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ABSTRACT 
 

Successful implementation of R744 (CO2) as a refrigerant on a large scale and its introduction to new applications has 

motivated the development of new system components tailored specifically for use in high-pressure R744 systems, 

including reliable, low-cost refrigeration fittings. One option for fittings to be used in R744 systems are quick and 

reliable press fittings. Previous research has shown that this type of fitting can undergo extended vibration and thermal 

(pressure and temperature) cycling without compromising the fitting. This paper investigates the durability of stainless 

steel press fittings designed specifically for R744 systems, with particular focus on the effects of rapid decompression 

and carbonic acid exposure on the fittings. Rapid decompression is of concern due to the tendency of O-ring material 

to absorb CO2 molecules at high pressure and temperature, resulting in possible expansion and bursting of the O-rings 

when pressure drops and the CO2 absorbed by the O-rings attempts to escape very rapidly. Additionally, the presence 

of moisture in an R744 system can result in the reaction of CO2 and H2O, resulting in the formation of carbonic acid; 

the exposure of the refrigeration system components to this weak acid over time can compromise parts different of 

the refrigeration system, possibly including joints. The effects of decompression and acidity on stainless steel press 

fittings and their O-rings have been tested and are reported in this paper. The results show that the tested press fittings 

and O-rings were able to withstand the CO2-specific durability tests without compromising the sealing ability and 

strength of the fitting. 

 

 

1. INTRODUCTION 
 

Mechanical (flame-free) joints and tube fittings for refrigeration and air-conditioning applications have been receiving 

increased attention during the past several years. It appears that technology relying on crimping or pressing is 

especially attractive due to the much shortened time it takes to make a fitting connection and the ease of assembly for 

less-experienced technicians. Compared to flare or compression fittings, which are of course also flame-free, the 

press/crimp style fittings potentially offer some economic advantages as well. Previous studies carried out by Elbel et 

al. (2016) and Wilson and Bowers (2014) investigated the durability of aluminum and copper press fittings after being 

exposed to different realistic harshness tests, including freezing-thawing cycling, pressure-temperature cycling, and 

vibration testing. The results showed that both material selections are suitable for this type of fitting, and no failures 

that would compromise the integrity of the connection occurred. This study is a continuation of the previous 

investigations on the durability of press fittings. The focus of the presented work is on the investigation of press fittings 

made from stainless steel, with a specific focus on the design and execution of CO2-specific harshness tests, including 

explosive decompression testing and carbonic acid testing of the stainless steel press fittings and their O-rings.  
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2. STAINLESS STEEL PRESS FITTINGS BACKGROUND 
 

Press or crimp fittings function by using a radial O-ring pressed between the body of the fitting and the tube to hold 

internal pressure on each end of the fitting. Figure 1(a) shows the inside of a press fitting; a tube is inserted on each 

end of the fitting past the O-ring on each end. The tube is held in place and the O-ring seal is made using a crimping 

tool, as show in Figure 1(b).  

 

(a)

      

(b)

  
 

Figure 1: (a) Cut-away image of press fitting, and (b) press fitting crimping tool (Wilson and Bowers, 2014). 

 

The need for stainless steel fittings arises with the increased use of carbon diode (CO2, R744) in air-conditioning and 

refrigeration. Especially when used in transcritical mode, the R744 refrigerant pressures on the heat rejection side of 

the system can exceed pressures that are beyond the material strength limits of copper and aluminum, especially in 

parts of the system that operate at high temperature as well (such as the discharge line). The required wall thickness 

grows quickly for lower yield strength materials, particularly for large diameter piping systems, which makes stainless 

steel a logical choice for R744 systems. The challenge is therefore not seen so much in material strength, as stainless 

steel readily provides the mechanical properties that allow for operating pressures of 140 bar even at elevated 

compressor discharge temperatures while still allowing for an adequate safety factor. What needs to be addressed in 

more detail is the suitability of the O-ring seal on which the crimp/press fitting type relies on. These stainless steel 

press fittings would also be of interest for ammonia (R717) systems, though a different O-ring material, such as PTFE, 

would be needed for R717 compared to R744. 

