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ABSTRACT 

 
The cooling of high heat flux is becoming increasingly important in technical applications. This is on the one hand 
due to the fact that the available installation space is becoming smaller and smaller due to progressive miniaturization, 
on the other hand to the ever-increasing performance, which has to be taken away in technically demanding processes 
such as Inconel machining. In order to meet this challenge, a new type of evaporator, the swirl evaporator, was 
developed. 
The swirl evaporator is a screw-shaped cylindrical evaporator with an internal diameter between 1 – 3 mm, which is 
inserted as a blind hole in components with high heat generation. The refrigerant is fed into the blind hole via a 
concentrically oriented capillary, deflected by 180° in the drilling base and flows out of the evaporator again in a 
helical way (twist flow) against the inflow direction. The evaporator's design allows a compact size to be achieved, 
making it suitable for a wide range of technical applications. 
To enable a design for industrial needs, a 1-D simulation of the process had been conducted. The simulations showed 
ideal results for a hydraulic diameter of 2.05 mm and an evaporator length of 15 – 20 mm. According to the simulations 
an improvement of the energy efficiency of up to 19 % is possible when the mass flow is kept constant for R32. Based 
on the results of these simulations a design of the test-rig had been developed which allows different screw inserts to 
be tested with a variable length. 
Former experimental studies with R404A show that the average critical heat flux density of spot evaporators with a 
twist geometry increases by up to 33 % compared with spot evaporators without twist generation. The spot evaporators 
with swirl flow generation have a distinct, stable overheating zone with high heat flux (Humpfer, 2013). 
 
 

1. INTRODUCTION 
 
In many mechanical driven technical applications heat must be dissipated as low-value energy. Low-performance 
processes usually produce little heat, whereas high-performance processes require cooling systems with high cooling 
performance respectively high heat flux. In many cases, the cooling system represents a bottleneck in the process 
improvement that must be optimized. This is due to the fact that with high heat flux and the resulting critical wall 
overheating, the critical heat flux density is exceeded and the cooling process collapses. With spray cooling it is 
possible to cool with heat flux densities higher than the critical heat flux density attainable with film boiling (Bogdanic 
et al., 2009). For the cooling of e. g. small cylindrical injection moulds, water cooling is no longer sufficient (Steinko 
and Bader, 2008) and so in Knipping developed and investigated a powerful evaporator called a spot evaporator as 
part of a dissertation (Knipping, 2018).  
 
The spot evaporator is an evaporator in which the refrigerant flows through the capillary into the evaporator, is 
deflected at the end face of the blind hole by 180° against the inflow direction and flows partly or completely 
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evaporated out of the spot evaporator again. It combines spray cooling and evaporation of the refrigerant in the pipe 
flow. Spot evaporators have a length of 10 – 50 mm, an inside diameter of 1 – 3 mm and a capillary diameter of 
0.8 mm outside and 0.5 mm inside (Knipping, 2018). The schematic sketch of the spot evaporator with the 
corresponding heat flow 𝑄̇𝑄 and mass flow 𝑚̇𝑚 is shown in Figure 1.  
 

                   
Figure 1: Spot evaporator 

 
Potential fields of application can be seen in the cooling of linear motors or, as already mentioned, in tools for plastic 
injection molding (Knipping et al., 2015) as well as in the milling of materials such as Inconel 718, (Knipping et al., 
2014). The advantages of this system are not only its simple manufacturability, but above all its high heat flux densities 
and precise heat dissipation. The disadvantages are the poor controllability and still shows energetic optimization 
potentials, since in the operating state usually not all refrigerant evaporates, so a post-evaporator is also necessary. 
 
