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ABSTRACT 
 

Vapor compression systems are the most widely used system type in heating, ventilation, air-conditioning, and 

refrigeration (HVAC&R) applications. Experimental and numerical modeling techniques are used to analyze the 

performance of the vapor compression systems. With the introduction of high-performance computers, numerical 

modeling techniques are used extensively to develop cost-effective and efficient HVAC&R equipment. 

Experimental iterations on the design of vapor compression systems are costly; however, numerical techniques can 

reduce the number of experimental iterations, substantially decreasing the development cost and time. Because of 

the benefits associated with the numerical simulation, many researchers working in the HVAC&R field have 

attempted to develop efficient, robust, and accurate simulation models. This paper provides an in-depth review of 

heat exchanger modeling techniques as well as integration strategies to develop holistic system models. 

   

1. INTRODUCTION 
 

The four basic components of the vapor compression systems are evaporator, condenser, compressor, and expansion 

device. Various, sophisticated, numerical modeling techniques have been developed to examine the performance of 

vapor compression systems. Numerical models, once developed, can be run at very low cost compared to physical 

prototype development. A reduction of experimental iterations during new product development can be achieved by 

tuning the simulation models with limited experimental data. A heat exchanger model has substantial influence on 

the overall accuracy and fidelity of the vapor compression system model. As a result, these models warrant 

particular attention to ensure appropriately representative and accurate results from the accompanying system 

model. This study will examine heat exchanger modeling techniques in this context. 

 

2. HEAT EXCHANGER MODELS 
 

A vapor compression system has two distinct heat exchangers, one operating as a condenser and the other one as an 

evaporator. Heat exchanger modeling can be divided into four broad categories based on accuracy and 

computational time: lumped parameter models, moving boundary models, tube-by-tube models, and segment-by-

segment (distributed parameter) models. In the following sections, this work will describe each of these modeling 

approaches, where they have been applied, and for what reasons. Additionally, this section will explore various 

limitations to these modeling techniques. 

 

2.1 Lumped Modeling Approaches 
 

The lumped modeling approach is the simplest approach amongst the four main modeling approaches. In this 

modeling approach, the whole heat exchanger is considered a control volume and an overall heat conductance (UA) 

value is used to analyze the performance of the heat exchanger. Either the log mean temperature difference (LMTD) 
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mailto:sarfraz@okstate.edu
mailto:cbach@okstate.edu
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or ε-NTU method is used to calculate the capacity of the heat exchanger. This model doesn’t take into account the 

phase change transition inside the heat exchanger.  

 

Parise (1986) developed a heat pump simulation model using simple component models to predict the overall 

system performance. The condenser and evaporator were both modeled based on lumped modeling approach using 

constant overall heat transfer coefficients based on the arithmetic overall temperature difference. The overall heat 

transfer coefficients for condenser and evaporator, which were predetermined empirical parameters to the model, 

considered both two-phase and superheated regions. 

 

Braun (1988) presented general method to design, retrofit, and control equipment in large chilled water systems. For 

his chiller model, he developed simplified shell and tube condenser and evaporator model using lumped modeling 

approach (i.e. overall heat conductance and LMTD). He used condensing temperature to determine the LMTD for 

the entire condenser ignoring the superheated refrigerant at the condenser inlet. The smaller temperature difference 

was approximately compensated for by the higher heat transfer coefficient by considering the condensing 

temperature for the entire condenser. A similar approach was used for the evaporator. The simplified lumped models 

in comparison to more detailed models (e.g. tube-by-tube models) for condenser and evaporator were used to reduce 

the overall simulation time associated with the optimal control of the large chilled water system involving multiple 

components.   

 

Jin and Spitler (2002) developed a simulation model for water-to-water vapor compression heat pumps based on 

parameter estimation for use in energy calculations and building simulation programs. The model contained 

evaporator and condenser models based on the lumped approach. A constant value of overall heat transfer 

coefficient (UA) was used in evaporator and condenser independent of fluid temperatures and flowrates. Also, 

refrigerant superheating was ignored in the evaporator while refrigerant superheating and subcooling were ignored 

in the condenser.  The UA values in condenser and evaporator were estimated based on manufacturer’s data. 

Therefore, the under-prediction of heat transfer in evaporator due to neglect of the superheated region was 

approximately compensated for by the estimated UA value. Similarly, neglecting superheated and subcooled region 

in condenser was approximately compensated for by the estimated UA value.  