 

Figure 2(a) shows an example of a stainless steel press fitting for a 1/2” (12.7 mm) tube (already crimped to the tube), 

while Figure 2(b) shows the associated O-ring for the 1/2” size fitting. The material used for the O-rings in the press 

fittings is a hydrogenated nitrile butadiene rubber (HNBR) with 90 durometer. The O-rings are approved by the 

manufacturer for a temperature range of -40°C to 149°C. The O-rings are recommended for use with oils, grease, 

water/steam, glycol, and HFC’s. The O-rings are not recommended for use with strong acids among other fluids 

(Parker, 2000). 

 

(a)

      

(b)

  
 

Figure 2: (a) 1/2” stainless steel press/crimp fitting and (b) 1/2” HNBR O-ring. 

 

The fittings used in the previously mentioned studies carried out by Elbel et al. (2016) and by Wilson and Bowers 

(2014) also used O-rings for sealing purposes, but the working fluid used in these previous studies was R410A, which 

operates at much lower pressure than what is found in transcritical CO2 systems. In addition to the higher pressure, 

the much smaller molecule size of CO2, in comparison to those of synthetic HFC or HFO refrigerants, makes it even 

more demanding for the O-ring to provide adequate sealing capabilities resulting in acceptable refrigerant leak rates.  
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Rather than simply repeating the test sequences presented in the two previous studies on the stainless steel fittings 

with CO2 instead of R410A, the aim of this work was to explore the challenges specific to the combination of using 

CO2 refrigerant in conjunction with O-ring seals. One area of interest is the explosive decompression effect that can 

occur when high pressure CO2 is released too quickly and the small refrigerant molecules, which can be readily 

absorbed into the polymer O-ring material, are not given sufficient time to diffuse out of the O-ring. During the final 

step of decompression, the specific volume of CO2 increases very rapidly causing the O-ring to be torn apart by CO2 

molecules expanding while still being trapped inside the polymer material. Examples of O-ring failures caused by 

explosive decompression can be seen in Figure 3. 

 

 
 

Figure 3: Images of O-ring failures due to explosive decompression (left image from Seal & Design, right image 

from Marco Rubber & Plastics). 

 

In addition to explosive decompression, the use of CO2 as a refrigerant also presents a unique challenge in terms of 

the possible formation of carbonic acid if moisture is present in the system. Moisture can enter refrigeration systems 

due to contact with ambient air during system assembly, incomplete evacuation during system vacuuming, permeation 

through seals, and impure refrigerant charge. Once water has entered the system through one of the possible routes 

mentioned above, the situation is quite different when comparing CO2 to more conventional HFC refrigerants. Water 

present in the system gets absorbed by the oil (and depending on the oil type can cause a non-reversible, chemical 

reaction), and by both the liquid and vapor phases of the refrigerant. For HFC refrigerants, the amount of water that 

can be absorbed in the vapor phase is of the same order of magnitude as the amount of water that can be held by the 

liquid phase. In other words, if water gets absorbed by the refrigerant it will remain absorbed by the refrigerant as the 

fluid passes throughout all components of the vapor compression cycle. For CO2, however, the amount of water that 

can be dissolved is much smaller for the vapor phase than for the liquid refrigerant phase, as demonstrated in Figure 

4. As a consequence, water that was held by the liquid phase will be released as ‘free water’ into the system as the 

liquid CO2 evaporates in the evaporator because the vapor CO2 phase is not capable of retaining the same amount of 

water as the liquid phase. Consequently, the largest quantities of ‘free water’ are observed in the suction line of the 

system, right before the fluid enters the compressor. Therefore, the use of driers is particularly important for CO2 

refrigeration systems to prevent excessive amounts of water to precipitate as ‘free water’.  

 

 
 

Figure 4: Comparison of solubility of H2O in liquid vs. vapor CO2 (Danfoss, 2009).  



 

 2379, Page 4 
 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

The refrigerant CO2 can react with the moisture or water to form weak carbonic acid (H2CO3), as shown in Equation 

(1). Additionally, carbonic acid can further react with water to form bicarbonate (HCO3
-) and hydronium ion (H3O+), 

as shown in Equation (2). These acids (H2CO3 and H3O+) are of concern because they can degrade polymer materials, 

such as that used in common O-rings. 