 

2. STATE OF THE ART 
 
The spot evaporator holds potential for improvement by inserting a swirl-shaped return of the refrigerant. In this 
context Humpfer investigated two different swirl generating evaporator geometries for their improvement potentials 
with regard to cooling capacity. A type of spring insert was compared with a screw insert as shown in Figure 2. He 
named the design “swirl evaporator”. The swirl evaporator represents a further development of the spot evaporator. It 
combines the spray cooling of the spot evaporator with a downstream swirl component and proves to be promising 
with regard to an increase in output. The swirling geometry causes centrifugal acceleration, which causes the 
refrigerant to rotate around the longitudinal axis. In order to cool with high heat flux, there must be enough vaporizable 
material on the evaporator surface, which is why the critical heat flux is increased by the swirl component. Humpfer's 
experiments show that, in addition to the twisting movement, the mass flow has the greatest effect on an increased 
critical heat flux. However, if a spot evaporator with the same mass flow is compared to the swirl flow, the maximum 
evaporator capacity can be increased by up to 33 % for R404A (Humpfer, 2013). The heat transfer in film boiling has 
been greatly increased when using a screw insert. Humpfer assumes that the cooling capacity can be further improved; 
no quantification of this statement has yet to be carried out. 
 

  
Figure 2: Schematic sketch of a swirl evaporator, screw inserted 

 
Based on the first experiments of Humpfer, the influence of the spiral geometry should be investigated. In order to 
enable dynamic cooling with adjustable overheating adapted to the power requirement (like a thermal expansion 
valve), the screw engagement length is variable. In a later project stage, the screw engagement length is to be set 
automatically. 
 
As the total quantity of fluorinated greenhouse gases available in the European Union should be drastically reduced 
by 2030 by Regulation No. 517/2014 and as the total quantity was already reduced to 63 % of the annual average 

𝑚̇𝑚
𝑚̇𝑚

𝑄̇𝑄

𝑄̇𝑄 𝑚̇𝑚
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consumption between 2009 and 2012 on 1 January 2018, R404A can no longer be used (EU Regulation 517, 2014). 
Due to the lower GWP of R32 this refrigerant can be an alternative, even if the safety class is A2L (ISO-817, 2014). 
 
For a better overview of the two circular processes, these are shown schematically in Figure 3. In both processes, the 
superheated refrigerant is raised to the upper pressure level by the piston compressor (1). In the condenser heat gets 
rejected from the refrigerant and it condenses (2). After this the liquid refrigerant expands isenthapically in the 
capillary (3), which causes the temperature of the refrigerant to drop. The active area of both evaporators can be 
divided into a spray cooling area (4) and a ring flow area (5a) for the spot evaporator or helical pipe flow area (5b) for 
the swirl evaporator. In principle, the pressure loss in the helical pipe flow area of the swirl evaporator is bigger than 
in the ring flow area of the spot evaporator. When leaving the ring flow area of the spot evaporator, the refrigerant is 
located in the two-phase region and is superheated via the post evaporator (6). After superheating, the pressure level 
is raised by the compressor and the circuit starts again. 

 

 
Figure 3: Cycle process diagram 

 
 

3. DESIGN OF A SWIRL EVAPORATOR 
 
To determine the influence of different swirl geometries on the process, a test trial was developed. In addition to the 
relevant basics, the previous studies on the spot and swirl evaporator are also described and the design of the swirl 
evaporator is carried out. The core piece is a simulation of the pressure loss on the basis of which the geometric 
quantities of the evaporator were estimated. Subsequently, a functional and production-ready design was developed. 
To get a rough idea in which dimensions the test carrier has to be designed, the pressure loss in the helical return path 
has to be determined. The optimum between running length (i.e. the helical return path of the refrigerant) and hydraulic 
diameter must be found. 
First of all, the mass flow 𝑚̇𝑚, the inlet temperature 𝑇𝑇in and the inlet pressure 𝑝𝑝in of the refrigerant are important input 
variables. During operation of the given system, the pressure, thus the density, and thus the mass flow of the 
refrigerant, will be adjusted to the settings in the system. However, since the system characteristics have not yet been 
investigated, constant input values are assumed for simplicity. The lumped capacitance method is also used for the 
design. 
A simulation was carried out to obtain indications as to how the test stand of the swirl evaporator should be designed. 
It is important to know the maximum screw engagement length and the hydraulic diameter of the screw threads 
through which the refrigerant flows. For the estimate of the thermal states, the approach of a 1-D simulation was 
chosen. Segments were created along this dimension to represent the course of the thermal quantities along the path. 
The relationships of the pressure loss are based on empirical relationships and the heat input on theoretical 
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relationships. It is considered mass conservation and the system is considered stationary. From the outside, the system 
receives a heat input 𝑄̇𝑄, which depends on the heat transfer coefficient 𝛼𝛼 and on the wall overheating Δ𝜗𝜗. This heat is 
absorbed by the refrigerant and is reflected in an increase in the steam quality 𝑥𝑥. The increase in steam quality results 
in an increase in speed. At the same time there is a pressure loss that depends on the steam quality, the volume flow 
and the pressure. It turns out that a correlation for the pressure loss can be used as the core of the simulation calculation. 
For the calculation of the pressure loss in the helical pipe section, considerations were first made for a possible 
analytical solution. However, these considerations were not pursued further due to the very great effort involved and 
the fact that no analytical approaches to two-phase helical pressure loss for R32 have yet been published. For the first 
estimates of the pressure loss in the helical pipe section, Humpfer (Humpfer, 2013) has taken a correlation for the two-
phase pressure loss in a straight pipe from the software EES. Fsadni and Whitty conducted a research on pressure 
losses in multiphase systems and found that a curved pipe has a much greater pressure loss than a straight pipe Fsadni 
and Whitty, 2016). Therefore, it was decided to use a correlation for a curved pipe.  
 
