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ABSTRACT 

Like any electromechanical system, direct-expansion (DX) air conditioners and heat pumps often develop faults 

over time that contribute to reduced operating efficiency, more frequent comfort violations, or even premature 

failure. Automated fault detection and diagnosis (AFDD) methods have been developed for these systems and much 

experimental effort has been undertaken for their evaluation. In order to reduce development costs required for 

AFDD technologies, additional research related to modeling DX equipment subject to faults has been undertaken. 

Investigation of AFDD methods in a virtual environment typically requires relatively detailed equipment models 

based in some part on thermodynamic principles. Because of these embedded constraints, simulation of faulty 

equipment operating performance can be time consuming and computationally intensive. In this work, meta-models 

based on previously developed greybox fault impact models for DX equipment have been developed using artificial 

neural networks. After tuning these neural network meta-models for different equipment, AFDD performance and 

fault impacts were simulated using a simple building load model. Significant computational speedups (>3000 times 

faster) were realized over the original greybox equipment models without loss of significant accuracy. Ultimately 

through careful meta-model training, it is believed that using neural networks to approximate detailed, 

computationally-intensive equipment or building models may be useful in applications that require frequent model 

evaluations. 

1. INTRODUCTION 

A commonly held belief among engineers is that to truly understand the underlying phenomena of a physical 

system, an engineer needs to formulate a model of such a system based on the known principles of nature governing 

the processes involved. As the complexity of a system grows, it’s generally accepted that the model required for 

estimating the physics of the system must also be extended to account for additional variables that affect its 

performance.  Of course, adding complexity to models can often require ever more increasing engineering and 

computational effort (with sometimes diminishing returns).  Because of this tradeoff, every engineer must determine 

the balance between complexity and effort that is suited for each project at hand. 

One example of a relatively complex approach for modeling the performance impacts of common faults affecting 

unitary air conditioning equipment has been described by Cheung and Braun (2013a, 2013b).  In this work, Cheung 

and Braun formulated detailed models of common air conditioning equipment components using engineering 

principles. Components modeled in this work included compressors, air-cooled condensers, expansion devices, 

cooling coils, and refrigerant piping. To tune difficult or unmeasurable parameters used in component models, 

Cheung and Braun used inverse modeling methods applied to experimental data collected from actual systems.  

Finally, component models were integrated into system models which imposed additional constraints to maintain 

conservation of mass and energy throughout the closed system. 

In comparison with other methodologies developed for estimating fault impacts of DX air conditioning equipment, 

the methodology presented by Cheung and Braun implements one of the most detailed and representative 

approaches for predicting the impacts of simultaneous faults. When using the model, the user can be reasonably 

assured that mass and energy balances across the heat exchangers are maintained over the range of inputs.  

Additionally, differences between mass flow rates through the compressor and the expansion valves predicted by the 

model are driven to zero by the integrated cycle solver. It should also be noted that detailed charge inventory 

modeling based in part on empirical relationships tuned using experimental data is applied within the system model. 
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The detailed fault impact model developed by Cheung and Braun is not without at least one significant cost: the 

computational effort required for some combinations of faults and operating conditions can be significant. Even with 

the extreme speed of modern computer processors, simulating equipment performance using the detailed model can 

be time-consuming. In practice, the model often requires more than 30 seconds and multiple computer processor 

cores to simulate a single combination of inputs. When infrequent or one-off model evaluations are required, e.g. 

estimating steady-state fault impacts at a specific operating condition, the amount of computer time required is still 

insignificant to warrant optimization. However, if frequent or routine model function calls are required for an 

application, this time delay can be problematic.  For example, if the average time requirement to predict equipment 

fault impacts is only 5 seconds, an 8760-hourly building simulation would require approximately 12 hours of 

computer time. As a result, this detailed model is not practical for inclusion within the simulation platform described 

in a companion paper by Hjortland and Braun that is used for assessing optimal and alternative service 

strategies (2018).  

This paper describes a meta-modeling approach used to reduce the computational effort required to simulate DX 

equipment fault impacts without significantly sacrificing model accuracy. In the next section, artificial neural 

network models used to simulate equipment fault impacts are discussed. The model training and evaluation 

methodology is described for a RTU with a fixed orifice expansion device along with a discussion of some sample 

results.  Following a description of the neural network meta-model, a description of the building model and fault 

evolution models used to characterize the operating cost impacts of different faults is described. 

