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ABSTRACT 
 

The thermoelectric module-based radiant cooling panel (TEM-RCP) has attracted attention as an alternative for 

conventional hydraulic radiant cooling panels because of its advantages of no refrigerant, no chemical reactions, and 

no moving parts. In addition, it has merits of easy control and fast response through direct heat absorption from TEM 

without water. However, there are few guidelines for designing the TEM-RCP and no study has yet suggested how to 

arrange the thermoelectric modules (TEMs) for the radiant cooling panel. Therefore, this study proposes a desirable 

arrangement of thermoelectric modules for the radiant cooling panel by developing the design methods for the TEM-

RCP based on the semi-black box model of TEM and the two-dimensional finite difference method. A mock-up model 

of the TEM-RCP was constructed to validate the proposed model and results. The constructed TEM-RCP was 

composed of seven TEMs, an aluminum plate, a heat sink attached to the TEMs, duct, and fan. The panel temperature 

at the aluminum radiant panel was maintained at 16 °C. The rejected heat from the hot side of TEM was removed by 

outdoor air. The design point we focused on herein was the panel temperature distribution according to the American 

Society of Heating, Refrigerating and Air-Conditioning Engineers Handbook. Therefore, the optimal array and the 

distance between the TEMs must not exceed the maximum temperature difference of 3°C across a given grid. As a 

result, the triangular grid was found as the best grid for an even temperature distribution of the TEM-RCP. The optimal 

distance between the TEMs was 0.2 m to 0.3 m according to the room condition and operation characteristics of the 

TEM. The optimized results were verified using the mock-up model of the TEM-RCP in the experiments. 

 

1. INTRODUCTION 
 

The decoupled system concept of ventilation and parallel sensible cooling has attracted much attention because of its 

benefits, including energy conservation and indoor air quality (Jeong et al., 2003). Among the parallel sensible cooling 

units, the ceiling radiant cooling panel (CRCP) is popular because it is a comfortable, efficient, and quiet cooling 

system. A conventional CRCP uses water chilled by a vapor compression system, which uses refrigerants. This system 

shows good energy efficiency; however, present refrigerants have a global warming potential (GWP) and an ozone 

depletion potential (Kim et al., 2016). 

As an alternative solution, the thermoelectric module (TEM) is studied as a non-vapor compression technique without 

a refrigerant. The air-cooled-type TEM radiant cooling panel (TEM-RCP) with a solar panel was developed, and its 

performance when used with the displacement ventilation system was estimated (Liu et al., 2014). An in situ air-

cooled-type TEM-RCP was constructed. This TEM-RCP can be operated under a COP of 0.9 for cooling and 1.9 for 

heating. However, the practical design of the TEM-RCP has not yet been described. Lim et al. (2017) proposed a 

dedicated outdoor air system (DOAS) with a water-cooled-type TEM-RCP. Based on the detailed energy simulation, 

the water-cooled TEM-RCP with DOAS can save approximately 44.5% of energy compared with the conventional 

variable air volume system. By considering the water-cooled-type TEM-RCP, the previous studies revealed the 

feasibility of using TEM-RCP in both air- and water-cooled types. However, the practical design for TEM-RCP still 

has limitations. 

Luo et al. (2016) recently developed a dynamic two-dimensional (2D) analytical model for TEM-RCP using a virtual 

image method and artificial neural networks to predict the thermal resistances. The results proposed the optimal 

thickness of panel and insulations with an optimal distance between TEMs. The developed model showed good 

agreement, but was limited because the proposed optimal values for design were only for their TEM-RCP. In addition, 

the simulation model included the training data; therefore, it was difficult to use. Shen et al. (2017) tried to overcome 
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these limitations by clarifying the design procedure of TEM-RCP. The one-dimensional (1D) analytical model was 

constructed, and the optimized thickness of the radiant panel and the number of TEMs in a square meter were proposed. 

The design procedure was well developed for practical use; however, the model only considered the 1D temperature 

distribution of the panel. Therefore, the design of optimal arrangements for TEMs on the radiant panels is lacking. 

