
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

2018

Experimental Evaluation for an Extremum Seeking
Control Strategy based on Input-output
Correlation with a Mini-split Air Conditioning
System
Zhongfan Zhao
University of Texas at Dallas, United States of America, zxz124130@utdallas.edu

Tim Salsbury
timothy.i.salsbury@jci.com

John M. House
Johnson Controls, Inc., john.m.house@jci.com

Yaoyu Li
University of Texas at Dallas, United States of America, yaoyu.li@utdallas.edu

Follow this and additional works at: https://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Zhao, Zhongfan; Salsbury, Tim; House, John M.; and Li, Yaoyu, "Experimental Evaluation for an Extremum Seeking Control Strategy
based on Input-output Correlation with a Mini-split Air Conditioning System" (2018). International Refrigeration and Air Conditioning
Conference. Paper 1993.
https://docs.lib.purdue.edu/iracc/1993

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220147295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F1993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F1993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 
 2501, Page 1 

 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

 
 

Experimental Evaluation for an Extremum Seeking Control Strategy based on Input-
output Correlation with a Mini-split Air Conditioning System 

 
Zhongfan Zhao1*, Timothy I. Salsbury2, John M. House3, Yaoyu Li4 

 
1The University of Texas at Dallas, Department of Electrical Engineering, 

Richardson, Texas 75080, USA  
E-mail: zhongfan.zhao@utdallas.edu 

 
2Johnson Controls, Inc., Building Efficiency Research Group, 

Milwaukee, WI 53201, USA 
E-mail: Timothy.I.Salsbury@jci.com 

 
3Johnson Controls, Inc., Building Efficiency Research Group, 

Milwaukee, WI 53201, USA 
E-mail: John.M.House@jci.com 

 
4The University of Texas at Dallas, Department of Mechanical Engineering, 

Richardson, Texas 75080, USA  
E-mail: yaoyu.li@utdallas.edu 

 
*Corresponding Author 

 
 
 

ABSTRACT 
 
Extremum Seeking Control (ESC) has emerged as a model-free real-time optimization framework, typically based 
on dither-demodulation driven gradient estimation. However, conventional ESC (CON-ESC) suffers from slow 
convergence (Moase et al. 2015). Salsbury et al. (2017) recently proposed an input-output correlation based ESC 
(IOC-ESC) strategy based on a statistical analysis. This study presents findings from an experimental evaluation for 
the IOC-ESC strategy with a ductless mini-split air conditioning system, compared with conventional ESC. This AC 
system has variable-capacity compressors and variable-speed evaporator and condenser fans. Both single-input and 
multi-input ESCs are tested in our study. The evaporator and condenser fan speeds are the manipulated variables and 
the total power consumption is used as feedback for all cases. This paper compares the performance of CON-ESC 
and IOC-ESC based on the test results. 
 

1. INTRODUCTION 
 
Extremum seeking control (ESC) is a form of adaptive control where the steady-state input-output characteristic is 
optimized, without requiring any explicit knowledge about this input-output characteristic other than that it exists 
and that it has an extremum (Tan et al. 2010). Conventional ESC (CON-ESC) uses periodic perturbation for which a 
time-scale separation is required between the fast transients of the system dynamics and the slow quasi steady-state 
characteristic during the extremum-seeking process. An undesirable consequence for such time-scale separation is 
slow convergence. Many efforts have been made to improve the convergence of ESC. Moase et al. (2010) 
introduced a Newton-based ESC, where the second-order derivative of the input-output map was estimated in a 
Newton-like continuous-time algorithm for the single-input case. Ghaffari et al. (2012) presented a Newton-based 
ESC algorithm for the multivariable case. A fast extremum-seeking approach for a class of Wiener-Hammerstein 
processes was proposed by Moase et al. (2012). Guay et al. (2017) introduced a proportional-integral ESC (PI-ESC) 
framework which minimizes the impact of time scale separation on the transient to the steady-state optimum. 

mailto:zhongfan.zhao@utdallas.edu
mailto:Timothy.I.Salsbury@jci.com
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Gelbert et al. (2012) proposed a method of using extended Kalman-filters (EKF) for gradient estimation which is 
accomplished using combination of high- and low-pass filters in conventional algorithm. Hunnekens et al. (2014) 
presented a novel type of ESC which uses the linear regression of input-output data to estimate the gradient of the 
performance map.  

Salsbury et al. (2017) developed an ESC algorithm based on input-output correlation (IOC-ESC), which is an 
extension to the linear-regression idea of Hunnekens et al. (2014). In this approach, the gradient feedback variable is 
replaced with a normalized correlation coefficient so that it is scale-independent, and a recursive estimation 
procedure based on sample statistics is used, making the algorithm easy to implement. This algorithm was tested 
with both a numerical model in Matlab/Simulink and a Dymola model of an air conditioning system. IOC-ESC is 
shown to converge faster than CON-ESC. 