2. DESCRIPTION OF FAULT IMPACT META-MODEL 

The detailed fault impact model developed by Cheung and Braun was used to generate outputs for training of a 

meta-model so that fault impact predictions could be generated at a much faster rate. This process, shown in Figure 

1, was a supervised learning process where the underlying relationships between inputs and outputs of the original 

model were approximated. First, an extensive list of ambient conditions and fault levels were generated that spanned 

the range of operating conditions that were desired to be modeled.  The ranges of ambient conditions and fault levels 

used to generate the data are described in Table 1.  In all, 22,440 unique combinations of simulation parameters 

were simulated (with successful convergence criteria) using the detailed fault impact model. Next, these model 

inputs were fed to the detailed fault impact inverse model and one-by-one the outputs were collected. These input 

and output combinations were collated and consolidated into a training and validation data set. 

Table 1. Range of detailed fault impact model simulation variables used to generate training 

and validation data sets for neural network meta-model. 

Parameter Minimum Maximum Increment 

Outdoor Air Temperature 15.6 °C (60.0 °F) 48.9 °C (120.0 °F) 2.8 °C (5.0 °F) 

Return Air Temperature 21.1 °C (70.0 °F) 29.4 °C (85.0 °F) 1.7 °C (3.0 °F) 

Return Air Relative Humidity 30% 70% 5% 

Refrigerant Charge Level
1
 60% 130% 5% 

Condenser Fouling Level
2
 0% 50% 5% 

Evaporator Fouling Level
3
 0% 50% 5% 

1 Charge level chrgx  defined based on rated charge level: chrg actual ratedx m m . 

2 Condenser fouling level defined as the relative reduction in condenser airflow rate compared to normal. 
3 Evaporator fouling level defined as the relative reduction in evaporator airflow rate compared to normal. 

Next, the internal structure of an artificial neural network model was generated, and the internal weights were tuned 

using a supervisory learning setting. This means that a portion of the generated dataset was used to optimize the 

parameters of the neural network by minimizing the mean absolute error of the predicted outputs in comparison to 

the detailed model outputs. In order to do this in an efficient manner, highly optimized backpropagation algorithms 

and software packages were used (Chollet, 2015; Goodfellow, Bengio, & Courville, 2016). In an iterative manner, 

the resulting model was tested using the reserved validation portion of the generated data set to evaluate how well 

the model predicts data points not contained in the training data set.  If undesirable or significant errors were 

observed in the resulting model, the model structure was modified, and the process was repeated. 
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A simplified schematic representation of the underlying neural network inputs, outputs, and inner layer nodes is 

shown in Figure 2. The inputs to the model are the ambient driving conditions of the DX system, including the 

outdoor air dry-bulb, return air dry-bulb, and return-air wet-bulb.  The fault levels of the system were also given as 

inputs to the model. The outputs of the neural network meta-model were the refrigerant- and air-side state points that 

are determined by the original detailed fault impact model.  These included suction pressure and enthalpy, liquid-

line pressure and enthalpy, supply air temperature and humidity, etc. Connecting the inputs to the outputs were three 

layers containing so-called hidden nodes. These nodes are non-linear activation functions that are sequentially 

connected.  The activation functions are typically sigmoidal or functions with an asymptote that are expressed in 

terms of a weighted combinations of inputs that are connected to it. These functions provided a highly non-linear 

behavior that can approximate complex interactions between inputs. The function weights used in each of these 

nodes were tuned during the model training process with backpropagation via stochastic gradient descent.  

 
Figure 1. Overview of supervisory learning process used to develop fault impact meta-model 

using detailed fault impact model inputs and outputs. 

