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ABSTRACT 
 

Miniaturization of Plate Heat Exchangers (PHXs) is becoming a central research topic in order to utilize less material 

and less refrigerant charge to attain similar heat transfer performance, and hence contribute significantly into energy 

conservation and lower environmental impact. Thus, it is greatly desirable to obtain new designs to achieve this goal. 

Pillow Plate Heat Exchanger (PPHX) is a type of PHX with a 3D complex wavy structure, but yet an economical 

manufacturing process positioning itself as a potential strong competitor among other types of PHXs. PPHXs have 

the advantage of simple manufacturing process which gives them great design flexibility, and allows new designs to 

be created simpler and less costly. However, PPHXs are more commonly found in chemical and process industry. 

Research on PPHXs in HVAC&R is very limited. It is desired to make use of PPHXs advantages in HVAC&R 

applications. This can be done by creating more efficient designs. The thermal-hydraulic performance of PPHXs is 

primarily altered by the weld shape, size, and pattern, as well as the pillow height. The shape, and size of the weld is 

one of the most significant parameters affecting the thermal-hydraulic performance of PPHXs. As the weld size is 

smaller and more streamlined, the pressure drop is reduced significantly. However, the heat transfer area is also 

reduced using a more streamlined weld shape. In this study, new designs for PPHXs are investigated using different 

weld shapes that are represented using Non-Uniform Rational B-Splines (NURBS). Each control point in the NURBS 

curve is a design parameter in the optimization problem. The optimization problem has 11 design parameters. The 

whole CFD simulation is automated using Parallel Parameterized CFD (PPCFD). Since the CFD simulation of 3D 

PPHXs is computationally very expensive, the automated CFD simulations and Approximation Assisted Optimization 

(AAO) reduce the computational time and resources required significantly. A meta-model, using Kriging method, is 

calculated and verified using random samples from the design space. Multi-Objective Genetic Algorithm (MOGA) 

utilizes the verified meta-model to calculate optimum designs which have the optimum weld shape and size. The 

potential enhancement is up to 36% improvement in heat transfer coefficient and 67% reduction in pressure drop as 

compared to a selected PPHX baseline design with circular spot welds.  

 

1. INTRODUCTION 
 
The evolution of CFD in heat exchanger design added a new dimension for the design of new heat exchanger surfaces 

which in turn contributed to the improvement of heat exchanger performance and energy efficiency, and even became 

routine in some industrial applications (Shah, 2006). Shah (2006) predicted CFD will advance to the extent of 

conducting full 3D analysis of flows, and accurately designing complete compact heat exchangers, eliminating the 

need for experimental analysis. Although the need of experimental investigation is still required as a final step to 

validate designs, great advances took place in the last decade in computational power allowing faster CFD simulations 

and more accurate models to be developed. The application of CFD for the design and development of PPHXs is 

recently tested in literature by Piper et al. (2015) who used numerical forming simulation in order to predict the 

geometric characteristics of PPHXs and developed correlations for the calculation of wetted surface area, volume, and 

other parameters. The correlations are tested in another study by Eldeeb et al. (2016) using numerical forming 
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simulation for PPHXs as well. While the volume agrees with the correlation within 5%, the wetted surface area 

correlation agrees within 20%. PPHXs are, however, still in a very early research stage. 

 

CFD simulations with the current available computational power is essentially the most efficient, low cost, fast method 

to investigate novel surfaces with acceptable accuracies, especially as the complexity of the heat exchanger surface 

increases. The literature shows numerous examples of novel heat transfer surfaces studied using CFD (Bacellar et al., 

2017; Gholami et al., 2014; Li et al., 2013; Singh et al., 2011; Wu et al., 2007; Wu & Tao, 2007). In order to make the 

optimization process possible with the complex 3D structure of PPHX combined with 2D NURBS weld surfaces and 

reduce computational time at the same time, Approximation Assisted Optimization (AAO) is employed. A predictive 

model is essentially created using a fixed number of expensive CFD simulations which compromise the Design of 

Experiments (DoE) which should provide the performance information scattered in the design space studied. Latin 

Hypercube Sampling (LHS) (McKay et al., 1979) is used for sampling, and Kriging (Cressie, 1993) method is used 

for metamodeling in the current work. The metamodel is verified using CFD simulations.  

