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ABSTRACT 

Thermoeconomic diagnosis is an exergy-based fault detection and diagnosis technique which has been recently 

extended to air conditioning systems. So far, developments of this technique have relied only on simulation data 

without being evaluated using real data. For the first time, this work aims at assessing the performance of 

thermoeconomic diagnosis using experimental data obtained from a five-ton packaged rooftop air conditioning unit 

(RTU) installed at Herrick Laboratories, Purdue University. The RTU was tested in psychrometric chambers under a 

wide range of operating conditions and fault levels.  The following faults were investigated: (i) evaporator fouling, 

(ii) condenser fouling and (iii) evaporator fouling along with condenser fouling. The experimental results were used 
as inputs in the latest thermoeconomic model proposed by some of the authors, in order to verify the results 
previously obtained. Results showed the capabilities of the technique in detecting faults. As concerns its quantitative 
performance, it is satisfactory for condenser fouling, but it becomes poor when evaporator fouling and multiple 
faults are considered.

1. INTRODUCTION

In the last two decades, great progress has been made in improving the efficiency of air-conditioning equipment. In 

addition to improved performance of new equipment, there has been an increasing interest in technologies that can 

maintain performance of the systems over time. This has led to research and development of Fault Detection and 

Diagnosis (FDD) techniques for air conditioning systems that can support building owners in scheduling cost-

effective maintenance and repairs in order to reduce operating costs, avoid equipment downtime and guarantee 

better comfort for the occupants. Among FDD techniques, it is worth mentioning the Statistical Rule Based FDD 

developed by Rossi and Braun (1997) for vapor compression system. The approach was able to detect single faults, 

but it had difficulty in handling multiple faults scenario. To this aim, an alternative approach based on the 

“decoupling features” (i.e. a set of thermodynamic variables influenced uniquely by a single fault) was then 

developed by Li and Braun (2007).  

Thermoeconomic diagnosis is an exergy-based FDD technique for the identification of faults occurring in 

energy systems (Uson and Valero, 2010). The potential of this method is its quantitative nature, since it allows for 

assessing the impact of each fault in the increased consumption of external resources. Initially, research focused on 

diagnosis of thermal power plants (Torres et al., 2002 and Valero et al., 2004), and so far, the technique has not been 

extensively applied to HVAC systems. For this reason, the method is still at a very early stage of development.  In 

Dentice d’Accadia and De Rossi (1998), for the first time the method was applied to a simple vapor compression 

system. By means of the “fuel impact approach” the authors quantified the effect of some basic faults. In Piacentino 

et and Talamo (2010a), thermoeconomic diagnosis was applied to an air-cooled direct expansion air conditioning 

unit considering some faults commonly occurring in HVAC systems (Breuker and Braun, 1998).  By means of 

“virtual experiments” carried out by the simulator IMST-Art (IMST-Group, 2014), fault-free scenarios were first 

simulated and then faults were imposed by changing the most affected parameters associated with the fault under 

consideration (Piacentino et and Talamo, 2010a). Results showed that: (i) the method is not able to deal with 

“system level” faults, i.e. faults not associated with any specific component like refrigerant under- or over-charge 
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and (ii) the “productive” model for the expansion valve erroneously leads to identify this component as faulty even 

when its operation has no anomalies. An innovative thermoeconomic model was proposed in Piacentino and Talamo 

(2013b). This model filters the malfunction induced on the expansion valve. Promising results were achieved when 

considering single faults scenario as condenser fouling, compressor valve leakage but the performance of the 

method was still unsatisfactory when handling multiple faults scenarios. Also, in (Piacentino and Talamo, 2013b) 

the sensitivity of the performance of the technique to the fault level was evaluated. Results showed that when 

passing from a light to a heavy level of the fault, the performance of the technique got worst due to non-linearity in 

the thermodynamic behaviour of components not properly filtered by the adopted thermoeconomic model.  In 

(Piacentino and Catrini, 2016) the robustness of the diagnostic technique for the detection of evaporator fouling in 

direct-expansion air-conditioning units was investigated. Particularly, the sensitivity of the technique to the 

thermodynamic conditions of the air entering the evaporator coil (i.e. temperature and relative humidity) was 

evaluated. It was observed that the technique was very efficient in detecting the fault on the evaporator, but the 

quantitative performance was highly sensitive to the psychrometric conditions of the air. More specifically, the 

performance of the technique became unsatisfactory when the relative humidity of the inlet air increased.  

In this work, for the first time, the performance of the technique is tested by using real data obtained by a 5-ton 

(17.5 kW) rooftop (RTU) installed at Herrick laboratories. A set of experiments allowed for simulating the 

following faults: (i) evaporator fouling (ii) condenser fouling and (iii) evaporator fouling along with condenser 

fouling. At the same time, the sensitivity of the technique performance with the following boundary conditions was 

tested: (i) temperature of the outdoor environment (ii) temperature and humidity of the air returning to the RTU and 

(iii) fault levels. Results were compared to those obtained by simulations in previous studies. 

