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ABSTRACT 
 

Tube-fin heat exchangers (HXs) are widely used in the HVAC&R industry. Studies have proved that by optimizing 

the refrigerant circuitry, heat exchanger performance can be significantly improved. Since air-to-refrigerant heat 

exchangers are typically confined in packaged units along with a fan, the airflow distribution on the face of the HXs 

is a dominant factor influencing its performance. During the heat exchanger operation as part of an air conditioner, 

the air flow distribution changes continuously, especially when the fan speed changes during startup and shutdown 

cycles. This poses a design challenge as heat exchangers are typically designed by assuming a uniform airflow rate or 

a single known airflow distribution profile. For each airflow profile, a typical circuitry optimization algorithm can 

generate a completely different optimal refrigerant circuitry. Therefore, a circuitry design that can guarantee an 

acceptable minimum performance under various airflow distributions is required. In the field of optimization, this is 

referred to as robust optimization. This paper presents a robust circuitry optimization approach. The optimization 

problem formulation consists of an upper-level problem and a lower-level problem. In the upper-level optimization 

problem, an Integer Permutation based Genetic Algorithm (IPGA) developed in previous research is used to search 

for the optimal circuitry. This circuitry optimization framework can effectively obtain the optimal designs and 

guarantee good manufacturability. In the lower-level finite search problem, several typical airflow distribution profiles 

obtained from experimental measurements and CFD simulations are imposed. In addition to this problem formulation 

with the goal of maximizing the worst case capacity, another two robust optimization problem formulations are also 

examined. The comparison between the optimal circuitries obtained from the proposed robust optimization approach 

and the optimal circuitry from single optimization under uniform airflow distribution shows that robust circuitry 

designs are more resilient to multiple airflow maldistribution profiles. By applying the proposed robust circuitry 

optimization approach on an A-type indoor unit in a real vapor compression cycle, the robust optimal circuitry can 

improve evaporator cooling capacity by 5.1%. and system COP by 4.8%.  

 

Key words: Tube-fin Heat Exchanger, Circuitry Optimization, GA, Robust Circuitry Design, Airflow Maldistribution 
 

1. INTRODUCTION 
 

In packaged fan-coil units, air flow paths are highly constrained which induces sever air flow maldistribution at the 

frontal face of heat exchanger (HX). It has been shown that the air flow maldistribution can significantly degrade HX 

performance especially for evaporators (Bahman and Groll, 2016). Extensive lab tests have been conducted to explore 

the air maldistribution effect on HX performances (Payne and Domanski, 2003; Gong et al., 2008) and numerical 

simulations (Lee and Domanski, 1997; Kærn et al., 2011). Aganda et al. (2000) and Piotr A Domanski (1991) showed 

that the air maldistribution can degrade HX capacity by 35% and 75% respectively under different operating 

conditions and air maldistribution profiles. Because non-uniform airflow can result in different air-side heat transfer 

characteristics and uneven refrigerant flow distribution in refrigerant side, the refrigerant flow path, i.e. refrigerant 

circuitry of tube-fin HX has significant influence on HX performance. One way to compensate the degradation of air 

maldistribution is to improve circuitry design. Kærn and Tiedemann (2012) and Kærn et al. (2013) compared the 

performance of several different refrigerant circuitries and showed that the degradation is associated with non-uniform 

superheat at the outlet of each circuit and a good circuitry can effectively improve HX performance under air 
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maldistribution. Studies (Casson et al., 2002, Piotr A Domanski et al., 2005, Wu et al., 2008) have indicated that 

circuitry optimization is a more convenient and economic way to address air maldistribution as compared with other 

approaches, such as controlling the refrigerant mass flow rates in each circuit. 

