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ABSTRACT 

Maintenance strategies currently used for commercial building rooftop units (RTU) can be classified into two 

categories: reactive strategies and proactive strategies. In reactive strategies, maintenance and service is performed 

only when needed, e.g. when a system is unable to maintain set point. In proactive strategies, maintenance is 

scheduled at routine intervals to avoid service interruptions regardless of whether the system actually needs it. While 

these strategies could not be more different, it is unclear which strategy is more optimal. Moreover, whether one 

strategy is more optimal than the other more than likely depends on the application – contributing to uncertainty. A 

third category of maintenance has been enabled by automated fault detection and diagnostics (AFDD) technologies 

that aims to provide building operators and service providers more detailed information about the actual state of 

equipment in the field. This third strategy, called condition-based maintenance, aims to optimize service and 

maintenance decisions throughout the life of equipment based on updated measurements of performance and service 

costs. In this work, these three types of maintenance strategies are compared using a commercial building simulation 

model utilizing a fault impact equipment model. Along with comparing different strategies under the same fault 

scenario, ambient conditions, and loads, optimal maintenance schedules are generated using dynamic programming. 

Benefits of a condition-based maintenance approach utilizing a suite of AFDD methodologies are highlighted with 

respect to reducing operating costs. 

1. INTRODUCTION 

Like almost any other mechanical system, direct-expansion air conditioners require routine or unscheduled measures 

to maintain reliable and efficient operation. If an air conditioner is ignored or regular maintenance goes 

unscheduled, performance of the system will deteriorate over time. Determining the frequency of when to inspect or 

perform maintenance can be difficult since impacts of deterioration or faults are relatively difficult to estimate. It is 

also difficult to quantify the benefits of performing different maintenance and service tasks. Furthermore, systems 

can develop multiple different faults at the same time which makes service decisions even more complex. 

In some cases, the operation of an air conditioning system may become completely suspended by a fault. For 

example, an air conditioner may fail to start when a motor capacitor fails over years of operation. When this 

happens, no cooling will be available until the capacitor is replaced. It is relatively easy to detect faults that totally 

halt system operation – when cooling is not available, comfort in the condition space cannot be controlled. 

Additionally, for many applications in commercial buildings the decision about how to handle these faults is easy: 

the fault must be fixed or the system must be replaced as soon as possible. This is because preserving occupant 

comfort is usually a high priority in most commercial buildings. 

Some other faults do not totally suspend the operation of a system, but rather degrade overall system performance.  

In other words, faults may decrease the amount of cooling capacity available or the efficiency of the system, but the 

system can still maintain comfort in the space. An example of a fault that does not completely disable operation of 

an air conditioner is condenser fouling. When a condenser becomes fouled, an air conditioner is still able to deliver 

cooling to a conditioned space; however, it does so less efficiently. These faults are more difficult to detect than 

faults that halt operation – from an occupants’ perspective it may not be noticeable at all.  It may also be difficult to 

determine if faults are present by comparing utility bills as well. 
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For these types of faults that degrade or deteriorate performance over time, maintenance decisions are less 

straightforward. This is because costs required to fix or repair a system may be comparable to the impact that the 

fault has on utility costs. For some faults, the cost to repair may be more than the benefit incurred. For others, 

economic benefits for repair may outweigh these service costs, though it still may be difficult to quantify this benefit 

leading to uncertainty. 

Limited work on service decision support systems for direct-expansion (DX) equipment has been published.  While 

there has been extensive work done related to the fields of industrial engineering, much of this work has been 

focused on infrastructure, manufacturing processes, and large engineered systems and fleets. Inspection and 

replacement decisions for devices subject to random failures, such as light bulbs, have also been well researched. 

Low-cost systems prone to long-term degradation, like DX equipment, have not been as widely studied.  In this 

work, different types of maintenance strategies are compared using a commercial building simulation model 

utilizing a fault impact equipment model. Along with comparing different strategies under the same fault scenarios, 

ambient conditions, and loads - optimal maintenance schedules are generated using dynamic programming. Benefits 

of a condition-based maintenance approach that utilizes the outputs of automated fault detection and diagnostics 

(AFDD) systems are highlighted with respect to reducing operating costs. 