This study developed 2D simulation models for air-cooled-type TEM-RCP based on the theoretical heat transfer model 

for conduction and convection using the finite difference method (FDM). The developed simulation models were 

designed as a graphical user interface (GUI) design to provide a reliable and easy-to-use simulation tool for TEM-

RCP research and development. We constructed a mock-up model of the air-cooled-type TEM-RCP to validate the 

simulation model and estimated the effects of TEM arrangements. 

 

2. THERMOELECTRIC MODULE RADIANT COOLING PANEL 
 

The TEM-RCP was used to handle the sensible cooling load in the zone. As shown in Figure 1, the TEM consists of 

n- and p-type semiconductors as the thermocouple and operated based on the Peltier effect. Heat was transferred from 

the cold side to the hot side using electrical power (Lee, 2016). The radiant cooling panel installed at the ceiling of the 

zone can be cooled based on the Peltier effect (Figure 2). The TEM was a solid-type heat pump; therefore, heat 

rejection occurred at the hot side of the TEM. The rejected heat can be removed using outdoor air to maintain the 

TEM performance. 

 

 
Figure 1: Principle of the Peltier effect in the thermoelectric module 

 

 
Figure 2: Schematic of the thermoelectric module radiant cooling panel in the zone 

 

Figure 3 shows the section diagram of the TEM-RCP composed of an aluminum panel, a copper panel, insulations, 

TEMs, and heat sink consisting of heat pipes and fins. The cold side of the TEMs was attached to the copper panel. 

An aluminum panel was bonded on the copper panel. The bonding was conducted using bolts and nuts based on the 

compressive force; therefore, the copper panel was necessary to reduce the mechanical stress on the TEM when the 

volume of the aluminum panel was changed according to the temperature variations. The copper panel contributed to 

the uniform temperature distribution of the external panel (i.e., aluminum panel) for radiant cooling. At the hot side 

of the TEMs, the heat sink was installed for heat rejection to the outdoor air. The air side of the TEM-RCP must also 

be insulated to reduce the undesirable heat transfer to the air. 
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The main heat transfer in the TEM-RCP, which was related to the aluminum panel in the vertical direction, occurred 

based on the heat conductance between the cold side of the TEM and the bottom surface of the aluminum panel at 

point 1 of Figure 2. Heat conductance was observed between the top surface and the bottom surface of the aluminum 

panel at point 2 of Figure 2. In the vertical direction heat transfer, heat convection was observed between the surface 

of the aluminum panel and the room air. We assumed that no circulation fan was present in the room; therefore, natural 

convection occurred at the panel surface. The thermal grease between the TEM, the copper panel, and the aluminum 

panel was used to minimize the contact thermal resistance. We investigated the 2D temperature responses of the panel, 

including heat conductance between the surface temperature points of the aluminum panel in the horizontal direction. 

 

 
Figure 3: Section diagram of the thermoelectric module radiant cooling panel 

 

3. SIMULATION MODEL 
 

3.1 Thermoelectric module model 
The TEM was simulated using a previously developed semi-black box model (Chen and Snyder, 2013). The 

thermophysical characteristics of the n- and p-type semi-conductors, including Seebeck coefficient (𝛼), electrical 

resistivity (𝜌), and thermal conductivity (𝜅), were derived using Eqs. (1) to (3), respectively. The n- and p-type 

thermoelements were assumed to have the same properties. The TEM properties were calculated based on the 

thermoelement characteristics using Eqs. (4) to (6). These equations required the technical specifications of the TEM 

(Table 1). The TEM used had a fraction of the total TEM area covered by a thermoelement (fp) of 0.5 when the 127 

thermocouples (N) in a TEM. We designed the mock-up model of the TEM-RCP with seven TEMs; however, the 

TEM in the simulation was assumed to be three to reduce the processing time. 

