate 

metallization on the substrate surface, selectively, thus enabling the facile fabrication of 

conductive traces of desired geometries.  Surprisingly, the use of 2D/3D microfluidic systems 

to pattern metal traces remains unexplored.  Compression-based reversible sealing not only 

allows rapid iterations of chemical depositions (and etching when needed), but also facilitates 

studying, testing, and use of the conductive traces in functional circuits.  Following this 

strategy, the fabrication of 3D circuits of potential use in numerous electronic devices (e.g., 

mobile phones, toys, audio devices, etc.) can be made simple and convenient thus making 

non-planar form factors readily accessible and providing more design flexibility.
[20]

 

Most consumer electronics are made of PCB-based circuitry housed in structural plastics.  

Here, we focused on the deposition of traces on structural plastics common to these 

applications: polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), 

fiberglass (FG), polycarbonate (PC), and acrylonitrile butadiene styrene (ABS), as well as 

those that are not as common—teflon (PTFE) and polyvinylchloride (PVC).  In addition to 
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advantages in generating 3D traces, this approach could eliminate the need for dedicated 

PCBs enabling devices that are more environment friendly by: (i) reducing the amount of 

material needed to make the devices, and (ii) working exclusively with readily recyclable 

plastics.
[23]

  We fabricated several different circuits and antennas using these materials to 

demonstrate the generality of our approach to the fabrication of free-form 3D electronics 

which collocate mechanical and electrical functionality.   

We made use of standard off-the-shelf components in these demonstrations because they 

are low cost and commercially available with well-established performance characteristics.  

We chose to produce simple sensors and antennas because they illustrate the utility of the 

reported method in the practical context of objects produced on mass.  Further, when 

combined with commodity plastics, the function of these circuits could lead to “smart 

consumables” that are electronically functional, yet cheap enough to be disposable.
[23b]

  

Although these are simple circuits, they involve LEDs, capacitors, resistors, transistors, photo-

resistors, and batteries, which are essential components found in many electronic devices.   

 

2. Results & Discussion 

2.1. Flow-assisted electroless deposition of functional coatings 

We deposited conductive copper traces on planar and non-planar substrates of different 

commodity plastics via electroless deposition using bi-layered microfluidic soft reactors (Fig. 

1, Fig. S1, and see S.I. text).  We then demonstrated the conductivity of our traces on planar 

(Fig. 1b) and 3D substrates (Fig. 1c) by attaching surface-mount LEDs (using silver paste) to 

visually communicate the conductivity of these traces—failure of the LEDs to turn on would 

indicate discontinuous traces.  

To evaluate the application of these traces in the fabrication of electronic circuits, we 

compared the performance of our traces to traces obtained using established techniques (e.g., 

those found in PCBs).  The resistance of the traces fabricated using microfluidic-directed 
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ECD (-DECD) for different lengths (of constant thickness, 1.5 µm) and different thicknesses 

(of constant length, 3 cm) was 0.1–8 ohms, which is comparable to the resistance observed in 

PCBs (0.01–1.5 ohms) (Fig. S2a, b).  The differences in the resistance of the traces fabricated 

following the described approach and those in PCBs could arise from contact resistance 

between the traces and the measurement probes or the higher density of grain boundaries in 

ECD traces (Fig. 1d) compared to films deposited using other approaches common to 

PCBs.
[24]

  For short traces of less than 2 inches, which are preferred in circuit design to reduce 

electromagnetic interference effects,
[25]

 although the resistance of the traces we report is 

double compared to the resistance of traces in traditional PCBs, it did not impact the 

performance.  We further determined the microstructure, deposition rate, stability, and 

adhesion of the traces generated using microfluidic assisted ECD.  The granular 

microstructure of the deposited trace (Fig. 1d) was consistent with the microstructure expected 

for copper deposition.
[26]

  We measured the deposition rate, using profilometry and confocal 

microscopy (Fig. 1e), of the process by examining the thickness of traces generated for 

different deposition times (between 4 and 60 mins) and found a rate of 6.7±1.6 m/hr (giving 

traces which ranged in thickness from 1 to 5 µm).  These thicknesses are typical of traces 

deposited via ECD following laser directed structuring (3–10 µm),
[14]

 and of conventional 

traces in PCBs (10–35 µm).
[25]

   

