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ABSTRACT 
 

This study experimentally investigated the condensation heat transfer and pressure drop characteristics of 

R1234ze(E) inside horizontal small-diameter 4.0 mm OD microfin tubes having three different types of fin 

geometries. The specifications of the three fin geometries were 40 fins with a fin height of 0.18 mm and a helix 

angle of 18°, 50 fins with a fin height of 0.15 mm and a helix angle of 12°, and 50 fins with a fin height of 0.12 mm 

and a helix angle of 25°. The experiments were carried out for a range of mass velocities from 50 to 400 kgm
-2

s
-1

, 

and at a saturation temperature of 35 °C. The effects of fin geometries such as the number of fins, fin height, and 

helix angle on the heat transfer and pressure drop were investigated. The heat transfer coefficient increased as the 

number of fins increased for the lowest mass velocity. Fin height was most effective on heat transfer enhancement at 

higher mass velocities. The heat transfer coefficient and pressure drop of the microfin tubes were compared with 

those of smooth tube and were evaluated in terms of the enhancement factor of heat transfer. The measured heat 

transfer coefficient and pressure drop were compared with previous correlations, and the results were verified 

practical effectiveness of the previous correlations for small-diameter microfin tubes. 

 

 

1. INTRODUCTION 
 

The energy demands of emerging countries are increasing as the economies of these countries develop; therefore, 

deterioration caused by global warming has become a concern. In developed and emerging economies, the demand 

for air conditioning is increasing along with the improvement in living standards. In the refrigeration and air-

conditioning fields, microfin tubes with an outside diameter (OD) of 5 mm or less have been developed to enhance 

energy savings by improving the performance of the heat exchanger and by reducing the charge amount of the 

refrigerant by downsizing the heat exchanger. Microfin tubes with a 4 mm OD have been used in practical 

applications. However, with the decrease in the tube diameter, the frictional pressure drop increases. Therefore, it is 

important to investigate heat transfer characteristic at low mass velocity conditions. Moreover, hydrofluoroolefin 

(HFO) refrigerant is attracting attention as a low global warming potential (GWP) refrigerant, because regulation of 

hydrofluorocarbon (HFC) refrigerant is expected to become restrictive. For example, the Kigali amendment to the 

Montreal Protocol (MOP28) requires an 85% reduction of HFCs by 2036 in developed countries, and by 2047 in 

developing countries. Diani et al. (2017) investigated the condensation heat transfer coefficient and pressure drop of 

HFO refrigerant R1234yf in a microfin tube with 3.4 mm fin tip diameter. However, only a limited number of 

studies exist on condensation heat transfer with HFO refrigerants in small-diameter microfin tubes. In addition, it is 

necessary to validate the applicability of previous correlations to the condensation heat transfer coefficient and 

pressure drop of HFO refrigerants inside small-diameter microfin tubes. 

 

In this study, the condensation heat transfer and frictional pressure drop characteristics of R1234ze(E) inside three 

kinds of horizontal microfin tubes of 4.0 mm outer diameter and a smooth tube with the same diameter with mass 

velocity range of 50–200 kgm
-2

s
-1

 were investigated. We clarified the effects of fin geometries on condensation heat 
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transfer and pressure drop characteristics. Moreover, the heat transfer coefficient and frictional pressure drop of the 

microfin tubes were compared with those of the smooth tube, the enhancement factor of heat transfer was evaluated, 

and the measured heat transfer coefficient and pressure drop were compared with previous correlations. The results 

verified the practical effectiveness of the previous correlations for small-diameter microfin tubes.  

 

2. EXPERIMENTAL APPARATUS AND PROCEDURE 
 

Figure 1 shows a schematic diagram of the experimental apparatus, which is a vapor compression heat pump system. 

The refrigerant loop consists of a compressor, an oil separator, a pre-condenser, a test section, a rear condenser, a 

receiver, a mass flow meter, an expansion valve, and an evaporator. The refrigerant flow rate is adjusted by the 

expansion valve, bypass valve, and flow control valve. The flow rate of the refrigerant is measured using the 

Coriolis mass flow meter.  

 

Figure 2 shows details of the pre-condenser and test section. The pre-condenser and test section are a double-tube 

heat exchanger. The test section consists of three sub-sections with 200 mm length. In each sub-section, a test tube is 

cooled by passing cooling water through the annulus, and the refrigerant flows within an inner tube. The 

measurement length of the pressure drop and the effective heat transfer length are 800 mm and 200 mm, respectively. 