 

2. ON THE THERMOECONOMIC DIAGNOSIS 
 

This section aims at providing an overview of Thermoeconomic Diagnosis. For sake of brevity, lots of details are 

omitted and the reader is invited to refer to Torres et al. (2002) and Valero et al. (2004) to get further insights. The 

basic idea is that for any energy system, exergy is exchanged among components in order to achieve a productive 

scope. By defining the functional interaction among components (the so called “productive structure”), it is possible 

to assess how they contributed individually to the overall exergy consumption. First of all, for each component it is 

necessary to identify the exergy used, namely its “Fuel” Fi, and its exergy “Product” Pi (Torres, 2004). For instance, 

mechanical power is the compressor fuel in a refrigeration system (which is an exergy flow as well) which is used to 

increase the thermal and mechanical exergy of the refrigerant. Then, the unit exergy consumption ki of the i-th 

component indicates the amount of exergy consumed by the i-th component to produce the unit exergy of its product 

Pi. However, sometimes it is not possible to define a productive scope for a component. For instance, the condenser 

of a refrigeration system aims only at discharging thermal exergy of the refrigerant into the environment without 

producing any useful exergy flows. Thermoeconomics classifies these components as “dissipative”, and the exergy 

dissipated is usually allocated as additional exergy input to the components which contributed to its production (for 

instance the compressor and the expansion valve in a refrigeration system) (Torres et al., 2008). The residue 

consumed by the i-th component per unit product Pi, i.e. the unit residue consumption, is usually indicated as the ri.. 

The exergy balance for the generic i-th component, i.e. “ iii IPF += ” allows for quantifying exergy destruction Ii 

during its operation. Due to faults in systems, an increase of the exergy destruction in a generic i-th component is 

observed and is generally the sum of additional local exergy destruction due to irreversibility ΔIi (where Ii=Fi-Pi) and 

additional residue consumption ΔRi. Particularly, it is possible to disaggregate the extra irreversibility as shown in 

Equation 1 (Torres, 2004). 

 

( )  ( ) ( ) ( )  ( ) ( ) iiiiiiiiiiiii PPP1PPP1RI ++−+=+−=+ XXXX
00 rrkkrk i  (1) 

 

In Equation 1, X and X0 represent two sets of thermodynamic variables indicating the system operating under 

“design” (i.e. faults-free) and “faulty” conditions, respectively. It is possible to distinguish: (i) Malfunction MFi (or 

endogenous irreversibility), represented by the terms ( )0
Xii P Δ k  and ( )0

XiiP Δ r   and associated with increases 

in unit exergy consumptions or unit consumption of residues in the “i-th” component and (ii) Dysfunction DFi (or 

exogenous irreversibility), induced in the i-th component by the malfunction of other components that provoke a 

variation ΔPi in the production rate of component “i-th”: 
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Thermoeconomic diagnosis aims at distinguishing which fraction of the additional exergy destruction occurring in 

each component is provoked by faults occurring in the same component and which fraction is induced by 

malfunctions occurring in other components. To this aim, a malfunction cost is introduced as follows:  

 

( )
=

++=
N

1j

)r(

ij

)k(

iji
*
i DFDFMFMF  (4) 

 

The malfunction cost  
*
iMF represents the additional fuel consumption provoked by faults occurring in the i-th 

component and is calculated by summing up the additional exergy destruction MFi that these faults induce on the 

same component (see Equation 4) and the dysfunctions that these faults generate in other components “j” (for j=1 to 

N, with j≠i) (Torres et al., 2002). The overall fuel impact ΔFT is the additional overall exergy consumption induced 

by faults occurring in any of the N plant components, and it can be calculated as: 

 


=

=
N

0i

*

iT MFF  (5) 

 

In order to evaluate if the diagnostic technique is able to properly quantify the additional use of exergy due to the j-

th faults, the indicator Ψfault,j was introduced by Piacentino and Talamo (2013b): 

 

 

*

jfault , j

fault , j

T

MF

F
 =


 (6) 

 

This indicator is the ratio between the malfunction cost of a component (which represents estimation of additional 

consumption due to the presence of faults in a component) and the actual additional exergy consumption induced by 

faults in the components. If the condition “0.5 ≤ Ψfault,j  ≤1.5” is satisfied, the technique achieves a good 

performance. Conversely, when the former condition is not met, the diagnosis overestimates (i.e. for Ψfault,j > 1.5) or 

underestimates (i.e. for Ψfault,j < 0.5) the additional exergy consumption due to the j-th fault.   