We observed that the copper traces were stable when the soft reactors were sealed over 

them, which is critical for subsequent deposition and etching steps (Fig. S3).  The copper 

traces adhered better to textured (e.g., those with a matte finish) polymers when compared to 

smooth films (Fig. S3b-d), which indicated the importance of surface roughness to the 

deposition process. We believe that micron-scale surface roughness improved the adhesion of 

the Pd seeds and thus the copper traces.
[13b]

  We note that despite this result, protective 

coatings, as required to prevent oxidation in ambient environments, would yield stability in all 

cases.  For example, we coated traces with Deoxit® (a commercially available coat used to 
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increase the stability of metal coatings/traces to oxidation), observing a significant 

improvement in the stability of the copper traces to surface oxidation (Fig. S4) and also 

delamination (as indicated by a Scotch tape test, Fig. S3e, f).  We believed that the above 

measurements supported the conclusion that the traces achieved using microfluidic-assisted 

ECD matched the performance of the traces found in commercial PCBs.   

 

2.2. 2D planar and non-planar substrates: simple circuits 

We deposited traces on 2D substrates of different commodity plastics that are commonly used 

as structural elements for various electronic devices (Fig. 2).  We recreated the characteristics 

(blunt corners, sharp angles, low-radius curves, and other non-rectilinear features such as 

loops and coils) of copper traces found in PCBs to illustrate the general applicability of µ-

DECD.  The width of these traces, as defined by the width of the microfluidic channel 

network, ranged between 170–1850 µm and there was less than a 5% deviation from the 

dimensions of the initial master used to mold the soft reactors and the produced traces.  The 

traces had radii of curvatures ranging between 1–15 mm and angles between 30–120° and the 

densest traces we achieved were three traces per mm (170 µm wide traces separated by 360 

µm), on par with the dimensions/densities of common PCBs (Fig. 2a, b). Narrower traces 

could be deposited using reactors fabricated with masters produced via photolithography or 

other additive manufacturing procedures.
[22,27]

  Although most of the traces we created were 

continuous (Fig. 2a-h), we could also create discontinuous traces (Fig. 2k-l) using devices that 

had multiple channel network layers (Fig. 2i-j and Fig. S5).  In these examples, we recreated 

circuit geometries that had previously been used to fabricate a light sensor (Fig. 2i, k) and a 

simple intercom device (Fig. 2j, l). 

The compression-based reversible sealing of the soft bi-layered microfluidic reactors 

allowed us to perform sequential deposition by reorienting a single device (Fig. 3a, b) or using 

multiple devices (Fig. 3c).  Copper traces with more intricate designs can be generated via 
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sequential functionalization of the substrate (using etchant and/or activator), followed by 

subsequent rounds of deposition.  We used this approach to generate interwoven, 

discontinuous copper traces that can lead to circuits with smaller footprints noting the 

following process characteristics: (i) reorienting a single reactor between an activation and an 

etching phase can generate systematic breaks in the trace without requiring double-layer 

devices (Fig. 3b), and (ii) aligning multiple different reactors with the substrate for sequential 

activation, etching, and activation processes enabled the generation of intersecting traces 

bridged by surface mount components (Fig. 3c, Video S1).  

We took advantage of the flexibility of the soft micro-reactors and further applied them to 

generate conductive traces on embossed substrates (Fig. 4).  Matte finish PC films (6 µm, 

RMS roughness) were embossed to yield corrugated (Fig. 4a, a′), diamond textured (Fig. 4b, 

b′), or dimpled (Fig. 4c, c′) substrates that encompass a range of surface topographies that 

would be challenging to pattern with conductive traces using other methods.  We determined 

the vertical offset for the features on these substrates, which varied from a few microns to 

several hundred microns, using confocal microscopy (Fig. 4a′– c′): corrugated (520 ± 10 µm), 

diamond textured (940 ± 20 µm), and dimpled (1260 ± 50 µm).  Such embossed structures are 

useful because they impart structural rigidity along multiple or single axes, to otherwise 

flexible polymer sheets.  For example, corrugated surfaces gave an easy bending axis, while 

the orthogonal axis remained relatively stiff (Fig. 4a). We showed that the circuits were 

functional when the substrate was flexed along the easy bending axis, illustrating potential 

applications of our approach to the fabrication of bendable or flexible circuitry.  