 
Figure 2. Simplified representation of the neural network meta-model used to approximate 

the detailed fault impact model developed by Cheung and Braun (2013a, 2013b). 
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To train the model while avoiding overfitting, the number of layers and hidden nodes were pruned using the 

combination of a training data set and a test data set. The activation functions selected for the model included 

hyperbolic tangent functions in the first two layers and a linear activation layer for the final layer.  The training data 

set consisted of 17,952 combinations of inputs (80% of the total cases output from the original detailed model) and 

were randomly selected. The validation data set was made up of the remaining 4488 simulation outputs (20% of the 

total). The parameter tuning process of the model required approximately 90 minutes of computer time, utilizing two 

processor cores. Evaluating the resulting model required on the order of 10 μs for a combination of inputs – 

significantly faster than the original detailed model. 

Using the tuned meta-model, refrigerant state points were predicted over the range of operating conditions and fault 

levels that were simulated using the detailed model implemented by Cheung and Braun (2013a, 2013b). These meta-

model predictions were then compared with the detailed model outputs to evaluate the accuracy and reliability of 

using the meta-model. The suction pressure and enthalpy predicted by both models are compared for the entire 

dataset in Figure 3 for an RTU with fixed-orifice expansion valve (described in Table 2). In both cases, the 

agreement between the suction pressure and suction enthalpy were within 10% error for greater than 99.99% of the 

data set. Furthermore, the suction pressure predictions were within 5% error for greater than 90% of the data set; the 

suction enthalpy predictions were within 5% error for greater than 95% of the data set.  It should also be noted that 

the range of suction pressures included in the data set was relatively large. The suction pressure ranged from 

350 kPa (51 psia) to 1300 kPa (189 psia). At these pressures, the evaporator saturation temperature ranged from -

23.1 °C (-9.5 °F) to 16.3 °C (61.4 °F), respectively. An actual RTU would more than likely be deactivated by low 

pressure cut-out safety or from a completely frosted evaporator coil. Because the detailed fault impact model did not 

model coil frosting or low pressure cutout safety measures, the accuracy of the meta-model at these conditions 

should be be treated with some skepticism since the underlying model has not be experimentally validated at these 

conditions.   

Table 2. Description of detailed fault 

impact model system used to generate 

example results. System tested by Shen et 

al. (2009). 

System Type Packaged (RTU) 

Rated Capacity 10.55 kW (3 ton) 

Rated EER 10.6 BTU/W 

Rated SEER 12.0 BTU/W 

Refrigerant R410A (3.24 kg) 

Compressor Fixed-Speed Scroll 

Exp. Valve Fixed Orifice 

Condenser Finned-Tube 

Evaporator Finned-Tube 
 

 
Figure 3. Overall comparison of suction pressure and enthalpy 

predictions from fault impact meta-model and detailed model 

for system with fixed orifice expansion valve. 

As a further example of the model prediction accuracy, the liquid-line (condenser outlet) refrigerant pressure and 

enthalpy predicted by both models for the entire data set are compared in Figure 4. The predictions generated by 

each model for the liquid line pressure and enthalpy were within 5% for greater than 99.99% of the entire data set. 

Like the suction pressure results, the data set showed a relatively large range in liquid pressures: 1700 kPa (247 psia) 

to 4700 kPa (682 psia). Since the critical pressure of R410A is approximately 4578 kPa (664 psia), these data points 

should have been discarded from the data set. Moreover, these high pressures are surely outside the operating 

envelope of the compressor and the system would be disabled on high pressure cut-out safeties. These outputs 

should be discarded from the dataset for model evaluation since they would result in unreasonable equipment 

performance. 
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Figure 4. Overall comparison of liquid line (condenser outlet) pressure and enthalpy 

predictions from fault impact meta-model and detailed model for system with fixed orifice 

expansion valve. 

Using the meta-model, the performance of the RTU was simulated at different ambient operating conditions and 

fault levels. The predicted total cooling capacity, coefficient of performance (COP), and sensible heat ratio (SHR) of 

the system at different ambient temperatures and fault levels has been plotted in comparison with the outputs of the 

original detailed model in Figure 5.  Close agreement between the outputs of the meta-model and the detailed model 

were observed.  More importantly, the meta-model outputs do not display signs of overfitting since the resulting 

outputs were mostly smooth, even where interpolation and extrapolation were required. 

 
Figure 5. Modeled total cooling capacity, cycle COP, and SHR for RTU with fixed orifice 

expansion valve at different levels of refrigerant charge. 