 

Since the degradation of HX performance depends on the characteristics of airflow distribution profile, researchers 

have tried to use different tube-fin HX circuitry optimization approaches to obtain the best circuitry under different 

air velocity profiles. Domanski et al.(2004) developed an optimization model called ISHED (intelligent system of heat 

exchanger design). This optimization scheme switches between Evolutionary learning and Symbolic learning. They 

performed comprehensive circuitry optimization practices under airflow maldistribution (Piotr A Domanski and 

Yashar, 2007a; Domanski and Yashar, 2007b; Yashar et al., 2012). Their latest publication (Yashar et al., 2015) 

measured the airflow maldistribution at the frontal face of an evaporator using particle image velocimetry (PIV), then 

optimized HX circuitry under the measured velocity profile. In the 7.5 ton R410A cycle, the measured improvement 

of evaporator capacity and system COP benefitted from optimal circuitry are 2.2% and 2.9% respectively. Wu et al. 

(2008) developed a hybrid optimization scheme which switches between knowledge-based GA and Simulated 

Annealing model. They performed optimizations under two linearly distributed air velocity profiles which cannot 

represent the actual air maldistribution in real-world application. Recently, Bahman and Groll (2017) proposed an 

interleaved circuitry for evaporators operating under airflow maldistribution. Variations of interleaved circuitries have 

been used in the industry for over a decade. Their results show that the interleaved circuitry method can yield uniform 

superheat at the outlet of the individual circuits and can improve the cooling capacity and cycle COP by up to 16.6% 

and 12.4% respectively compared with a baseline HX without interleaved circuitry. However, since they only 

compared 3 different circuitry patterns, their designs are not necessarily optimal.  

 

Currently, all reported HX circuitry optimization are performed under specific air velocity profiles. That is to say, the 

optimal circuitry for a specific velocity profile does not necessarily still guarantee desirable performance under other 

profiles. This bring inconvenience for HX design engineers, because they need to obtain the air velocity profiles for 

different fan-coil geometry and run circuitry optimization tool repetitively. This necessitates a robust circuitry 

optimization approach whose optimal designs can offer preferable performance under various airflow distributions. 

 

This paper presents a novel robust circuitry optimization approach. The remainder of the paper is organized as follows. 

Section 2 details the robust circuitry optimization approach. Section 3 demonstrates the efficacy of the proposed 

approach by a case study. Section 4 validates the robustness of the optimal designs by observing their performance 

during the process of fan ramping up and down. Section 5 presents in-depth analysis for the optimal design and observe 

their performance in a vapor compression cycle. Conclusions are drawn in Section 6. 

 

2. METHODOLOGY 
 

2.1 Robust Circuitry Optimization  
The robust circuitry optimization consists of an upper-level optimization problem and a lower-level finite search 

problem. In order to effectively obtain the optimal designs and guarantee manufacturability, an integer permutation 

based genetic algorithm (IPGA) developed by Li et al. (2018) is used to solve the upper-level circuitry optimization 

problem. In previous research, this circuitry optimization framework has demonstrated superior capability to obtain 

better refrigerant circuitry with a low computational cost than the other methods in literature. To account for the 

refrigerant maldistribution induced by the air maldistribution, heat exchanger performance is evaluated by a mass flow 

based tube-fin heat exchanger model, CoilDesigner® (Jiang et al., 2006). The refrigerant flow distribution in each 

circuit is solved in an iterative fashion based on the pressure residual at the outlet of each circuit.  

 

In lower-level problem, a finite number of air velocity profiles are imposed on the HX model. For each individual (i.e. 

each circuitry design) in the upper optimization problem, all velocity profiles will be evaluated and an objective value 

will be assigned based on the overall performance for the given circuitry under all air distribution profiles.  

