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ABSTRACT 
 

There is increased interest in emerging, low global warming potential (GWP) refrigerants due to the phase out of 

hydrofluorocarbon (HFC) refrigerants (e.g., R134a); there are many questions that still need to be answered about 

replacement refrigerants, including heat transfer performance. One promising alternative to R134a (GWP = 1300) is 

R513A (GWP = 573), which is a non-flammable mixture comprised of 44% R134a and 56% R1234yf by weight. 

While R513A is attractive due to its lower GWP and A1 flammability rating, heat transfer data are limited. 

Condensation experiments were conducted for R134a and R513A in a vapor compression loop using multiport (i.e., 

9 parallel channels) extruded aluminum tubes; each channel’s hydraulic diameter was 0.72 mm. Experiments covered 

a range of average qualities (e.g., 0.2 < x < 0.8) and mass fluxes (e.g., 300 < G < 500 kg/m2s). Heat transfer coefficients 

and pressure drops are reported. The heat transfer coefficients of R513A were found to be very similar to R134a. 

Condensation data were compared to the condensation heat transfer coefficient correlations developed by Shah (2009) 

and Kim and Mudawar (2013). The MAE of the Shah correlation for R513A was 22% and 6.5% for the Kim and 

Mudawar (2013) correlation. 

 

1. INTRODUCTION 
 

The Montreal Protocol prompted the phase out of chlorofluorocarbon (CFCs) refrigerants due to their ozone depletion 

potential (ODP), and zero-ODP hydrofluorocarbon refrigerants (e.g., R134a and R410A) replaced CFCs in some 

applications (Molina (2009)). Due to an interest in further lowering global warming potential (GWP), new refrigerants 

are of interest (Calm (2008)). Possible replacements include nonflammable, mildly flammable, and flammable 

refrigerants, rated A1, A2L, and A3, respectively, by ASHRAE (Wang et al (2012)). Therefore, there is increased 

motivation to reduce overall system charge as one approach to mitigate flammability risks (Pham and Rajendran 

(2012)); reducing heat exchanger volumes through using mini-channels (e.g., 0.2 < Dh < 3 mm, Kandlikar and Grande 

(2003)) would reduce overall system charge. 

 

Previous R134a condensation research included heat transfer, pressure drops, and flow regimes. Researchers observed 

that condensation heat transfer in single mini-channels increased with decreasing diameter, increasing mass flux, and 

increasing quality (0.691 mm, Kim et al. (2003); 0.4–4.91 mm, Garimella (2004); 0.96 mm, Cavallini (2006); 0.577, 

1, and 1.2 mm, Wang and Rose (2006); 0.506 and 1.524 mm, Bandhauer et al. (2006)). Garimella (2004) studied 

R134a condensation heat transfer in 0.4–4.91 mm tubes at mass fluxes between 150 and 750 kg/m2s. Heat transfer 

coefficients ranged from 2000 W/m2K at low qualities and mass fluxes and up to 20,000 W/m2K at the highest qualities 

and mass fluxes. Similarly, Cavallini et al (2006) measured R134a condensation heat transfer in a 0.96-mm circular 

tube; at a mass flux of 278 kg/m2s, the heat transfer coefficients were 1750–6000 W/m2K over the quality range, and 

at a higher mass flux of 555 kg/m2s, the heat transfer coefficients were 4000–10,000 W/m2K.  

 

Due to the complexity of measuring small heat transfer rates associated with single channels and prompted by 

industrial and automotive applications, researchers also invested condensation heat transfer in multiple, parallel mini-

channels. Researchers found similar trends in heat transfer coefficients’ dependence on diameter, mass flux, and 

quality (10 channels, Dh=1.46 mm, Wang et al. (2002); 8 channels, Dh=1.11 m and 19 channels, Dh=0.80 mm, Koyama 

et al. (2003); 13 channels, Dh=1.4 mm, Cavallini et al. (2005); 5 and 7 channels, Dh=1 mm, Derby et al. (2012)) Several 

researchers observed flow regimes in mini-channels (Cavallini (2003), Garimella (2004); 2.67 and 4.91 mm, Coleman 

and Garimella (2003)), as flow regimes impact heat transfer and pressure drops. For example, Garimella et al. (2002) 
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mailto:jarrodab@ksu.edu
mailto:derbym@ksu.edu


 

 2459, Page 2 
 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

developed a pressure drop model for intermittent flow during condensation of R134a for horizontal, 0.5- and 4.91-

mm circular channels. 