The meta-model was used to predict the performance of the RTU when the system is subjected to different levels of 

condenser fouling in Figure 6.  Like the results shown for varying levels of refrigerant charge, good agreement was 

seen between the meta-model outputs and the original detailed model for condenser fouling faults at different 

ambient temperature conditions.  The model also predicted more significant impacts on RTU efficiency than total 

cooling capacity as would be expected by condenser fouling faults. 
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A comparison of the predicted RTU performance with different combinations of ambient temperatures and 

evaporator fouling levels is shown in Figure 7. Again, good agreement between the two models is observed 

suggesting the neural network model approximates the physics of the detailed model well. Furthermore, it is 

important to note that both models predict relatively small impacts on cycle efficiency but large impacts on total 

cooling capacity and sensible heat ratio.  This indicates both models produce outputs that are representative of actual 

evaporator fault impacts. 

 
Figure 6. Comparison of modeled total cooling 

capacity, cycle COP, and SHR for RTU with fixed 

orifice expansion valve over a range of condenser 

fouling levels. 

 
Figure 7. Comparison of modeled total cooling 

capacity, cycle COP, and SHR for RTU with fixed 

orifice expansion valve over a range of evaporator 

fouling levels. 

3. BUILDING LOAD AND FAULT EVOLUTION MODELS 

3.1 Building Load Model Description 
The sensible and latent dynamics of a building served by a single RTU were simulated using simple, single-node 

models.  The dynamics of the indoor dry bulb temperature were simulated using 

 , ,

ID

s load s cool sC Q
d

t
Q

T

d
    (1) 

where IDT  is the indoor temperature, ,load sQ  is the sensible heat gain in the building, ,cool sQ  is the sensible cooling 

rate of the RTU, and 
sC  is the effective thermal capacitance of the building.  The sensible heat gain of the building 

was based on an internally driven component ,int sQ  and an externally driven component ,ext sQ , 

 
 

, , ,

,

load s int s ext s

int s s OD ID

Q Q Q

Q UA T T   

 
  (2) 

where sUA  is the overall heat transfer conductance of the building and 
ODT  is the outdoor air dry bulb temperature.  

The sensible cooling rate of the system was simulated using the neural network meta-model discussed in Section 2.  

The required inputs of the meta-model were the outdoor dry bulb temperature, indoor dry bulb and wet bulb 

temperatures, and the fault levels of the equipment. 
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The internal gain and overall heat transfer conductance used in Equation (2) were determined for different climates 

using the commonly used balance point methodology based on equipment sensible capacity at the warmest 

condition (ASHRAE, 2017).  The overall conductance was determined using 

 
, ,

, ,

1

1

cool s design

s

os OD design OD balance

U
Q

f T T
A  

 
  (3) 

where 
, ,cool s designQ  is the design point sensible cooling capacity of the equipment without faults, 

osf  is an equipment 

oversizing factor, 
,OD designT  is the design point outdoor air dry bulb temperature, 

,ID designT  is the design point indoor 

dry bulb temperature, and 
,OD balanceT  is the balance point outdoor dry bulb temperature when the building has no load.  

For all climates used for simulations, the design point temperature was chosen by finding the maximum outdoor air 

temperature using the weather data.  The design point indoor dry bulb temperature set point was set to 75 °F.  The 

balance point outdoor temperature was set to 65 °F for all climates.  The internal sensible gain is given by 

 
, , , ,

,

, ,

.
1

cool s design ID design OD balance

int s

os OD design OD balance

Q T T

f T
Q

T


 


   (4) 

An approximation of Equation (1) was implemented using a finite difference formula for the derivative term 

           , ,1 sim

ID ID int s s OD ID cool s

s

T k T k U k
t

Q T T QA k k
C

      


    (5) 

where 
simt  is the simulation time step size,  IDT k  is the indoor temperature at the thk  simulation step, and 

 1IDT k   is the indoor temperature at the  
th

1k   step.  The simulation step size used for the model was 

60 minutes. 