 

17 typical airflow distribution profiles are digitalized from literature. These profiles are all realistic air velocity 

distributions from experimental measurements from different sources (Yashar and Domanski, 2010; Yashar and Cho, 

2007; Yashar et al., 2008; Yashar and Domanski, 2009; Bahman and Groll, 2017). After these 17 velocity profiles are 

collected, profiles with similar trends which are measured from fan-coil unit with similar geometry are eliminated, 

this can save computational cost in low-level problem.  Figure 1 shows six representative velocity profiles used in the 
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lower-level finite search problem. Except Figure 1(a) which is an artificially uniform distribution, the rest 5 profiles 

are realistic profiles. Figure 1(d) is the frontal air distribution for the bottom slab of an A-coil, Figure 1(b) and Figure 

1(e) are measured from the top slab of A-coil. Figure 1(c) is measured from an inclined single coil, the inclination 

angle to the duct wall is 65°. Figure 1(e) is air distribution from a packaged environmental control unit (ECU). In the 

optimization practices conducted in this paper, all profiles are scaled to offer 600 CFM air volume flow rate and 

imposed on the tested HX.  

 

 
Figure 1: Air Velocity Distribution Profiles Collected from Lab Measurements 

 

2.2 Problem Formulations 
One goal of this study is to find a good metric to assess the robustness of circuitry under the variation of air 

distributions. Thus, three different criteria are used to measure the robustness. Each of this criterion leads to one 

optimization problem formulation. 

 

Equation (1) shows the 1st problem formulation, in which to maximize the minimal capacity among all velocity 

profiles is used as the objective function in the upper-level problem. In other words, for a given circuitry the optimizer 

tries to improve the worst case capacity among all airflow profiles. Meanwhile three constraints are added in IPGA. 

The first constraint limits the optimal circuitry has equal or less refrigerant pressure drop than the baseline circuitry. 

The 2nd and 3rd constraints are manufacturing constraints, which are to make the inlet and the outlet tubes on the same 

side of HX, and to avoid long U-bends stretching across more than 3 tube rows. Li et al. (2018) presents a detailed 

explanation of constraint handling in IPGA. 

 

 
,

Objective-1: ( .( ))

Subject to:

Inlets and outlets on the same side of HX

No long U-bend across 3 tube rows

refrigerant refrigerant baseline

Maximize Min Q

P P     (1) 

 

Another criterion to measure the robustness of a circuitry can be the average capacities among all profiles. Thus, the 

2nd objective function examined is shown in Equation (2). The constraints are the same as in the 1st formulation.  

 

 Objective-2: ( .( ))Maximize Avg Q   (2) 
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The 3rd criterion examined in this paper is to use the standard deviation (STD) of capacities among all profiles. 

Therefore, the  objective function is to minimize the STD of capacities as shown in Equation (3). 

 

 Objective-3: ( .( ))Minimize Std Q   (3) 

 

When using objective-3, in addition to those constraints list in problem formulation-1, two extra constraints in 

Equation (4) are enforced. One constraint limits worst capacity of the optimal circuitry to be larger than worst capacity 

of the baseline. The other constraint sets limit on the standard deviation of outlet superheat in each circuit. According 

to Bahman and Groll (2017), evaporator circuitry which shows superior performance under airflow maldistribution 

also show uniform superheat distribution at the outlet in each circuit. 

 

 
. .

(Outlet  in each circuit) 1 K

baseline
Min Q Min Q

Std T



 
  (4) 

 

In Session 3, case studies using these three problem formulations are analyzed aiming at finding the best problem 

formulation to obtain robust optimal designs. 

 

3. RESULTS 
 

Case studies are performed on a R410A evaporator, which is one slab of an A-type indoor unit as shown in Figure 

2(a). This evaporator has been simulated by CoilDesigner® and tested in previous research project under different 

operating conditions(Alabdulkarem et al., 2015). The heat exchanger model was validated with measured data for this 

evaporator (Alabdulkarem et al., 2015) and the deviation in cooling capacity between simulations and experiments 

are below 5% as shown in Figure 2(b). The HX structural parameters, operating conditions and the empirical 

correlations used for local heat transfer and pressure drop calculations are described in Li et al. (2018). 