 

𝐻2𝑂 + 𝐶𝑂2  ⇌ 𝐻2𝐶𝑂3          (1) 
 

𝐻2𝐶𝑂3 + 𝐻2𝑂 ⇌ 𝐻𝐶𝑂3
− + 𝐻3𝑂+          (2) 

 

 

3. EXPLOSIVE DECOMPRESSION TESTING 
 

As discussed above, the use of CO2 as a refrigerant poses a unique challenge in terms of the durability of O-ring 

material to withstand explosive decompression. As the sealing ability of press fittings relies on O-rings, any splitting 

or bursting of the O-ring in press fittings caused by explosive decompression will likely compromise the sealing ability 

of the fittings. In order to study the effect of explosive decompression on the stainless steel press fittings as well as 

the O-rings material, a series of rapid de-pressurize tests were performed on the stainless steel fittings as well as bare 

O-rings. A schematic of the facility used for the rapid de-pressurization tests is shown in Figure 5. The tested fittings 

and bare O-rings were connected to a CO2 supply tank. For each test, the system was charged with a set amount of 

CO2 and heated to increase pressure and temperature to their target values. The fittings and O-rings were contained 

within a lab oven (internal dimensions of approximately 0.5 m square, 1.6 kW heating capacity) during the testing in 

order to control the temperature that they experienced. A solenoid valve was used to allow for rapid release of CO2 in 

order to simulate the explosive decompression effect. 

 

 
 

Figure 5: Schematic of CO2 explosive decompression facility. 

 

Two different fitting and O-ring sizes were tested: 1/2” fittings and O-rings and 5/8” fittings and O-rings (dimension 

corresponds to tube outer diameter, fitting and O-ring inner diameter). For each size of fittings and O-rings, three 

different applications of oil were investigated: Dry O-rings and fittings with no oil, O-rings and fittings with factory 

oil, and O-rings and fittings with factory oil and compressor oil. The factory oil is a type of silicone oil that the O-

rings are coated in by the fitting manufacturer in order to allow the O-ring to be installed in the fitting more easily 

during production. The compressor oil used in the tests was a POE oil. Oil is known to absorb CO2 in refrigeration 

systems, and it is possible that a layer of oil on the outside of the O-rings could affect the absorption and the release 
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of CO2 by the O-rings during the tests, which is the motivation for testing different oil applications during while 

performing the explosive decompression tests. Using both factory oil and compressor oil would likely be the most 

realistic environment for the fittings for most applications. Table 1 shows the total number of fittings and O-rings 

tested for each combination of fitting size and oil application. A total of 10 decompression tests were performed on 

each fitting and O-ring, which is most likely many more rapid decompressions than a fitting would generally 

experience during its operational lifetime.  

 

Table 1: Number of O-rings and fittings tested for each size and oil application combination. 

 

 
1/2” size 5/8” size 

Fittings O-rings Fittings O-rings 

Dry fittings and O-rings 5 25 5 25 

With factory (silicone) oil 3 25 3 25 

With factory (silicone) and 

compressor (POE) oils 
3 25 3 25 

 

For each decompression test, the following procedure was followed: 

1. The system was first vacuumed and then charged with a specific amount of pure CO2 to allow the target 

temperature and pressure to be met.  

2. The lab oven was used to heat CO2 inside the fittings and the O-ring test section to 150°C, during which 

time the pressure of the CO2 in the fittings and O-ring test section increased to approximately 130 to 150 

bar. This test temperature and pressure represent the maximum temperature and pressure at which any 

fitting in a CO2 refrigeration system would generally operate (compressor discharge).  

3. The CO2 was held at this condition for approximately 3 hrs. duration once these temperature and pressure 

targets were reached in order to allow the O-ring material time to absorb CO2.  

4. After holding at high temperature and pressure for 3 hrs., the CO2 release valve was opened, allowing the 

system to rapidly depressurize.  