The latent dynamics of the building were modeled using a single node dynamic energy balance, 

 
, ,

,

1ID

l load l cool l

fg w

C
d

Q Q
dt h


      (6) 

where 
ID  is the indoor air humidity ratio, ,load lQ  is the latent heat gain in the building, ,cool lQ  is the sensible 

cooling rate of the RTU, 
,fg wh  is the heat of vaporization of water, and 

lC  is the effective thermal capacitance of the 

building. The latent heat gain of the building was based on an internally driven component ,int lQ  and an externally 

driven component ,ext lQ , 

 
 

, , ,

,

load l int l ext l

int s l OD ID

Q Q Q

Q U     

 
  (7) 

where 
lU  is the overall latent conductance of the building and 

OD  is the outdoor air humidity ratio.  The 

conductance was determined using the equipment latent heat transfer rate at the design point condition, 

 
  , ,

, ,1

1 1design cool t design

l

os OD design ID balance

U
S

f

HR Q

 

 



   (8) 

where , ,cool t designQ  is the design point total cooling capacity of the equipment without faults, designSHR  is the design 

sensible heat ratio of the building, 
osf  is an equipment oversizing factor, ,OD design  is the design point outdoor air 

humidity ratio, ,ID design  is the design point indoor air humidity ratio, and ,OD balance  is the balance point outdoor air 

humidity ratio when the building has no latent load.  The design point indoor air humidity ratio was calculated using 

an indoor dry bulb temperature of 75 °F and relative humidity equal to 50%. For all climates used for simulations, 

the design point humidity ratio was chosen by finding the mean coincident wet bulb of the design outdoor air dry 
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bulb temperature. The balance point outdoor temperature was determined by finding the mean humidity ratio 

throughout the year using climate data.  The internal latent gain is given by 

 
  , , , ,

,

, ,

1
.

1

design cool t design ID design OD balance

int l

os OD design OD balance

SHR Q
Q

f

 

 

 



  (9) 

An approximation of Equation (6) was implemented using a finite difference formula for the derivative term 

           
, ,

,

1 sim

ID ID int l OD ID cool l

l w

l

fg

t
Q Q

h
k k U k k k

C
   


 


       (10) 

where  ID k  is the indoor air humidity ratio at the thk  simulation step, and  1ID k   is the indoor air humidity 

ratio at the  
th

1k   step. 

In order to simulate equipment performance under realistic outdoor ambient conditions, Typical Meteorological 

Year (TMY) data was used (Wilcox & Marion, 2008). TMY data sets provide hourly ambient temperature, 

humidity, barometric pressure, irradiance, wind speed, and other weather data that represent a year of typical 

climatic conditions for a location (Wilcox & Marion, 2008). TMY data is commonly used by designers to model 

HVAC and energy conversion systems since the data provides reasonable driving conditions for assessing and 

comparing technologies.  Three locations were selected for fault impact simulations: Atlanta, GA; Chicago, IL; and 

Miami, FL.  These locations were selected because they have different amounts of cooling and heating requirements.  

Additionally, the average humidity through the year varies considerably from location to location.  For each 

location, design conditions are summarized in Table 3 (ASHRAE, 2017). In order to size the building sensible 

cooling and heating load line in Equation (2), the maximum dry-bulb temperature for each location was determined. 

To determine the latent load line parameters in Equation (7), the coincident maximum humidity ratio during the 

hottest day of the year was determined. 

Table 3. Building HVAC design conditions for selected locations used in fault impact simulation 

program (ASHRAE, 2017). 

Location HDB 

(99%) 

CDB (1%) MCWB (1%) HDD CDD 

Atlanta, GA -3.1 °C 

(26.4 °F) 

33.1 °C 

(91.6 °F) 

23.3 °C 

(73.9 °F) 
1484 °C-day 

(2672 °F-day) 

1052 °C-day 

(1894 °F-day) 
Chicago, IL -15.7 °C 

(3.7 °F) 

31.5 °C 

(88.7 °F) 

22.9 °C 

(73.2 °F) 
3449 °C-day 

(6208 °F-day) 

480 °C-day 

(864 °F-day) 
Miami, FL 11.1 °C 

(52.0 °F) 

32.7 °C 

(90.9 °F) 

25.3 °C    

(77.5 °F) 
70 °C-day 

(126 °F-day) 

2521 °C-day 

(4538 °F-day) 
HDB (99%) – 99th percentile design heating dry bulb temperature. 
CDB (1%) – 1st percentile design cooling dry bulb temperature. 