2. SIMULATION AND COMPARISON METHODOLOGY 

In order to compare the operational cost impacts of different faults and maintenance strategies, an hourly simulation 

program was implemented that models the sensible and latent cooling loads of a simple commercial building. The 

interaction between the building model and RTU cooling equipment was implemented to determine energy 

consumption at hourly time intervals.  The equipment model implemented in this work is based on a grey-box model 

developed by Cheung and Braun that captures the effects of faults on system cooling capacity and energy 

consumption. The effects of faults are varied over time to simulate deterioration between successive service 

intervals.  Finally, the benefits and costs of performing maintenance tasks were modeled. Details of the simulation 

framework used to generate the results in the work are discussed in a companion paper (Hjortland & Braun, 2018). 

One of the variables that was selected at the start of each simulation was the fault evolution rate, e.g. the refrigerant 

leakage rate. Because choosing combinations of fault rates is somewhat arbitrary due to the lack of reliable fault 

prevalence data, rates for refrigerant charge leakage, condenser fouling, and evaporator fouling were sampled from 

random distributions (Yuill & Braun, 2017). To consider a relatively wide range of fault rate combinations, 

uniformly distributed random samples were chosen for each. For refrigerant leakage fault rates, a uniformly 

distributed random sample between 0% to 20% leakage per year was selected for each trial. Likewise, condenser 

fouling fault rates were sampled uniformly between 0% to 20% per 5000 hours of condenser fan runtime for each 

trial. For evaporator fouling fault rates, a uniformly distributed random sample between 0% to 20% per 5000 hours 

of evaporator fan runtime was selected. In all, a distribution of 200 random combinations of refrigerant charge 

leakage, evaporator fouling, and condenser fouling faults were simulated in this study. 

For each scenario, consisting of a set of fault evolution rates, simulations were performed over a 15-year life of the 

equipment for buildings in Miami, Atlanta, and Chicago having different service policies.  This included a 

benchmark optimal service decision policy that minimized lifetime operating costs as described in the following 

section. Simulations at each location and fault combination were also performed using different proactive, reactive, 

and condition-based service policies. The result of this process was a distribution of lifetime operating costs for each 

location and service policy studied. The lifetime operating costs of each policy were compared with the 

corresponding optimal operating cost.  Sample and summary results from this study will be discussed in the 

remainder of this work. 

3. MAINTENANCE AND SERVICE POLICY DESCRIPTIONS 

2.1 Optimal Service Policies determined using Dynamic Programming 
The goal of service and maintenance optimization is to determine an optimal sequence of service decisions that 

minimizes life-cycle operating costs for a system or group of systems while maintaining constraints on occupant 

comfort, safety, or environmental impact. For direct-expansion cooling equipment, significant life-cycle costs 
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include utility costs (cost to consume energy, usually electricity), equipment replacement costs (due to premature 

failures or scheduled upgrades), and maintenance costs. 

More explicitly, the goal of maintenance and service optimization is to determine an optimal sequence of service 

tasks ( a ) from the set of permissible service tasks ( A ) that minimizes the total operating costs ( OC ) of a system 

over a life-cycle 
0life lifet t   , 

   
0

0 min d
lt

ta A
J OC t t


    (1) 

such that the temperature in the conditioned space (
zT ) remains comfortable, 

  , 0( ) ( ) ,l z z sp u lT t T t t t t        (2) 

where 
,z spT   is the space air temperature set point, and 

l , 
u  are the minimum and maximum allowable deviations 

in space air temperature that maintain comfort. Operating costs ( OC ) at some time t  in this work were estimated as 

the sum of utility costs (UC ), equipment costs ( EC ), and service costs ( SC ), 

 ( ) ( ) ( ) ( ).OC t UC t EC t SC t     (3) 

The utility costs in this work were calculated using an effective flat rate electricity cost, 
elecC , 

 ( ) elec elecC C WU t    (4) 

where 
elecW  is the total energy consumption of the DX equipment over some interval.  The equipment costs were 

estimated by assuming the installation cost of the system can be uniformly distributed over the expected finite life of 

the system (15 years) 

 ( ) equip runEC t C t    (5) 

where 
equipC  is the effective cost per unit time to operate the equipment assuming a finite life and 

runt  is the total 

amount of equipment run-time required over some simulation interval.  Equation (5) has been included to capture 

the penalty of faults that result in longer run-time requirements which may lead to earlier replacements.  Finally, the 

service costs were modeled as a function of service tasks 

 ( ( ))( ) serviceS at C tC    (6) 

where the cost for different service tasks are described in Table 1.  When multiple tasks were performed during the 

same interval, a 20% discount was assumed to account for potential savings in “trip costs.” 