When flowing through an elbow, the centrifugal force acts on the fluid as with a helical pipe. With the associated 
adhesive forces, two vortices are formed, which have a significant influence on the flow pressure loss. At the same 
time, the pressure loss depends on the position and direction of the manifold outlet. Therefore, the idea of estimating 
the pressure loss through a series of manifolds proves to be unhelpful, since the inlet and outlet geometry of a manifold 
strongly influences the formation of the empirical equations.  
 
Guo et. al has shown the relationship between pressure losses as a function of steam quality, mass flow density, 
pressure and viscosity. The geometries and the pressure for which he did these experimental investigations are most 
suitable for the present case. However, water was used as fluid, which could later lead to larger deviations (Guo et al., 
2001). The model can be parameterized for the refrigerant in question when carrying out experiments as part of the 
further progress of this project. In the correlation of Guo et al., the multiphase pressure drop can be represented by a 
correlation with the single-phase pressure drop: 

 Δ𝑝𝑝tp = 𝛷𝛷𝑙𝑙2 Δ𝑝𝑝𝑙𝑙 (1) 

Δ𝑝𝑝𝑙𝑙  is the single-phase pressure drop and 𝛷𝛷𝑙𝑙
2  is the correlation for the two-phase pressure drop. The two-phase 

correlation results from the following semi-empirical context: 

 
𝛷𝛷𝑙𝑙2 = 𝜓𝜓1 ⋅ 𝜓𝜓 ⋅ �1 + 𝑥𝑥 �

𝜌𝜌𝑙𝑙
𝜌𝜌g
− 1�� (2) 

The mass flow density 𝐺𝐺 is used to differentiate between two flow regimes that with different equations give different 
correlations for 𝜓𝜓. For 𝐺𝐺 ≤ 1000 the relationship is  

 

𝜓𝜓 = 1 +
𝑥𝑥(1 − 𝑥𝑥) �1000

𝐺𝐺 − 1� 𝜌𝜌𝑙𝑙𝜌𝜌g

1 + 𝑥𝑥 �𝜌𝜌𝑙𝑙𝜌𝜌g
− 1�

 . (3) 

For 𝐺𝐺 > 1000 the equation is 

 

𝜓𝜓 =  1 +
𝑥𝑥(1 − 𝑥𝑥) �1000

𝐺𝐺 − 1� 𝜌𝜌𝑙𝑙𝜌𝜌g

1 + (1 − 𝑥𝑥) �𝜌𝜌𝑙𝑙𝜌𝜌g
− 1�

. (4) 

The coefficient 𝜓𝜓1  contains the critical pressure and the geometrically important relationships of the hydraulic 
diameter and the radius of curvature.  