 

 𝛼 =
𝑄𝑚𝑎𝑥(𝑇ℎ − ∆𝑇𝑚𝑎𝑥)

𝑁𝑇ℎ
2𝐼𝑚𝑎𝑥

 (1) 

 𝜌 =
𝐴𝑇𝐸𝑀𝑓𝑝(𝑇ℎ − ∆𝑇𝑚𝑎𝑥)2

2𝑇ℎ
2𝑙

𝑄𝑚𝑎𝑥

𝑁2𝐼𝑚𝑎𝑥
2

 (2) 

 𝜅 =
𝑙(𝑇ℎ − ∆𝑇𝑚𝑎𝑥)2

𝐴𝑇𝐸𝑀𝑓𝑝𝑇ℎ
2

𝑄𝑚𝑎𝑥

∆𝑇𝑚𝑎𝑥

  (3) 

 𝑆 = 2𝑁𝛼 (4) 

 𝑅 =
4𝑁2𝑙

𝐴𝑇𝐸𝑀𝑓𝑝𝜌
 (5) 

 𝐾 = 𝜅
𝐴𝑇𝐸𝑀𝑓𝑝

𝑙
 (6) 

 

Table 1: Technical specifications of the TEM used in this study 

Description Value 

Dimension 40 mm × 40 mm × 3 mm 

Imax 11.3 A 

Vmax 27.3 V 

Qmax 188.7 W 

∆Tmax 78°C 
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In the simulation, the hot-side temperature of TEM (𝑇ℎ) was assumed to be 6°C higher than the air temperature for 

heat rejection. This assumption affected the energy consumptions of the TEM and the fan. Therefore, it can be adjusted 

according to the outdoor air condition and the sensible cooling load in the zone. The cold-side temperature of the TEM 

(𝑇𝑐) was determined based on the target surface temperature of the TEM-RCP (𝑇𝑠𝑢𝑟𝑓), the required cooling capacity 

of the TEM-RCP (𝑄𝑐), and the overall heat transfer coefficient of the panel (𝑈𝑝𝑎𝑛𝑒𝑙−𝑇𝐸𝑀). The surface temperature of 

the TEM-RCP was set as 16°C, which was lower than the annual dew point temperature of the zone, to prevent the 

condensation problem. We also considered the overall heat transfer coefficient consisting of the aluminum panel and 

the copper panel, as shown in Eq. (7). The contact thermal resistance was assumed to be negligible. Consequently, the 

cold-side temperature of the TEM can be derived using Eq. (8). 

 

 
𝑈𝑝𝑎𝑛𝑒𝑙−𝑇𝐸𝑀 = (

𝑡ℎ𝐴𝑙

𝜅𝐴𝑙

+
𝑡ℎ𝐶𝑢

𝜅𝐶𝑢

)−1 

 

(7) 

 𝑇𝑐 = 𝑇𝑠𝑢𝑟𝑓 −
𝑄𝑐

𝑈𝑝𝑎𝑛𝑒𝑙−𝑇𝐸𝑀𝐴𝑇𝐸𝑀

 (8) 

 

3.2 Finite difference model 
The 2D finite difference model separated the component into many control volumes and solved the differential 

conservation and heat transfer equations within each control volume. The governing equation for the surface, which 

was directly faced with the TEM (point 1, Figure 2), is presented in Eq. (9). According to the TEM-RCP composition, 

the material properties can be adjusted in the GUI; however, the equation was described based on the TEM-RCP 

constructed herein. The heat convection coefficient between the panel surface and the room air (ℎ𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚) was 

derived using Eqs. (10) to (13) (Cengel, 2007; Ostrach, 1952; Fuji et al., 1972). The heat convection at the aluminum 

panel was natural convection; therefore, the Grashof number (Eq. (10)) should be considered in calculating the 

Rayleigh number (Eq. (11)) and the Nusselt number (Eq. (12)). The characteristic length (Lc) was calculated with 

regard to the area of the aluminum panel. 