Table 1. Summary of fault evolution rate parameters used in second multiple fault 

simulation and service scheduling optimization. 

Task Cost 

Add Refrigerant Charge $100 + $50/lb refrigerant 

Clean Condenser Coil $300 

Clean Evaporator / Filter $80 

Dynamic programming optimization (by backwards induction) was used to solve the service decision problem in 

Equation (1) and determine the optimal service decision policy for each simulation trial. The optimal solution is one 

way to measure the performance of any maintenance plan or policy. In other words, it is a useful benchmark that can 

be determined initially that provides some measure of how good or bad sub-optimal maintenance policies are. 

To give an illustrative example, a system with only a refrigerant charge leakage fault was simulated. Figure 1 shows 

results for the optimal service policy for a building in Miami where the air conditioner leaks charge at a rate of 5% 

per year and has a maximum capacity that is 20% greater than the maximum load during the year.  Also plotted on 

Figure 1 are the trended refrigerant charge levels for two systems with the same charge fault (5% leakage per year) 

but different initial charge levels (100% and 90%). When the amount of refrigerant in either system crosses the 

optimal service decision boundary, the optimal service policy would recommend adding refrigerant to the system.  
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Applying this decision rule at any instance in time, the optimal lifetime operating costs under the assumptions of the 

simulation will be obtained. 

 
Figure 1. Example optimal service decision policy for refrigerant charge faults in Miami, FL 

for system that is 20% oversized to maximum annual load and refrigerant leakage rate 

equal to 5% per year. 

Early in the simulation lifetime, the optimal boundary between adding refrigerant to the system and not performing 

service is largely a tradeoff between integrated energy and equipment cost impact and the cost to perform additional 

service tasks.  Performing service tasks more often would save on energy and equipment costs, at the expense of 

much higher lifetime service costs.  On the other hand, performing service less frequently would save on service 

costs by possibly performing less service tasks throughout the life, at the expense of much higher energy costs. 

The decision boundary changes over time for two reasons.  First, there is a small seasonality component to the 

decision which causes the small ripple in the decision boundary with a period of 12 months.  Because refrigerant 

leaks throughout the year and there is less cooling load in Miami in the winter months, it is slightly better to wait 

until the warmer months to do service.  The decision boundary for Miami reaches a peak around the 7
th

 year.  This is 

an effect of optimizing the lifetime operating costs over a finite interval.  After the 7
th

 year, the costs for performing 

service must be balanced by diminishing utility costs savings since there is no reward for finishing the simulation 

with an air conditioner with more charge (no salvage value).  In other words, the optimal service policy tolerates 

more leakage since the possible future utility costs savings are less than earlier in the simulation. 

Finally, it should be noted that each system shown in Figure 1 has charge added around the 11
th

 and 12
th

 years much 

before the systems’ charge levels intersect with the decision boundary.  These service decisions are the result of 

comfort violations – the significant reduction in refrigerant charge resulted in insufficient cooling capacity to 

maintain the space temperature of the building.  Because there is a constraint to maintain comfort with the building, 

service must be performed. 

The optimal service schedule for the building located in Miami, FL that has multiple faults evolving over time was 

also determined using dynamic programming for each simulation trial.  The fault rates for an example trial are 

summarized in Table 2.  The refrigerant charge in the system leaked 5% per year of simulation time.  The condenser 

airflow rate was reduced by condenser coil fouling at a rate of 5% per 5000 hours of condenser fan runtime.  The 

evaporator airflow rate was reduced by evaporator coil fouling at a rate of 5% per 5000 hours of evaporator fan 

runtime. 

The optimal service schedule for the system in Miami, FL with the faults described in Table 2 is shown in Figure 2. 

Because the optimal decision boundaries for each service task also depend on the other fault levels, it is not possible 

to show the optimal policy decision threshold as was done previously. Instead, each trended fault level is plotted. It 

can be observed that the optimal service schedule tends to group multiple service tasks into each service interval.  