 

From the literature, it is found that for entire building level simulation containing multiple pieces of equipment, 

using a lumped approach for heat exchanger models can reduce the overall simulation time (Jin and Spitler, 2002). 

Also, models based on parameter estimation make use of lumped approach to develop simplified models of 

condenser and evaporator. However, these models may not provide accurate results (i.e. coil capacity etc.) as they 

don’t take into account the phase transition and change in local refrigerant properties. Also, lumped models based on 

parameter estimation require tuning of parameters with the heat exchanger’s performance data, which in some cases 

is unavailable. 

   

2.2 Moving Boundary Modeling Approaches 
 

The moving boundary modeling approach is more detailed than the lumped modeling approaches because it takes 

refrigerant phase change transition into account. On the air side, it considers transition from dry to wet section (if air 

dehumidification occurs). In this modeling approach, the heat exchanger is divided into single-phase and two-phase 

zones. Each zone is then solved using a lumped approach.  

 

Braun (1988) developed cooling coil model for optimization of the chiller plant that considered transition from dry 

to wet coil section on the airside. Stefanuk et al. (1992) modeled tube in tube condensers as three separate heat 

exchangers connected in series to take into account three refrigerant phases (superheated, two-phase, and 

subcooled). They didn’t consider airside transition from dry to wet section in their model. 

 

Bell (2012) developed air conditioning and heat pump simulation model, ACHP, which uses a moving boundary fin-

tube heat exchanger model. The ε-NTU method was used to analyze the performance of heat exchanger, which 

assumed constant specific heat values for both the fluids (refrigerant and air or cooling fluid). The average heat 

transfer coefficient on the air and refrigerant side (for each phase) were used for the analysis. The transition from 

dry to wet section was considered on the airside.  

 

It is found from the literature that cooling coil models based on the moving boundary approach take into account the 
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airside dry to wet section transition (Braun (1988), Bell (2012)). Evaporator and condenser models based on the 

moving boundary approach may or may not consider airside transition from dry to wet section. The moving 

boundary models can be more accurate than the lumped models while maintaining favorable computational speed. 

However, a comparison between the accuracy and solving time of models based on moving boundary approach and 

lumped approach was not found in open literature. The moving boundary modeling approach cannot take refrigerant 

or airside maldistribution into account.  

 

2.3 Tube-by-Tube Modeling Approaches 
 

The tube-by-tube modeling approaches include more detail than the moving boundary and lumped modeling 

approaches. In this approach, each tube of the heat exchanger is considered a control volume and lumped approach 

is used to solve each control volume (tube) individually to predict the heat exchanger performance. This approach 

can take into account the refrigerant side maldistribution by using the circuitry information and one dimensional 

airside maldistribution by using a 1D air profile. Transition from single-phase to two-phase or two-phase to single-

phase can be taken into account by dividing the control volume i.e. heat exchanger tube into smaller control volumes 

where phase transition occurs. Alternatively moving boundary approach can be applied to each individual tube 

(Bach et al., 2014a). 

 

The tube-by-tube approach has been used in many models developed to analyze the heat exchanger performance. A 

software package originally developed by Domanski and Didion (1983), EVAP-COND, contains simulation models 

of fin-and-tube heat exchangers based on tube-by-tube approach. EVAP-COND is currently maintained by National 

Institute of Science and Technology (NIST); the model predicts the performance of each tube separately by 

assuming uniform refrigerant temperature in each tube and an average air temperature for all the tubes in a given 

row. However, the original model by Domanski and Didion did not consider non-uniform air distribution. Domanski 

(1989) later developed the evaporator simulation model EVSIM based on tube-by-tube approach. Unlike EVAP-

COND, EVSIM accounted for both the air and refrigerant side distribution. To take into account the refrigerant side 

distribution, simulation starts with the refrigerant inlet tube of the given circuit and follows the consecutive tubes 

until the exit tube is reached. If there is a split in circuit, then the model solves one branch of the circuit first and 

then comes back to the split point to solve the remaining branches of same circuit. The same process is repeated for 

all other circuits of heat exchanger.  