The purpose of this paper is to evaluate the performance of IOC-ESC with experiments on a mini-split air-
conditioning system, benchmarked against the CON-ESC. The remainder of the paper is organized as follows. In 
Section 2, we review the IOC-ESC algorithm. The experimental setup is described in Section 3. The experimental 
study is presented in Section 4, and the performance of IOC-ESC is compared with that of the CON-ESC. Section 5 
concludes the paper with future work discussed.  
 

2. REVIEWS OF IOC-ESC METHOD  
 
The primary objective of this paper is to perform an experimental evaluation of the IOC-ESC method. The design of 
IOC-ESC algorithm is reviewed in this section. The IOC-ESC strategy proposed by Salsbury et al. (2017) is 
depicted in Fig. 1. For the single-input case, the static map of the plant with input u and output yp is assumed to be 
convex with an extremum point at (u*, yp*). The plant output is subject to a disturbance signal d and the measurable 
signal is y . With the assumption of (quasi) steady-state operation, we can ignore the plant dynamics and focus only 
on the static non-linearity which is defined as ( )y f u= . Consider u to be a time series batch of u values and y to be a 
batch of y values, then we can define the correlation coefficient between u and y as: 

( )

u y

Covρ
σ σ

=
u,y                                                                              (1) 

We can also define the slope of a linear regression between y and u as: 

2
( )ˆ

u

Covβ
σ

=
u,y                                                                             (2) 

thus: 
 

ˆ u

y

σρ β
σ

=                                                                                (3) 

 

 
Figure 1: Block diagram of IOC-ESC method 



 
 2501, Page 3 

 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

The slope of the linear regression line will approximate the gradient of ( )f u  and will thus have a minimum absolute 
value of zero when there is a local extremum in ( )f u . The correlation coefficient ρ∈[−1, 1] is estimated based on 
sample statistics which are calculated using exponentially-weighted moving averages (EWMAs) (Finch 2009). ku is 
an estimate of the mean of u  at the k-th step over window of length W with exponential forgetting factor, ky is an 
estimate of the mean of y over the exponentially forgetting window of length W, 2

,u ks and 2
,y ks are the variance 

estimates of u and y, covk is the covariance, and ˆkρ  is the estimated correlation coefficient. 

1
1

( )
min( , )

k k
k k

u uu u
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−
−

−
= +                                                                       (4) 
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2 2
, ,

covˆ k
k

u k y ks s
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The estimated correlation coefficient is used as the feedback signal in the ESC control loop, which is driven to zero 
by adjustment of the manipulated input. An integral controller is used in the IOC-ESC loop and the error signal for 
the controller is the negative value of the estimated correlation coefficient and the controller expression is: 

1
1 tanh ( )

ˆk k
p

tc c ρ
κτ

−
−

∆
= −                                                                 (11) 

 where ˆpτ is an estimate of the effective plant time constant,κ is a tuning factor and t∆  is the sampling interval. In 
order to produce consistent performance across different plants, kc should be mapped onto the range of the 
manipulated plant input: 

min max min' ( )k kc u c u u= + −                                                                 (12) 

where kc ′ is the scaled version of kc . maxu  and minu are the maximum and minimum level of u, respectively. 
There are two types of dither signals ( kv ) considered by Salsbury et al. (2017) for the IOC-ESC: sinusoidal and 

aperiodic stochastic signals. The sinusoidal perturbation is defined as: 
2( ) sin

p

v t a tπ
γτ

 
=   

 
                                                                        (13) 

a is the amplitude. γ > 1 is a design parameter. The aperiodic stochastic follows a colored noise as 
2

1 ( (0, ))k n k k k wv v w wφ σ−= + Ν                                                              (14) 

where expn
p

tφ
γτ

 ∆
=   

 
 and 

2
2 21 exp

2w
p

t aσ
γτ

  − ∆
= −      

. 

Three major design parameters can all be determined from a specification of the estimated plant time constant pτ : 

1. Window length W is related to the sample size of the EWMA statistics. Based on empirical tests across a range of 

different systems, a practical guideline for selecting W is 
ˆ

15
3

pW
t

τ
≤ ≤

∆
. 
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2. Parameter κ determines the aggressiveness of the feedback controller. A suggested value is 30. 
3. Parameter γ defines the frequency characteristic of the dither signal which is generally lower than the cut-off 

frequency of the plant dynamics. 

In the experimental study in Section 4, the tuning-factor parameter κ is denoted as TF, and pτ is denoted with TC. 
Amplitude a is normalized to norma  with respect to the range of the corresponding manipulated input.   
 