The main reason for poor performance of the diagnostic technique in detecting the malfunctioning component is 

that variation in unit exergy consumption (i.e. Δki) occurs not only in those components where malfunctions are 

located, but also in fault-free components as a consequence of induced changes in their “operating point”. For this 

reason, Thermoeconomics distinguishes between “intrinsic malfunctions”, which are related to the variation of unit 

exergy consumption occurring in the actual faulty component, and “induced malfunctions”, which are related to the 

variation of unit exergy consumption occurring in fault-free components. The presence of induced malfunctions is 

related with the non-flat exergy efficiency curves of components (at different production rates) and it may derive 

from the intervention of the control system, which aims at restoring the values of controlled parameters in a plant, or 

from changing boundary conditions such as the temperature of the outdoor environment. According to Equation 4, 

the presence of induced malfunction implies that a non-null malfunction cost is obtained for fault-free components. 

As a consequence, due to the presence of several simultaneous positive malfunction costs, the analyst could not 

identify the components that are actually experiencing a performance degradation. Filtering these induced effects is 

a complex task and requires the use of a thermodynamic model for each component within the thermoeconomic 

model of the system, in order to predict its response to changes in the operating conditions (Verda, 2006) 

 

2.1 On the thermoeconomic model adopted for the case study 
The productive structure presented by Piacentino and Talamo (2013b) was used in this work and is shown in Figure 

1. In this model, refrigerant exergy flows were split into thermal fraction (indicated as 
T
iB ) and mechanical 



 

 2613, Page 4 
 

 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

fraction, (indicated as 
M
iB  ), which characterize “thermal” and “mechanical” disequilibrium between the 

refrigerant state and the reference dead state.  Exergy flow splitting allows for easier analysis of the productive 

function of some components: for instance, mechanical exergy (blue lines in Fig. 1) is produced only by the 

compressor and then is used by other components (i.e. evaporator, TXV and condenser). Two types of residue flows 

are shown in Figure 1: (i) “conventional residue” (red dotted lines) which refers to the refrigerant exergy dissipated 

by the condenser into the external cooling air when the plant works at the design condition and (ii) “marginal 

residues” (green dotted lines) related to the additional exergy destruction in the TXV (i.e. 

( ) ( ) ( ) ( )*

3 3 3 3 3ΔB ΔB ΔB ΔB ΔB  = − − −   
0 0

X X X X
M T M T ) and in the condenser (i.e. ( ) ( )* total total

2 2 2ΔB ΔB ΔB= − 0
X X ) 

when faults occur. The marginal residues were introduced in order to filter the induced malfunction especially in the 

TXV. In the improved thermoeconomic model (Piacentino and Talamo, 2013b), when malfunction in the TXV can 

be reasonably excluded then all the TXV marginal exergy consumption is allocated to the compressor, the condenser 

and the evaporator by means of the distribution factors a1, a2, and a4. The conceptual bases of their definition may be 

clarified by an example: if laboratory tests reveal that condenser fouling implies much higher additional exergy 

destruction at the TXV than evaporator fouling, when diagnosing a real-world unit and attempting to filter the 

additional exergy destruction at the valve (which works correctly and cannot be responsible of this additional exergy 

destruction), a larger fraction should be probabilistically attributed to the possible fouling of the condenser and only 

a lower fraction to the possible evaporator fouling. The factor “ai” is the fraction of the additional exergy consumed 

by the expansion valve that should be allocated to the i-th component, and it is calculated as the ratio between the 

increased exergy consumption in the TXV observed when the fault on the i-th component is occurring and the sum 

of the increase in exergy destructions at the valve observed imposing simultaneously the different possible faults. 

For instance, a2 indicates the fraction of the additional exergy destruction at the valve that could be originated by 

condenser fouling (i.e. the component 2 in Figure 1) and it is calculated as shown in Eq. 7.  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3 3 3_

2

3 3 3 3 3 3 3 3 3 3 3 3_ _ _

ΔB ΔB ΔB ΔB

ΔB ΔB ΔB ΔB ΔB ΔB ΔB ΔB ΔB ΔB ΔB ΔB

  − − −   
=

          − − − + − − − + − − −          

0 0

0 0 0 0 0 0

X X X X

X X X X X X X X X X X X

M T M T

cond foul

M T M T M T M T M T M T

cond foul evap foul comp valve

a

 

(7) 

 

The factors a1 and a4 are the fraction of 
*

3ΔB allocated to the compressor and the evaporator, respectively, as a 

consequence of valve leakage and evaporator fouling. Also, it is easy to demonstrate that the condition a1+ a2+ a4=1 

is satisfied. The same procedure should be followed for calculating the distribution factors ci.  

 

 
 

Figure 1: Thermoeconomic model for a direct expansion system proposed by Piacentino and Talamo (2013b)  
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3. EXPERIMENTAL SET-UP AND TESTING PROCEDURES 

 
A rooftop unit (RTU) was considered in this study having a rated capacity of 17.5 kW (5 ton) and a SEER rating of 

20.0. The refrigerant used is R410a. The unit can be operated in a staged mode or in a variable speed mode. Since 

thermoeconomic diagnosis has been developed for systems equipped with a fixed-speed compressor and fixed-speed 

fan, the unit was operated in “high stage mode”. More specifically, in “high stage mode” both the compressor and 

the indoor fan run at their maximum speed, so that the RTU provides its maximum cooling capacity, conversely, in 

the “low stage mode” both compressor and indoor fan run at their lower speed, thus providing the minimum cooling 

capacity. A schematic of the test facilities is shown in Figure 2. Two psychrometric chambers (each one equipped 

with its own reconditioning system) allowed to simulate the outdoor and indoor environment. A summary of the 

instrumentation installed on the RTU is presented in Table 1. A real-time controller from National Instruments was 

used for data acquisition and control of the RTU (Patil, 2018). 