 

 𝜌𝐴𝑙𝐶𝑝,𝐴𝑙

𝜕𝑇

𝜕𝑡
= 𝜅𝐴𝑙 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) +

ℎ𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚

𝑡ℎ𝐴𝑙

(𝑇𝑟𝑜𝑜𝑚 − 𝑇𝐴𝑙) −
𝑄𝑐,𝑇𝐸𝑀

𝐴𝑇𝐸𝑀𝑡ℎ𝐴𝑙

 (9) 

 Gr𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚 =
𝑔𝛽(𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑟𝑜𝑜𝑚)𝐿𝑐

3

𝜈𝑎𝑖𝑟
2  (10) 

 Ra𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚 = Gr𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚 × Pr𝑎𝑖𝑟  (11) 

 Nu𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚 = 0.27Ra1/4        (105 < 𝑅𝑎 < 1011) (12) 

 ℎ𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚 =
𝜅𝑎𝑖𝑟𝑁𝑢𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚

𝐿𝑐

 (13) 

 

The governing equation for the surface that was not directly facing the TEM (point 2, Figure 2) is presented in Eq. 

(14). The overall heat transfer coefficient between the panel surface and air in the duct (𝑈𝑝𝑎𝑛𝑒𝑙−𝑑𝑢𝑐𝑡) can be derived 

using Eq. (15). It included the thermal resistances of the aluminum panel, copper panel, thermal insulation, and heat 

convection coefficient between air and the air in the duct and the surface of insulation (ℎ𝑑𝑢𝑐𝑡−𝑖𝑛𝑠) calculated using 

Eqs. (16) to (19). The Nusselt number was determined according to the Reynolds number (Eq. (16)) and the Prandtl 

number using Eqs. (17) and (18), respectively (Churchill and Ozoe, 1973; Thomas, 1977). The effect of the velocity 

boundary layer was assumed to be negligible because of the low heat convection coefficient between the duct and the 

thermal insulation. 

 

𝜌𝐴𝑙𝐶𝑝,𝐴𝑙

𝜕𝑇

𝜕𝑡
= 𝜅𝐴𝑙 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) +

ℎ𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚

𝑡ℎ𝐴𝑙

(𝑇𝑟𝑜𝑜𝑚 − 𝑇𝐴𝑙) +
𝑈𝑝𝑎𝑛𝑒𝑙−𝑑𝑢𝑐𝑡

𝑡ℎ𝐴𝑙

(𝑇𝑎,𝑑𝑢𝑐𝑡 − 𝑇𝐴𝑙) (14) 

𝑈𝑝𝑎𝑛𝑒𝑙−𝑑𝑢𝑐𝑡 = (
𝑡ℎ𝐴𝑙

𝜅𝐴𝑙

+
𝑡ℎ𝐶𝑢

𝜅𝐶𝑢

+
𝑡ℎ𝑖𝑛𝑠

𝜅𝑖𝑛𝑠

+
1

ℎ𝑑𝑢𝑐𝑡−𝑖𝑛𝑠

)−1 (15) 

Re𝑑𝑢𝑐𝑡 =
𝜌𝑎𝑖𝑟𝑣𝑑𝑢𝑐𝑡𝐿𝑐

𝜇𝑎𝑖𝑟

 (16) 

Nu𝑑𝑢𝑐𝑡−𝑖𝑛𝑠 = 0.664Re𝑑𝑢𝑐𝑡
1/2

𝑃𝑟𝑎𝑖𝑟
1/3

       (Pr > 0.6, 𝑅𝑒 < 5)        (17) 
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Nu𝑑𝑢𝑐𝑡−𝑖𝑛𝑠 = 0.037Re𝑑𝑢𝑐𝑡
0.8 𝑃𝑟𝑎𝑖𝑟

1/3
       (0.6 ≤ Pr ≤ 60, 5 × 105 ≤ 𝑅𝑒 ≤ 107) (18) 

ℎ𝑑𝑢𝑐𝑡−𝑖𝑛𝑠 =
𝜅𝑎𝑖𝑟𝑁𝑢𝑑𝑢𝑐𝑡−𝑖𝑛𝑠

𝐿𝑐

 (19) 

 

The time derivation, x-direction derivation, and y-direction derivation were described in Eqs. (20) to (22), respectively, 

to numerically solve Eqs. (9) and (14). Consequently, two governing equations for the TEM-RCP were derived in Eqs. 