5. This decompression test procedure was repeated 10 times on each O-ring and fitting. 

 

 
 

Figure 6: CO2 pressure and temperature profiles recording during an example decompression test. 
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The CO2 pressure and temperature profiles recorded during an example decompression test are shown in Figure 6. It 

can be seen that the decompression process takes place over approximately 3 seconds, which essentially represents a 

worst case explosive decompression scenario for the fitting and O-rings. Temperature also drops initially as well, due 

to the depressurization, but eventually levels off due to the large thermal mass of the fittings and connection tubing 

compared to that of the CO2 in the system. This rapid of decompression would likely only occur in the case of a relief 

valve or burst disk release or a catastrophic failure (tube or component rupture). All decompression tests had very 

similar pressure and temperature profiles, each lasting between about 3.0 and 3.5 seconds.  

 

For the case shown in the figure, decompression from 150 to 1 bar in 3.0 seconds, the average decompression rate is 

approximately 50 bar s-1 or 3,000 bar min-1. In comparison to common standards for O-ring decompression testing 

(e.g. ISO 23936:2, 2011 or NORSOK M710, 2001), which generally specify a decompression rate on the order of 20 

bar min-1, the decompression rate used during the testing reported in this paper is significantly harsher for the fittings 

and O-rings being tested here. Even during the last several bar of decompression (last 0.5 seconds), for which the 

volume of CO2 expands most rapidly and the O-ring is most susceptible to failure due to rapid expansion, the 

decompression rate is still well above 100 bar min-1. 

 

After each set of O-rings and fittings underwent 10 decompression tests, the O-rings were visually inspected for any 

compromising of the material surface (bursting or splitting) or any expansion of the O-ring. Figure 7 shows a visual 

comparison of a new or untested O-ring with one of the tested O-rings (dry). No splitting, bursting, or expansion was 

observed on any of the O-rings that underwent explosive decompression testing. This indicates that even the repeated, 

extreme explosive decompression testing performed on the O-rings does not seem to have any effect on this O-ring 

material and would not be expected to compromise the sealing ability of the stainless steel press fittings. It also seems 

that whether or not factory and compressor oil are applied to the O-rings and fittings before testing does not have an 

effect on the results, as no failures were observed regardless of whether or not the oils were applied. Each set of fittings 

was also leak tested with nitrogen after the 10 explosive decompression tests. The fittings were leak tested at 150 bar 

for 15 minutes. No visible leaks were observed during the leak test, verifying that the explosive decompression testing 

did not compromise the sealing ability of the stainless steel press fittings. 

 

 
 

Figure 7: Visual comparison of decompression tested (dry) and new/untested O-rings shows no detectable damage to 

the O-ring that underwent 10 rapid decompression tests. 

 

Interestingly, while none of the test O-rings showed any signs of failure during or after decompression testing, several 

non-test O-rings that were being used in auxiliary components of the system, such as the solenoid valve and the burst 

disc, did experience failures and began leaking after several decompression cycles. These failures generally occurred 

after 6 – 8 decompression tests (fewer tests than the actual test O-rings underwent). Figure 8(a) shows a Viton O-ring 

that was used in the CO2 release (solenoid) valve, which showed signs of bursting after several decompression tests, 

as shown in the figure. Figure 8(b) shows a nitrile rubber (Buna-N) O-ring that was used to seal a burst disk, which 

experienced splitting after several decompression tests, as shown in the figure. These observed failures indicate that 

the decompression test procedure described here was sufficiently harsh as to cause splitting in standard O-rings used 

in common refrigeration system components. The fact that no splitting was observed in the test O-rings (material 

compound KB163-90) indicates that these O-rings are able to withstand decompression processes that would 

otherwise cause splitting or bursting (and thus leaking) in standard O-rings. 
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(a)

      

(b)

  
 

Figure 8: Non-test O-ring failures: (a) Bursting observed in Viton O-ring and (b) splitting observed in     Buna-N O-

ring. 

  

4. ACIDIC COMPATIBLITY TESTING 
 

As described above, CO2 refrigeration systems are also at potential risk of having the material of components degraded 

by acid (H2CO3 and H3O+) that forms as a result of moisture in the system reacting with the refrigerant CO2. In order 

to evaluate the effect of moisture on the sealing ability of stainless steel press fittings, several 1/2” and 5/8” (5 each) 

fittings were exposed to carbonic acid at elevated temperature and pressure. A small layer of carbonated water was 

added to the assembly of fittings, and the fitting assembly was pressurized with CO2 and held at 40°C temperature and 

58 to 59 bar pressure for a duration of 4 weeks. Thus, the CO2 and water would react naturally under these conditions 

in a manner very similar to how they would react in an actual CO2 refrigeration system. At this condition, it is estimated 

that the carbonic acid had a concentration on the order of 25 ppm and a pH near 3.5. 