 

Liu et al. (2004) developed a fin-and-tube heat exchanger model based on graph theory using tube-by-tube modeling 

approach. The control volume included refrigerant inside the tube, fin and tube, and air outside the tube. This model 

was based on the application of energy conservation on each control volume. The refrigerant and air outlet states and 

wall temperature were obtained for each control volume by applying energy conservation on each control volume in 

an iterative method. An adjacency graph and corresponding adjacency matrix in graph theory were developed to 

explain the connections amongst each tube for solving complex refrigerant circuitry. The adjacency graph is a form 

of conceptualized hierarchy represented by vertices connected by edges. Each vertex represents a heat exchanger 

tube while edge shows the relationship between two tubes and contains the flow direction. The mathematical form 

of the adjacency graph is adjacency matrix. The longitudinal tube conduction and airside pressure drop were 

neglected in the model and refrigerant was assumed to have one-dimensional (1D) axial flow. An overall iterative 

algorithm based on graph-based traversal method was developed to solve the heat exchanger model. Energy and 

momentum equations were decoupled by solving the energy equations separately from the momentum equations. As 

a result, computational time of the new method was 1/40 to 1/60 of the previous methods to solve same heat 

exchanger model with similar level of detail.  

 

Richardson (2006) developed the heat pump simulation model based on the object-oriented scheme. The heat 

exchanger model in the heat pump simulation model was modeled as a cross-flow fin and tube heat exchanger. 

Tube-by-tube approach was used to model the heat exchanger. To simplify the heat exchanger model, many tube 

passes were reduced into single passError! Reference source not found.. 

 

A single segment was used to represent a long tube length with lumped pressure drop and heat transfer correlations. 

Due to above-mentioned assumptions, corrections factors were used to tune model capacity with the experimentally 

calculated capacity. A simultaneous solver was used to solve the hydraulic equations, while a successive substitution 

routine was used to solve the thermal equations.  
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The tube-by-tube modeling approach has been used by various researchers to develop detailed heat exchanger 

models which unlike lumped or moving boundary approach can take into account the refrigerant and airside (1D) 

maldistribution. These models can be more accurate than lumped and moving boundary models but they also require 

more computational effort. The heat exchanger models based on tube-by-tube approach were used for steady state 

simulations of vapor compression system (VapCyc (Richardson (2006)). Although detailed, these models cannot 

take into account 2D airside maldistribution. 

 

2.4 Segment-By-Segment Modeling Approach 
 

The tube-by-tube modeling approach can consider both refrigerant and airside 1D maldistribution; however, it 

cannot take into account airside 2D maldistribution. Segment-by-segment approach considers 2D maldistribution on 

airside by dividing heat exchanger tube into number of segments where each segment is treated as a control volume. 

Figure 1 shows the airside 1D maldistribution in tube-by-tube approach and 2D maldistribution in segment-by-

segment approach.  

 

 

 
Figure 1: Illustration of airside 1D maldistribution in tube-by-tube modeling approach and 2D maldistribution in 

segment-by-segment modeling approach (tube return bends are not shown) 

 

Similar to tube-by-tube approach, a segment can be further divided into sub segments if there is a phase transition in 

a segment. The control volume for different modeling approaches is shown in Figure 2. 

 

Jiang et al. (2006) developed a heat exchanger simulation model, CoilDesigner based on segment by segment 

modeling approach. Each finned-tube macro-volume was divided into small segments to take into account 2D 

maldistribution on airside and the changing transport and thermal properties of the fluids. The segments were 

numbered in the direction of refrigerant flow. Each segment was considered a discrete unit of heat transfer and the ɛ-

NTU approach was used to solve each segment. A junction tube connectivity matrix was used by Jiang et al. to 

incorporate the circuitry information for considering refrigerant side distribution.  

 

Rossi (1995) developed heat pump simulation model, ACMODEL that included heat exchanger model based on 

segment-by-segment modeling approach. The capacity of the heat exchanger was found using ɛ-NTU approach on 

each segment. The original ACMODEL developed by Rossi didn’t contain many modeling options e.g. the 

refrigerant side heat transfer correlation was only for smooth tube while the airside correlation was for louvered fins 

only. Also, it didn’t consider refrigerant and air side maldistribution. Shen (2006) updated ACMODEL to include 

more modeling options. The heat exchanger model in the modified ACMODEL considered refrigerant side 

distribution by incorporating circuitry information.  
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Figure 2: Control volume for different modeling approaches 

 

Iu (2007) developed a heat exchanger model based on segment-by-segment modeling approach. He developed a 

flexible circuitry algorithm to account for refrigerant side distribution. He performed the experiments to calculate 

the local airside heat transfer coefficient as the airside heat transfer coefficient changes from row-to-row. The 

solution algorithm of heat exchanger involved several iterative procedures. The algorithm started by solving all the 

elements in the direction of refrigerant flow using ɛ-NTU method. After all elements were solved, the air properties 

were updated for each element. After the airside convergence, the refrigerant side distribution was incorporated in to 

model by providing the circuitry information.  