 
𝜓𝜓1 = 142.2 �

𝑝𝑝
𝑝𝑝crit

�
0.62

�
𝐷𝐷
𝑅𝑅
�
1,04

 (5) 
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In this way, the selected correlation for the pressure drop is built up. Figure 4 shows a section of the geometry that has 
been optimized. The bore diameter is 𝐷𝐷 = 5 mm. This size was determined so that the other sizes can be related to it. 
Diameter 𝑑𝑑 represents the hydraulic diameter of the spiral flow channel. The radius 𝑅𝑅 results from the distance of the 
center of the flow channel from the longitudinal axis and the length of the evaporator 𝐿𝐿 results from the series of 
individual segments. The small distance between the individual flow channels is neglected. 

 
Figure 4: Geometric sizes of the swirl insert 

 
Within one segment it was assumed that it is an adiabatic volume entity. At this point, the pressure loss is calculated 
using the correlations described above. The previous pressure minus the pressure loss results in the new pressure. The 
heat flow into a segment is then calculated using the length of the volume piece, the hydraulic diameter and the heat 
transfer coefficient. Between the segment boundaries, the absorbed heat results in an increased enthalpy difference, 
which is reflected in an increase in steam quality. Due to the changed steam quality, a new pressure arises again. 
Figure 5 shows how the simulation model of the pressure loss in the helical return path of the refrigerant is set up. 
 

 
 

Figure 5: Simulation model of the pressure loss in the helical return path of the refrigerant 
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The pressure drop within the Swirl Evaporator should not exceed 0,4 MPa (Humpfer, 2013). For this reason, the 
maximum pressure drop was selected as the abort criterion for the simulation. It turns out that with a steam quality of 
𝑥𝑥 = 1 the length should not be increased further, as all refrigerant has evaporated. For reasons of numerical stability, 
the simulation program achieves the so-called maximum steam quality from a steam quality of 𝑥𝑥 = 0.99. 
There is a conflict of objectives when designing the evaporator. On the one hand, the hydraulic diameter of the threads 
should not be too small, so that the pressure loss is minimized. On the other hand, an increase in the hydraulic diameter 
means fewer threads, which means that not all refrigerant evaporates. Therefore, a compromise was sought in the 
simulation for a hydraulic diameter in which all refrigerant evaporates without the pressure loss exceeding the 
maximum permissible value.  
Two termination criteria must be selected for the simulation of the maximum run length. Figure 5 shows the maximum 
running length over the hydraulic diameter for both demolition criteria. The first criterion is the maximum pressure 
loss Δ𝑝𝑝max of 0.4 MPa and the second criterion is the steam quality 𝑥𝑥, which should reach 0.99. Ideally, both criteria 
are achieved simultaneously. The value 𝐿𝐿 = 100 mm is the upper limit value in the simulation. At the intersection of 
the two curves with a hydraulic diameter of 𝑑𝑑 = 2.05 mm and a run length of 𝐿𝐿run = 52.85 mm, which corresponds 
to a swirl length of 𝐿𝐿 = 14.09 mm (cylinder length, bore depth). The result of the simulation can be seen in Figure 6 
at the intersection of both curves. Since simplified assumptions were made in the simulation, a bore depth of 40 mm 
is chosen in the test bench which can be continuously adjusted from 1 to 40 mm to test various parameters. 
 

 
Figure 6: Result of the simulation 

 
The test stand for the measurements of the swirl evaporator is located on the refrigerant test stand at the Institute of 
Material and Processes (IMP) at the University for Applied Sciences Karlsruhe, Germany. In the current configuration, 
the test stand is operated with the refrigerant R32 without any oil in the cycle. An overview is given in Figure 7. A 
detailed description is given in (Knipping, 2018). A photograph of the test stand is shown in Figure 8. 
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Figure 7: Experimental setup for heat transfer investigation at high heat fluxes (modified from Knipping, 2018) 

 
 

 
Figure 8: Photograph of the test stand 

 
In Table 1 the parts of the experimental setup are described. Heat is supplied from the outside to the heat sink via 
heating sleeve. On the wall surface, where the refrigerant impinges, a phase transition of the liquid to the gaseous one 
takes place. 
 