This occurs because of the 20% discount applied to the service costs when multiple faults are serviced at the same 
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time. It can also be observed that the time between service intervals tends to increase as the simulation progresses 

due to diminishing returns from service. 

Table 2. Summary of fault evolution rate parameters used in first multiple fault simulation 

and service scheduling optimization. 

Task Cost 

Refrigerant Charge Leakage Rate 5% per year 

Condenser Fouling Rate 5% per 5000 hours condenser fan runtime 

Evaporator Fouling Rate 5% per 5000 hours evaporator fan runtime 

 

 
Figure 2. Example optimal service schedule for system located in Miami, FL with multiple 

faults.  The optimal schedule tends to group multiple service tasks at each service interval. 

2.2 Periodic Service and Maintenance at Regular Intervals 
Implementing periodic service policies is relatively straightforward and can easily be compared with optimal service 

policies using the simulation framework. In these policies, a service technician is assumed to visit the air 

conditioning system at regular intervals and perform any preventative maintenance that is needed. In many 

commercial buildings, service contracts between the building owner and HVAC service providers are often 

implemented which approximate periodic service policies. In these contracts, the service provider generally agrees 

to visit the site a fixed number of times per year and perform a variety of preventative maintenance tasks in return 

for some fixed costs paid by the building owner. While service may not be performed at exact intervals (i.e. every 

six months), service time between service visits is approximately constant (i.e. annually, biannually, or quarterly). 

In this work, an additional assumption about how periodic service is performed may not be exactly true in a real 

application. The periodic service contract that is implemented within the simulation requires each service task to be 

completed at every visit. In other words, evaporator cleaning, condenser cleaning, and refrigerant charge adjustment 

is performed whenever the service technician visits the site if the fault levels are not normal (i.e. service to repair a 

fault is not performed if it is not considered in the simulation). In a real scenario, the service technician may not 

perform all tasks during every visit. Rather, the technician may only inspect the system to determine if maintenance 

is needed based on experience. If these inspections are permitted within the service contract, rather than requiring 

that each task is performed per visit, it may decrease the service costs. 

Inspection policies were not investigated or implemented in this work since it requires some assumptions about how 

the service technician perceives the equipment state and when service is needed. In real scenarios, performing on-

site inspections is generally a good idea since it may provide valuable insights into how a system is performing. For 

instance, a service technician may clean the condenser coil if they notice it is covered in debris. On the other hand, 

minor condenser fouling would be ignored if the condenser looks mostly clean. In the simulation, these 

considerations are not modeled. Rather, the service technician will perform different service tasks regardless of the 

severity of the faults. 
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A comparison between the trended refrigerant charge levels for a system that is serviced annually and biennially and 

leaks 5% of its refrigerant charge annually for a system installed in Miami, FL is shown in Figure 3. In comparison 

to the optimal decision boundary, Figure 3 shows that the annual and biennial service schedules perform service too 

often for a 5% leakage fault. Using these schedules, annual utility costs are less than the utility costs obtained using 

the optimal schedule. However, service costs are much greater since service is performed more often over the life of 

the equipment. Figure 3 also shows that periodic service schedules do not consider the payback time required to 

break even towards the end of equipment life. This accounts for much higher lifetime service costs. 

 
Figure 3. Example comparison of lifetime refrigerant charge levels for system located in 

Miami, FL with a leakage rate of 5% percent per year using biennial and annual periodic 

service schedules. 

2.3 Emergency Service Policies 
Whereas periodic service policies can be viewed as proactive, emergency service policies can be considered 

reactive. In this policy, service is performed only when a comfort violation occurs due to insufficient cooling 

capacity provided by the air conditioning equipment. In this work, comfort violations were defined when the 

temperature in the space exceeded the set point by 1.1 °C (2.0 °F) for a continuous interval of 4 hours or longer. 

When comfort was violated, service was performed immediately – evaporators were cleaned, condensers were 

cleaned, and refrigerant charge was adjusted. In real situations, a time lag between when comfort is violated and 

when service is performed may be significant. This is especially true depending on the time of the year service is 

needed: service technicians may be very busy during peak cooling months, while they may be more available during 

the shoulder seasons. The seasonal availability and costs are not considered in this work. 