 

2.3. 3D substrates: simple LED displays, sensors, and antennas  

We used tension to seal our reactors to 3D components and used -DECD to produce 3D 

traces.  Specifically, we deposited copper traces on 3D plastic parts with beveled edges (Fig. 

5a), positive or/and negative curvature (Fig. 5b, c, e), and variable radii of curvature (Fig. 5d).  
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The degree of curvature tested using these different components (Fig, 5a-e) ranged from 3–36 

mm.  The ability to deposit functional, uniform copper traces onto 3D parts using -DECD 

provides clear advantages  over methods that rely on laser ablation as the ECD activation step 

or other direct write methods (in terms of process simplicity and the necessary 

instrumentation).   

We used trace designs that are typical to different types of antennas (e.g., radio-frequency, 

WiFi), again using LEDs as a direct readout of the continuity of the conductive pathways.  

Similar to studies on planar materials, multiple activation/etching procedures were possible, 

and we performed sequential modification (-DECD followed by etching) on a hemisphere 

(Fig. 5e).  In addition to circuits involving only LEDs, we also interfaced a range of off-the-

shelf electronic components (e.g., capacitors, resistors, transistors, photoresistors, and 

batteries) to generate functional circuits on 3D plastic parts.  We combined through-hole and 

surface-mount components (including a photoresistor as the detection element) to generate a 

light sensing circuit on the surface of a polycarbonate hemisphere.  When the photoresistor 

was covered (obstructing incident light), the LED lit up (Fig. 6a, Video S2).  This 

demonstration highlights the strength of -DECD in creating 3D circuits that incorporate 

different off-the-shelf electronic elements—though we focused on this simple demonstration, 

by extension more elaborate circuits with additional function will be possible and can lead to 

cheap, reliable production of “smart”, disposable, electronic consumables.  Furthermore, by 

enabling the low cost production of 3D traces and circuits on commodity plastic parts, we 

believe µ-DECD will enable the use of 3D circuit design in an expanding range of contexts. 

As another demonstration we used µ-DECD to fabricate compact antennas that mimicked 

commercially available devices operating in the radiofrequency (MHz) range.  We replicated 

a common radio-frequency identification (RFID) antenna design on a planar (Fig. 6b) and 

non-planar substrate (Fig. 6c), where the later would be relatively difficult to fabricate using 
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conventional means.  The amplitude of the reflection (S11) and transmission (S21) coefficients, 

also known as S-parameters,
[28]

 of the designed antennas were measured in dB in (Fig. 6e, f) 

and (Fig. 6g), respectively, by using the E5072A ENA Series Vector Network Analyzer 

(VNA) from Keysight (Fig. 6d).  The reflection coefficients of the antennas (Fig. 6e, f) were 

found to have values less than -10dB for frequencies below 4 MHz for most antenna 

geometries, which means that the presented antennas are matched to the surrounding 

environment and radiate correctly below 4 MHz, which are typical operation frequencies of 

conventional RFID antennas.
[29]

  In addition, the transmission coefficients measured between 

two antennas (Fig. 6g) had values larger than -30dB, which consists the threshold value for a 

successful wireless data transmission,
[29]

 for frequencies above 2 MHz.  Hence, these 

measurements also proved that the presented antennas can efficiently operate in transmission 

mode.  Further the antennas when connected to an Arduino wireless board, enabled the 

transmission of a near-field communication (NFC) tag that was detected using an application 

on a smartphone (Fig. S6, Video S3).  These experimental demonstrations highlight the direct 

applicability of µ-DECD to the fabrication of antennas with traditional 2D and non-traditional 

3D form factors with applications in communication technologies where the latter can open up 

new opportunities in the packaging of antennas in consumer electronic devices. 

 

3. Conclusion 

We have demonstrated the fabrication of simple circuits and antennas, through direct 

deposition of conductive traces on various materials of a diverse range of geometries and 

textures using a process we call µ-DECD.  The method we report and its compatibility with 

off-the-shelf electronic components enables the manufacture of various electronic sensors and 

circuits in forms, and at cost points not accessible using other techniques.  This approach 

could simplify the production and extend the capabilities of plastic consumables, potentially 

imbibing new functions to objects with complicated geometries and/or low consumer value 
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that would be difficult or impractical (economically) to impart electronic function to using 

existing methods (e.g., so called free-form electronics or “smart” consumables).
[30]

  Further, 

by extending this deposition strategy to other functional inorganic materials, we could 

construct new variants of plastic/metal hybrid structures not accessible using other strategies.  

