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ABSTRACT 
 

A new correlation is presented to predict the heat transfer coefficients (HTCs) of pure refrigerants and refrigerant 

mixtures condensing within horizontal microfin tubes. This is accomplished by first putting together a 1084 point 

experimental database from 21 sources. The data includes CO2, R1234yf, R1234ze(E), R134a, R22, R407C, R404A, 

and R410A, 2.64–14.61 mm fin root diameter tubes, -25°C to 50°C saturation temperatures, vapor qualities from 0.02 

to 0.98, reduced pressures from 0.16 to 0.81, and heat and mass fluxes ranging from 1.79 to 98.1 kW/m2 and 49 to 

872 kg/m2.s respectively. The correlation was developed in two steps. One hundred fifteen unique dimensionless 

parameters pertinent to condensing flows in microfin tubes were first selected. Multi-variable regression analysis was 

then applied to identify the most significant variables influencing the flow condensation Nusselt number. First, the 

new correlation was evaluated and compared with six extant correlations on an overall basis. Comparisons were also 

conducted with the best among the extant correlations, Cavallini et al. (2009), for data sorted by refrigerant and fin 

root diameter. Overall evaluation for the entire database shows that the new correlation is significantly better than any 

of the extant correlations. In general, the new correlation shows reasonably good predictions, which are better than 

those of Cavallini et al. (2009), are for most parameter bins, with MAD values generally smaller than 20-25%. Based 

on the bin analysis, parameter ranges in which Cavallini et al. (2009) gives better predictions than the new correlation 

are also identified. Similarly, bins in which more data would be useful for further analysis are also identified. With 

these few exceptions in mind, the new correlation can be confidently used as a reasonably reliable predictive tool for 

a large variety of refrigerants under different operating conditions of practical interest. 

 

1. INTRODUCTION 
 

In 1977, Hitachi patented microfin tubes for the first time (Fujie et al., 1977). Such tubes are extensively used in 

HVAC&R condensing applications. The advantage these tubes offer is enhanced heat transfer coefficients (HTCs) 

with a marginal pressure drop penalty across the tube (Kim, 2016). A cross-sectional view of a typical microfin tube 

is shown in Figure 1. The important geometrical parameters are tube outer diameter do, fin root-to-root diameter dr, 

fin tip-to-tip diameter dt, fin height e, apex angle β, and helix angle γ. Apart from geometric parameters, the flow 

condensation HTC is affected by the type of manufacturing, operating conditions, refrigerant properties, and flow 

patterns. The possible variety of combinations of these factors makes the characterization of HTC for microfin 

condensation a challenging task. Many experimental studies have been conducted to investigate the effect of these 

factors. Each of these studies only covers a very small subset of all the physics involved in microfin condensation. For 

thermal-fluid engineers, it is important to determine the suitability of a given microfin tube for a particular application, 

and it is usually necessary to conduct experimental studies to characterize the tube’s performance. However, such 

studies are difficult and expensive. An accurate condensing HTC correlation can lead to significant savings in 

experimental effort, cost, and time, while enabling the selection of optimal heat exchangers and thermal systems. 

Various research groups have developed correlations to predict condensation HTCs and provided recommendations 

for and limitations of each correlation. This paper aims at developing a better and more accurate correlation using a 

new statistical approach as explained in (Mehendale, 2018). In section-2, the experimental data used for evaluating 

the existing correlations and developing the new correlation are discussed. Section 3 discusses the performance of the 
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Yu and Koyama (1998), Kedzierski and Goncalves (1999) (less and more accurate versions), Han and Lee (2005), 

Koyama and Yonemoto (2006) and Cavallini et al. (2009) correlations for the current database. The procedure used 

to develop the new correlation is briefly outlined in section 4. The performance of the new correlation and its 

comparison with Cavallini et al. (2009), the best of the extant correlations, is discussed in section 5. 

 

 
 

Figure 1. Cross-sectional view of typical microfin tube 

 

2. EXPERIMENTAL DATABASE FOR MICROFIN TUBE CONDENSATION 
 

Recently there has been a focus on using 3 to 5 mm diameter tubes to provide more compact heat transfer equipment 

(Mehendale, 2018). Low temperature applications like the rapid freezing and storage of frozen foods, as well as 

cascade refrigeration systems, require low mass flux in the condenser (Messineo, 2012), (Getu and Bansal, 2008). 