 

 
 

(a) (b) 

Figure 2: (a) Packaged rooftop air conditioning unit installed at Herrick Laboratories (Patil, 2018)  

(b) Schematic of the experimental facilities 

 

Table 1: Description of RTU instrumentation for the refrigerant (Patil, 2018) 

 

 Sensors Type Sensors Location 

Refrigerant 

Temperature 

T-type Thermocouples  

(Accuracy ±0.5°C) 

Compressor Suction 

Compressor Discharge 

Condenser Outlet 

TXV inlet 

Evaporator Inlet  

Evaporator Outlet  

Refrigerant 

Pressure 

Pressure Transducers with voltage output 

(Accuracy ±0.5% of the full-scale reading) 

Compressor Suction 

Compressor Discharge 

Liquid line outlet 

Refrigerant 

Mass flowrate 

Coriolis Mass flowmeter 

(Accuracy ±0.5% of the full-scale reading) 
On the liquid line 

Dry Bulb Air 

Temperature 
T-type Thermocouples (Accuracy ±0.5°C) 

Return Air: two-by-two grid was spaced equally in a rectangular grid 

placed before the evaporator  
Supply Air: two-by-two grid spaced equally in a rectangular grid 

placed after the supply fan 

Condenser Inlet: 8 thermocouples mounted in a four-by-two grid on 

the face of the condenser 

Condenser Outlet: 4 thermocouples mounted radially on the condenser 

outlet 

Dew Point Air 

Temperature 

Dew point hygrometer with chilled mirror 

probe (Accuracy ±0.15°C)  

Air samples were taken before the evaporator inlet and at the 

beginning of the supply air duct 

Power 

Consumption 

Watt Transducers 

(Accuracy of ±0.5 % of the full-scale 

reading) 

Indoor Fan Supply Air 

Compressor Power 

Condenser Fan 

 

3.1 Description of Testing Procedures 
The following variations in boundary conditions were considered during the experimental activities: (i) temperature 

of the outdoor environment (here indicated as Toutdoor); more specifically, two values of Toutdoor were investigated:   

30°C (86°F), 35°C (95°F); (ii) temperature of the air entering the RTU. Particularly, the following values were 
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examined: 24°C (75.2°F), 26.5°C (80°F) and 29°C (84.2°F). For this set of temperatures, the indoor relative 

humidity was kept equal to 50%, (iii) for a return air temperature equal to 26.5°C (80°F), the following values of 

relative humidity were tested: 25%, 45% and 55% in order to isolate the effect of relative humidity on the technique 

performance. 

The operation of the unit at each set of driving conditions was first recorded with no faults present. Then, the 

faults were introduced and all tests were repeated. Measurements were taken every second for all of the input and 

output variables. The steady state of the system was detected by comparing data of a moving averaging window of 

20 minutes.  

 

3.2.1 Faulty Scenarios: testing procedure  

In order to test the performance of the technique, the following faults were experimentally investigated: (i) 

evaporator fouling, (ii) condenser fouling (iii) evaporator and condenser fouling. Also, two levels of faults, 

respectively indicated as “light” and “heavy” were tested in order to evaluate the sensitivity of the performance of 

the technique. 

Condenser fouling was tested by placing some layers of fabric on the condenser surface as shown in Figure 3a. 

The number of layers was selected in order to simulate a “light” and a “heavy” fouling. Each level caused a 

reduction in the condenser air mass flowrate equal to 20% and 35% with respect to the fault-free scenario. 

Measurements of the condenser air flowrate were carried out by means of the virtual sensor proposed by Li and 

Braun (2007) which is based on an energy balance on this component. In Table 2, some experimental results for the 

heavy condenser fouling are shown. An increase in the condensing pressure and subcooling was observed. 

Conversely, the evaporating pressure, the refrigerant quality at the evaporator inlet and the superheat at the 

compressor suction were approximately constant. The power consumed by the compressor increased as a 

consequence of the increased pressure ratio. No changes in the consumption of indoor fan and in the cooling 

capacity were observed. 