(24) and (25). 

 

𝜕𝑇

𝜕𝑡
=

𝑇𝑖,𝑗
𝑡+1 − 𝑇𝑖,𝑗

𝑡

Δ𝑡
 (20) 

𝜕2𝑇

𝜕𝑥2
=

𝑇𝑖−1,𝑗
𝑡 − 2𝑇𝑖,𝑗

𝑡 + 𝑇𝑖+1,𝑗
𝑡

Δ𝑥2
 (21) 

𝜕2𝑇

𝜕𝑦2
=

𝑇𝑖,𝑗−1
𝑡 − 2𝑇𝑖,𝑗

𝑡 + 𝑇𝑖,𝑗+1
𝑡

Δy2
 (22) 

M =
𝜌𝐴𝑙𝐶𝑝,𝐴𝑙(Δ𝑥2Δ𝑦2)

𝜅𝐴𝑙Δ𝑡
  (23) 

𝑇𝑖,𝑗
𝑡+1 =

𝑇𝑖−1,𝑗
𝑡 + 𝑇𝑖+1,𝑗

𝑡 + 𝑇𝑖,𝑗−1
𝑡 + 𝑇𝑖,𝑗+1

𝑡 + (𝑀 − 4)𝑇𝑖,𝑗
𝑡

𝑀
+

Δ𝑡

𝜌𝐴𝑙𝐶𝑝,𝐴𝑙

(
ℎ𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚

𝑡ℎ𝐴𝑙

(𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑃𝑎𝑛𝑒𝑙)

−
𝑄𝑐,𝑇𝐸𝑀

𝐴𝑇𝐸𝑀𝑡ℎ𝐴𝑙

) 

(24) 

𝑇𝑖,𝑗
𝑡+1 =

𝑇𝑖−1,𝑗
𝑡 + 𝑇𝑖+1,𝑗

𝑡 + 𝑇𝑖,𝑗−1
𝑡 + 𝑇𝑖,𝑗+1

𝑡 + (𝑀 − 4)𝑇𝑖,𝑗
𝑡

𝑀
+

Δ𝑡

𝜌𝐴𝑙𝐶𝑝,𝐴𝑙

(
ℎ𝑝𝑎𝑛𝑒𝑙−𝑟𝑜𝑜𝑚

𝑡ℎ𝐴𝑙

(𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑃𝑎𝑛𝑒𝑙)

+
𝑈𝑝𝑎𝑛𝑒𝑙−𝑑𝑢𝑐𝑡

𝑡ℎ𝐴𝑙−𝑑𝑢𝑐𝑡

(𝑇𝑎,𝑑𝑢𝑐𝑡 − 𝑇𝑝𝑎𝑛𝑒𝑙)) 

(25) 

 

 

4. RESULTS 
 

4.1 Simulation results 
The effects of the interval between the TEMs and the arrangement of the TEMs on the temperature distributions of 

the TEM-RCP were investigated through a simulation. First, the temperature distributions according to the interval 

between the TEMs were estimated. The design condition was determined based on the room and outdoor air condition 

of summer in Seoul, South Korea. We simulated the minimum area for estimating the temperature distribution of the 

TEM-RCP to reduce the calculation time. The simulated area was the square of the interval between the TEMs. The 

room air temperature was assumed to be 26°C. The temperature and the air flow rate of the outdoor air for heat 

rejection were 30°C and 500 m3/h, respectively. The air flow rate was set as the maximum value of the fan we planned 

to use in the experiment. The surface temperature of the aluminum panel was set as 16°C considering the dew point 

temperature of the room. The thickness of the aluminum and copper panels was 3 and 2 mm, respectively. The cooling 

load was assumed to be 63.6 W, which was 60% of the maximum cooling capacity of the TEM. The simulation was 

conducted for 5 min with a second interval. The nodes for the x- and y- directions were 11 (i.e., a total of 121 nodes). 