Again, due to more stringent environmental regulations, there has been an emphasis on developing and using low 

GWP refrigerants like R1234yf and R1234ze(E). To enhance the usefulness of the new correlation, points for these 

new refrigerants, low diameter tubes, and low mass fluxes have been included in the experimental database. The 

current database consists of 1084 data points extracted from 21 different sources. These points were collected using 

Webplot digitizer (Rohatgi, 2018). Since plot axes were carefully calibrated before collecting data, the error associated 

with data collection should be negligible. Table 1 gives a summary of the key geometric features of the tubes included 

in the current study. The corresponding refrigerants and operating conditions are provided in Table 2. The cooling 

fluid used, method of calculating the HTCs, uncertainty ranges for the HTCs, as well as the base areas for q, G, and h 

are summarized in Table 2. 

 

Table 1. Microfin tube geometries for refrigerant condensation experimental studies 

 

Source Data points dr (mm) nf e (mm)  (deg) β (deg) 

Colombo et al. (2012) 68 8.62 – 8.92 54 – 82 0.185 – 0.195 18 40 

Diani et al. (2017) 100 3.64 40 0.12 18 43 

Diani et al. (2018) 180 2.64 40 0.12 7 43 

Honda et al. (2005) 82 5.38 45 0.164 19 45 

Huang et al. (2010) 35 3.56 – 4.6 40 0.12 – 0.14 12 – 18 40 

Jang and Hrnjak (2004) 44 6.32 54 0.18 14 24 

Jung et al. (2004) 102 8.92 60 0.2 18 53 

Kim (2016) 20 4.6 40 0.15 18 40 

Kim and Shin (2005) 56 8.8 – 8.82 54 – 65 0.12 – 0.25 15.5 – 30 0 – 55 

Kim et al. (2009) 28 3.74 57 0.22 6 30 

Kim et al. (2018) 8 6.44 65 0.1 18 40 

Koyama et al. (2008) 116 5.8 50 0.23 15 30 

Lee et al. (2014) 15 6.50 65 0.12 15 40 

Li et al. (2012) 22 4.54 – 4.6 35 – 58 0.1 – 0.15 18 21 – 42 

Olivier et al. (2007) 15 8.94 60 0.209 18 40 

Vu et al. (2017) 77 6.61 65 0.12 17 67 

Wu et al. (2013) 14 6.06 – 6.56 58 – 65 0.06 – 0.15 0 – 30 13 – 125 

Wu et al. (2014) 30 4.54 – 8.98 35 – 70 0.1 – 0.16 18 21 – 42 

Bogart and Thors (1999) 24 8.87 60 0.203 18 59.53 

Kim et al. (2013) 12 6.49 – 6.58 55 – 60 0.15 – 0.2 10 – 18 18.3 – 59 

Eckels and Tesene (1999) 36 7.34 – 14.61 50 – 60 0.203 – 0.305 18 45 – 57 

 

An important consideration in analyzing the data is that different base areas have been used for reporting the heat flux, 

mass flux, and HTCs in the various experimental studies, as shown in Table 3. Additionally, each of the existing 
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correlations considered in this study requires a specific basic area for q, G, and h. Therefore, all the data points have 

been converted into the base areas required by the particular correlation using equations (1), (2) & (3): 

                            rexexp c rp or co rq ..A =q A   , cc,exexp corr ,corrpG A..A =G , rexexp cor c rp orh ..A =h A                           (1), (2), (3) 

 

Table 2. Operating conditions for refrigerant condensation experimental studies 

 
Source Refrigerant(s) Psat (kPa, 

absolute) 

q (W/m2) G (kg/m2s) X 

Colombo et al. (2012) R134a 887.5 5833 – 82071 88.80 – 436 0.15 – 0.8 

Diani et al. (2017) R1234yf 783.5 – 1018 20413 – 89289 100 – 1000 0.16 – 0.93 

Diani et al. (2018) R1234yf, R1234ze(E), 

R134a 

579.6 – 1017 11707 – 74025 300 – 1000 0.16 – 0.95 

Honda et al. (2005) R407C 1549 – 1726 1790– 42183 50 – 300 0.11 – 0.96 

Huang et al. (2010) R410A 2420 – 2424 4210 – 8420 200 – 500 0.2 – 0.82 

Jang and Hrnjak (2004) CO2 1683 – 2291 16304 – 91663 200 – 400 0.09 – 0.94 

Jung et al. (2004) R22, R134a, R407C, R410A 1017 – 2425 7800 100 – 300 0.05 – 0.93 