 

Singh et al. (2008) developed a heat exchanger model using a segment-by-segment approach. They used the 

generalized circuitry algorithm developed by Jiang et al. (2006) to take into account the refrigerant distribution. 

Each finite segment was treated as a control volume and these segments were numbered in the direction of 

refrigerant flow. Equations for conservation of energy and log mean temperature difference (LMTD) methods were 

applied to take into account the tube-to-tube conduction through fins. They introduced two models to incorporate 

tube-to-tube conduction into the energy conservation equations. The first model was a resistance model in which 

Fourier law of heat conduction was used to obtain the heat transfer between the tubes. However, the effect of airside 

heat transfer coefficient was ignored. The second model was the conductance model in which two-dimensional heat 

diffusion equation was solved to calculate the amount of heat conducted between the tubes through fins. The 

conduction model was more accurate in the prediction of effect of conduction through fins on overall coil 

performance than the resistance model; however, it was computationally intensive. The accuracy of the resistance 

model was improved using the multipliers; however, determination of multipliers required tuning with experimental 

data. 

 

The segment-by-segment approach is the most detailed heat exchanger modeling approach of all the modeling 

approaches as it considers refrigerant and 2D airside maldistribution, local refrigerant properties, and phase 

transition. This modeling approach may be more accurate than other modeling approaches but it requires 

significantly more computational effort than the tube-by-tube approach. A comparison of different modeling 

approaches in terms of computational time and accuracy was not found in literature.  
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2.5 Tube-to-Tube (Cross-Fin) Conduction 
 

The tube-to-tube conduction through heat exchanger fins can degrade or increase (if multiple vapor compression 

systems on same heat exchangers) the performance of heat exchanger and needs to be incorporated in the heat 

exchanger simulation model for accurate prediction of its performance. Figure 3 shows the tube-to-tube or cross-fin 

conduction in a fin and tube heat exchanger.  

 

Heun and Crawford (1994) developed an analytical model of cross-counter flow fin-and-tube heat exchanger to 

study cross-fin conduction. They compared capacity of same heat exchanger with continuous and split fins and 

found a maximum capacity degradation of 40% in continuous fin heat exchangers in comparison to split fin heat 

exchangers. 

 

Romero-Méndez et al. (1997) developed an analytical fin and tube heat exchanger model to quantify heat 

conduction between neighboring tubes. They found that tube-to-tube conduction could result in capacity degradation 

of up to 20% by decreasing heat transfer from in-tube to over-tube fluid. Heun and Crawford (1994) and Romero-

Méndez et al. (1997) found negligible effect of longitudinal tube conduction on heat exchanger performance.  

 

 
 

Figure 3: Tube to tube (or cross fin) conduction 

 

Domanski et al. (2007) experimentally analyzed the effect of tube-to-tube conduction on the heat exchanger 

performance using 5 kW fin and tube heat exchanger. They performed experiments with the slit and slit cut fins to 

study the effect of cross fin conduction on heat exchanger performance. They found, experimentally, a capacity 

degradation of 20% in slit fin heat exchanger compared to slit split fin (tube depth rows separated by a cut in fins) 

heat exchanger for a superheat of 16.7°C. They found a negligible (one twentieth of a percent) loss in heat 

exchanger capacity due to longitudinal tube conduction. 

 

Table 1 summarizes the heat exchanger models developed by some research groups. It includes the information on 

whether the tube-to-tube conduction was considered in the model. The effect of considering tube-to-tube conduction 

on examining heat exchanger performance is not provided by most of the researchers in Table 1. Table 1 shows that 

models based on tube-by-tube or segment-by-segment modeling approach are required to analyze tube-to-tube 

conduction in heat exchangers. 

 

Table 1: Summary of heat exchanger models developed by different groups 

 

Model/Researcher 
Modeling 

Approach 
Method used 

Tube-to-tube 

conduction 

considered? 