The minimum interval satisfying the maximum temperature difference of 3°C across a given grid was investigated 

(American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), 2013). Figure 4 plots the 

temperature distributions of the TEM-RCP according to the intervals with ranges 0.28 to 0.38. In the design condition, 

0.28 m was the minimum interval between the TEMs for the TEM-RCP. 

Second, the temperature distributions of the TEM-RCP according to the TEM arrangement were evaluated. We 

selected triangular and rectangular grids and used a 0.28 m interval. As a result, the triangular and rectangular grids 

showed the maximum temperature differences of 2.9°C and 3.1°C, respectively. The rectangular grid used one more 

TEM in the same area for cooling. Meanwhile, the temperature distribution of the triangular grid was more uniform. 

Therefore, the triangular grid with the 0.28 m interval between the TEMs was used for the mock-up model of the 

TEM-RCP. 
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(a) Interval = 0.38 m (b) Interval = 0.36 m (c) Interval = 0.34 m 

   
(d) Interval = 0.32 m (e) Interval = 0.30 m (f) Interval = 0.28 m 

Figure 4: Temperature distribution of the thermoelectric module radiant cooling panel according to the interval 

between the thermoelectric modules 

 

  
(a) Triangular grid (b) Rectangular grid 

Figure 5: Comparison of the temperature distributions according to the arrangement 

 

4.2 Validation results 
The mock-up model of the TEM-RCP was designed for the validations (Figure 6). The designed TEM-RCP for the in 

situ experiments had the same cross-sectional plans with that in Figure 3. We used seven TEMs for the experiments. 

The distance between the TEMs was 0.28 m in the longitudinal direction and 0.24 m in the lateral direction. The 

interval and the arrangement of the TEMs were determined based on the simulation results in Section 4. 

The plenum size was 0.6 m (width) × 1.2 m (length) × 0.3 m (height). The side wall of the plenum was integral with 

the aluminum panel. The plenum cover was transparent acrylic and can be separated for maintenance. The flexible 

duct with a diameter of 150 mm was connected using transition and flange. The direct current (DC) power for the 

TEM was supplied using the switched mode power supply to control the input current and voltage. The power was 

distributed to the TEMs using a DC power terminal block. 
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Figure 6: 3D model of the thermoelectric module radiant cooling panel for the in situ experiment 

 

Figure 7 shows the constructed TEM-RCP. We attached the compressed polystyrene foam around the plenum for the 

thermal insulations. Teflon insulations were then attached between the air plenum and the copper panel to reduce the 

heat transfers. The conditioned air was entered into the plenum for heat rejection during the TEM-RCP operations 

using an environmental chamber. 

 

  
(a) Front view (b) Rear view 

Figure 7: Mock-up model of the thermoelectric module radiant cooling panel 

 

The temperature distributions of the TEM-RCP were measured using an infrared camera for thermal images (Testo 

882) to validate the simulation model. The TEM-RCP was tested in the vertical installation for measuring convenience. 

The TEM was operated under 4 A and 24.5 V when the air for heat rejection was 30°C, and the air flow rate was 300 

m3/h. The room temperature for radiant cooling was 20°C, and no forced air was involved. Figure 8 depicts the 

comparison of the measurement and the simulation. The temperature distributions between the two TEMs (i.e., TEM 

1 and TEM 2) showed a similar pattern. However, TEM 3 showed a higher temperature compared with the simulation 

results because the experiment was performed in the vertical installation; therefore, the air flow was not uniformly 

distributed in the y-directions, and the heat at TEM 3 was not sufficiently rejected. 

 

 
 

(a) Measurement results (b) Simulation results 

Figure 8: Comparison of the temperature distribution of the thermoelectric module radiant cooling panel 
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The temperature values of the measured area were quantitatively summarized in Figure 9 using a histogram. The 

maximum and minimum temperature were 18.1 and 15.6°C, respectively. The maximum and minimum temperatures 

of the simulation results were similar. Therefore, we can conclude that the simulation showed reliable results compared 

to the in situ measured temperature distributions. 