 

 
Figure 2:(a) A-type evaporator used in case study; (b) Experiment tests vs CoilDesigner® simulations 

 

In all optimization runs performed in this paper, the number of generation set in IPGA is 200 and the population size 

is 100. These two numbers are relatively low for conventional GA runs, therefore this paper also demonstrate the 

capability of IPGA to optimize circuitry under air maldistribution with low computational cost. 

 

3.1 Maximize Minimal Capacity 
Figure 3 shows the results for the 1st problem formulation with the goal of maximizing the worst capacity. The GA 

progress plot as in Figure 3(a) indicates the optimal circuitry in Figure 3(b) can offer 5401W cooling. The optimal 

circuitry brings a 3.4% capacity increase compared with the minimal capacity of baseline. Figure 3(c) shows a radar 

plot, in which the six axles are capacities under six air profiles from Figure 1. It is obvious, the optimal coil (blue) can 

offer larger capacity under all air velocity profiles than the baseline HX (yellow). This indicates that the 1st problem 

formulation with the goal of Max(Min.Q) is effective to obtain a robust circuity design. 
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Figure 3: Optimization results from Max (Min.Q): (a) GA Progress; (b) Optimal Circuitry; (c) Optimal vs Baseline 

 

3.2 Maximize Average Capacity 
Figure 4 shows the results for objective function-2.  Figure 4(b) is the optimal circuitry. 2.4% increase on the average 

capacity is obtained. Although there is no constraint on the minimal capacity, the optimal coil still offers a minimum 

5399W cooling capacity as compared with a minimum 5223W of the baseline, which is a 3.4% increase. The purple 

line on Figure 4(c) demonstrates that the optimal circuitry from Max (Avg.Q) also shows good robustness under all 

air distribution profiles. 

 

 
Figure 4: Optimization Results from Max(Avg.Q): (a) GA progress; (b) Optimal circuitry; (c) Optimal vs baseline 

 

3.3 Minimize Standard Deviation of Capacities 
The third optimization practice is performed with the goal of minimizing the standard deviation(STD) of capacities 

while subjected to the worst capacity must be greater than that of baseline and the outlet superheats in each circuit 

should be uniform . Figure 5(a) shows that IPGA can effectively minimizing the STD of capacities from 29W to 1W. 

Figure 5(b) shows the optimal circuitry, which is a fully interleaved pattern. As shown in Figure 5(c), the capacities 

of optimal circuitry under the six profiles are 5321W, 5323W, 5321W, 5322W, 5323W, 5321W with only 1W standard 

deviation.  This indicates the optimal design (green) has strong resistance to withstand the variation of air. However, 

this optimal circuitry only offers an average capacity of 5305W, which is almost 100W lower than the average 

capacities of previous two optimal solutions (5408W and 5410W). 
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Figure 5: Optimization Results from Min(Std.Q): (a) GA progress; (b) Optimal circuitry; (c) Optimal vs baseline 

 

3.4 Summary of results 
A comparison of the three optimal circuitries obtained from previous three problem formulations are summarized in 

Figure 6. The red line refers to the performance of an optimal solution obtained under single uniform air distribution 

profile with the same operating and manufacturing constraints. This optimal design is obtained from a previous study 

in Li et al. (2018). Its circuitry arrangement can be found in Figure 8(d). 

 

As shown in Figure 6, the optimal designs from Max(Min.Q) and Max(Avg.Q) are both preferable due to their average 

capacity are the largest, these two optimal circuitries show very similar performance as the blue and purple lines 

coincide.  In terms of stability, the solution from Min(Std.Q) is the best, it has only 1W STD on capacities under all 

profiles, followed by the solutions from Max(Min.Q) and Max(Avg.Q), whose STD are 7.2W and 9.7W respectively.  

However, the robustness of the optimal circuitry from single uniform air distribution profile (red) has obvious 

shortcoming under air profile-3, and it also shows inferior performances under profile-2, 4, 5, 6.  Actually it only has 

superior performance under uniform air (profile-1). Its ability to resist air maldistribution is worse than the baseline. 