Emergency service policies may contribute to large operating costs for oversized systems since capacity violations 

may not occur until faults have degraded performance significantly. Additionally, emergency policies may incur 

higher operating costs than periodic service policies for faults that have limited impacts on cooling capacity, e.g. 

condenser fouling. When condenser fouling occurs, both head pressure and energy consumption increase. Comfort 

violations caused by condenser fouling may never occur and can lead to significant time between service intervals. 

One measure that has been implemented within the simulation that triggers comfort violations because of condenser 

fouling is a high-pressure limit. In normal systems, high pressure limit switches are typically installed to protect the 

compressor from operating outside the manufacturer’s suggested operating envelope. When the head pressure 

exceeds the high-pressure limit, the air conditioner is disabled until service is performed. 

2.4 Condition-based Service Policies using Virtual Sensors 
Rather than performing service at fixed intervals or solely when comfort violations occur, an alternative policy 

based on the actual condition of the air-conditioner could be used instead. For example, service could be performed 

only when a significant fault is present if the air conditioner has an automated fault detection and diagnostics system 

installed. Furthermore, instead of calling for service when a fault is detected or diagnosed, virtual sensors could be 

used to call for service when performance has degraded past a certain point. For example, the virtual cooling 

capacity sensor could be used to monitor capacity degradation and call for service when system capacity decreases 

below 10% of the normal capacity. 
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Using real-time data to prioritize maintenance by observing the state of the system is known as condition-based 

maintenance. In comparison to emergency service policies, condition-based maintenance may reduce comfort 

violations since maintenance could be performed before capacity is degraded significantly. In comparison to 

periodic maintenance policies, condition-based maintenance may reduce operating costs by requiring service time 

only when significant faults exist. A problem with periodic service policies is that the underlying assumptions about 

the building loads and rate of performance degradation must be estimated a-priori or re-evaluated annually (or at 

some other interval). If building loads change or the rates of degradation change, the condition-based maintenance 

policy would be able to adapt.   

Three condition-based service policies were implemented using the simulation framework to determine how 

operating costs are affected. The first policy performed service when the total cooling capacity degradation 

exceeded a threshold, 
cool , 

 
1

0

cool coolFIR




   (7) 

where 
coolFIR  is the ratio of actual cooling capacity to normal cooling capacity at the current operating condition, 

1  is the decision rule to perform service, and 
0  is the decision rule to not perform service. The second policy 

performed service when the COP was degraded more than a threshold, 
COP , 

 
1

0

COP COPFIR




   (8) 

where 
COPFIR  is the ratio of actual COP to normal COP at the current operating condition. The last policy 

considered the impact on energy consumption and performed service when the electrical energy consumed by the 

system exceeded a threshold, 
elec , 

 
1

0

elec elecFIR




   (9) 

where 
elecFIR  is the ratio of actual energy consumed by the system to the normal energy consumption of the system 

at the same operating condition.  In this work, the fault impact ratio thresholds were: 0.9cool  , 0.9COP  , and 

1.1elec  .   A review of previous work can be consulted regarding practical implementations of these fault impact 

ratios using virtual sensors (Li & Braun, 2007a, 2007b). 

2.5 Historical Operating Cost Impact Service Policies using Fault Impact Estimates 
The performance of the proactive, reactive, and condition-based maintenance strategies described thus far are far 

from optimal for most scenarios. Reactive strategies (emergency service policies) are particularly problematic when 

equipment is significantly oversized relative to the building load and require comfort violations before service is 

requested. Proactive maintenance strategies, like periodic service, may reduce comfort violations and decrease 

utility cost impacts. However, if periodic service is scheduled too often, additional service costs may outweigh any 

utility cost savings accrued by keeping equipment in tip-top shape. Periodic service intervals should be adjusted if 

building loads change or equipment starts to degrade at different rates overtime. To account for these changes, 

condition-based service strategies may be applied to equipment with automated fault detection and diagnostics 

systems. Comparing the actual performance of the equipment with a model of normal performance, service 

decisions can be requested when performance has been degraded significantly. Identifying the optimal degradation 

threshold is not trivial and depends on the equipment sizing and rate of degradation over time. 