The refrigerant temperatures are measured by K-type sheath thermocouples at the inlet of the pre-condenser, and 

inlet and outlet of the test section. The tube’s outer wall temperatures are measured at the top and bottom and the 

center of each sub-section by T-type thermocouples. The refrigerant pressures at the inlet of the test section and the 

inlet of the pre-condenser are measured by absolute pressure transducers, and the refrigerant pressure drop between 

the inlet and outlet of the test tube is measured by two differential pressure transducers with full scales of 100 kPa 

and 20 kPa, respectively. The flow rates of the cooling water for the test section and pre-condenser are measured 

using the volumetric flowmeters. The bulk temperatures of the cooling water are measured by Pt-resistance 

thermometers inserted at the inlet and outlet of each sub-section and pre-condenser. 

 

Table 1 summarizes the specifications of the test tubes and figure 3 shows the schematic view of the test microfin 

tube. The test copper tubes are the smooth tube and the three microfin tubes of outer diameter of 4.0 mm and 

equivalent inner diameter of 3.5 mm. Three kinds of the test microfin tubes were used, so that LF50L has 50 fins, 

with a fin height of 0.15 mm and helix angle of 12°, LF50S has 50 fins, with a fin height of 0.12 mm and helix angle 

of 25°, and HF40 has 40 fins, with a fin height of 0.18 mm and helix angle of 18°. 

 

3. DATA REDUCTION 
 

The condensation heat transfer coefficient α is defined as: 

 

Figure 1: Schematic diagram of the experimental apparatus 
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


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
 (1) 

 

where Q is the heat transfer rate, L is the effective heat transfer length of the sub-section, and deq is the equivalent 

diameter of the test microfin tube. The equivalent inner diameter refers to the inner diameter of a smooth tube with 

the same internal free flow area as the test microfin tube. For the experiment using the smooth tube, deq is defined by 

the inner diameter. Q is calculated using isobaric specific heat, flow rate, and temperature difference of the cooling 

water flowing in the annulus of each sub-section. Tsat is the saturation temperature of the refrigerant from the 

measured refrigerant pressure. Twi is the tube’s inner wall temperature. Twi is calculated from the measured tube’s 

outer wall temperature considering one-dimensional steady heat conduction. 

 

The frictional pressure drop during the condensation process ΔPF is defined as follows: 

 

 
F T M

P P P     (2) 

 

where ΔPT is the measured pressure drop and ΔPM is the pressure drop due to momentum change calculated by a 

separated flow model. ΔPM is defined as: 

 

Figure 2: Details of the pre-condenser and test section 

d
o

Table 1:  Specifications of the test tubes 

Tube type Microfin Smooth 

Tube name HF40 LF50S LF50L SM 

Outside diameter   do [mm] 4.03 4.00 4.00 4.00 

Equivalent ID   deq [mm] 3.48 3.46 3.44 3.48 

Wall thickness      mm] 0.21 0.22 0.22 0.27 

Fin height         h [mm] 0.18 0.13 0.15 - 

Helix angle          [deg.] 17 25 12 - 

Number of fins         n [-] 40 50 50 - 

Area enlargement ratio [-] 2.13 1.90 1.94 1 

 

Figure 3: Schematic view 

of the test microfin tube. 
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(3) 

 

ξ is a void fraction, G is the mass velocity, and x is the vapor quality. The physical properties of the refrigerant and 

cooling water, respectively, were calculated from REFPROP Ver. 9.1 (Lemmon et al. 2013). In the case of smooth 

tubes were used in the experiments, ξ could be estimated from Eq. (4) below, as proposed by Smith (1969). 
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(4) 

 

In the case of microfin, ξ could be estimated from Eq. (5) below, as proposed by Koyama et al. (2001). 
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 (5) 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
 

4.2 Condensation heat transfer 
Figures 4(a) and (b) show the typical relation between the condensation heat transfer coefficient  and wetness 1-x 

in LF50L. The heat transfer coefficients of LF50L decrease with increasing wetness, because the thermal resistance 

of the condensate film increases in the condensation process. In addition, the heat transfer coefficients decrease due 

to the decreasing forced convection as the mass velocity decreases. For the HF40 and LF50S, the trends of heat 

transfer coefficients are similar to LF50L. The heat transfer coefficients of SM decrease with increasing wetness. 