 

Condensation heat transfer correlations for small diameter tubes and refrigerants include those developed by Shah 

(2009) for tubes 2–49 mm, Kim and Mudawar (2013) for tubes 0.424–6.22 mm, and Cavallini et al. (2002) for tubes 

3.1–8.8 mm. The Shah (2009) correlation was developed using 22 fluids including water, halocarbon and hydrocarbon 

refrigerants including R134a, propane, and other organics. This correlation was developed for horizontal, vertical, and 

downward inclined tubes. Kim and Mudawar (2013) developed a correlation for horizontal and vertical, single and 

multi-tubes using 17 fluids, including R134a, CO2, methane, and FC-72. The horizontal tube correlation created by 

Cavallini et al (2002) was developed using seven refrigerants including R22, R134a, R125, R32, R236ea, R404A, 

R407C, and R410A.  

 

R513A is an interesting lower GWP alternative to R134a. R513A is a R134a/R1234yf mixture (44/56 mass %); one 

advantage that R513A has over some of the other alternatives is the non-flammability of R513A (i.e., rated A1) 

(Devecioglu and Oruc 2015). With R513A being a relatively new refrigerant, the thermodynamic properties of this 

blend are still being understood. Akasaka et al (2015) studied the thermodynamic properties of this new mixture 

including critical density, pressure, and temperature, subsequently developing a mixture model of R513A. The 

majority of researchers modeled or tested R513A performance in current systems as a replacement for R134a. Shapiro 

(2012) experimentally tested several R134a alternatives’ in a commercial bottle freezer and noted that the performance 

of R513A was similar to that of R134a. Kontomaris et al (2012) studied R513A as an alternative to R134a in a 560-

ton centrifugal chiller. They observed that the chemical stability and miscibility with POE oil were both similar to 

R134a. They also found that R513A had minimally (0.6%) higher energy consumption. At full capacity, the COP of 

R513A was 2.4% lower than R134a, but at 20% full capacity, the COP of R513A was 7.6% higher. The total equivalent 

warming impact (TEWI) of R513A was 0.8-5.3% lower in high electricity carbon intensity areas and 31-48% lower 

than R134a in low electricity carbon intensity areas. Schultz and Kujak (2013) investigated several R134a alternatives 

(i.e., R513A, R450A, N-13b, R1234ze, ARM-42a) in a 230-ton water-cooled screw compressor-based water chiller. 

It was found that the cooling capacity of R513A was similar to R134a, although R513A showed a 1.4–4.3% lower 

energy efficiency ratio (EER). The compressor performance was similar with R134a and R513A; R513A has lower 

discharge temperature between 3.33 and 6.11 oC. R513A was a near drop in replacement in terms of cooling capacity 

and a 3-4% reduction in efficiency. Mota-Babiloni et al. (2015) modeled multiple emerging refrigerants in a single-

stage cycle and noted that R513A had a similar energy efficiency and a lower COP and cooling capacity. Belman-

Flores et al (2017) modeled R513A in a small refrigeration system; R513A had similar power consumption and the 

COP of R134a was 6% lower than R513A. Mota-Babiloni et al. (2017) looked at R513A in an experimental vapor 

compression cycle. It was found that R513A had slightly higher COP (1.8 compared to 1.6 at evaporating temperature 

of -15 oC), higher cooling capacity, and lower discharge temperature than R134a. R513A has a lower liquid thermal 

conductivity, liquid viscosity, vapor denisty and latent heat than R134a. They suggested that a new TXV would be 

necessary to run the system with R513A compared to R134a. In the vapor compression test facility, R513A had a 

higher cooling capacity, higher COP and lower discharge temperature. Llopis et al (2017) studied R513A and R450A 

as alternatives to R134a and R507A in a commercial direct expansion refrigeration system for medium temperature 

applications. Theoretically, in an ideal single stage vapor compression cycle, R513A had higher volumetric cooling 

capacity (0.3-4.3%) and lower COP (-2.5%-5.4%) than R134a. In the experimental system, they ran 24 hour energy 

consumption tests using a single stage cycle and showed that R513A had similar energy consumption to R134a.  