Kim (2016) R410A 2728 – 2732 4000 49.38 – 250 0.21 – 0.80 

Kim and Shin (2005) R22, R410A 1534 – 2425 11000 280 0.12 – 0.88 

Kim et al. (2009) CO2 1683 – 2291 8092 – 72190 200 – 800 0.1 – 0.91 

Kim et al. (2018) R410A 2048 – 2055 6000 80 – 200 0.3 – 0.8 

Koyama et al. (2008) CO2 5002 – 6003 6009 – 24054 200 – 350 0.04 – 0.98 

Lee et al. (2014) R410A 2727 – 2733 10000 100 – 400 0.15 – 0.9 

Li et al. (2012) R22 1813 6814 – 25023 206.51 – 

627.89 

0.45 

Olivier et al. (2007) R22, R134a, R407C 1017 – 1650 7575 – 15467 400 – 800 0.475 

Vu et al. (2017) R410A, R22 1856 – 2932 6000 – 12000 50 – 380 0.02 – 0.95 

Wu et al. (2013) R410A 2852 4102– 39858 98.54 – 573.80 0.45 

Wu et al. (2014) R410A 2852 6118– 31080 99.64 – 584.87 0.45 

Bogart and Thors (1999) R410A, R22 1557 – 2458 13398 – 57619 205 – 839 0.45 

Kim et al. (2013) R410A 2926 – 2931 10000 590 0.21 – 0.78 

Eckels andTesene (1999) R410A 2422 – 3070 9379 – 59217 120 – 608 0.12 – 0.8 

 

Table 3. HTC calculation method, method of cooling, uncertainties, and base areas for q, G and h 

*Assumed base area   ** Hydrofluoroether 7100 

 

Source Cooling 

fluid 

HTC calculation 

method 

Uncertainty in h Base area 

for q 

Base area 

for G 

Base area 

for h 

Colombo et al. (2012) Water Wall temperature ± 3 – 8.1 % Ar Ac,a Ar 

Diani et al. (2017) Water Wall temperature ± 2.1 – 7.3 % Ao* Ac,t At 

Diani et al. (2018) Water Wall temperature ± 2.1 – 7.3 % Ao Ac,t At 

Honda et al. (2005) Water Wall temperature ± 4.8 % Ar Ac,r Ar 

Huang et al. (2010) Water Wall temperature ± 12.5 % Aa Ac,a Aa 

Jang and Hrnjak (2004) HFE** Wall temperature ± 1.19 – 20.34 % Ami* Ac,mi* Ami 

Jung et al. (2004) Water Wall temperature ± 7 % Aa* Ac,a* Aa* 

Kim (2016) Water Wilson plot ± 11.1 – 13 % Ami Ac,mi* Ami 

Kim and Shin (2005) Water Wilson plot and 

wall temperature 

± 12.5 % Am Ac,m Am 

Kim et al. (2009) HFE** Wall temperature ± 6.3 – 25.6 % Ami* Ac,mi* Ami 

Kim et al. (2018) Water Wilson plot ± 17.30 % Ami* Ac,mi* Ami 

Koyama et al. (2008) Water Wall temperature Not reported Aa Ac,a* Aa 

Lee et al. (2014) Water Wilson plot ± 17.30 % Ami Ac,mi* Ami 

Li et al. (2012) Water Wall temperature ± 9.6 % Aa Ac,a Ar 

Olivier et al. (2007) Water Wilson plot ± 9 – 11.3 % Aa Ac,a Aa 

Vu et al. (2017) Water Wall temperature Not reported Aa* Ac,a* Aa* 

Wu et al. (2013) Water Wall temperature ± 15.40 % Aa Ac,a Ar 

Wu et al. (2014) Water Wall temperature ± 15.40 % Aa Ac,a Ar 

Bogart and Thors (1999) Water Wilson plot ± 10 % Ar* Ac,a* Ar 

Kim et al. (2013) Water Wilson plot  ± 17.3 % At Ac,a Ami 

Eckels andTesene (1999) Water Wall temperature ± 8 – 18 % Ar* Ac,a* Ar 
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3. PERFORMANCE OF EXISTING CORRELATIONS 
 

The six correlations selected for the current study are Yu and Koyama (1998), Kedzierski and Goncalves (1999) (less 

and more accurate versions), Han and Lee (2005), Koyama and Yonemoto (2006), and Cavallini et al. (2009). These 

correlations were selected based on the number of citations, which is a measure of their popularity. In this section, the 

experimental HTCs in the 1084 point database have been compared with the HTCs predicted by the above correlations. 