 

Piper et al. (2016) performed a CFD study using a turbulent single-phase water flow in PPHXs with Reynolds number 

ranging from 1000-8000, obtaining the PPHX surface using numerical forming simulations as well. In order to define 

the thermal-hydraulic performance of the PPHX, they defined an efficiency based on the total heat transfer divided by 

the total pumping power required. By comparing this defined efficiency, they concluded that the overall performance 

of PPHXs is improved using a larger pillow height, and transverse weld pattern. They also concluded that a smaller 

weld diameter and an oval weld shape can significantly reduce the pumping power leading to higher efficiency, 

although the heat transfer area is reduced as well which means lower heat transfer. Later, Piper et al. (2017) used these 

simulations to develop and verify heat transfer coefficient and pressure drop correlations for PPHXs. Eldeeb et al. 

(2018) studied the optimization of PPHXs using circular spot welds and four design parameters using AAO as well 

forming a verified metamodel from which a sensitivity analysis on all four design parameters is conducted. The 

sensitivity analysis revealed that the weld size has the most significant effect on the thermal-hydraulic performance 

of PPHXs. Thus, further improvement of PPHXs requires a thorough investigation and comprehensive optimization 

of weld shape and size specifically combined with all the other parameters as well.  

 

In this paper, new PPHX designs with novel weld shapes are investigated using numerical methods employing 

NURBS, PPCFD, AAO, and a MOGA. The optimization problem has 11 design parameters, 6 of which are the related 

to the NURBS to represent the weld shape, 2 for weld shape parameterization, two geometric parameters, and one 

flow characteristic parameter. The performance is predicted through first representing the manufacturing process of 

PPHX, combined with NURBS weld shapes, to obtain the detailed structure of the surface using forming simulations, 

then studying the flow inside the surface by using suitable boundary conditions.  

 

2. APPROACH 
 

The outline of the current analysis and optimization procedure is shown in Figure 1 and based on the optimization 

method introduced by Abdelaziz et al. (2010). The PPCFD method consists of a code, written using C# in the current 

work, that automatically reads the Design of Experiment (DoE) input parameters and creates one Python script file, 

two text files, and four JavaScript files for each single design. An executable batch file is created to sequentially 

execute the simulations for the entire DoE. The CFD output is processed using the code as well in order to 

automatically process the final results for thermal-hydraulic performance. The automation outline is shown in Figure 

2 comprising a Python script file which runs the entire workbench, adding the new components, calling other scripts, 

and CFD settings. The simulation consists of a Static Structural (SS) component in which the manufacturing process 

of a PPHX with NURBS weld shape is simulated and tested for mechanical failure, a Finite Element Modeler (FEM) 

component in which the pillow surface is converted into a Parasolid which is then transferred to the Fluid Flow (FF) 

component in which the Parasolid is reassembled and a computational domain is extracted, meshed, and simulated. 

Although automation becomes more challenging in problems with multiple components and complex geometries, 

however if achieved, more than 90% of engineering computational time can be saved (Abdelaziz, 2009). 
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Figure 1: Optimization procedure. 

 

  

Figure 2: PPCFD Automation outline. 