Evaporator fouling was tested by acting on the opening of an iris damper placed on the supply air duct of the 

unit as shown in Figure 3b. Different levels were selected by measuring the air pressure drop across the RTU while 

running the indoor fan at its maximum speed (around 1250 rpm). Considering a 150 Pa air pressure drop (about 0.6 

inch of water) across the RTU for the fault-free scenario (i.e. when the damper is fully open), two levels of fouling 

were tested: (i) a “light” fault which corresponds to a 280 Pa air pressure drop (about 1.0 inch of water) and (ii) a 

“heavy” evaporator fouling which corresponds to 380 Pa air pressure drop (about 1.5 inches of water). In Table 2, 

some experimental results are shown for the heavy evaporator fouling. Differently from the condenser fouling, this 

fault provoked a significant reduction in the RTU sensible capacity (about 26%). Also, due to reduction in the air 

mass flowrate across the evaporator, the exiting air was cooler and more dehumidified as shown respectively by the 

dry bulb temperature and dew point temperature of the supply air. Reduction in the evaporating and condensing 

pressure was also observed. 

In the multiple faults scenario, both heavy condenser fouling and heavy evaporator fouling were tested. As 

shown in Table 2, a reduction of the RTU cooling capacity is observed due to the reduction in the air mass flowrate 

across the evaporator. An increase in the condensing pressure and the subcooling was observed due to the condenser 

fouling. Also, the compressor power increased due to increases in the pressure ratio. 

 

  
 (a) (b) 

Figure 3: (a) Light Condenser fouling simulated by a layer of fabric placed on the condenser surface  

(b) Iris damper used for simulating evaporator fouling equipped with a black screw for adjusting its opening. 
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Table 2: Experimental Results for the free-fault case and faulty scenarios (Toutdoor=35°C) 

 

 

Return Air Supply Air  

 Air Mass 

Flowrate  

Indoor Fan 

Power  

Outdoor 

Fan 

Power 

Sensible 

Capacity  

Cooling 

Capacity  
Dry 

Bulb 

Temp. 

Dew 

Point 

Temp. 

Dry 

Bulb 

Temp. 

Dew 

Point 

Temp. 

[°C] [°C] [°C] [°C] [kg/s] [W] [W] [W] [W] 

Free-Fault 26.5 14.2 15.9 11.6 1.22 1131 291 15115 17035 

Condenser 

Fouling 
26.5 14.2 15.5 11.6 1.28 1140 342 14837 16727 

Evaporator 

Fouling 
26.5 14.2 14.29 11.08 0.90 862 287 11189 16444 

Multiple Faults 26.5 14.2 13.42 10.3 0.931 890 340 12810 16380 

 

 

Refrigerant 

Quality 

Suction 

Pressure 

Suction 

Temp. 

Suction 

Superheat 

Discharge 

Pressure 
Subcooling 

Refrigerant 

Mass 

Flowrate 

Compressor 

Power 

[-] [kPa] [°C] [°C] [kPa] [°C] [kg/s] [W] 

Free-Fault  0.20 1095.6 15.3 5.8 2827.9 9.5 0.102 3788 

Condenser 

Fouling 
0.19 1078.1 15.4 5.7 3274.6 15.4 0.103 4351 

Evaporator 

Fouling 

0.20 1036.1 14.33 5.88 2746.5 9.38 0.097 3700 

Multiple Faults 0.19 1016.4 13.0 5.2 3347.3 16.7 0.097 4481 

 

 

4. RESULTS AND DISCUSSIONS 
 

Before implementing the diagnostic procedure, it is useful to analyze the exergy variation of refrigerant through 

each component for some tested conditions. In Table 3, variations of thermal and mechanical exergy of the 

refrigerant across each component (indicated as
T
iB and

M
iB ) are shown for the following scenarios: (i) fault-free, 

(ii) evaporator fouling (iii) condenser fouling and (iv) condenser fouling along with evaporator fouling. Also, for 

each faulty scenario the marginal exergy destruction (i.e. *

iΔB  ) occurring in the TXV and the condenser are shown. 

It is worth noting that exergy quantity (kJex) instead of exergy flow (generally measured in kWex) are shown. In fact, 

when considering evaporator fouling (similarly in evaporator fouling along with condenser fouling), a reduction in 

the RTU sensible capacity is observed due to reduction in the air mass flowrate across the evaporator. As a 

consequence, the control will act by adjusting the cycling time of the unit in order to achieve the same average 

cooling in both fault-free and faulty scenarios. In order to consider this, all the exergy flows in the faulty scenario 

were multiplied by the “capacity correction factor αcapacity” shown in Eq. 8, defined as the ratio of the sensible 

cooling rates evaluated in fault-free and faulty conditions  

 
,No fault

sens
capacity fault

sens

Q

Q
 =  (8) 

 

When testing condenser fouling, no reduction in the sensible capacity of the unit was observed (see Table 2), thus 

the capacity correction factor was equal to one.  

Looking at the results shown in Table 3, it can be observed that the mechanical exergy of the refrigerant 

consumed in the evaporator is negligible with respect to the thermal one in all the examined scenarios, i.e. 
T M

4 4B B  .  Also, the mechanical exergy produced by the compressor, i.e.
M

1B ,  is entirely used in the expansion 

valve to increase the thermal exergy of the refrigerant supplied to the evaporator. 

