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ABSTRACT 

 

In this work, a capacitance sensing approach has been developed to remote detect the frost porosity in real-time. An 

interdigital electrode was designed and fabricated to sense the capacitance changing during the frost growth based on 

the fringing effect. Frost growth under the same surface temperature, air temperature and relative humidity but 

different air velocity was observed. The averaged approach by measuring the frost mass and volume was also adopted 

for comparison. Result shows that the frost porosity measured by the capacitance sensing approach agrees well with 

the averaged measurement approach with a maximum difference of 12%. The capacitance sensing approach can 

measure the frost dielectric constant in good agreement with the prediction of the Maxwell-Garnett’s theory as well. 

This approach shows great potential for real-time precise frost detection and defrost control.   

 

1. INTRODUCTION 
 

Frost build up on surfaces is an undesired phenomenon in many applications. As a mixture of ice and air, frost can be 

treated as a porous structure and frost porosity (density) is a very important parameter for understanding frost growth 

mechanism, frost modeling (Jones, et. al, 1975; Iragorry, et.al, 2004; Lee, et.al, 2003; Na, et.al, 2004; Hermes, et.al, 

2009) and defrost control.  

 

Frost growth is affected by the surrounding air temperature/ velocity, relative humidity, surface temperature, 

wettability, et. al., and the frost porosity varies as frost growing. In most scenarios, frost growing starts with the 

condensation and the solidification, and then one-dimensional ice crystal growth (perpendicular to the cold surface), 

following that is branches growing on the initial crystals and crystals growing in all directions. During the above 

process, the air is trapped locally in the crystals and forms a porous structure. The porosity can affect the thermal 

conductivity of the frost layer, and therefore the crystals growth rate, which comes back to affect the frost porosity as 

the feedback. As the ice crystal grows, the thermal conductivity of the frost layer decreases and eventually the 

temperature gradient from the cold surface to the frost-air interface is not big enough to support the crystal 

continuously growth, and the condensation on the interface occurs, which diffuses to the frost layer below and is 

solidified and the frost porosity drops. As a result, the thermal conductivity rises up and the crystals growth rate then 

speeds up. Therefore, the frost porosity is closely related to the stage of frost growing and strongly time dependent as 

frost builds up.  

 

So far, the frost porosity (density) has been measured in most work by the mass and volume of the frost within certain 

accumulating period and provided as the averaged frost porosity (Shin, et. al, 2003; Sahin, et.al, 1994; Kandula, et.al, 

2012), in which the time interval for the average is totally arbitrary. The measured results have big deviations and 



2468, Page 2 

 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

strongly affected by the operation of the measurement, which cannot explain the physics of the frost growth properly. 

As a mixture of ice crystal and air, frost porosity can be detected based on the dielectric constant difference between 

the two components using a capacitance sensor. Similar approach has been adopted to measure the percentage of 

components in mixtures for different applications, including void fraction (Cimorelli, et.al, 1967 and Strizzolo et.al, 

1993), water fraction in crude oil (Hammer, et.al, 1989), snow porosity (Tiuri, et.al, 1984), and quartz fraction in 

binary mixtures (Huang, et.al, 2017), etc. However, there is no real time frost porosity detection in the open literature 

to our best knowledge so far.    

In this work, frost porosity has been detected in real time using a self-designed and fabricated capacitance sensor. 

Frost growth was conducted within a wind tunnel under different conditions. The frost porosity was measured by the 

capacitance sensing and also using the average approach with a time interval of 5 minutes. The detection is non-

intrusive and real time process and it has the dramatic effect on the understanding of frost mechanism.  

 

2. FUNDAMENTALS OF THE FROST POROSITY MEASUREMENT USING 

CAPACITANCE SENSING 
 

An interdigital electrode has been designed and fabricated for the capacitance sensing in this work (details of the 

electrode and the whole sensor was described in our other paper of this conference, #272), which is co-planer comb 

structure as shown in Figure 1. Unlike the parallel plate capacitor having a well-defined correlation in Eq (1), with A  

of the plate area in m2, d of the distance between two plates in m and 𝜀 of the target absolute permittivity and expressed 

by the target dielectric constant 𝜀𝑟 and the electric constant 𝜀0 (8.854×10-12 F/m) as Eq (2), The capacitance sensing 

is based on the fringing effect and related to the electrode finger dimensions (the finger height f, the spacing between 

two fingers s, the fingers number n, and the electrode width w) and its structure. The capacitance reading with a target 

height of l, shown in Figure 1, can be expressed as Eq (1), 

 

 C = 𝑏𝜂𝑎𝜀𝑒𝜀0𝑤 (1) 

 

where: 

b and a are constant , related to the finger configuration and determined by the calibration. 