 

While the majority of the literature modeled and tested overall system performance of R513A, a few research groups 

measured heat transfer coefficients. Kontomaris et al (2013) found that the condenser overall heat transfer coefficients 

(UAs) were 10 to 20% lower with R513A compared to R134a. Schultz and Kujak (2013) found that R513A had 

slightly lower (e.g., 9%) overall heat exchanger condensation heat transfer coefficients and mildly lower (e.g., 14%) 

refrigerant condensation HTCs. There are very limited data on HTCs values for condensation and evaporation of 

R513A. Kedzierski and Park (2013), studied boiling heat transfer coefficients of R134a, R513A, and R1234ze(E) in 

a microfin tube (i.e., overall diameter 9.5 mm with 60 0.2-mm high fins). It was found that of the three fluids, R134a 

had the highest heat transfer performance and liquid thermal conductivity. R513A HTCs were within 5% lower of 

R134a and nearly identical performance was achieved when the quality was less than 0.3, while R1234ze(E) were 

around 14% lower than R134a. The authors attributed differences in liquid thermal conductivity and reduced pressure 

as the causes for lower HTCs.   
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Since published data regarding the fundamental heat transfer performance of R513A are lacking, the objectives of this 

research are to experimentally study condensation heat transfer of R513A and compare these to heat transfer 

coefficients for R134a. This research will also use previously developed mini-channel heat transfer correlations to 

predict condensation heat transfer of R513A and determine how well these correlations work with this alternative 

refrigerant. 

 

2. EXPERIMENTAL APPARATUS 
 

2.1 Vapor Compression Cycle  

Experiments were conducted in a vapor compression cycle (Figure 1) in which refrigerant mass flux and condensation 

temperature and quality were controlled; a brief description of the system follows. The condenser was divided into 

three parts: a tube-in-tube heat exchanger (pre-condenser), the test section, and a tube-in-tube heat exchanger (post-

condenser). The temperature and pressure were measured at the pre-condenser entrance to calculate refrigerant 

enthalpy, and an energy balance was conducted on the pre-condenser to determine test section inlet quality. Heat 

transfer coefficients and pressure drops were measured in a condensation test section comprised of nine parallel 

channels; each channel had a hydraulic diameter of 0.72 mm. The post condenser was used to completely subcool the 

refrigerant, which was verified using a thermocouple at the post-condenser exit to monitor the subcooling. Mass flow 

rates of the fully-condensed liquid refrigerant were measured by a Coriolis mass flow meter (Micro Motion 2700) 

placed before the metering valve. Subcooled refrigerant flowed through the metering valve and subsequently entered 

a tube-in-tube evaporator where the refrigerant was boiled and then superheated. This superheated refrigerant entered 

the compressor (Aspen 14-24-1101), and, following compression, an oil separator ensured the return of the polyolester 

(POE) oil back to the compressor.  

 
Figure 1: Experimental Vapor Compression Cycle Facility 

 

2.2 Test Section 
The condensation test section was designed to measure heat transfer coefficients and pressure drops. Nine parallel 

channels– comprised of an aluminum extruded tube with overall dimensions of 9.5 mm by 1.3 mm– were cooled by 

up to four thermoelectric coolers (TEC). Four tee-shaped copper blocks with three vertically aligned thermocouples 

in each block were used to measure condensing heat flux. The thermocouples were 1.59 mm in diameter and the holes 

were 6 mm from each other with the highest one being 1 mm from the top. The temperature at the top of the copper 

block was calculated by extrapolating from the closest thermocouple to the wall and the temperature gradient. From 

there, the condensing wall temperature was calculated using the thermal resistances in the indium layer and the test 

section lower wall. All TECS were connected to a cooling block used to reject heat and maintain TEC hot-side 

temperatures. On the refrigerant side, inlet and exit fluid temperatures were measured using thermocouple probes 

(Omega TQSS-116G-6). Absolute pressure (Omega PX309-300A5V) was measured at the test section inlet and the 

pressure drop across the test section was measured with a differential pressure transducer (PX409-050DWU5V). Fluid 

temperatures were obtained from the saturated temperature of the pressure measured at each test location using a linear 

pressure drop model.  
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Figure 2: Test Section 

 

2.3 Uncertainty Analysis 
Effort was taken to reduce the uncertainties of the heat transfer measurements. T-type thermocouples were calibrated 

using 9 points within the range, including the boiling and ice points, with a reference thermometer (Fluke-1523). The 

reference thermometer had an uncertainty of ±0.03 °C and due to the DAQ, calibrated thermocouple uncertainties 

were estimated to be ±0.2 °C. The temperature gradient uncertainty in the copper blocks was calculated using the 

equation developed by Kedzierski and Worthington (1993),  

 