An increase in the variation of mechanical exergy of the refrigerant through the compressor (i.e. 
M

1B ) occurs 

when condenser fouling is imposed, as a consequence of the higher condensing pressure. Conversely, when 
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evaporator fouling is tested, this increase is related to the prolonged on-time of the system, since no substantial 

variation in condensing and evaporating pressure are observed, as shown in Table 2. 

The thermal exergy consumed in the evaporator to cool and dehumidify air is approximately constant for 

condenser fouling since evaporating pressure and refrigerant mass flowrate are also constant (see Table 2). 

Conversely, when considering evaporator fouling, the thermal exergy consumed in the evaporator increases due to 

both the decrease in the evaporating pressure and changes in the on-time of the system. 

The highest value for the mechanical exergy produced by the compressor, i.e.
M

1B =2.213 kWex, is observed in 

the multiple faults scenario, as a consequence of: (i) increase in the condensing pressure due to condenser fouling 

and (ii) a longer on-time of the system due to reduction in the cooling capacity. For the same reasons, the highest 

values for the additional exergy destruction in the TXV and the condenser are obtained in this case. 

Table 3: Refrigerant Exergy Results for Toutdoor=30°C, Tra=26.5°C, RHra=50% 

 
 

Faults-free Evaporator Fouling Condenser Fouling 
Evaporator Fouling + 

Condenser Fouling 

 M
iB  

T
iB  

M
iB  

T
iB  

*

iΔB  M
iB  

T
iB  

*

iΔB  M
iB  

T
iB  

*

iΔB  

 [kJex] [kJex] [kJex] [kJex] [kJex] [kJex] [kJex] [kJex] [kJex] [kJex] [kJex] 

1.Compressor 1.684 0.766 2.099 0.842 -- 1.827 1.272 -- 2.213 1.851 -- 
2.Condenser -0.013 -0.806 -0.013 -0.946 0.141 -0.010 -1.231 0.451 -0.011 1.912 1.106 

3.TXV -1.671 1.413 -2.084 1.761 0.066 -1.814 1.473 0.083 2.199 1.731 0.210 

4.Evaporator -0.001 -1.360 -0.001 -1.870 -- -0.001 -1.330 -- -0.001 1.673 -- 

 

4.1 Calculation of the distribution factor “ai” and “ci” for the tested unit 
Before carrying out thermoeconomic diagnosis, it is necessary to calculate the distribution ratios ai and ci for the 

examined system. Since compressor valve leakage was not considered, it is possible to set a1 and c1 equal to zero. 

For this reason, the marginal exergy destruction in the condenser, i.e. *

2ΔB ,  and in the TXV, i.e. *

3ΔB , are evaluated 

only for the condenser and evaporator fouling. Results are shown in Table 3. The marginal exergy destruction in the 

condenser is greater when imposing condenser fouling with respect to evaporator fouling. Since the mechanical 

fraction of exergy used in the condenser is always negligible, this marginal exergy destruction is due to the thermal 

exergy. In fact, when condenser fouling is tested, more compressor power is consumed due to increase in the 

condensing pressure. As a consequence, a greater amount of thermal exergy has to be discharged into the cooling 

air. Conversely, the marginal exergy destruction in the expansion valve is comparable for both faults.  

By means of the previous values, calculation of the distribution factors for the tested system was done as 

follows: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3 3 3_

2

3 3 3 3 3 3 3 3_ _

ΔB ΔB ΔB ΔB
0.557

ΔB ΔB ΔB ΔB ΔB ΔB ΔB ΔB

  − − −   
= =

      − − − + − − −      

0 0

0 0 0 0

X X X X

X X X X X X X X

M T M T

cond foul

M T M T M T M T

cond foul evap foul

a  (9) 

 

Since the condition a2+a4=1 has to be respected, it follows that a4 = 0.443. By comparing the values obtained for a2 

and a4, it follows that for a given increase in the marginal exergy of the TXV, the approach allocated it almost 

equally to the condenser and to the evaporator. The same procedure was followed for calculating the ci factors, and 

the following values are obtained: c2 = 0.762 c4 = 0.238. Since c2 is greater than c4, it is clear that marginal exergy 

consumption in the condenser is mainly induced by condenser fouling rather than evaporator fouling. 