MCWB (1%) – 1st percentile design mean coincident wet bulb temperature. 

HDD – Heating degree days calculated using 18.3 °C (65.0 °F) balance temperature. 
CDD – Cooling degree days calculated using 18.3 °C (65.0 °F) balance temperature. 

 

3.2 Fault Evolution Model Descriptions 
Central to simulating the operating cost impacts of faults are models characterizing how faults may grow over time. 

The fault evolution models implemented in this work are simplistic in nature but provide reasonable estimations of 

real systems. Three faults are considered in this work: refrigerant charge leakage, condenser fouling, and evaporator 

fouling. A description of how each was modeled is discussed in this section. 

The mass of refrigerant charge within the air conditioning system, 
actualm , was modeled as a linear function of the 

time since service was last performed, servicet , 
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  for       

2

service

rated service chrg

chrg

rated servic g

a t

e ch

c a

r

u lm

t

m

m t t
t

t t

 
 

 




   



 

 


 





  (11) 

where 
ratedm  is the rated amount of refrigerant in the system and 

chrgt  is the simulation time required for the system 

to leak 50% of the rated charge. In other words, 
chrgt  determines the refrigerant leakage rate from the system.  

Because the meta-model used to predict performance impacts of refrigerant charge faults cannot be verified below 

50% charge levels, the minimum refrigerant charge level in the simulation was constrained to 50%. After the time 

since last service becomes greater than the leakage time parameter, the refrigerant charge level is fixed at 50%. 

While this limit was implemented, due to significant reductions in cooling capacity – comfort violations occurred 

before charge was reduced to 50% in the simulations performed. After refrigerant service is performed, the 

refrigerant charge in the system is returned to the rated level of charge. 

Evaporator fouling was modeled by assuming dust and debris reduces evaporator air flow rate in the air conditioning 

system. As a function of the indoor fan run-time, 
IDFt , the evaporator air flow rate, ,ea actualV , was assumed to 

decrease linearly, 

 
, ,

,

, ,

,

3
1  for 0

5

2
  for       

5

ea normal IDF ea foul

ea actual

ea normal IDF

IDF

ea f

ea fo

u

ul

o l

t
V t t

t
V

V t t

 
 

  




     




  




  (12) 

where 
,ea foult  is the indoor fan runtime required to cause a 60% reduction in air flow rate.  When evaporator fouling 

service is performed in the simulation, the evaporator air flow rate is returned to the normal level.  To prevent 

equipment model inaccuracies, the minimum air flow rate was restricted to 40% of the normal air flow rate.  In the 

model, the indoor fan is assumed to run 100% of the time during occupied periods and when cooling is required 

during unoccupied periods. 

In a similar manner, condenser fouling was modeled as a function of outdoor fan run-time, 
ODFt , since the last 

service was performed.  When condenser fouling occurs, the air flow through the condenser, ,ca actualV   was reduced 

linearly according to, 

 
, ,

,

, ,

,

3
1  for 0

5

2
  for       

5

ca normal ODF ca foul

ca actual

ca normal ODF

ODF

ca f

ca fo

u

ul

o l

t
V t t

t
V

V t t

 
 

  




     




  




  (13) 

where ,ca foult  is the time required for the air flow through the condenser to reduce to 40% of the normal condenser 

air flow, ,ca normalV .  To prevent equipment model inaccuracies, the minimum condenser air flow rate was restricted to 

40% of the normal air flow rate.  Additionally, it was assumed that the outdoor fan operates only when the 

compressor operates, thus, the condenser fan run-time is equal to the run-time required for cooling. 

In order to simulate comfort disturbances caused by high head pressure cut-out and low suction pressure cut-out 

safeties, the air conditioning system in the system was required to operate within an acceptable envelope.  When the 

simulated discharge pressure was greater than 3890 kPa (550 psig), the cooling output of the system was assumed to 

be zero due to high-pressure limit cut-out.  High pressure cut-outs most frequently were the result of system 

operating during warm ambient conditions with significant condenser fouling levels.  When the suction pressure of 

the simulated system fell below 860 kPa (110 psig), no cooling was provided by the system since the low-pressure 
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limit cut-out was assumed to be activated.  The safeties were automatically reset during the next simulation time 

step, provided the system pressures fell within the operating envelope. 