The statistical metrics used for this comparison are ξ30, Mean Deviation (MD), and Mean Absolute Deviation (MAD). 

ξ30 gives the percentage of points predicted by a given correlation within ± 30% of the experimental HTC. As seen 

from Table 3, leaving out the sources with unreported experimental uncertainties, the maximum uncertainty in the 

experimental HTC is 25.6%. For this reason, ξ30was considered a reasonable metric to assess correlation performance. 

These six selected correlations were used to predict the HTCs corresponding to the 1084 points in the database. The 

scatter plots comparing the experimental and predicted HTCs appear in Figures 2(a)-(f). It should be noted that Figure 

3(b) in section-5.1provides the legend used for Figures 2(a)-(f). 
 

 
(a)                                                                                         (b) 

 
                                             (c)                                                                                            (d) 

 
                                         (e)                                                                                              (f) 

Figure 2. Comparison of existing correlations with 1084 point experimental HTC database for studies summarized in 

Tables 1-4, (a) Yu and Koyama (1998), (b) Kedzierski and Goncalves (1999), less accurate, (c) Kedzierski and 

Goncalves (1999), more accurate, (d) Han and Lee (2005), (e) Koyama and Yonemoto (2006), and (f) Cavallini et al. 

(2009) 
 

Of the six existing correlations, Cavallini et al. (2009) performed the best with the lowest MAD of 28.5 % and the 

highest ξ30 value of 57.1%. Han and Lee (2005) and Koyama and Yonemoto (2006) were the next best performing 

correlations. Yu and Koyama (1998), Kedzierski and Goncalves (1999) (more accurate), Kedzierski and Goncalves 

(1999) (less accurate) follow in the decreasing order of performance. Due to these findings for the overall database, 

only Cavallini et al. (2009) has been further assessed and compared with the new correlation for various bins of data 

in section 5.2.  
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4. NEW FLOW CONDENSATION HTC CORRELATION  
 

A new correlation has been developed as part of this research to predict HTCs for pure refrigerants and refrigerant 

mixtures condensing within horizontal microfin tubes. The method of deriving the correlation is very similar to that 

developed in an earlier work on flow boiling (see Mehendale (2018) for the details), the only difference being that the 

dimensionless variables considered in the present work pertain to condensing, and not boiling, flows. Multi-variable 

regression analysis was applied to the entire 1084 point database to derive a correlation between the dependent variable 

(the condensing flow Nusselt number Nucond) and key dimensionless variables that significantly influence the physical 

processes involved in the condensation within the microfin tube. This new correlation is given below in its entirety in 

Table 4. 

 

Table 4. Equations and constants of the new correlation 

3 5 6 7 8 9 10 131 2 4 11 12 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C C C C C C C CC C C C C Ccond r

cond

l

h d
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k
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1

2 2cos

f

a
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 (17), 

(18) 

-12.38

0 0.955e ,C  1 0.6075,C  2 6.5254,C  3 -0.2201,C  4 -3.1063,C  5 0.2005,C  6 0.2290,C 

7 0.5184,C  8 -2.4510,C  9 0.6167,C  10 -0.8982,C 
11 -9.3991,C  12 0.5056,C  13 0.0447,C 

14 -0.3720C   

(19) – 

(33) 

 

The significant Π variables in Table 4 are now briefly discussed. NuGn, homo is the Nusselt number calculated using the 

Gnielinski (2013) correlation. It should be noted that the turbulent NuGn, homo is based on the homogeneous Reynolds 

numbers and Prandtl numbers, Rehomo and Prhomo, respectively. In the turbulent regime (Rehomo ≥ 4000), the Nusselt 

number is calculated using: 

  

 
turb homo homo

turb 2/3

turb homo

f /8 Re -1000 Pr
Nu =

1+12.7 f /8 Pr -1
                                                               (34) 

Where, the friction factor is calculated using:   
2

10 homo1 8log 1 5turbf . Re .