To overcome these limitations, automated fault detection and diagnostics systems can be extended to account for 

operating cost impacts of running equipment with faults and performing service over time. In other words, heuristics 

or simplifications to the underlying maintenance decision problem formulation can be applied to approximate the 

optimal solution in real-time. For example, Rossi and Braun developed an operating cost based service policy (Rossi 

& Braun, 1996). This policy is implemented using a service decision rule based on the cost of service (
sC ) and 

electricity cost (
uC ) given by 
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0

0

1

, s

t

u
t

t t tC h x f d Ct



   (10) 

where 
0t  is the time service was last performed, and the net accumulated energy consumption benefit to perform 

service task 
ia  is given by 

        11 1 1 11, , , ,run

t t t t t t t t t tt t

h

h x
t

f h f fx h x xh f


    
    


  (11) 

where 
tx  represents the external driving conditions that affect system performance, 

tf  is a vector containing each 

fault level, and 
h  is the time constant of a low pass filter used to reduce the diurnal fluctuations on system 

performance and ensure h  is an increasing function. The estimated power consumption savings for performing 

service at any time are calculated using 

      0,, ,t t t t th x P x f P x ff     (12) 

where ,( )tP x   is a function that estimates the power consumption of the system at given driving conditions and fault 

levels, and 0f  is the equipment state immediately after service (when all the fault levels have returned to normal). 

The rule states that a service task should be performed when the accumulated energy impact (the left-hand-side) 

since the last service is greater than the service cost (right-hand-side) to fix the fault. 

A significant limitation to the methodology developed by Rossi and Braun is that decisions between different 

maintenance tasks cannot be directly handled (Rossi & Braun, 1996). This is because only the total utility cost 

impact is considered, and the relative importance of multiple faults is not estimated. Thus, it is impossible to 

calculate the net benefit of performing different service tasks and selecting the option that provides the maximum 

benefit at each decision stage.  For example, when an air conditioner has relatively minor condenser fouling, yet 

significant evaporator fouling – the optimal service task is often to change the evaporator air filter only since it is 

relatively inexpensive and the evaporator fouling likely impacts the system more significantly than the condenser 

fouling. Using Rossi’s method, this service task would be delayed until the utility cost impact became greater than 

the cost of evaporator fouling service and condenser fouling service. As a result, the system operates at a lower 

average net efficiency. 

In order to improve the original simplified method developed by Rossi and Braun, previously developed virtual 

sensor approaches for automated fault detection and diagnostics and fault impact evaluation models (Kim & Braun, 

2015, 2016; Li & Braun, 2007b, 2009) are used within a modified method to the estimate benefits of performing 

different service tasks.  The inclusion of these measures provides two sources of information that can make deciding 

between service tasks possible: measured fault levels and isolated fault impacts. In addition to handling multiple 

fault service decisions, the operating cost function was modified to include equipment cost impacts that account for 

the effects of increased equipment run-time on replacement costs. 

The classification rule of Rossi and Braun has been modified to inform the service action taken at any point in 

time, t , 

      
0,

0

, , , ,
i

i
t t t i i

t

t
e t s i iu t tC h x f a C g x f a dt a AC a





         (13) 

where 0,it  is the time since the thi  component was previously serviced, uC  is the cost per unit time of electricity 

consumption, 
eC  is the time averaged equipment replacement costs assuming the system has a finite number of run-

time hours,  s iC a  is the service cost required to perform service task ia  to repair the thi  component, 
t

h  is the net 

accumulated energy consumption benefit to perform service task ia  given by 

         1 11 1 1 1
,, , , , , , ,run

t t t i t t i t t t i t t i

h

t t

t
h hx x hhf a f a f a f ax x


    




    (14) 
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and 
t

g is the net accumulated equipment runtime savings to perform service task 
ia  given by 

         1 1 1 1
, , , , , , , ,run

t t t i t t t i t t t i t t t i

g

t
g f a g f a g f a g fx x x x a


   


     (15) 

where 
tx  represents the external driving conditions that affect system performance, 

tf  is a vector containing each 

fault level, and 
h , 

g  are the time constants of low pass filters used to reduce the diurnal fluctuations on system 

performance and ensure h  and g  are increasing functions. 