Refrigerant side and 

airside distribution 

considered? 

EVAP-COND (Domanski 

and Didion, 1983),  
Tube-by-tube ε-NTU No No 

EVSIM (Domanski, 1989) Tube-by-tube ε-NTU No 
Yes (2D air distribution not 

considered) 

EVAP5M (Lee and 

Domanski, 1997) 
Tube-by-tube ε-NTU Yes 

Yes (2D air distribution not 

considered) 

Liu et al. (2004) Tube-by-tube 
Energy 

conservation 
Yes 

Yes (2D air distribution not 

considered)  
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Model/Researcher 
Modeling 

Approach 
Method used 

Tube-to-tube 

conduction 

considered? 

Refrigerant side and 

airside distribution 

considered? 

Richardson (2006) Tube-by-tube ɛ-NTU No 
Yes (2D air distribution not 

considered) 

CoilDesigner (Jiang et al., 

2006) 

Segment-by-

segment 
ɛ-NTU No Yes 

Rossi (1995),  

Bo Shen (2006) 

Segment-by-

segment 
ɛ-NTU No Yes 

Iu (2007) 
Segment-by-

segment 
ɛ-NTU No Yes 

ACHP (Bell, 2012) 
Moving 

boundary 
ε-NTU No No 

Heun and Crawford 

(1994) 
Analytical 

Energy 

conservation 
Yes No 

Romero-Méndez et al. 

(1997) 
Analytical 

Energy 

conservation 
Yes No 

Singh et al. (2008) 
Segment-by-

segment 

Energy 

conservation 

and LMTD 

Yes Yes 

 

2.6 Air and Refrigerant Side Maldistribution 
 

Both air and refrigerant side maldistribution can result in significant degradation of heat exchanger performance. 

Different researchers studied these flow maldistributions and presented different solutions to minimize both the air 

and refrigerant side maldistributions.  

 

Domanski et al. (2004) developed a refrigerant circuitry optimization algorithm, ISHED1 (Intelligent System for 

Heat Exchanger Design), based on the non-Darwinian evolutionary computation method (Michalski, 2000). This 

algorithm optimized the refrigerant circuitry for both the uniform and non-uniform airflow profiles. The different 

designs were simulated using EVAP heat exchanger simulation model. However, refrigerant circuitry developed by 

ISHED1 required some post processing to make certain that the proposed circuitry can be manufactured.  
 

 
 

Figure 4: Refrigerant circuitry interleaved (Bach et al. 2014b) 
 

Bach et al. (2014b) developed an interleaved circuitry approach (see Figure 4) and an active refrigerant flow control 

to accommodate for varying airside maldistribution. They compared the hybrid (active) approach (both refrigerant 

circuitry and active refrigerant flow control considered) with the passive approach (only refrigerant circuitry 

considered) to mitigate the airside maldistribution. They found the passive approach to be less effective than the 

active approach to recover the performance losses for varying airflow maldistribution. For example, for an airflow 

maldistribution of 50%, the capacity dropped by 65% of its original value for the standard evaporator. However, 

using passive and hybrid control scheme, the capacity was within 81% and 93% of its original value respectively. 

They considered implementation cost and reliability of passive approach better than for the active one.  

 

Various numerical and experimental studies can be found in literature to analyze and reduce the airside and 

refrigerant side maldistribution.  The models based on tube-by-tube or segment-by-segment modeling approach are 

required to study the air and refrigerant side maldistribution numerically. The passive approach is commonly used in 

the development of commercial coils e.g. interleaved circuitry to combat refrigerant and airside maldistribution due 

to lower cost and better reliability as found by Bach et al. (2014b). 
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2.7 Fin-Tube Contact Resistance 
 

The tubes are inserted into the holes printed into a stack of fins to manufacture fin-and-tube heat exchangers. The 

tubes are then expanded to make tube-to-fin pressure contacts. The interference fit results in some contact resistance 

at the fin-tube attachment. This resistance is very small as compared to the total airside thermal resistance of the fin 

and tube heat exchanger. However, some studies have shown that there may be situations where this contact 

resistance cannot be neglected.  