 

Once the PPCFD is executed, a metamodel is calculated and verified using random designs. In order to verify the 

accuracy of the metamodel, the Metamodel Acceptability Score (MAS) (Hamad, 2006) is calculated which indicates 

the fraction of predicted responses by the metamodel in which the absolute relative error is equal to or less than an 

established threshold which is 10% in the current work. Once verified, the developed metamodel accurately predicts 

the outcome of CFD simulation for any given design within the design space.  
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3. PILLOW SURFACE WITH NURBS WELD SHAPE DESIGN 
 

The pillow surface in this study is attained by simulating the hydroforming process of two thin metal plates made of 

stainless steel of material 1.4541 (AISI 321) that are bonded together at the welding spots in ANSYS Static Structural 

(SS) component (ANSYS Inc., 2016). The Pillow Plate Heat Exchanger with NURBS weld shape (NPPHX) concept 

is essentially equivalent to the PPHX with the addition of the weld shape variables that describe the weld shape of the 

pillow. The design space consists of 11 design variables from which 6 are the x and y normalized coordinates of the 

control points used to describe the weld NURBS curve as shown in Figure 3. Additional two fixed control points 

denote the leading edge and the trailing edge of the NURBS. The result is a 4th order NURBS curve. The design space 

of the NPPHX is shown in Table 1. 

 

 

Figure 3: NPPHX weld shape parameterization. 

 

Table 1: NPPHX design space. 

Variable Type Design Variable Unit Range 

Scaling 
w

h  m m  3.0-10.0 

w

w

w

h
 

  1.0-2.0 

Topology 2
L

T

s

s
 

  0.58-1.73 

p
h  m m  3.0-12.0 

Shape 
i

x ,  1, 2 , 3w h e r e i      0.0-1.0 

i
y ,  1, 2 , 3w h e r e i     0.0-1.0 

Fluid 
in

v  
1

m s


  0.1 - 2.0 

 

4. CFD 
 

The flow studied is single phase, incompressible, turbulent, steady-state water flow with fluid CFD simulations 

performed using ANSYS FLUENT® (ANSYS Inc., 2016), which is based on finite volume method. The front view 

of the computational domain of one of the designs and its 3D view are shown in Figure 4. The computational domain 

consists of five segments of the basic periodic symmetrical cell of the pillow surface in order to capture both the 

entrance region and the steady state region. Assumptions of homogeneous inlet velocity, constant outlet atmospheric 

pressure (0.0 Pa gauge), and symmetrical pillow sides are applied. Additionally, no-slip boundary condition and 

constant wall temperature are applied as well. The Reynolds number in this study is defined using: 
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h
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A
     (1) 
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The heat transfer coefficient is calculated using the logarithmic mean temperature difference (LMTD) method using: 

 

 

,w i

Q
h

A L M T D
    (2) 

 

The friction factor is calculated using: 

 

 
2

2

h
d P

f
Lu

 

 
 


   (3) 

The baseline case is selected to be one of the optimum designs for the PPHX with circular spot welds obtained by 

Eldeeb et al. (2018). The inlet temperature is 295 K and the wall temperature is 300 K. The pressure-velocity coupling 

scheme used is the SIMPLEC solver available in ANSYS FLUENT® (ANSYS Inc., 2016). All space discretization 

schemes are second order degree upwind. This is done to obtain good accuracy with relatively low computational cost, 

as the 3D CFD simulations of PPHX plates are very computationally expensive. Grid Convergence Index (GCI) 

method (Roache, 1998) is used for the verification of the CFD models using meshes with different mesh refinement 

sizes. Three grid resolutions for each case are studied. The GCI analysis results is shown in Figure 5.  

 

 

Figure 4: Front and 3D views of a NPPHX computational domain. 

 

Table 2: NPPHX Optimization Baseline. 

Baseline 
/ 2  (-)

T L
s s   ( )

i
h m m   ( )

sp
d m m   ( / s )

in
v m  

 PPHX-073 0.75 12.0 5.7 1.99 
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Figure 5: GCI analysis for NPPHX. 

 

5. METAMODEL VERIFICATION 
 

An effective 1764 samples from the DoE generated using LHS are simulated successfully and used to create the 

metamodel. The metamodel is verified using 354 random designs shown in Figure 6(a) for the heat transfer coefficient 

and in Figure 6(b) for the pressure drop per unit length. The metamodel verification metrics are shown in Table 3. 