The estimated power consumption savings for performing service task 
ia  at any time are calculated using 

        0, ,, ,t t i t t t i th x P x xf f Pa faa    (16) 

where ,( )tP x   is a function that estimates the power consumption of the system at given driving conditions and fault 

levels, 
0a  is the “do nothing” service task which has a functional form given by 

  0 t ta f f   (17) 

which states the “do nothing” service task has no impact on the fault levels of the system and 
ia  is the thi  service 

task which is expressed as 

   .i

i

t ta f f   (18) 

Conceptually, this means when action 
ia  is applied to the system, the fault levels affected by the service task are 

returned to their normal values (as if the faults did not exist). The result of Equation (16) is the difference between 

power consumption for the current fault levels and the power consumption for the system if the service task was 

performed on the system.   

In a similar manner, the runtime savings for performing service task 
ia  is given by 

        0, ,, ,t t i t t t i tg f a t tx x f x faa     (19) 

where , )( tt x   is a function that estimates the run-time requirement of the system at given driving conditions and 

fault levels. In order to evaluate Equations (16) and (19), simplified semi-empirical models developed by Hjortland 

can be used to estimate the relative impact of different faults that occur simultaneously (Hjortland, 2018). 

Despite the rather complex mathematical formulation, the decision rule described by Equation (13) has a relatively 

straightforward interpretation. The rule states that for all service tasks that can be applied to the system at each 

decision interval, a service task should be performed when the accumulated energy and equipment cost impacts (the 

left-hand-side) is greater than the service cost required to perform the task (right-hand-side). In order to account for 

discounted service costs when performing multiple service tasks at the same time, unions between multiple service 

actions should be included in the set of available service actions, A . 

The resulting distributions of additional lifetime operating costs relative to optimal costs using the original 

(unmodified) service scheduler developed by Rossi and Braun for the random sample of fault combinations are 

shown in Figure 4. In this policy, the total accumulated energy impact is estimated and used to calculate the 

additional utility cost due to faults. At each decision interval, the net utility costs are compared to the costs of 

performing the three service tasks: adding refrigerant, cleaning the condenser coil, and changing the evaporator coil 

filter. Because all three service tasks are considered, this requires greater accumulated utility cost impact before 

service is performed. The additional lifetime operating costs relative to the optimal costs in Miami, Atlanta, and 

Chicago were 6.9%, 7.4%, and 8.7% respectively. Because Miami has the longest cooling season, this location has 

higher normal electrical energy consumption for cooling than the other locations. This makes preventative 

maintenance more cost effective since larger energy consumption savings are possible. The additional costs in 

Atlanta and Chicago are greater than Miami due to lower cooling load requirements. These locations also have a 

winter season, where no cooling is required which makes the service policy less effective. This is because the policy 
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is not able to quantify the impact of charge leakage during the winter months – which makes doing service late in 

cooling season possible and creates a lag in the spring before accumulated impacts become greater than the cost of 

service. These are two behaviors the optimal policy can avoid since the optimization horizon is over the entire 

equipment life. 

 
Figure 4. Additional lifetime operating costs relative to optimal lifetime costs when the 

simplified service decision methodology developed by Rossi and Braun is used to service 

multiple faults in three different locations. 

The distributions of additional lifetime operating costs using the modified service scheduler that considers multiple 

service tasks for the random sample of fault combinations is shown in Figure 5. In this policy, the total accumulated 

energy impacts for different faults are estimated and used to calculate the additional utility cost consumed. At each 

decision interval, the net utility costs are compared to the costs of performing different combinations of service 

tasks. When the cost of one of the combinations of service tasks becomes less than the accumulated utility costs for 

the corresponding faults, service is performed.  The additional lifetime operating costs relative to the optimal costs 

in Miami, Atlanta, and Chicago were 3.7%, 5.5%, and 5.7% respectively. Compared to the simplified service 

scheduler developed by Rossi and Braun, additional operating costs savings are possible using the methodology that 

isolates the impacts of different faults. The remaining costs above the optimal operating costs are caused by 

suboptimal scheduling around the winter season and not considering end of life payback intervals. 