However, the heat transfer coefficients are not affected by the mass velocity. It is considered that the smooth tube is 

dominated by free convection heat transfer not forced convection heat transfer. 

 

Figures 5 (a) and (b) show the relation between the enhancement factor of heat transfer EF and wetness 1-x for 

mass velocities of 200 and 50 kgm
-2

s
-1

. The enhancement factor of heat transfer EF is defined as: 
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Figure 4:  Typical relation between heat transfer coefficients and wetness. 
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MF

SM

EF



  (6) 

 

where αMF is the heat transfer coefficient of the microfin tube, and αSM is the heat transfer coefficient of the smooth 

tube SM. For mass velocity of 200 kgm
-2

s
-1

, the EF of both microfin tubes shows the largest value of 6 to 7 at the 

low wetness region. The EF gradually decreases with condensation, and it decreases to EF ≈ 2, which is the same as 

the heat transfer area enlargement ratio  at a wetness of 0.8. The heat transfer of the microfin tubes is dominated by 

forced convection. In addition, thermal resistance decreased due to a thin liquid film formed on the fin tip by the 

surface tension, which enhances heat transfer and promotes a high heat transfer coefficient at the low wetness region 

for a mass velocity of 200 kgm
-2

s
-1

. For a mass velocity of 50 kgm
-2

s
-1

, the EF of each microfin tube showed a value 

of 2 to 4, and the values are larger than the heat transfer area enlargement ratio  Comparing LF50S, LF50L, and 

HF40, the EF of HF40 is higher than those of LF50S and LF50L for a mass velocity of 200 kgm
-2

s
-1

 at the whole 

wetness region, whereas the EF of LF50S is higher than those of HF40 and LF50L for a mass velocity of 50 kgm
-2

s
-1

. 

The EF of LF50L for a mass velocity of 200 kgm
-2

s
-1

 is lower than that of HF40, and higher than that of LF50S. The 

EF of LF50L for a mass velocity of 50 kgm
-2

s
-1

 shows the same value as LF50S at the low wetness region; however, 

it shows the same value as HF40 at the high wetness region. In higher mass velocity conditions, the effect of fin 

height on the heat transfer is larger than that of the helix angle and number of fins at the middle wetness region. In 

low mass velocity conditions, the effect of the number of fins on heat transfer is larger than those of fin height and 

helix angle at the low wetness region, and the effect of helix angle on heat transfer is larger than those of fin height 

and number of fins at the middle to high wetness region.  

 

4.2 Pressure drop 
Figures 6(a) and (b) show the relation between the frictional pressure drop ΔPF/ΔZ and wetness 1-x in the microfin 

and smooth tubes for mass velocities of 200 and 100 kgm
-2

s
-1

. These figures also show the frictional pressure drops 

of LF50L, LF50S, HF40 and SM. The pressure drop decreases with decreasing mass velocity and increasing wetness. 

This is caused by the decrease in the vapor velocity and the wall shear stress during the condensation process. 

Comparing the microfin and smooth tubes, the pressure drops of all microfin tubes are 1.5 to 2.5 times higher than 

that of the smooth tube. Comparing the results for each microfin tube, there was not a significant difference of 

frictional pressure drop between LF50L, LF50S, and HF40. The fin height of HF40 is larger than that of LF50L and 

LF50S; however, the number of fins for HF40 is lower than those of LF50L and LF50S. In addition, the helix angle 

of LF50L is lower than those of HF40 and LF50S. It is considered that the effects of the fin geometries offset the 

characteristics of each other on the pressure drops; therefore, there are no differences in frictional pressure drop.  

 

4.3 Comparison of the previous correlations for condensation heat transfer coefficients  
Figures 7(a), (b), and (c) show the comparisons of the experimental values and the calculated values by previous 

correlations of condensation heat transfer for microfin tubes by Yonemoto and Koyama (2007), Cavallini et al. 
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Figure 5:  Relation between heat transfer enhancement factor and wetness. 
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(2009), and author et al. (2012, 2018), respectively. Yonemoto and Koyama’s correlation was proposed for the 

microfin tubes with average inner diameters of 6.25 to 8.37 mm and the refrigerants R123, R22, and R134a. 