This example illustrates that an optimal design obtained under one specific air distribution cannot guarantee good 

performance under other airflow distributions. Furthermore, applying the optimal circuitry obtained from uniform air 

assumption to a real fan-coil unit where air maldistribution is always the case may risk in performance decrease.  

 

In following session, for the ease of discussion the optimal coil obtained under uniform air distribution is referred as 

non-robust optimal design. Since the solutions from Max(Min.Q) and Max(Avg.Q) show good overall performance 

(large Avg.Q) and acceptable stability (small Std.Q), they are referred as robust optimal designs. 

 
Figure 6: Comparison of Robust Optimal, Non-robust Optimal and Baseline Eesign 
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4. PERFORMANCE OF ROBUST CIRCUITRIES 
 

Since the robust optimal design is obtained from a finite search on the six representative air velocity profiles, it is 

likely that the optimal design only performs well under those six profiles. It is of great significance to see whether it 

still shows robustness under other maldistribution profiles which are not included in previous the six profiles. 

Moreover, during the heat exchanger operation as part of an air conditioner, the air flow distribution changes 

continuously, especially when the fan speed changes during startup and shutdown cycles. In this session, we aim at 

verifying the performance of robust design during fan ramping up and down. 

 

To achieve this goal, an OpenFOAM® based CFD model (Lee et al., 2018) particularly developed for simulating air 

velocity field for A-type indoor unit is used to obtain air velocity profile. Interested readers are referred to (Moon Soo 

Lee et al., 2018) for details of this experimental validated CFD model. In order to simulate the fan startup or shutdown 

process, The CFD simulations are performed under different air volume flow rate (AFR) ranging from 300 CFM to 

900 CFM. Figure 7(a) shows the three air velocity profiles for different air volume flow rate, the apex is located at the 

right end, where more air tends to accumulate due to contraction.  

 

The performances of the five designs mentioned in section 3.4 are compared under the three air maldistribution 

profiles. As shown in Figure 7(b), the baseline and the non-robust optimal design have the lowest capacities under all 

three profiles, while the robust designs from Max(Min.Q) and Max(Avg.Q) behave best, followed by the robust design 

from Min(Std.Q). This verification indicates the proposed robust circuitry optimization approach with the objective 

Max(Min.Q) or Max(Avg.Q) can both effectively generate robust designs which are resilient to air maldistribution 

during the process of fan startup or shutdown. 

 

 
Figure 7: (a) A-coil Airflow Profiles for Different Air Flow Rate; (b) Performance Comparison of Circuitry Designs  

 

5. DISCUSSION 
5.1 Analysis of Robust Optimal Design 
To understand the underlying reason which distinguishes the robust optimal from other designs, the robust optimal 

from Max(Min.Q), non-robust optimal and the baseline are simulated under profile-3 again in Figure 1(c). Recall that 

the capacity of robust optimal is the best (5407W), the baseline is intermediate (5223W), the non-robust optimal offer 

the least capacity(4477W).   

 

Figure 8(a) shows the uneven refrigerant mass flow rate distribution in each circuit of the three HXs. The robust 

optimal has the most uniform refrigerant distribution than the other two designs, the standard deviation for mass flow 

rates is 38% of that for non-robust optimal. Figure 8(b) shows the superheat at the outlets of each circuit. It is obvious 

that the robust optimal has the most uniform outlet superheat. Figure 8(c) shows the heat load offered by each circuit. 

It can be seen the 1st circuit in non-robust optimal contributes a very small amount of capacity, causing the capacity 

distribution in non-robust optimal very unbalanced.  

 

To understand the reason, the non-robust optimal circuitry pattern is shown in Figure 8(d), it can be recognized that it 

has the characteristic that each of its circuit is separated “physically” in 4 blocks from left to right. Figure 8(d) also 

shows the air volume flow rate distribution on these 4 blocks. As can be seen, the 1st shares a very small amount of 
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air, while the 3rd circuit shares the most amount of air. Thus, if we view each circuit as a small HX, the 1st small HX 

takes insufficient air, thus has very poor performance. Looking at the robust optimal circuitry in Figure 3(b), it doesn’t 

have this issue, because its four circuits are fully interlaced with each other, the amount of air which flows through 

each circuit is well balanced. 