 

Sheffield et al. (1989) showed that with the increase in fin spacing or thickness, the contact resistance can be as 

much as 16% of the total airside thermal resistance. The study also developed a correlation that can estimate the 

thermal contact resistance in fin and tube heat exchangers based on fin thickness, fin spacing, tube diameter, and 

tube spacing. EVAP5M (Lee and Domanski, 1997), a fin and tube heat exchanger model, incorporated the fin-tube 

contact resistance by including contact resistance correlation developed by Sheffield et al. (1989) in the overall heat 

transfer coefficient calculation. 

  

Jeong et al. (2006) used an experimental-numerical method (a numerical scheme using experimental data) to 

estimate the thermal contact conductance in 22 different heat exchangers with 7 mm tube and developed a 

correlation for it. They found a significant effect of fin type, tube-manufacturing type etc. on the thermal contact 

conductance in the heat exchanger. They performed the experiments in the vacuum chamber that improved the 

accuracy of numerical procedure for thermal contact resistance estimation. However, the heat transfer in the gap 

between the fin and tube is different in vacuum than the actual conditions encountered in industrial settings. 

 

Taler (2007) estimated the thermal contact resistance at the fin tube interface based on the condition that the Colburn 

j-factors obtained using the experimental data and the CFD simulation of heat transfer in heat exchanger must be in 

good agreement to estimate the thermal contact resistance at fin-tube interface. Taler and Ocłoń (2014) studied the 

effect of thermal contact resistance using CFD simulations. They presented a method to calculate fin efficiency 

numerically as a function of mean thermal contact resistance using mixed finite element and finite volume method. 

The thermal contact resistance lowered fin efficiency from 0.64 to 0.4 for the same airside heat transfer coefficient.  

 

From the literature, the fin-tube contact resistance is found to cause a significant change in airside heat transfer 

coefficient. Although important, it is not evident from the review of different heat exchanger models whether fin-

contact resistance was included while determining overall heat transfer coefficient on the airside.  

  

3. SYSTEM MODELS 
 

The main focus of this paper is the heat exchanger modeling, however, this section provides a brief overview of the 

commonly used system models. A model for a vapor compression system is developed by integrating its component 

models. A solution scheme is required to solve the unknown variables (e.g. state points containing fluid information, 

in the system model to predict system performance). The solution scheme performs the steady state simulations that 

are important for designing the system and predicting its performance. The solution scheme should be inherently 

efficient, accurate, and robust. Two approaches are commonly used to solve unknown variables. The first one is 

successive substitution approach in which the system components are solved one-by-one in the refrigerant flow 

direction. The second approach is simultaneous approach that solves all the unknown variables of different system 

components simultaneously by using non-linear equation solvers such as Newton-Raphson or Broyden’s method 

(quasi-Newton solver). 
 

The successive substitution approach uses more than one nested loop to solve the system model. It is easier to 

develop an efficient iteration scheme, which is both robust and accurate, based on successive substitution approach 

for simple system configurations. However, once the system gets complicated (e.g. system with multiple 

compressors or a multistage system) it is difficult to develop an efficient scheme based on this approach. 

Furthermore, this approach is not very flexible: addition of any component to the system requires significant 

changes in the system solver.  
 

Unlike the successive substitution approach, the simultaneous approach provides the flexibility and generality to the 

system solution scheme. This approach allows the decoupling of system solver from the component models i.e. 

component models appear black box to the system solver. The component models solve their equations based on the 



 

 2439, Page 9 
 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

boundary conditions provided by the system model and the resulting outputs from the component models are fed 

back to the system solver. However, the simultaneous method is less robust than the successive substitution method 

because more initial values are required to solve the system and reasonable initial guesses are not always possible to 

specify. Table 2 lists the approaches used by different researchers to solve their system model.  
 

Table 2: Approach to solve the system model by different researchers 
 

System solver Model and/or Citation 

Successive substitution 

approach 

Hiller and Glicksman (1976), Ellison and Crewick (1978), 

EVAP-COND (Domanski and Didion, 1983), EVSIM 

(Domanski, 1989), EVAP5M (Lee and Domanski, 1997), 

Fischer (1999), Tandon (1999), Robinson and Groll (2000), 

Sarkar et al. (2006), Iu (2007) 

Simultaneous  

approach 

Parise (1986), Jolly et al. (1990), ACMODEL (Rossi, 1995), 

Hwang and Radermacher (1998), VapCyc (Richardson, 

2006), CoilDesigner (Jiang et al., 2006), Shao et al. (2008) 

 

4. CONCLUSIONS 
 

During the review of heat exchanger models, only few references are found that considered cross-fin conduction in 

their heat exchanger model. Cross-fin conduction can have significant effect on the performance of heat exchanger if 

the neighboring tubes have refrigerant at different temperatures due to refrigerant or airside maldistribution.  
 