 

4.2 Sensitivity analysis of diagnostic performance to outdoor and return air temperature  
In Figure 4 and 5, the performance indicators Ψfault,2 and Ψfault,4 are presented for condenser fouling and evaporator 

fouling, for different temperatures of both the outdoor environment and the returning air to the RTU. In both cases, 

the relative humidity of the returning air (RH) was kept equal to 50%. Also, heavy faults were assumed in this 

analysis. In the figures, the fuel impact and the malfunction costs are expressed in kWex, while the performance 

indicators are dimensionless, according to Eq. 6.  
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An ideal performance of the diagnostic technique would be represented by the following results: (i) ∆FT= *

2MF  (i.e. 

the estimated additional fuel impact *

2MF due to condenser fouling equals the total fuel impact), (ii) * *

1 4MF MF 0= =  

(i.e. the estimated additional fuel impacts due to compressor leakage and evaporator fouling are null) and (iii) 

Ψfault,2=1. Looking at the results for the condenser fouling in Figure 4, it is possible to observe that: 

- the malfunction cost *

2MF  is always positive and greater than other malfunction costs (i.e. *

1MF and *

4MF ) thus 

allowing for detection of this fault regardless of the boundary condition. From a quantitative point of view, 

promising results are achieved by means of the adopted thermoeconomic model, which provides a reasonable 

quantitative estimation of the additional consumption provoked by these faults as testified by the value of the 

indicator Ψfault,2 which has a range 0.5-1.5 for almost all cases.  

- A non-null malfunction cost *

1MF is detected for the compressor. This is due to the effect of the induced 

malfunction on this component which is not properly filtered by the adopted productive structure. The 

negative values of *

1MF prevent the risk of erroneous detection of the compressor as a “faulty component”. In 

fact, these negative values indicate that the compressor works “better than in fault-free conditions” (at least 

from an exergetic viewpoint), and this is a consequence of the increase in its isentropic efficiency when 

condenser fouling is imposed. In a more refined thermoeconomic model, this induced malfunction should be 

properly filtered and reallocated on the component which originates this. No malfunction is induced on the 

evaporator by condenser fouling as shown by negligible values of *

1MF . 

- The performance of the diagnostic technique is not particularly sensitive to the outdoor temperature and the 

temperature of the air entering the evaporator coil.  

Looking at the results for the evaporator fouling in Figure 5, it is possible to observe that: 

- For a given outdoor temperature, the performance of the diagnostic technique is influenced by the temperature 

of the air entering the evaporator coil. More specifically, it gets worst when increasing this temperature from 

24°C (75.2°F) to 29°C (84.2°F). It is worth noting that in this case the malfunction induced on the condenser 

is not always negligible and the malfunction cost *

2MF  can be even higher than *

4MF , thus not allowing for an 

easy and univocal detection of this fault.  

- Also, for evaporator fouling a non-null malfunction cost *

1MF is detected for the compressor. However, since 

*

1MF  is negative there is no risk of erroneously detecting this component as “faulty”.  

- The performance of the diagnostic technique is not particularly sensitive to the outdoor temperature. 

 
Figure 4: Condenser fouling: sensitivity analysis of the technique to the outdoor temperature 

 and to return air temperature. 
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Figure 5: Evaporator fouling: sensitivity analysis of the technique to the outdoor temperature 

 and to return air temperature. 

 

4.3 Sensitivity analysis of the diagnostic technique to fault level and return air relative humidity  
As shown in Piacentino and Talamo (2013b), when increasing the level of the fault, the performance of the 

technique gets worst due to non-linearities in the behavior of components responsible for induced malfunction in 

fault-free components. To consider this effect, experimental tests were carried out by considering two levels of 

condenser fouling and evaporator fouling, indicated as “light” and “heavy”. At the same time, in order to evaluate 

the influence of the relative humidity on the performance of the technique, these tests were carried out considering 

three values of the return air relative humidity (RH), i.e. 25%, 45% and 55%. The return air temperature was kept 

equal to 26.5°C (80°F). Results of this analysis for the condenser and evaporator fouling are shown in Table 4.  

For condenser fouling, it is possible to observe that: 

- A good performance of the technique is achieved as proved by the values of the indicator Ψfault,2 which always 

ranges between 0.5 and 1.5 regardless of the imposed level of condenser fouling. Then, it is worth noting how 

the performance of the diagnostic technique decreases when passing from a “light” to a “heavy” condenser 

fouling. This trend is verified regardless of the relative humidity of the air entering the evaporator coil.  

- The performance of the technique is moderately sensitive to the relative humidity of the air entering the RTU. 

In particular, at higher relative humidity the condenser fouling is more readily detected as the main 

contributor to the additional consumption (as evident from the higher values of Ψfault,2) 

 In Table 4, results for evaporator fouling are also shown. It is possible to observe that: 

- the performance of the diagnostic technique decreases when passing from a “light” to a “heavy” level, as can 

be seen by looking at the of indicator Ψfault,4. Also, a good performance of the technique is achieved from a 

quantitative point of view as supported by the values of the indicator Ψfault,2 which always range between 0.5 

and 1.5. 

- A positive malfunction cost is detected for the condenser *

2MF . Even though its values are lower than those 

assumed by evaporator malfunction cost *

4MF , this is a weakness of the diagnostic and future developments 

of the technique should be aimed at filtering this induced malfunction.  