 
                                                       

(35) 

In the laminar regime, (Rehomo≤2300): Nulam = 3.66              (36) 

In the transition region (2300 <Rehomo<4000), NuGn, homo is linearly interpolated between 3.66 and Nuturb (Rehomo = 

4000). 
2 is the ratio of the optimum number of microfins (similar to that in Tsuchida et al., 1993) to maximize the 

condensing HTC to the actual number of microfins. 3 represents the dimensionless vapor velocity, given by equation 

(7). Xlv used in equation (7) is the variant of the Lockhart-Martinelli parameter and is given by:  

   
1

lv l v v l

x
X f / f /

x

 
     

                                                                    

(37) 

In equation (37), the Darcy liquid and vapor flow friction factors fl and fv have been calculated using the Churchill 

(1977) correlation for a smooth tube that spans the laminar, turbulent, and transition regimes. When calculating fv, Rev 

is to be used instead of Rel in the Churchill (1977) correlation. Dimensionless variables 
6 –

12  depend exclusively 

on fluid properties (and dr in some cases), and are well known from the two-phase flow literature. Further discussion 

of these variables can be found in Mehendale (2018).
13 depends on the heat flux as well as fluid properties, and was 
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shown to be important in flow boiling phenomena as well (Mehendale (2018)).  Finally, 
14 is also a purely geometric 

factor, representing the ratio of the actual surface area of the microfin tube to the surface area of a smooth tube with 

the same fin root diameter. 

 

5. COMPARISON OF THE NEW CORRELATION AND CAVALLINI et al. (2009)  
 

In this section, the predictions of the new correlation are presented from various perspectives, and compared with the 

performance of Cavallini et al. (2009), which, as shown in section 3, is significantly better compared to the other five 

extant correlations. First, the overall performance of the new correlation for the entire 1084 point database is discussed. 

After this, the performance of the new correlation is assessed by dividing the data by refrigerant, as well by various 

ranges of fin root diameter and mass flux.  

 

5.1 Performance of the new correlation for the entire database 
Figure 3(a) shows a scatter plot comparing the new correlation’s HTC predictions to the experimental HTCs for the 

entire database of 1084 points summarized in Tables 1–3. The legend for the sources of data in Figure 3(a) is given in 

Figure 3(b), and is identical to that for Figures 2(a)–(f). Referring to Figures 2(a)–(f) and Figure 3(a), the following 

conclusions can be drawn: 

a. For the entire database, the new correlation gives ξ30 which is 16.3% higher than that for the best extant 

correlation, Cavallini et al. (2009).  

b. For the entire database, the new correlation gives χ which is 7.4% lower than the corresponding value for the 

best extant correlation, Cavallini et al. (2009).  

Thus, the new correlation additionally predicts 177 out of the 1084 points within ± 30% error bands compared to the 

Cavallini et al. (2009) correlation. 

 

  
                                      (a)                          (b) 

Figure 3.(a) Scatter plot for new HTC correlation for the entire database (b) legend for figures 2 (a)–(f), and 3(a) 

 

5.2 Performance of the new correlation for various distributions of data 

Some valuable insights can be gained by studying microfin performance from several different perspectives, taken 

one at a time. Following the approach of Mehendale (2018), Figures 4(a), (b) show, for two important parameters 

(refrigerant and fin root diameter), bar chart distributions of ξ30 and the corresponding χ value for the new correlation 

and the Cavallini et al. (2009) correlation. The number of data points in each bin are also shown in Figures 4 (a), (b) 

above the respective groups of bars. Overall, the new correlation shows reasonably good predictions for most 

parameter bins, with MAD values generally smaller than 20–25%.  

From Figure 4(a) it can be seen that the new correlation gives more accurate predictions than Cavallini et al. (2009) 

for refrigerants R1234yf, R1234ze(E), R134a, R22, R407C, and CO2. For R410A, the two correlations have similar 

accuracy, while the Cavallini et al. (2009) correlation is significantly better for R404A. However, it should be pointed 

out that there are only 8 R404A points in the database, and the conclusions drawn based on such a small sample space 

might are likely not statistically significant. 

 



2500, Page 7 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

 
(a)             (b)   

Figure 4.Comparison of ξ30 and MAD values for the Cavallini et al. (2009) and the new correlation for data sorted 

by (a) refrigerant and (b) fin root diameter 

From Figure 4(b), it is seen that the new correlation performs better than Cavallini et al. (2009) for tubes in the 2-4, 

5-6, and 8-9 mm range of fin root diameters. On the other hand, Cavallini et al. (2009) gives better predictions for 

data in the 4-5 and 6-7 mm range. Cavallini et al. (2009) also performs better for 7-8 and 14-15 mm data. However, 

these data bins only contain 5 and 3 points respectively, and therefore comparisons for these ranges of tube diameter 

are likely not statistically meaningful. 