3.3 Example Simulation Results 
The equipment fault impact meta-model, building load model, and fault evolution models were integrated into a 

simulation tool and used to determine example simulation results for a building located in Miami, Florida over a 

three-year period.  The equipment described by Table 2 was simulated in these examples.  The building loads were 

scaled such that the sensible cooling capacity of the equipment on the warmest day of the year was 20% greater than 

the maximum load.  Refrigerant charge leakage was modeled using Equation (11) with a leakage rate of 10% per 

year.  The evaporator and condenser fouling rates were modeled using Equations (12) and (13) and with equivalent 

fouling rates of 5% per 5000 hours of fan run-time.  For a system that is never serviced over the three-year 

simulation span, the trends in fault levels are shown in Figure 8.  The ideal sensible cooling capacity for a system 

without faults, as well as the actual sensible cooling capacity is also shown in Figure 8.  It is observed from the 

simulated results that the faults have a significant impact on cooling capacity over time when service is not 

performed. A comparison of the daily run-time requirement throughout the simulation is shown in Figure 9.  Due to 

reduced system capacity, the system with faults must run longer to meet the cooling load within the building.  The 

faults lead to reductions in COP and increases in energy consumption throughout the simulation, shown by Figure 9. 

 
Figure 8. Simulated fault levels and comparison of sensible cooling capacity between system 

without faults and system with refrigerant charge leakage, condenser fouling, and 

evaporator fouling evolving over time. 

For comparison, the same system was simulated again with maintenance performed annually.  Each January, the 

maintenance was simulated by adjusting the refrigerant charge level and evaporator fouling level to their normal 

levels, shown in Figure 10.  In comparison to the system that is not serviced, the cooling capacity impacts are 

noticeably less.  Additionally, Figure 11 shows that the system operates with a higher average COP and consumes 

less energy relative to the system that is not serviced. 
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Figure 9. Comparison between system run-time for system with and without faults over 

three years.  Also show is the relative fault impacts on COP and energy consumption. 

 
Figure 10. Comparison between sensible cooling capacity for system without faults and 

system that receives refrigerant charge and evaporator fouling service annually. 

4. CONCLUSIONS 

A neural network meta-model has been shown to generate accurate results that approximate the outputs of a detailed 

grey box fault impact model developed and validated by Cheung and Braun (2013a, 2013b). The outputs of this 

meta-model overcome one of the major limitations of the original model – the solution time required. One issue 

remains with both models – the amount of experimental data required to accurately tune the model is relatively high 

and the resulting model is not generalizable to all systems. While it is unlikely that manufacturers would be able to 

develop sufficient testing resources for developing neural network models of equipment performance to predict the 

impacts caused by different faults, it should be reiterated that these models are useful for the present work in 

evaluating alternative service policies (see Hjortland and Braun, 2018). In an ideal setting, it would be possible to 

use detailed physical models for analyzing the performance of fault impact models and performing parametric 

studies of different optimal service scheduling strategies. However, with the current performance limits of 

computing systems, it would not be possible to adequately analyze all the possible combinations of faults in a 

reasonable amount of time. These limitations could be overcome using the neural network models described in this 
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work. Using the extensive datasets collected from previous researchers, the detailed fault impact models developed 

by Cheung and Braun were possible (2013a, 2013b).  Rather than applying this model directly, the neural network 

models were designed to approximate the relationship between the inputs and outputs of the detailed inverse models 

with much greater speed. The methodology could be applied to any detailed physical model to approximate outputs 

using much less computing resources. These models can then be used to develop less complex models that 

manufacturers are able to implement. 

In conclusion, the neural network models developed are not intended to be viewed as a solution to be used to 

estimate fault impacts in practice. Rather, they will be used to assess simplified models and strategies for 

implementing condition-based maintenance. An example simplified building load model and fault evolution models 

have been described in this work. In a companion work, Hjortland and Braun use the models developed here to 

compare different maintenance strategies for commercial buildings (2018). 

 
Figure 11. When refrigerant charge and evaporator fouling service is performed annually, 

the run-time impacts of faults becomes relatively small.  The relative impacts on COP and 

energy consumption is reduced as well. 
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