Cavallini et al.’s correlation was proposed for the microfin tubes with fin tip diameters of 5.95 to 14.18 mm and 

refrigerants R22, R134a, R410A, and others. The authors’ correlation was proposed for the several kinds of 4 mm 

small-diameter microfin tubes based on HF40 with an equivalent diameter of 3.48 mm and the refrigerants R32, 

R410A, and R152a. The figures show that Yonemoto and Koyama’s correlation had higher accuracy at the high 

wetness region, and Cavallini et al.’s correlation could not predict the heat transfer coefficients at the low wetness 

region. The authors’ correlation could predict the heat transfer coefficients for refrigerant R1234ze(E) of HF40, 

LF50L, and LF50S. It follows that the authors’ correlation can be applied to the heat transfer coefficients for several 

kinds of fin geometries with 4 mm small-diameter tubes.  

 

4.4 Comparison of the previous correlations for pressure drops during condensation flow 

Figures 8(a), (b), and (c) show a comparison of experimental values and the calculated values by previous 

correlations for microfin tubes by Cavallini et al. (1997), Yonemoto and Koyama (2007), and author et al. (2012, 

2018), respectively. Cavallini et al.’s correlation was proposed for microfin tubes with fin tip diameters of 6.04 to 

14.18 mm and refrigerants R22, R134a, R32, and others. The authors’ correlation was proposed for the several kinds 

of 4 mm small-diameter smooth and microfin tubes based on SM and HF40 with equivalent diameter of 3.48 mm 

and refrigerants R32, R410A, and R152a. From the figures, all correlations are within approximately ±30%. 

Cavallini et al.’s correlation slightly overestimates the frictional pressure drop at the low wetness region. Yonemoto 

and Koyama’s and the author et al.’s correlations slightly underestimate the frictional pressure drop at the high 

wetness region. 

Figure 7:  Comparison of the measured and predicted values for heat transfer coefficients in microfin tube.  
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Figure 6:  Relation between pressure drop and wetness. 
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5. CONCLUSIONS 
 

The condensation heat transfer and frictional pressure drop characteristics of R1234ze(E) inside horizontal small-

diameter microfin tubes and a smooth tube of 4.0 mm OD in the mass velocity range of 50–200 kgm
-2

s
-1 

were 

investigated. The following results were obtained. 

 The pressure drop decreases with decreasing mass velocity and increasing wetness. This is caused by the 

decrease in the vapor velocity and the wall shear stress in the condensation process. Comparing the results 

for each microfin tube, no significant difference was observed in the frictional pressure drop between 

LF50L, LF50S, and HF40. 

 In higher mass velocity conditions, the effect of fin height on the heat transfer is larger than that of the helix 

angle and number of fins at the middle wetness region. In low mass velocity conditions, the effect of the 

number of fins on heat transfer is larger than those of fin height and helix angle at the low wetness region, 

and the effect of helix angle on heat transfer is larger than those of fin height and number of fins at middle 

to high wetness region.  

 The authors’ correlation can be applied to the heat transfer coefficients for several kinds of fin geometries 

with 4 mm small-diameter tubes. The authors’ correlation, which was proposed for several kinds of 4-mm 

small-diameter smooth and microfin tubes, can be correlated within approximately ±30%. 

 

NOMENCLATURE 
 

d diameter   (m) 

EF  enhancement factor   (-) 

G refrigerant mass velocity   (kg m
-2 

s
-1

) 

h  Fin height     (m)
 

L heat transfer length    (m) 

m flow rate     (kg s
-1

) 

n Number of fins    (-)
 

P pressure     (Pa) 

Q heat transfer rate    (W) 

T temperature     (K) 
x  vapor quality    (-) 

 

Greek letters 

Α heat transfer coefficient   (W m
-2

 K
-1

) 

 wall thickness    (m) 

Figure8:  Comparison of measured and predicted values for pressure drop in microfin tube.  
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ΔPT total pressure drop    (Pa) 

ΔPF frictional pressure drop   (Pa) 

ΔPM pressure drop due to momentum change (Pa) 

 helix angle of fin    (degree) 

μ viscosity     (kg m
-1

 s
-1

)
 

ξ void fraction     (-) 

ρ density     (kg m
-3

)
 

 

Subscript  
cal calculate 

eq equivalent 

exp experiment 

L liquid 

o outside 

sat saturation 

V vapor 

wi inner wall surface  

W wall 
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