𝜔𝑑𝑇

𝑑𝑦

= √𝜔𝑇𝑖
2 + (

𝑞"𝐷

6𝑘𝑐𝑢
)2√

1

∑ (𝑦𝑖−�̅�)
2𝑁

𝑖−1

                                (1) 

 

where ωT was the uncertainty of the calibrated thermocouples, yi was the distance of the ith thermocouple from the 

cooling surface, and ӯ was the average distance of the thermocouple from the condensation surface. The blocks were 

made of oxygen-free copper which helped reduce the thermal conductivity uncertainty. Pressure transducers were 

calibrated using a dead weight tester for a full-scale uncertainties of ±0.25% (absolute) and ±0.08% (differential); this 

corresponds to ±0.75 psi for absolute transducers and ±0.04 psi for differential transducers. The refrigerant mass flow 

rate was measured using a Coriolis flow meter with a measurement uncertainty of ±0.5%.  

 

The entire system was well insulated to minimize heat loss. The inlet quality uncertainty was most affected by the pre-

condenser, which was a tube-in-tube heat exchanger with the cooling fluid [i.e., water or ethylene glycol mixture 

(50%/50%)] entering at 10 to 20 °C. The inlet quality was calculated using an energy balance between the heat transfer 

in cooling the superheated refrigerant and the heat transfer into the cooling fluid. The biggest uncertainty in the pre-

condenser was the cooling flow rate which was measured using a rotameter with a ±6% full scale uncertainty; 

therefore, the cooling fluid flow rate was kept above 40% full scale. The heat transfer coefficient uncertainty was 

calculated using the propagation of uncertainty analysis using the Kline and McKlintock (1953) approach,  

 

𝜔ℎ𝑡𝑐 = √(
𝜔
𝑞𝑐𝑜𝑛𝑑
"

𝑇𝑓−𝑇𝑤
)2 + (

𝜔𝑇𝑓
𝑞𝑐𝑜𝑛𝑑
′′

(𝑇𝑓−𝑇𝑤)
2)

2 + (
𝜔𝑇𝑤𝑞𝑐𝑜𝑛𝑑

′′

(𝑇𝑓−𝑇𝑤)
2 )

2                         (2) 

 

where q”cond is the condensation heat flux, Tf is the fluid temperature, and Tw is the wall temperature.  
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3. RESULTS AND DISCUSSION 
 

Validation of the experimental apparatus was conducted using liquid and results are presented in section 3.1. Sections 

3.2 and 3.3 include experimental heat transfer coefficient and pressure drop data, respectively, including a comparison 

to condensation heat transfer coefficient correlations. 

 

3.1 Single-Phase Validation 
To show the validity of the apparatus, single-phase liquid R134a and R513A tests were conducted. With the lower 

heat load encountered in single-phase experiments, only the first TEC was used. Experiments included a laminar range 

of Reynolds numbers (900<Re<1600). Figure 1 shows the energy balance between the heat transfer measured in the 

four copper blocks and the energy balance of the cooled refrigerant. The plot includes both the R134a and R513A 

tests. Figure 2 shows the Reynolds number versus the Nusselt number for each test. The Nusselt number was then 

compared to the Shah and London (1978) correlation (when x* > 0.0015) given by  

 

𝑁𝑢𝑥 = 4.364 + 8.68(103𝑥∗)
−0.506

𝑒−41𝑥
∗

,                           (3) 

 

where x* is the dimensionless axial coordinate for the thermal entrance region and is given by 

 

𝑥∗ = 𝑥′/𝐷ℎ𝑃𝑒,                      (4) 

 

in which x’ is the distance from the entrance of the channel and the Peclet number, Pe, equals Re Pr. The correlation 

was developed to account for thermal entrance affects. The Shah and London (1978) correlation follows the trend 

well accounting for the uncertainties of the measurements. The increasing Nusselt number trend with respect to 

Reynolds number is explained by the entrance effects, which this correlation accounts for as well. With the good 

single-phase validation, the next step is two phase testing. 

 
Figure 3. Single phase energy balance (left) and single phase Nusselt number (left) 

 

3.2 Condensation Heat Transfer Coefficients 
Following single-phase validation, condensation heat transfer coefficients and pressure drops were measured. Baseline 

R134a data were collected first, followed by R513A for three mass fluxes: 300, 400, and 500 kg/m2s. All data were 

recorded for saturation temperatures between 36 and 40 oC. Figure 1 shows the data collected for the mass flux of 300. 