3. DESCRIPTION FOR EXPERIMENTAL FACILITY 
The experimental study is carried out with a 9000 BTU variable-speed mini-split ductless air conditioning (AC) 
system (Mitsubishi MSZ-GE09NA and MUYGE09NA) described in Xiao et al. (2014) and shown in Figure 2. The 
zone temperature is regulated to its setpoint using the manufacturer’s controller to manipulate the compressor speed. 
The data acquisition and control algorithms are implemented on a National Instruments CompactRIO platform. The 
CompactRIO reads the power consumption measurement from the power meter, as well as the measurements of the 
evaporator fan and condenser fan speed. This system was previously used for evaluation of single-input and multi-
variable ESC strategies by Xiao et al. (2014). This setup allows the development of supervisory controllers such as 
ESC that can optimize the evaporator and condenser fan speeds individually or simultaneously in real time. 

 
Figure 2: A simplified diagram of a mini-split AC system. There are four main components: 1) Compressor, 2) 

Electronic Expansion Valve (EEV), 3) Evaporator Fan, 4) Condenser Fan 
 
An Acuvim-CL-D-5A-P1 power meter is used for power measurement, which features a serial communication 
interface with the controls platform. The data can be effectively transmitted over long distances with good noise 
immunization. To control the condenser fan motor and evaporator fan motor, the circuits are customized with a 
speed sensor OMEGA HHT13 and digital output module NI9474. Figure 3 shows the connections and 
communications among different components. 

 
Figure 3: Experimental setup of the mini-split AC system 
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In our study, the manipulated inputs are condenser fan speed and evaporator fan speed. For IOC-ESC, the 
correlation coefficient between condenser fan speed (or evaporator fan speed) and total power consumption of the 
mini-split AC system are estimated, and then used as the feedback signal in the control loop. The ambient 
temperature is monitored by a temperature sensor located next to the outdoor unit, and the zone temperature is 
measured by the sensor installed inside the zone. Both the CON-ESC and IOC-ESC algorithms are implemented in 
LabVIEW. 
 

4. EXPERIMENTAL RESULTS 
4.1 System Calibration 
Before the ESC tests, the static input-output maps are calibrated first, i.e. the map of the condenser fan speed with 
respect to the total power (with the evaporator fan speed set as 900 rpm) and that of the evaporator fan speed with 
respect to the total power (with the condenser fan speed set as 400 rpm). The zone temperature setpoint is set at 18.9 
°C, and the ambient temperature varies from 29°C to 32°C. The optimal condenser fan speed is found to be around 
650 rpm, and the optimal evaporator fan speed is around 900 rpm. 
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Figure 4: Static map of total power as a function of condenser and evaporator fan speed 

 
4.2 Single-input IOC-ESC Testing 
The single-input IOC-ESC is tested with the condenser fan speed as the manipulated input, while the evaporator fan 
speed is fixed at 900 rpm. The maximum and minimum speeds of the condenser fan speed are 750 rpm and 250 rpm, 
respectively. The initial condenser fan speed is set at 250 rpm. At t = 500 sec, the IOC-ESC controller with the 
sinusoidal dither is activated. The parameters for the IOC-ESC controller are set as follows: sampling period ∆t = 1 
sec, norma  =0.1 a = 50 rpm) and. Experimental results of five cases are shown in Figure 5. The trajectories of zone 
temperature, ambient temperature, measured power consumption and condenser fan speed are plotted. The ESC 
input and output are normalized in the following manner: the total power is normalized by the steady-state average 
total power, and the condenser fan speed is normalized by the maximum condenser fan speed. The zone temperature 
setpoint is 19.4°C for all cases. However, the tuning parameter settings are different. For IOC-ESC#1, IOC-ESC#2 
and IOC-ESC#3, TC =100 s and the dither frequency is set as 0.05/TC (0.0005 Hz), 0.1/TC (0.001 Hz) and 0.2/TC 
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(0.002 Hz), respectively. TF is 0.5 in these three cases. For IOC-ESC#4 and IOC-ESC#5, TC =500 s and the dither 
frequency is 0.25/TC (0.0025Hz) and TF is 0.05.  

 
Figure 5. Testing results for single-input IOC-ESC: normalized input/output trajectories, zone and ambient 

temperatures. 

The IOC-ESC results demonstrate the effect of two tuning parameters, i.e. the dither frequency and the tuning factor. 
IOC-ESC#1, IOC-ESC#4 and IOC-ESC#5 have the same dither frequency but different tuning factors, while IOC-
ESC#1, IOC-ESC#2 and IOC-ESC#3 have the same tuning factor but different dither frequencies. The results reveal 
that the IOC-ESC performance deviates significantly from the optimum under relatively high dither frequencies, e.g. 
IOC-ESC#2 and IOC-ESC#3. Smaller tuning factor helps increase the convergence speed, as shown in IOC-ESC#4 
and IOC-ESC#5.  