- A high sensitivity of the performance of the diagnostic technique to the relative humidity of the entering air is 

observed. Specifically, the higher the humidity content of the air, the worst its performance. Looking at Table 

4, it is possible to note that when the evaporator coil is dry, i.e. when the RH=25%, the quantitative 

performance is quite good (Ψfault,2 ≈1). These trends are coherent with the main results achieved in Piacentino 

and Catrini (2015), where a great sensitivity of the technique performance with the relative humidity of inlet 

air at the evaporator coil was also observed. 
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Table 4 Sensitivity analysis of the diagnostic technique to the fault level and the return air relative humidity. 

 Condenser Fouling  
 

Evaporator Fouling 

 Light Fault Heavy Fault Light Fault Heavy Fault 

RH 25% 45% 55% 25% 45% 55% RH 25% 45% 55% 25% 45% 55% 
*

2MF  0.102 0.653 0.760 2.167 1.278 1.150 
*

4MF  0.193 0.149 0.102 0.847 0.340 0.193 

ΔFT 0.133 0.810 0.576 1.805 1.98 1.515 ΔFT 0.197 0.130 0.186 0.928 0.517 0.360 

Ψfault,2 0.763 0.807 1.319 0.659 0.646 0.760 Ψfault,4 0.979 1.145 0.549 0.913 0.653 0.536 

 

4.4 Analysis of the technique performance in a multiple fault scenario 

In this section, the analysis considers the presence of both heavy evaporator and heavy condenser fouling. In 

Piacentino and Talamo (2013b), it was shown that the performance of the technique got worst in multiple fault 

scenarios. The results for the examined case are presented in Table 5. It is possible to observe that: The technique is 

able to detect a combination of condenser and evaporator fouling faults as demonstrated by the positive values of the 

malfunction cost *

2MF for condenser fouling and *

4MF  for evaporator fouling. Negative values for *

1MF  are 

obtained, due to induced malfunction on the compressor. From a quantitative point of view, the performance is not 

satisfactory. The adopted thermoeconomic model is extremely sensitive to the relative humidity of inlet air, 

eventually leading to Ψfault,2 and Ψfault,4 values much lower or higher than 1. In particular, while in dry coil conditions 

the technique tends to overestimate the additional consumption provoked by evaporator fouling (see Ψfault,4=4.069) 

and underestimate the one provoked by condenser fouling (see Ψfault,2=0.470); the opposite occurs when a wet 

operating condition is examined. In both cases, the negative values are one of the main causes of this erroneous 

quantitative estimation, and methodological refinements are needed in order to converge toward the “ideal 

performance” condition where *

1MF 0= would be obtained (since no faults were imposed to the compressor). 

 

Table 5: Results for the multiple fault scenario 
 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSIONS  

 
For the first time, thermoeconomic diagnosis of air cooling systems was applied by means of real data available 

from a packaged rooftop air conditioning unit. The analysis aimed at verifying results obtained from previous 

studies in the literature based on simulation-based data.  Three faulty scenarios were considered in this analysis: 

evaporator fouling, condenser fouling, evaporator fouling along with condenser fouling. Results showed that: (i) the 

diagnostic technique is able to detect a single fault, but its quantitative performance is satisfactory only for the 

condenser fouling, (ii) The performance of the technique depends upon the level of fault imposed, and specifically it 

decreases when the fault level increases and this trend was verified regardless of the type of tested fault, (iii) for 

evaporator fouling, the performance of the diagnostic technique is sensitive to the relative humidity of the air 

entering the evaporator coil. More specifically, when considering a dry evaporator coil very promising results were 

achieved. Conversely, when the latent fraction of the cooling rate increases, the quantitative performance of the 

diagnostic technique is less reliable and (iv) in multiple faults scenarios, the technique is capable of detecting the 

simultaneous presence of condenser and evaporator fouling, but it provides a poor quantitative estimation of their 

impacts on the increased consumption mainly due to the induced malfunctions on the compressor, which should be 

filtered. 

 
Heavy Condenser Fouling - Heavy Evaporator Fouling 

 
RH=25% RH=45% RH=55% 

*

1MF  -0.733 -0.481 -0.729 

*

2MF  1.123 1.367 1.282 

*

4MF  0.941 1.236 1.301 

ΔFT 1.36 2.144 1.875 

Ψfault,2 0.470 0.951 0.965 

Ψfault,4 4.069 1.372 0.488 
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NOMENCLATURE 

ia  Distribution ratio on component “i” of valve’s additional exergy destruction (dimensionless) 

COP Coefficient of Performance (dimensionless) 

ic  Distribution ratio on component “i” of condenser’s additional exergy destruction (dimensionless) 

DFi Dysfunction generaed in i-th component [kWex] [kWex] 

Fi Fuel of component “i” [kWex] 

ΔFT Fuel Impact [kWex] 

ki Overall unit exergy consumption of component “i” [kWex/kWex] 

Ii Exergy destruction in component “i” due to irreversibility [kWex] 

MF Malfunction [kWex] 

MF* Malfunction cost  [kWex] 

Pi Product of component “i”  [kWex] 

R “Residue” exergy flow  [kWex] 

ri Overall unit residue generation of component “i”  (dimensionless) 
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