We believe that the strategies and concepts presented herein (as represented by µ-DECD) are 

applicable to a variety of emerging technologies including: smart textiles,
[31]

 disposable 

healthcare monitoring systems,
[32]

 self-powered soft robots (including those that use thin 

polymeric substrates
[33]

 with metallic traces to connect/integrate power sources),
[34]

 

antennas,
[15a,15c]

 and passive safety/health sensors.
[35]

  

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author.  

Supporting information includes experimental details, characterization, and discussion. 
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Figure 1.  Microfluidic-directed electroless copper deposition (-DECD) and trace 

characterization. (a) Schematic illustration of the -DECD process, and (b, c) Photos of the 

reversible sealing of the micro-reactor to a 2D and 3D part (a plastic sheet and cylinder, where 

the orange band on the cylinder was used to guide the alignment of the reactor). (d) SEM images 

showing the granular texture of the traces. (e) Profilometry of the trace profile across a 4 mm 

long and 1.5 mm wide trace generated using a deposition time of 60 mins. 
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Figure 2.  -DECD of traces onto different commodity plastic films.  Features common to 

electrical circuit layouts are demonstrated.  (a-h) Continuous traces deposited using micro-

reactors with single open-ended microchannel networks on: (a-c) polycarbonate (PC, where b is a 

high-resolution optical image of the traces shown in panel ‘a’),  (d) polycarbonate with matte 

finish (PC-M), (e) polypropylene (PP), (f) polystyrene (PS), (g) polyethylene terephthalate (PET), 

and (h) teflon (PTFE).  (i-l) Discontinuous traces deposited using multi-layer micro-reactors (i, j) 

on: (k) fiberglass (FG) and (l) polyvinylchloride (PVC). The inset images in panels k-l show the 

contact region of the micro-reactor and the substrate (annotated).  Scale bars are 5 mm. 
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Figure 3.  Copper traces fabricated using -DECD and sequential deposition/etching. (a) 

Schematic showing the sequential µ-DECD process: (i) compression sealing and first activation, 

(ii) second activation/etching, (iii) after copper deposition, and (iv) after attachment and powering 

of surface-mount LEDs. (b-c) Corresponding photos of the top-down view of the process: (bi, bii, 

ci, cii, ciii) sealed reactors  at different steps of activation (purple) and etching (yellow), (biii, civ) 

the substrates after copper deposition, and (biv, civ) after attachment and powering the surface 

mount LEDs. Dyed acetone solutions that etched and colored the surface were used in panels bi, 

ii, and ci, ii, iii for visualization of the channel design. Scale bars are 5 mm. 
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Figure 4.  Deposition of conductive traces on embossed substrates using µ-DECD. The surfaces 

include: (a) corrugated surface, (b) diamond textured surface, and (c) dimpled surface.  Surface 

mount LEDs were attached along the length of the traces.  (a′-c′)  Surface profiles of the 

substrates measured using confocal microscopy.  Scale bars are 5 mm. 
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Figure 5.  Deposition of conductive copper traces on 3D components using µ-DECD. (a-c) 

Traces deposited on substrates with 3D geometries (including positive and/or negative 

curvatures): (a) a square rod with beveled edges, (c) a circular rod, (c) a wedge, (d) a cone, and 

(e) a hemisphere where the radius of curvature (R) is annotated in each panel.  Surface-mount 

LEDs, powered externally, were used to indicate continuity of the traces. The traces in panel e 

were fabricated using sequential modification, where the traces were selectively etched (shown in 

the inset) before the LED’s were attached.  Scale bars are 5 mm.  
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Figure 6.  Fabrication of simple sensor circuits and antennas on 2D/3D substrates.  (a) Circuit 

diagram (i) and photos showing a light sensor on a PC after attaching off-the-shelf components (ii, 

iii).  (b, c) Photos of an antenna fabricated using a soft reactor on a planar substrate (b) and a non-

planar substrate (c).  (d) Set-up showing an antenna connected to a vector network analyzer.  (e, 

f) Radio frequency response (reflectance S11 mode) for an antenna ‘‘printed“ on a planar substrate 

(e), and a comparison with a similar trace on a non-planar substrate (f).  (g) Radio frequency 

response (transmission S21 mode) between traces on planar substrates. Scale bar: 5 mm. 
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