Next, the CON-ESC performance is considered. The parameters are chosen based on the design guidelines provided 
in Xiao et al. (2014). Figure 6 shows the experimental results for two trials of CON-ESC. The initial condenser fan 
speed is 300 rpm for CON-ESC#1 and 250 rpm for CON-ESC#2, the dither frequency is 0.001Hz, the dither 
amplitude is 40 rpm and the integrator gain for the control variable is 0.002.The ESC starts at 500 sec.  Based on the 
normalized power, the settling time of IOC-ESC ranges from 300 to 600 seconds, while the settling time of CON-
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ESC ranges from 900 to 1200 seconds. Overall, the IOC-ESC converges faster than the CON-ESC based on the 
relatively rough estimation of setting time due to the measurement noise.  
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Figure 6. Testing results of single-input CON-ESC: normalized input/output trajectories, zone and ambient 

temperatures. 
4.3 Multi-input IOC-ESC Testing 
For the multi-input scenario, the manipulated inputs are condenser fan speed and evaporator fan speed. Salsbury et 
al. (2017) presented the IOC-ESC for the single-input case. This study extends the framework to a multivariable 
scenario, which is achieved by running two IOC-ESC control loops in parallel. The testing results of this two-input 
IOC-ESC are plotted in Figure 7. The testing results of a two-input CON-ESC using the same system are also shown 
in Figure 7 for comparison. 
 
For both IOC-ESC and CON-ESC, the initial condenser fan speed and evaporator speed are set at 300 rpm and 750 
rpm, respectively. The evaporator fan speed ranges from 750 rpm to 1350 rpm. The tuning parameters of two-input 
IOC-ESC are configured similar as the single-input cases. The sampling period is set to be 1 sec, TC is 500 s, and 
dither frequency is 0.25/TC (0.0025Hz) for both the evaporator and condenser fan speed channels. Other tuning 
parameters are different in the two channels. For the condenser fan, the amplitude nora = 0.1 ( a  = 50 rpm) and TF is 
0.05. For the evaporator fan, the amplitude nora = 0.06 ( a  = 36 rpm) and the TF is 0.08. For CON-ESC, the 
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evaporator loop dither frequency is 0.00059 Hz, dither amplitude is 30 rpm and the integrator gain for the control 
variable is 0.003. While the condenser loop dither frequency is 0.00071 Hz, dither amplitude is 30 rpm and the 
integrator is 0.002.The zone temperature setpoint is 20°C. The CON-ESC starts at 900 sec. and converges in 1300 
sec according to the normalized power. The start time of IOC-ESC is also 900 sec. while the convergence time is 
900 sec.  Because the ambient condition of these two tests are quite different, the convergent condenser fan speed 
and evaporator speed varies. 

0 1000 2000 3000 4000 5000
18

20

22

Zo
ne

 T
em

p.
 

(D
eg

.C
)

IOC-ESC
CON-ESC
Zone temp.

 setpoint

0 1000 2000 3000 4000 5000
20

30

40

A
m

bi
en

t T
em

p.

 (D
eg

.C
)

0 1000 2000 3000 4000 5000
0.5

1

1.5

N
or

m
al

iz
ed

To
ta

l P
ow

er

0 1000 2000 3000 4000 5000
0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

Ev
ap

or
at

or
 

Fa
n 

Sp
ee

d

0 1000 2000 3000 4000 5000

Time (sec.)

0

0.5

1

N
or

m
al

iz
ed

C
on

de
ns

er
 

Fa
n 

Sp
ee

d

 
Figure 7. . Testing results of two-input IOC-ESC I/O trajectories and two-input CON-ESC  

 
 

In summary, for single-input case, both of ICO-ESC and CON-ESC controllers can effectively reduce the power 
consumption of the mini-split system without sacrificing zone temperature regulation. However, the settling time of 
the CON-ESC is longer than the IOC-ESC for test cases being compared. Similarly, for two-input case, both IOC-
ESC and CON-ESC can optimize the condenser fan speed and evaporator fan speed operating point practically, 
while the IOC-ESC converges faster. 

5. CONCLUSIONS AND DISCUSSION 

In this paper, an IOC-ESC is evaluated with an experimental study on a mini-split ductless AC system. Both single-
input and multi-input scenarios are tested. The experimental results are compared with those of a conventional ESC. 
Both CON-ESC and IOC-ESC can optimize the condenser fan speed and evaporator fan speed for energy efficient 
operation, while the IOC-ESC converges faster and has fewer tuning parameters. The future work includes the 
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comparisons of more ESC algorithms and further discussion of parameter tuning required for different ESC 
algorithms. 
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