 

 
(a) 

 
(b) 

 

Figure 6: NPPHX metamodel verification for (a) heat transfer coefficient, and (b) pressure drop, against 354 

random designs. 

 

Table 3: NPPHX metamodel verification metrics. 

Interpolated variable Heat Transfer Coefficient /P L  

Number of samples 1764 

Number of random samples 354 

Kriging Correlation Gaussian Spline 

Kriging Regression model Polynomial 2nd order Polynomial 2nd order 

Root Mean Square Error (RMSE) 14.78 0.713 

Relative RMSE (%) 1.92 2.69 

MAS’ threshold (%) 10 10 

MAS (%) 94.63 83.05 
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6. RESULTS 
 

6.1 Sensitivity Analysis 
The verified metamodel is used to conduct a sensitivity analysis on some of the design variables to investigate and 

verify their impact on the thermal-hydraulic performance. For each parametric study, a single variable is changed 

while all other variables are fixed. The reference values used for each design variable in all studies are 1.73 pitch ratio, 

12.0 mm pillow height, 5.0 mm weld height, 2.0  for the weld width-height ratio (WHR), 2.0 m·s-1 inlet velocity, and 

the same weld shape shown in Figure 7. Figure 8 shows the results of the parametric analysis run on the weld height, 

and WHR. All parameters are normalized.  

 

 

Figure 7: Weld shape used in sensitivity analysis. 

 

 

Figure 8: NPPHX sensitivity analysis for some normalized design parameters. 

 

Parametric analysis on weld pitch ratio, inlet velocity, and pillow height are also conducted and the results are 

consistent with the parametric analysis done by Eldeeb et al. (2018) but not presented here due to space limitations. 

Eight parameters describe the weld shape and size in this problem, six of which are the control points coordinates and 

they are fixed for this parametric analysis, while the other two, the WHR and the weld height, are varied independently. 

Figure 9 shows the velocity profile of different NPPHX designs with different weld shapes. The fluid enters from the 

far right end in all figures. 

 

 

Figure 9: Velocity profile of NPPHX designs with different weld shapes 
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Generally smaller more streamlined welds yield lower pressure drop values. The thermal-hydraulic performance is 

almost affected in a similar pattern by changing any of these two parameters, with the WHR reducing the pressure 

drop more sharply since the pressure drop is high for smaller values of WHR. As the size of the weld increases, the 

heat transfer area is reduced, and thus the heat transfer coefficient decreases as well. However, if the increase in size 

means a more streamlined weld as well, with higher WHR values, the pressure drop is significantly reduced as a result 

as well since the wake region behind the weld is reduced. Figure 10 shows the velocity profile for two different 

NPPHX designs. The wake region behind the NPPHX design with the lower WHR value is obviously larger than the 

design with the more streamlined weld shape with a higher WHR value, thus yielding a lower pressure drop. 

 

  

Figure 10: Velocity profile for different weld width-height ratio values. 

 

6.2 Optimum Designs 
A multi-objective optimization is conducted using a MOGA and the verified metamodels to optimize the thermal-

hydraulic performance of NPPHX. The optimum NPPHX designs are presented in Figure 11 compared to the baseline. 

The baseline is given in Table 2. As expected, the more streamlined weld shape led to a significant reduction in 

pressure drop. The heat transfer coefficient on the other hand is either improved, or slightly affected by the change. 

 

 

Figure 11: Optimum NPPHX designs at different weld width height ratios and inlet velocity. 
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The WHR for the optimum designs ranges from 1.6 mm to 2.0 mm which means more streamlined weld shapes. The 

effect of increasing the inlet velocity is directly proportional to both the heat transfer coefficient and the pressure drop. 