 

After 4 weeks of acid exposure, the CO2 and water were removed from the fitting assembly, and the fittings were leak 

tested with nitrogen, similar as to the above procedure checking whether the explosive decompression fittings had 

passed or failed the harshness test. No visible leaks were observed on the fittings when the post-acid exposure leak 

test was performed, indicating that the acid exposure has no noticeable effect the sealing ability of the stainless steel 

press fittings and that the fittings had passed the harshness test. 

 

In addition to the fittings, several O-rings were sealed in separate containers filled with either distilled water (pure 

H2O) or carbonated water (H2O + CO2) to see the effect that liquid water may have on the O-rings; 5 O-rings of each 

size (1/2” and 5/8”) were placed in distilled water, while an additional 5 O-rings of each size were placed in carbonated 

water, for a total of 20 O-rings tested in either distilled or carbonated water. The O-rings were held in the two different 

types of water for a duration of 1 week. Figure 9 compares samples of the 1/2” O-rings that were stored in water for 

1 week with an original 1/2” O-ring. It can be seen that very little difference in size exists between different O-rings, 

with the O-ring placed in carbonated water being measured slightly larger in diameter, though even this very small 

expansion would not be expected to affect the press fittings. Furthermore, no changes in or material degradation of 

the surface any of the O-rings that were stored in the distilled or carbonated water were observed. These results indicate 

that acidic effects caused by the presence of moisture in CO2 refrigeration systems would be expected to have no effect 

on the O-rings and by extension the sealing ability of the stainless steel press fittings.  

 

Buna-N O-ring (not a test O-ring) Viton O-ring (not a test O-ring) 
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(a)

      

(b)

  
 

Figure 9: Comparison of size of original 1/2” O-ring, O-ring stored in distilled water for 1 week, and O-ring stored 

in carbonated water for 1 week. 

 

 

5. CONCLUSIONS 
 

This paper has presented the results of a study investigating the suitability of stainless steel press fittings for use in 

CO2 refrigeration systems. Previous studies had shown that this type of press fitting is durable enough to withstand 

harshness tests involving freezing-thawing cycling, pressure/temperature cycling, and vibration testing without 

compromising the fitting. This study has focused on testing the stainless steel press fittings and their O-rings for 

resistance to the effects of explosive decompression and carbonic acid, two effects of specific concern for CO2 

refrigeration systems.   

 

Explosive decompression is a concern because the small molecule size allows O-rings to readily absorb CO2, but a 

rapid de-pressurization of a CO2 system, and thus rapid volume expansion of CO2, is sometimes observed to cause 

bursting or splitting of some O-ring materials. In order to test the HBNR O-ring compound used in the stainless steel 

press fittings for effects of explosive decompression, a set fittings was pressurized with pure CO2 up to high 

temperature and pressure (150 bar and 150°C), held for several hours, and then de-pressurized at an extremely high 

rate (on the order of 3,000 bar min-1). The holding condition, the decompression process, and the number of repetitions 

(total of 10 for each fitting and O-ring) all represent worst-case scenarios that would ever practically be experienced 

in a CO2 system. Even under these extreme, worst-case test conditions, no compromising of the sealing (leak-tightness) 

of the fittings was observed, indicating that explosive decompression is not a concern for the stainless steel press 

fittings investigated in this study. 

 

Additionally, the fittings were also tested for their resistance to the acidic effects that develop due to the presence of 

moisture in a CO2 system (formation of H2CO3 and H3O+ acids). A set of fittings was held at elevated temperature and 

pressure while being exposed to the combination of CO2 and water, creating an environment similar to what would be 

experienced in a CO2 system with moisture infiltration. After 4 weeks of acidic-environment exposure, no 

compromising of the sealing (leak-tightness) of the fittings was observed. These results from decompression and 

acidity testing indicate that the stainless steel press fittings tested in this study are not affected by either of these CO2-

specific challenges and thus are suitable for use in CO2 refrigeration systems.  
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