𝜂 is the electrode metallization ratio, defined as the percentage of the metal part, 𝜂 = 𝑓 (𝑓 + 𝑠)⁄ .  

𝜀0 is the electric constant, about 8.854×10-12 F/m. 

𝜀𝑒 is the effective dielectric constant. For a ‘dense’ comb structure, the electric field variation along the electrodes 

surface can be ignored. In that case, the tested target effective area is its overlapping area with the electrodes. So, 𝜀𝑒 

has a linear relationship with the target overlapping length if we assume target is much wider than the electrodes, as 

in Eq (2), in which 𝜀𝑟 and 𝜀𝑎 are the target and air dielectric constant, respectively.  

 

 𝜀𝑒 =
1

𝑛(𝑓 + 𝑠)
(∫ 𝜀𝑟𝑑𝑦

𝑙

0

+ ∫ 𝜀𝑎𝑑𝑦
𝑛(𝑓+𝑠)−𝑙

𝑙

) =
𝜀𝑟𝑙

𝑛(𝑓 + 𝑠)
+ 𝜀𝑎 −

𝜀𝑎𝑙

𝑛(𝑓 + 𝑠)
 (2) 

 

Therefore, the capacitance reading can be derived as Eq (3), where C0 is the initial reading of the sensor without target 

(l=0). 

 

 𝐶 = 𝑏𝜂𝑎 (
𝜀𝑟−𝜀𝑎

𝑛(𝑓 + 𝑠)
) 𝑙𝜀0𝑤 + 𝐶0 (3) 

 

The target can be one pure component or a uniform mixture, and for mixture the dielectric constant 𝜀𝑟 is different 

from one sole component.  According to Maxwell-Garnett’s theory (Levy, et.al, 1997), for a uniform binary mixture 
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(ice and air in this case), the dielectric constant and the volume proportion of one component hold the correlation as 

Eq (4), 

 

 ɸ1

𝜀1 − 𝜀12

𝜀1 + 2𝜀12
+ (1 − ɸ1)

𝜀2 − 𝜀12

𝜀2 + 2𝜀12
= 0 (4) 

 

where 𝜀1 and 𝜀2 is the dielectric constant of component 1 and 2, respectively, 𝜀12 is the equivalent dielectric constant 

of the binary mixture, and  ɸ1 is the volume proportion of component 1 in the mixture, which can be then expressed 

as Eq (5) 

 

 ɸ1 =
(𝜀12 − 𝜀2)(𝜀1 + 2𝜀12)

3𝜀12(𝜀1 − 𝜀2)
 (5) 

 

With the capacitance reading, known dimension of the electrode structure, and target height, the volume proportion 

of component in the mixture could be obtained. In this work, the designed electrode has w=3mm, n=116, f=0.095mm, 

s=0.032mm, and calibrated value a and b of a=1.181, b=4.733. With all above and the measured frost thickness, we 

can measure the frost porosity in real time. 

 

3. EXPERIMENTAL APPARATUS 

 

The experiment is conducted within a wind tunnel as shown in Figure 2, in which the air flow rate, air temperature 

and relative humidity can be controlled to the desired condition. Frost growth on the aluminum surface of a cold plate, 

which connected to a chiller for surface temperature control, and the surface temperature is monitored using 

thermocouple installed below the surface. Electrode sensor is positioned on the side of the cold plate with a distance 

of 75mm to the leading edge, as shown in Figure 3, and images of the frost are also recorded by a high-speed camera. 

Detailed description of the experimental setup, measurement uncertainty can be referred to the other paper (Purdue 

Conference #272).  

 

 
Figure 1: Interdigital electrodes with the target thickness of l 

 

4. RESULTS AND DISCUSSION 

 

In this work, frost growth under conditions of constant surface temperature Ts=-8.0 ℃ , air temperature Ta=13.5℃,, 

relative humidity RH=53% and different air velocity ua=1.0 m/s and 3.0 m/s were observed. For comparison with the 

capacitance sensing, frost porosity was also measured by collecting the mass and volume of the frost. Averaging time 

interval for each data point is 5 minutes.  