 

 
Figure 9: Histogram of the measured surface temperatures between the three thermoelectric modules 

 

6. TEM-RCP DESIGN TOOL IN THE GUI 
 
The GUI was applied to provide an easy-to-use simulation tool for the TEM-RCP (Figure 10). The GUI programming 

tool in MATLAB was used. There are three parts for input setting regarding the zone condition, characteristics of 

TEM, and panel. The geometric node was fixed, and the duration for the simulation can be adjusted. The results were 

plotted in 2D color contour maps for the temperature. The time, maximum temperature difference of the TEM-RCP, 

and standard deviation of the temperature values on the surface were plotted. The COP of the TEM for cooling, 

optimized interval between the TEMs, required power, including the fan, and required air flow rate of the outdoor air 

for heat rejection were also provided. 

 

 
Figure 10: GUI simulation program for designing the TEM-RCP  
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6. CONCLUSIONS 
 

This study developed and validated the numerical FDM simulation model for the TEM-RCP based on the experiment. 

For validation, a mock-up model of the TEM-RCP was constructed with a maximum cooling capacity of 742 W. The 

TEM-RCP was an air-cooled type system for heat rejection at the hot side of the TEM and the outdoor air was used. 

The interval and the arrangement between the TEMs were investigated for an even surface temperature distribution 

of the TEM-RCP using the simulation model. As a result, the 0.28 m interval was found to be appropriate for satisfying 

the guideline from the ASHRAE Handbook under the summer condition. The temperature distribution of the TEM-

RCP was also investigated when the TEMs were in the rectangular and triangular grids. The results showed that the 

triangular grid can generate a more even temperature distribution with less number of TEMs compared with the 

rectangular grid. In a further study, various TEM arrangements will be investigated, and the experiments for verifying 

the numerical FDM simulation model for the TEM-RCP will be conducted in more detail to reveal the characteristics 

of the in situ TEM-RCP. The improvement of the GUI simulation design tool will also be continued such that it can 

be used for various TEM-RCP configurations. 

 

NOMENCLATURE 
 

𝛼 Seebeck coefficient of the thermocouple (V/K) 

ATEM Area of TEM (m2) 

𝛽 Coefficient of cubical expansion (1/°C) 

Cp Specific heat capacity (kJ/kg⋅°C) 

∆ Difference (–)  

fp Packing fraction of the total TEM (–)  

g Acceleration of gravity (m/s2) 

Gr Grashof number (–)  

h Heat convection coefficient (W/m2⋅K) 

I Current (A) 

𝜅 Thermal conductance of the thermocouple (W/K) 

K Thermal conductance of TEM (W/K) 

l Height of the thermoelement (m) 

Lc Characteristic length (m) 

𝜇 Viscosity (kg/ms) 

n Number of TEMs (–)  

N Number of thermocouples (–) 

Nu Nusselt number (–)  

P Electrical power (W) 

Pr Prandtl number (–)  

𝑄̇ Thermal energy (W) 

𝜌𝐴𝑙 Density of aluminum  (kg/m3) 

𝜌 Electrical resistance of the thermocouple (Ω) 

R Electrical resistance of the TEM (Ω) 

Ra Rayleigh number (–) 

Re Reynold number (–) 

S Seebeck coefficient of the TEM (V/K) 

T Temperature (°C) 

th Thickness  (m) 

U Overall heat transfer coefficient (W/m2⋅K) 

v Velocity  (m/s) 

V Voltage  (V) 

 

Subscript 

air Air 

Al Aluminum panel 

c Cold 
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Cu Copper panel 

duct Duct 

duct-ins Between the duct and thermal insulation 

h Hot 

i Node in the x-direction 

ins Thermal insulation 

j Node in the y-direction 

max Maximum 

panel-room Between the panel and the room air 

panel-TEM Between the panel and the TEM 

surface Surface 

t Time 

TEM Thermoelectric module 
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