 

6. CONCLUSIONS AND FUTURE WORK 
 

A new correlation for predicting the heat transfer coefficients of pure refrigerants and refrigerant mixtures flow 

condensing in horizontal microfin tubes has been developed. First, a data bank consisting of 1084 experimental points 

collected from 21 sources was compiled as part of this research. The database covers the following range of 

parameters: 

1. Refrigerants: CO2, R1234yf, R1234ze(E), R134a, R22, R404A, R407C, and R410A  

2. Fin root diameter: 2.64–14.61 mm  

3. Saturation temperature: -25°C–50°C and reduced pressures: 0.16–0.81 

4. Mass flux: 49–872 kg/m2s. (Mass flux is based on the smooth tube flow area Ac,r).  

5. Heat flux: 1.79–98.1 kW/m2. (Heat flux is based on the fin root surface area, Ar). 

6. Vapor quality: 0.02–0.98. 

7. All-liquid Reynolds number: 2009–65582 and all-vapor Reynolds number: 14371–545989 

The main findings of the study are summarized below: 

i. For the entire database, the new correlation gives the best overall predictions with a MAD of 21.1%, and 

73.4% of the data falling within ± 30% error bands. Among the six extant correlations, Cavallini et al. (2009) 

was the best performing, with 57.1% of the points predicted within ± 30%, while it gave a MAD of 28.5%. 

ii. Apart from these overall assessments, the distribution of ξ30, χ, and number of data points for the new 

correlation and that for Cavallini et al. (2009) was examined relative to refrigerant, and for various bins of 

fin root diameter, dr. In general, the new correlation shows reasonably good predictions for most parameter 

bins, with MAD values generally smaller than 20-25%. However, the following exceptions are noteworthy: 

a. The Cavallini et al. (2009) correlation is significantly better for R404A. However, there are only eight 

R404A points in the database, and the conclusions drawn based on such a small sample space might are 

likely not statistically meaningful. More R404A experimental data would be desirable to improve the 

predictions of the new correlation.  

b. Cavallini et al. (2009) gives better predictions for data in the 4-5 and 6-7 mm range. Cavallini et al. 

(2009) also performs better for 7-8 and 14-15 mm data. However, these data bins only contain 5 and 3 

points respectively, and therefore these comparisons are likely not statistically meaningful for these two 

data bins. More data in the 7-8 and 14-15 mm ranges would be desirable to improve the predictions of 

the new correlation. 

Based on these comparative assessments, with the exception of the ranges listed under ii. (a), (b) above, the new 

correlation can be confidently used as a reliable tool to predict the microfin condensation HTCs of a large variety of 

refrigerants under different operating conditions of practical interest. 
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NOMENCLATURE 
 

A Heat transfer surface area  m2 

Ac Cross sectional area m2 

d Diameter  

e Fin height m 

G Mass flux kg m-2 s-1 

h Heat transfer coefficient W m-2 K-1 

hlv Latent heat of vaporization J kg-1 

k Thermal conductivity W m-1 K-1 

nf Number of microfins  

Nu Nusselt number  

Pred Reduced pressure 𝑃𝑠𝑎𝑡 𝑃𝑐⁄   

Pr Prandtl number µ𝐶𝑝 𝑘⁄   

q Heat flux W m-2 

Real All-liquid Reynolds number G dr / µl  

Reav All-vapor Reynolds number G dr / µv  

Rel Liquid Reynolds number (1 – x) G dr / µl  

Rev Vapor Reynolds number x Gdr / µl  

x Vapor quality  

∆T Tsat – Twall K 
1  Homogeneous specific volume  1 11v lx x      

m3kg-1 

∆x Change in quality  

Psat Saturation pressure Pa 

g Acceleration due to gravity m s-2 

∆  l - v kg m-3 

 

Subscripts 
  

Greek symbols 
a Actual  Microfin helix angle deg 

h Hydraulic  Microfin apex angle deg 

l Liquid  Density kg m-3 

r Fin root σ Surface tension N/m 

mi Melt down  µ Absolute viscosity kg m-1 s-1 

t Fin tip ξ30 Percentage of points within ±30% error bands % 

v Vapor  Dimensionless variables used to develop new 

correlation 

 

eq Equivalent χ Mean absolute deviation (MAD) % 

o Outside 

sat saturation 

exp experimental 

corr correlation 

basis, q Base area for q 

basis, h Base area for h 

basis, G Base cross sectional 

area for G 

lam Laminar 

turb Turbulent 
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