Some of the best designs right at the middle of the Pareto have both moderate WHR and moderate inlet velocity 

leading to a tradeoff between higher heat transfer coefficient and moderate pressure drop values. The optimum NPPHX 

designs have pitch ratios ranging from 0.58-1.36. Higher pitch ratios describe longitudinal weld patterns which have 

higher heat transfer coefficient and higher pressure drop values, while transverse weld pattern have lower heat transfer 

coefficient and lower pressure drop. The pillow height and the inlet velocity for the optimum NPPHX designs are both 

in their respective high ranges of 11.45 mm to 12 mm, and 1.6 m·s-1 to 2 m·s-1, respectively, which is quite expected 

due to their favorable effect on thermal-hydraulic performance. 

 

The optimization results show an improvement in the heat transfer coefficient ranging from at least 5% at moderate 

pressure drop values and up to 36% at high pressure drop values (of about 24.4 kPa/m) with respect to the baseline 

with circular spot welds. The optimization results also show a significant reduction in pressure drop per unit length 

ranging from at least 10% at moderate heat transfer coefficient values and up to 67% at lower heat transfer coefficient 

values relative to the baseline.  

 

7. CONCLUSIONS 
 

A optimization study that includes weld shape analysis using novel weld shapes generated using NURBS is presented. 

PPCFD and AAO are utilized which includes the automation of CFD simulations in order to simulate hundreds PPHX 

novel designs and use the responses to generate a verified metamodel. The metamodel is then used to run a sensitivity 

study and a MOGA to optimize the performance of PPHXs with NURBS weld shape. The optimization results show 

a significant reduction in pressure drop per unit length of up to 67% reduction relative to the baseline which is selected 

from optimum PPHX designs with circular weld shapes. The heat transfer coefficient is also improved by up to 36% 

relative to the selected baseline. The sensitivity analysis clearly shows that a more streamlined smaller weld results in 

the optimum designs with better improvement in thermal-hydraulic performance of PPHXs. 

 

NOMENCLATURE 
 

w
A   wetted area  (m2) 

L
s  Longitudinal spot weld pitch (m) 

h
d   hydraulic diameter (m) 

T
s  transverse spot weld pitch (m) 

GCI Grid Convergence Index (-) 
in

v  inlet velocity (m∙s-1) 

w
h   weld height (m) (m) WHR weld width-height ratio  (-) 

p
h  pillow height (m) 

w
w  weld width (m) 

 

REFERENCES 
 

Abdelaziz, O. (2009). Development of multi-scale, multi-physics, analysis capability and its application to novel heat 

exchanger design and optimization. College Park, MD: PhD Thesis presented to the Department of Mechanical 

Engineering at the University of Maryland. 
Abdelaziz, O., Aute, V., Azarm, S., & Radermacher, R. (2010). Approximation-Assisted Optimization for novel 

compact heat exchangers. HVAC&R Research, 16(5), 707-728. 

ANSYS Inc. (2016). ANSYS 17.0. www.ansys.com. 

Bacellar, D., Aute, V., Huang, Z., & Radermacher, R. (2016). Airside Friction and Heat Transfer Characteristics for 

Staggered Tube Bundle in Crossflow Configuration with Diameters From 0.5 mm to 2.0 mm. International Journal 

of Heat and Mass Transfer, 448-454. 

Cressie, N. (1993). Statistics for Spatial Data. New York: John Wiley & Sons. 

Eldeeb, R., Aute, V., & Radermacher, R. (2016). Investigation of Thermal-Hydraulic Characteristics of Pillow Plate 

Heat Exchangers Using CFD. 16th International Refrigeration and Air Conditioning Conference at Purdue, Paper 

2278.  



 

2642, Page 10 
 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

Eldeeb, R., Ling, J., Aute, V., & Radermacher, R. (2018). Heat Transfer Enhancement Using Approximation Assisted 

Optimization for Pillow Plate Heat Exchangers. 17th International Refrigeration and Air Conditioning Conference at 

Purdue, July 9-12, Paper #2641.  

Gholami, A., Wahid, M. A., & Mohammed, H. A. (2014). Heat transfer enhancement and pressure drop for fin-and-

tube compact heat exchangers with wavy rectangular winglet-type vortex generators. International Communications 

in Heat and Mass Transfer, 54, 132–140. 