Different researchers included 1D or 2D airside maldistribution in their heat exchanger models by using tube-by-

tube or segment-by-segment modeling approaches. However, no detailed comparison was found in the literature 

between considering the effect of 1D or 2D airside maldistribution on the heat exchanger performance. 
 

Fin-to-tube contact resistance can have significant effect on heat exchanger performance. Few heat transfer 

coefficient correlations take into account the fin-to-tube contact resistance. However, it is not clear from the 

literature of most of the heat exchanger models on whether or not contact resistance is taken into account. 
 

Different solvers are developed by researchers to solve the heat exchanger and vapor compression system models. 

However, there is still a need to develop a solver that can solve both simple and complex system configurations 

efficiently while maintaining robustness. The solver should also be able to address the discontinuities in property 

functions, correlations, and sub models. 
 

Despite fin and tube heat exchangers being a well-established technology there is still a substantial room for 

improvement of modeling tools. 
 

REFERENCES 
 

Bach, C. K., Groll, E. A., Braun, J. E., & Horton, W. T. (2014a). Mitigation of air flow maldistribution in 

evaporators. Applied Thermal Engineering, 73(1), 879-887. 

Bach, C.K. Groll, E.A. Braun, J.E. and Horton, W.T. (2014b). Interleaved circuitry and hybrid control as means to 

reduce the effects of flow maldistribution. Proceedings of 15th International Refrigeration and Air Conditioning 

Conference. Purdue University. 

Bell, I. (2012). ACHP Documentation. 1.3, Retrieved 09/18/2017, from http://achp.sourceforge.net/index.html. 

Braun, J. E. (1988). Methodologies for the design and control of central cooling plants. Ph.D. dissertation, University 

of Wisconsin, Madison.  

Domanski, P. A. (1989). EVSIM: An evaporator simulation model accounting for refrigerant and one dimensional air 

distribution. US Department of Commerce, National Institute of Standards and Technology. 

Domanski, P. A., Choi, J. M., & Payne, W. V. (2007). Longitudinal heat conduction in finned-tube evaporators. 22nd 

IIR International Congress of Refrigeration, Beijing, China.  

Domanski, P. A., Yashar, D., Kaufman, K. A., & Michalski, R. S. (2004). An optimized design of finned-tube 

evaporators using the learnable evolution model. HVAC&R Research, 10(2), 201-211. 

Ellison, R. D., & Creswick, F. A. (1978). Computer simulation of steady-state performance of air-to-air heat 



 

 2439, Page 10 
 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

pumps (No. ORNL/CON-16). Oak Ridge National Lab., Tenn. USA. 

Fischer, S. K. (1999). The Oak Ridge heat pump models: I. A steady-state computer design model of air-to-air heat 

pumps (No. ORNL/CON-80/R1). ORNL Oak Ridge National Laboratory (US). 

Heun, M. K., & Crawford, R. R. (1994). Longitudinal fin conduction in multipass cross-counterflow finned-tube heat 

exchangers. ASHRAE Transactions, 100, 382-389. 

Hiller, C. C., & Glicksman, L. R. (1976). Improving heat pump performance via compressor capacity 

control. Massachusetts Institute of Technology, report no. MIT-EL, 76-001. 

Hwang, Y., & Radermacher, R. (1998). Theoretical evaluation of carbon dioxide refrigeration cycle. HVAC&R 

Research, 4(3), 245-263. 

Iu, I. S. (2007). Development of air-to-air heat pump simulation program with advanced heat exchanger circuitry 

algorithm. Ph.D. dissertation, Oklahoma State University. 

Jeong, J., Kim, C. N., & Youn, B. (2006). A study on the thermal contact conductance in fin–tube heat exchangers 

with 7mm tube. International Journal of Heat and Mass Transfer, 49(7), 1547-1555. 

Jiang, H., Aute, V., & Radermacher, R. (2006). CoilDesigner: a general-purpose simulation and design tool for air-to-

refrigerant heat exchangers. International Journal of Refrigeration, 29, 601-610. 