A summary comparing the inner-quartile range and mean additional lifetime operating costs for all the results 

comparing each service policy considered is included in Table 3. In general, policies that do not consider the 

condition of the system while determining when to do service (periodic service schedules) have the highest lifetime 

operating costs. Policies that consider the state of the equipment tend to have lower lifetime operating costs, though 

the metric used to determine when to do service has a significant impact on actual costs. Even in the extreme case, 

emergency service policies may have lower operating costs than periodic service policies since service costs are 

saved for systems that have minimal faults. Utilizing more information when determining when to do service 

generally reduces operating costs. These results were observed using the simplified service scheduler proposed by 

Rossi and Braun and with the modified service scheduler that considers different service tasks. These strategies 

tended to have the lowest lifetime operating costs. 
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Figure 5. Additional lifetime operating costs relative to optimal lifetime costs when the 

modified service decision methodology that considers multiple service tasks is used to service 

multiple faults in three different locations. 

Table 3. Summary of additional lifetime operating costs relative to optimal lifetime costs 

determined using dynamic programming for similar buildings in different locations.  Inner-

quartile ranges and means of 200 randomly sampled fault scenarios are compared. 

 Miami, FL Atlanta, GA Chicago, IL 

Service Policy 25% Mean 75% 25% Mean 75% 25% Mean 75% 

Annual 

 

30.0 31.5 33.0 41.7 44.6 47.2 61.6 65.2 68.6 

Biennial 

 

17.1 18.3 19.7 29.0 30.6 32.6 36.2 38.8 40.9 

Emergency 

 

28.8 34.2 41.2 20.0 23.4 28.2 18.4 22.4 27.1 

CBM – Capacity 

10% Threshold 

11.5 16.8 21.8 17.2 20.8 24.2 17.7 21.0 25.1 

CBM – COP 

10% Threshold 

6.2 10.4 13.8 12.8 15.3 18.1 15.7 20.2 25.8 

CBM – Energy  

10% Threshold 

5.0 8.0 10.7 8.6 11.7 14.5 12.4 15.5 18.7 

Accum. Total Cost 

(Rossi & Braun, 1996) 

4.1 6.9 9.4 4.6 7.4 9.8 6.0 8.7 10.6 

Accum. Indiv. Cost 

(Hjortland, 2018) 

1.4  3.7 4.9 3.1 5.5 7.3 3.5 5.7 7.4 

Even using the service decision strategies that consider accumulated impacts, the lifetime operating costs were still 

appreciably higher than the optimal service schedule costs. This occurs for two reasons: 1) the policies do not handle 

scheduling service around winter seasons optimally and 2) the policies do not optimize service well towards the end 

of equipment life. It is believed that these deficiencies could be corrected in future work. One possible solution to 

these problems would be to adapt the service schedulers to use a future optimization horizon. This would require a 

model for expected utility cost savings during the prediction horizon, as well as model for how the faults would 
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evolve.  Since the loads and operation throughout the year and life of HVAC equipment is largely cyclical, it may be 

possible to learn this model using trended data from past performance. 

A second improvement to the models that may help to avoid thermal comfort violations would be to pre-schedule 

service using a model for the peak cooling loads and the capacity degradation measurements. Rather than allowing 

the system to cause thermal comfort violations due to insufficient capacity, an algorithm that estimates the peak 

cooling load over a prediction horizon could be used to calculate the minimum capacity needed. Using virtual sensor 

measurements, a service schedule could determine if the system will be able to meet all future loads and schedule 

service if it cannot. 

4. CONCLUSIONS 

Several different types of maintenance strategies have been implemented and compared using a simulation 

framework that models the interaction between building cooling loads and equipment performance while faults 

evolve over time. As a common benchmark, dynamic programming was used to find solutions to an optimal service 

scheduling problem that was formulated to minimize lifetime operating costs by performing service tasks when they 

are most cost effective during the equipment life. For each simulation scenario considered, the optimal service 

scheduling problem was solved, and an optimal service policy function was used to calculated optimal operating 

costs.   

Simple, fixed interval service policies were compared with the optimal policies for different fault rates. These 

comparisons showed that periodic maintenance policies can often lead to significant increases in operating costs, 

especially if faults grow slowly over time. Reactive maintenance strategies that perform maintenance only when 

comfort is violated were also implemented and simulated using the framework. Policies that base their decisions on 

the condition of equipment tended to have less lifetime operating costs. 
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