Table 1: Parts of the experimental setup 
 

1 Sample chamber with swirl evaporator 7 Post-evaporator 
2 PI pressure sensor (𝐹𝐹 = 0.05 % o. m. v.) 8 Compressor (oil-free) 
3 PI pressure sensor (𝐹𝐹 = 0.1 % o. m. v.) 9 Refrigerant assembler 
4 Vacuum pump 10 Thermostat 
5 Mass flow meter 11 Step motor controlled expansion valve 
6 Thermostat TI Thermocouples Type J 

 
 

4. DESIGN IMPLEMENTATION 
 
Figure 9 shows the design of the swirl evaporator with variable screw engagement length that will be used for the 
experimental setup. It does not yet provide a controllability of the screw engagement length during the test. It should 
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be possible to vary the screw engagement length manually using an adapter in order to parametrize the simulation 
model in several experiments. The adapter is sealed by an O-ring and held in position at the same time. 
 

 
Figure 9: Swirl evaporator with variable screw engagement length 

 
If the peripheral screws are loosened, the adapter can change its position because the O-ring returns to its original state 
and no longer presses in the adapter. The cavity in front of the adapter contains a different volume depending on its 
position. If the system is flooded with refrigerant, this cavity will fill and plays no further role in the system dynamics. 
In addition, this space, in the form of a larger diameter, also serves to keep the outlet conditions almost constant. The 
adapter itself offers the possibility to maintain the remaining test setup and to carry out tests with different hydraulic 
diameters and other screw geometries. 
 
A non-oil-lubricated seal in the form of two O-rings is used to ensure the sealing of the refrigerant to prevent the 
penetration of lubricating films into the refrigeration circuit. The measuring device is also free-standing in order to 
reduce the influence of external disturbances and to concentrate the heat conduction path on the refrigerant inside. 
Each additional bearing position deteriorates the thermal insulation. The bearing location on the U-profile is therefore 
as far away from the heat input of the heating sleeve as possible. 
Five temperature-measuring points are provided for measuring the temperature curve from spray cooling to the exit 
from the swirl. Another important parameter for validating the simulation model is the pressure drop from the screw 
inlet to the screw outlet. Therefore, two pressure-measuring points were provided in the heat sink. To minimize further 
external influences, the construction is located in an insulated housing, as shown in Figure 10. 
 

 
Figure 10: Sample chamber with swirl evaporator 
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5. CONCLUSIONS 
 

In the context of this work, research was carried out into possibilities of describing the pressure loss within the swirl 
evaporator: 

• A simulation approach was chosen in which the maximum running length and the corresponding steam 
quality can be determined for different diameters. 

• The maximum running length and thus also the evaporator length increase over the diameter.  
• With a diameter of approx. 2.05 mm, the maximum steam quality and maximum pressure loss are achieved 

simultaneously.  
• The optimum is in this range if the mass flow is fixed.  
• Due to the higher steam quality, which results in a larger enthalpy difference, a performance increase of 

approx. 19 % compared to the spot evaporator is expected at a constant mass flow.  
• Since the mass flow is lower due to the greater pressure losses, the actual increase is less than 19 %.  
• The exact change in the mass flow due to the swirl evaporator in the refrigeration circuit could not be 

determined in the course of this work. Thus, an experimental setup to investigate the problem has been set 
up. It provides an adapter for different screw geometries and allows a variable track length for the refrigerant.  

• This allows different screw geometries to be compared and the optimum length for the respective geometry 
to be determined.  

• A stop enables reproducibility of the measurements.  
• By using two seals, similar to a stuffing box, it is possible to seal the circuit both gas-tight and oil-free.  
• Environmental influences are reduced by the freestanding geometry of the heat sink with the heating sleeve 

and the reconstructed plastic housing.  
• Relevant state variables can be measured by pressure and temperature measuring points. 

 
 

NOMENCLATURE 
   
𝑑𝑑 diameter (m) 
𝐿𝐿 length of the evaporator (m) 
𝑝𝑝 pressure (Pa) 
𝑝𝑝crit critical pressure (Pa) 
𝑅𝑅 radius (m) 
𝜓𝜓 correlation factor (–) 
tp two-phase (–) 
𝐿𝐿run  running length (m) 
𝑥𝑥  steam quality (–) 
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