 

y 
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4.1 Effect of Frost Porosity on The Dielectric Constant 

Frost as a mixture of air and ice crystals, the dielectric constant can be correlated to the porosity using Eq (5), with 

the dielectric constant of air and ice crystals of 1 and 53 (Aragones, et.al, 2010) respectively. It can be found that the 

frost dielectric constant decreases as the porosity increases, as shown in Figure 4. The frost dielectric constant 

decreases with a big slope at a small porosity (ɸ<0.6~0.7) and it decreases with a much smaller slope at the bigger 

porosity (ɸ>0.8).  And the dielectric constant is almost linearly decreases for a small range of frost porosity within 

those two sections. 

 

 

The dielectric constant of frost from the measurement is also shown in Figure 4 with an enlarged plot for comparison. 

The dielectric constant of frost decreases also linearly with the porosity shown in the experiment within a short 

porosity range. The measured frost dielectric constant agrees well with the prediction by Maxwell-Garnett’s theory. 

 

 
Figure 4: Frost dielectric constant versus porosity (comparison of theory and experiment results). 

 

 

 

Figure 2: Schematic diagram of the wind tunnel. 1. heater; 2. 

cooling coil; 3. cold mist humidifier; 4. blower; 5. mixer; 6. 

honey comb; 7. screen; 8. contraction; 9. test section; 10. orifice 

plate; 11. D & D/2 pressure taps 

Figure 3: Test section 
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4.2 Frost porosity with different air velocity 

Frost porosity was measured by both capacitance sensing and average approach. The average approach is measuring 

the frost weight every 5 minutes by collecting the defrost water, together with the thickness of frost from the image 

processing, the frost density (porosity) can be obtained by the mass and the volume. Result from both approaches is 

shown in Figure 5(a) and (b) under air velocity of 1.0 m/s and 3.0 m/s respectively 

 
 (a) Air velocity ua=1.0 m/s                          (b) air velocity ua=3.0m/s 

Figure 5: Frost porosity measured with different approach with same surface temperature (-8.0 °C), same relative 

humidity (53%), and same air temperature (13.5 °C). 

 

It can be found, in Figure 5(a), that the porosity of frost under air velocity of 1.0 m/s is at a low value at the beginning 

of the frost growth (about 0.62) and it keeps increasing for the first ~30 minutes and then it stays as a constant with a 

very slightly decreasing trend till 60 minutes (the end of the experiment), which has been captured well by both 

approaches. The porosity recorded by the capacitance sensing agrees very well with the averaged approach with a 

maximum difference of about 12%. The frost porosity, shown in Figure 5(b), at the air velocity of 3.0 m/s keeps 

decreasing, and it drops from 93% to 89% according to the averaged approach and from 97% to 85% according to the 

capacitance sensing approach. And the maximum difference of capacitance sensing from the averaged approach is 

about 5% in this test. 

 

The porosity of frost at a low air velocity is usually higher than that at a high air velocity, which can be reflected by 

the test results shown above after 25 minutes for both approaches. It is especially clear by comparing the capacitance 

sensing results for the two cases. The general explanation for that is due to a higher frost-air interface temperature at 

a high air velocity, so the frost is more likely subjected to local melting and water diffuses through the frost layer. 

However, during the first 25 minutes, it is a different story with more complex mechanism involved. It is not very 

clear about the reason of the porosity behaves in the way observed. 

 

5. CONCLUSIONS 

 

Frost porosity measurement has been conducted in this work using a designed capacitance sensing approach. Frost 

growth on aluminum surface under the same surface temperature, the same air temperature and relative humidity but 

different air velocity was observed. An averaged frost porosity measurement approach by collecting the defrost mass 

and frost volume was also adopted for comparison. The results show that: 

1) The frost porosity slowly decreases under the air velocity of 3.0 m/s during the whole frost growth period (60 

minutes), but it increases for the first 25 minutes and then slowly decreases under the air velocity of 1.0 m/s. 

2) The capacitance sensing approach agrees well with the averaged measurement approach with a maximum 

difference of 12% 
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3) The capacitance sensing approach can measure the frost dielectric constant in good agreement with the 

prediction of the Maxwell-Garnett’s theory.  
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