Hamad, H. (2006). A new metric for measuring metamodels quality-to-fit for deterministic simulations. Proceedings 

of the 2006 Winter Simulation Conference.  

Hilbert, R., Janiga, G., Baron, R., & Thevenin, D. (2006). Multi-objective shape optimization of a heat exchanger 

using parallel genetic algorithms. International Journal of Heat and Mass Transfer, 49, 2567–2577. 

Li, L., Du, X., Yang, L., Xu, Y., & Yang, Y. (2013). Numerical simulation on flow and heat transfer of fin structure 

in air-cooled heat exchanger. Applied Thermal Engineering, 59, 77-86. 

McKay, M., Beckman, R., & Conover, W. (1979). A comparison of three methods for selecting values of input 

variables in the analysis of output from a computer code. Technometrics, 21, 239-245. 

Piper, M., Olenberg, A., Tran, J. M., & Kenig, E. Y. (2015). Determination of the Geometric Design Parameters of 

Pillow-Plate Heat Exchangers. Applied Thermal Engineering, 91, 1168-1175. 

Piper, M., Olenberg, A., Tran, J. M., & Kenig, E. Y. (2016). Numerical Investigation of Turbulent Forced Convection 

Heat Transfer in Pillow Plates. International Journal of Heat and Mass Transfer, 94, 516-527. 

Piper, M., Zibart, A., & Kenig, E. Y. (2017). New Design Equations for Turbulent Forced Convection Heat Transfer 

and Pressure Loss in Pillow-Plate Channels. International Journal of Thermal Sciences, 120, 459-468. 

Roache, P. J. (1998). Verification and Validation in Computational Science and Engineering. Hermosa Publishers. 

Saleh, K., Aute, V., Radermacher, R., & Azarm, S. (2013). Chevron Plate Heat Exchanger Optimization Using 

Efficient Approximation-Assisted Multi-Objective Optimization Techniques. HVAC&R Research, 19(7), 788-799. 

Shah, R. (2006). Advances in science and technology of compact heat exchangers. Heat Transfer Engineering, 27(5), 

3-22. 

Shewry, M., & Wynn, H. (1987). Maximum entropy sampling. Journal of Applied Statistics, 14(2), 165-170. 

Singh, V., Abdelaziz, O., Aute, V., & Radermacher, R. (2011). Simulation of air-to-refrigerant fin-and-tube heat 

exchanger with CFD-based air propagation. Internationa Journal of Refrigeration, 34, 1883-1897. 

Tran, J. M., Linnemann, M., Piper, M., & Kenig, E. Y. (2017). On the Coupled Condensation-Evaporation in Pillow-

Plate Condensers: Investigation of Cooling Medium Evaporation. Applied Thermal Engineering, 124, 1471-1480. 

Wu, H., Gong, Y., & Zhu, X. (2007). Air flow and heat transfer in louver-fin round-tube heat exchangers. Journal of 

Heat Transfer, 129, 200-300. 

Wu, J., & Tao, W. (2007). Investigation on laminar convection heat transfer in fin-and-tube heat exchanger in aligned 

arrangement with longitudinal vortex generator from the viewpoint of field synergy principle. Applied Thermal 

Engineering, 27, 2609-2617. 

Xioping, T., Huahe, L., & Xiangfei, L. (2010). CFD simulation and experimental study on airside performance for 

MCHX. International Refrigeration and Air Conditioning Conference. Lafayette, IN. 

 

 

ACKNOWLEDGEMENT 
 

This work was supported by the Modeling and Optimization Consortium (MOC) of the Center for Environmental 

Energy Engineering (CEEE) at the University of Maryland College Park.  

 


	Purdue University
	Purdue e-Pubs
	2018

	Weld Shape Optimization for Pillow Plate Heat Exchangers
	Radia Eldeeb
	Jiazhen Ling
	Vikrant Chandramohan Aute
	Reinhard Radermacher

	tmp.1545327939.pdf.nomsJ