 

In conclusion, robust circuitry design has more uniform refrigerant mass flow rate, outlet superheat and capacity 

distribution through each circuit. Furthermore, a robust circuitry design should be an interleaved HX, in which circuits 

are interlaced multiple times as the one in Figure 3(b). The circuitry pattern which isolates circuits along HX height 

direction should be avoided for lack of robustness under air maldistribution. This finding is consistent with that in 

Bahman and Groll, 2017). 

 

 
Figure 8: Comparison of Robust, Non-robust Optimal and Baseline: (a) Refrigerant mass flow distribution in each 

circuit; (b) Superheat at the outlets of each circuit; (c) Capacity offered by each circuit; (d) Air flow rate distribution  

 

5.2 Performance of Robust Optimal Design in Cycle  
To test the performance of robust, non-robust and baseline designs in a complete cycle. A component-based vapor 

compression simulation tool -VapCyc® (Winkler et al., 2006) is used. This is a realistic cycle which has been validated 

in Alabdulkarem et al.(2015) by adopting the baseline circuitry in section 4 as its evaporator. Figure 9(a) shows the 

cycle schematic. Due to page limitation, the detailed information on other components of this cycle is referred to the 

original paper. The operating condition is the ANSI/AHRI Standard 210/240 test-A condition (AHRI, 2008) in cooling 

mode.  

 

The A-type coil is simulated in OpenFOAM® based CFD model (Lee et al., 2018), then the air maldistribution profile 

is imposed on the air side of the A-type unit. As shown in Figure 9(b), the robust optimal design leads to a COP 

improvement from 3.54 to 3.71 by 4.8% compared with the cycle using baseline. While the non-robust optimal design 

obtained from uniform air distribution causes a degradation of COP from 3.54 to 3.46 by 2.3%. The cooling capacity 

of the entire A-type unit (2 slabs of coils) is improved from 9944W to 10452W by 5.1%, in contrast, the non-robust 

optimal results in a capacity degradation from 9944W to 9701W by 2.4%, because this optimal design is a solution 

from uniform airflow assumption, it is not able to account for air maldistribution due to no interleaving. It can be seen 

from P-h diagram, the robust optimal (red) has higher evaporating temperature than other two cycles. It has smaller 
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temperature difference between refrigerant and air while offering more cooling capacity, this implies the robust 

optimal has better heat transfer effectiveness.  

 

 
Figure 9: Performance comparison of robust, non-robust and baseline design in a cycle: (a) Schematic of simulated 

cycle in VapCyc®; (b) R410A P-h diagram of the cycle using three circuitry designs 

 

6. CONCLUSIONS 
 

Typically heat exchangers are designed under the assumption of uniform airflow or a specific known flow 

maldistribution profile. Circuitry optimization algorithm can generate completely different optimal circuitries under 

different air velocity profiles for the same HX. The robust circuitry optimization approach proposed in this paper can 

guarantee the optimal circuitry offers a desirable minimum performance regardless of the variation of airflow 

distribution. Three objective functions are compared, the one which aims at maximizing the worst capacity subject to 

a set of operating constraints works best. The results show that the robust circuitry optimal design obtained from the 

proposed approach is significantly more resilient to multiple airflow maldistribution profiles than the non-robust 

optimal design obtained under solely uniform air distribution. After applying the proposed approach to a real vapor 

compression cycle, the robust optimal circuitry leads to a predicted 4.8% COP improvement and a 5.1% cooling 

capacity improvement. Although the actual improvement from the robust optimal needs further validation by 

manufacturing and testing the circuitry in lab, the results demonstrate great potential for the proposed approach to 

improve heat exchanger performance in real-world application.  
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