Jolly, P., Jia, X., & Clements, S. (1990). Heat pump assisted continuous drying part 1: simulation 

model. International Journal of Energy Research, 14(7), 757-770. 

Jin, H., & Spitler, J. D. (2002). A parameter estimation based model of water-to-water heat pumps for use in energy 

calculation programs. ASHRAE Transactions, 108 (1), 3-17. 

Lee, J., & Domanski, P. A. (1997). Impact of air and refrigerant maldistributions on the performance of finned-tube 

evaporators with R22 and R407C. Final Report, ARTI MCLR Project, (665-54500). 

Liu, J., Wei, W., Ding, G., Zhang, C., Fukaya, M., Wang, K., & Inagaki, T. (2004). A general steady state 

mathematical model for fin-and-tube heat exchanger based on graph theory. International Journal of 

Refrigeration, 27, 965-973. 

Michalski, R. (2000). Learning and evolution: An introduction to non-Darwinian evolutionary computation. 

Foundations of Intelligent Systems. Proceedings of 12th International Symposium on Methodologies for 

intelligent Systems, USA, 21-30. 

Parise, J. A. (1986). Simulation of vapour-compression heat pumps. Simulation, 46(2), 71-76. 

Richardson, D. H. (2006). An object oriented simulation framework for steady-state analysis of vapor compression 

refrigeration systems and components. Ph.D. dissertation, University of Maryland. 

Robinson, D. M., & Groll, E. A. (2000). Theoretical performance comparison of CO2 transcritical cycle technology 

versus HCFC-22 technology for a military packaged air conditioner application. HVAC&R Research, 6(4), 325-

348. 

Romero-Méndez, R., Sen, M., Yang, K. T., & McClain, R. L. (1997). Effect of tube-to-tube conduction on plate-fin 

and tube heat exchanger performance. International Journal of Heat and Mass Transfer, 40, 3909-3916. 

Rossi, T. M. (1995). Detection, diagnosis, and evaluation of faults in vapor compression equipment. Ph.D. 

dissertation, Purdue University. 

Shao, S., Shi, W., Li, X., & Yan, Q. (2008). Simulation model for complex refrigeration systems based on two-phase 

fluid network–Part I: Model development. International Journal of Refrigeration, 31(3), 490-499. 

Sheffield, J. W., Wood, R. A., & Sauer, H. J. (1989). Experimental investigation of thermal conductance of finned 

tube contacts. Experimental Thermal and Fluid Science, 2(1), 107-121. 

Shen, B. (2006). Improvement and validation of unitary air conditioner and heat pump simulation models at off-

design conditions. Ph.D. dissertation, Purdue University. 

Singh, V., Aute, V., & Radermacher, R. (2008). Numerical approach for modeling air-to-refrigerant fin-and-tube heat 

exchanger with tube-to-tube heat transfer. International Journal of Refrigeration, 31, 1414-1425. 

Sarkar, J., Bhattacharyya, S., & Gopal, M. R. (2006). Simulation of a transcritical CO2 heat pump cycle for 

simultaneous cooling and heating applications. International Journal of Refrigeration, 29(5), 735-743. 

Stefanuk, N.B.M., J.D. Aplevich, and M. Renksizbulut. (1992). Modeling and simulation of a superheat-controlled 

water-to-water heat pump. ASHRAE Transactions 98(2), 172-184 

Taler D. (2007) Effect of thermal contact resistance on the heat transfer in plate finned tube heat exchangers. 

Proceedings of 7th International Conference on Heat Exchanger Fouling and Cleaning - Challenges and 

Opportunities, 362-371.  

Taler, D., & Ocłoń, P. (2014). Thermal contact resistance in plate fin-and-tube heat exchangers, determined by 

experimental data and CFD simulations. International Journal of Thermal Sciences, 84, 309-322. 

Tandon, A. (1999). Object-oriented modeling of vapor compression systems and components. M.S. Thesis. The 

University of Maryland, College Park, MD. 


	Purdue University
	Purdue e-Pubs
	2018

	A Literature Review of Numerical Modeling Techniques for Vapor Compression Systems with Focus on Heat Exchanger Modeling
	Omer Sarfraz
	Christian K. Bach
	Craig Bradshaw

	21ST INTERNATIONAL CONGRESS OF REFRIGERATION