The higher uncertainties of the R134a are due to very low heat fluxes (e.g., 25.7-34.9 kW/m2) and small fluid-wall 

temperature differences (e.g., 2.6-2.9 oC). These uncertainties are reduced for higher mass fluxes of 400 kg/m2s and 

500 kg/m2s as shown in Figures 2 and 3, respectively. Overall, condensation is a function of mass flux and quality, 

commensurate with findings in the literature (CITE), and condensation heat transfer coefficients of R513A are 

comparable to those of R134a. When compared to R134a, the HTCs for all mass fluxes fall within the range (5-14% 

lower) found in the literature (Shultz and Kujak (2013) and Kedzierski and Park (2013)) or even closer.  
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a) 

 
b) 

 
c) 

 
Figure 5. Heat transfer coefficients at mass fluxes of a)300, b) 400, and c) 500 

kg/m2 
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One of the objectives was to compare the measured R513A and R134a heat transfer coefficients to predicted heat 

transfer coefficients from condensation correlations, particularly since these correlations were not developed using 

emerging refrigerants. Two condensation correlations: Shah (2009) and Kim and Mudawar (2013). Both correlations 

were developed with R134a, but not with R1234yf, the second component of R513A. Figure 5 shows the experimental 

HTC values compared to the predicted values for the Shah (2009) correlation and Kim and Mudawar (2013) 

correlation in Figure 6 (left) and 6 (right), respectively. For these experiments, the Shah (2009) correlation generally 

overpredicts the R134a and R513A data. The Kim and Mudawar (2013) correlation, developed for condensation in 

mini-channels, reasonably predicts these data, with almost all of the R513A data being within 20%. The mean average 

error (MAE) for the Shah (2009) correlation for R513A was 22% and the MAE for the Kim and Mudawar (2013) 

correlation was 6.5% for R513A. 

 
Figure 6. Data compared to the (left) Shah (2009) and (right) Kim and Mudawar (2013) correlations 

 

3.3 Pressure Drops 
The pressure drop was measured during tests using a differential pressure transducer. Figure 7 shows the measured 

pressure drops of R513A for all the tests. The pressure drop is reported for the average quality for the total test section. 

The horizontal bars show the total quality change over the drop in pressure. The higher mass fluxes have higher 

pressure drops, but it can be seen that the average quality and total quality change affect the pressure drop as well.  

 
Figure 7. Test section pressure drop of R513A 
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4. CONCLUSIONS 

 
Condensation heat transfer coefficients were experimentally measured and compared for R134a and lower GWP 

alternative R513A. The following conclusions may be drawn from this study: 

 The heat transfer coefficients of R513A were similar to baseline R134a for all mass fluxes; heat transfer 

coefficients were a function of mass flux and quality. 

 Experimental data was compared to two correlations; the MAE of the Shah (2009) correlation was 22% and 

6.5% for the Kim and Mudawar (2013) correlation for R513A. 

 Pressure drop increased with increasing mass flux and showed a dependence on the average quality across 

the test section and the total quality drop in the test section. 

 More condensation data–as well as evaporation and COP data– are needed to fully understand the 

performance of R513A. 

 

NOMENCLATURE 
 

COP coefficient of performance (–)  

D diameter of thermocouple (m)   

Dh hydraulic diameter (m) 

ΔP pressure drop (psi) 

G mass flux (kg/m2 s) 

htc heat transfer coefficient (W/m2 K) 

kcu thermal conductivity of copper (W/m K) 

MAE mean average error (%) 

Nu Nusselt number (–) 

Nux local Nusselt number (–) 

ω uncertainty 

Pe Péclet number (–) 

Pr Prandtl number (–) 

q” heat flux (W/m2) 

Q heat transfer rate (W) 

Re Reynolds number (–) 

T temperature (C) 

TEWI total equivalent warming index 

x* dimensionless axial coordinate for the thermal entrance region 

x’ distance from channel entrance (m) 

x quality (–) 

 

Subscript   

avg local average 

block for the copper blocks  

dT/dy with respect to the temperature gradient 

exp experimental 

f fluid 

htc with respect to the heat transfer coefficient 

pre predicted 

q”cond with respect to the condensation heat flux 

ref refrigerant 

Ti with respect to the temperature reading 

Tf with respect to the fluid temperature 

Tw with respect to the wall temperature 

tot, avg total average 

w wall 
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