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ABSTRACT 
 

This work focuses on the pros and cons of using hot-wall condensers in household refrigerators, based on both 

numerical and experimental approaches. To this end, seven refrigerators were manufactured with distinct designs of 

hot-wall condensers. The design parameters were the following: (i) adhesive tape (aluminum or polyethylene), (ii) 

tube outer diameter (4 or 4.76 m), (iii) total length (10 or 11.5 m) and (iv) lay-out. An in-house mathematical model 

for hot-wall condensers was added to an in-house system simulation tool to predict the refrigerators performance. 

Experiments were conducted in a climate-controlled test chamber. It was found that the model predictions are close 

to the energy consumption measurements with deviations of the order of ±10%. It has also been found that the heat 

load is increased by 7.7% when a hot-wall condenser is added to the system. An extensive sensitivity analysis was 

also carried out, showing that the hot-wall condenser and thus the refrigerator performance is very much affected by 

the outer sheet thermal conductivity and thickness, but mainly by the tape thermal conductivity. The contact area 

between tape and outer sheet also plays a significant role in the heat transfer, meaning that a cheaper polymeric tape 

might be used if enough contact area is provided. Additionally, it has been found that there is a tube pitch which 

minimizes the energy consumption in despite of the condenser geometry. 

 

KEYWORDS: hot-wall condenser, household refrigerator, heat exchanger, energy consumption 

 

1. INTRODUCTION 
 

Household refrigerators are one of the most important appliances in a residence. In Brazil, refrigerators are responsible 

for almost 23% of the energy consumption in the domestic sector (EPE, 2013). This means that an improvement on 

refrigeration systems can significantly reduce the energy consumption of the country. Therefore, industries are 

constantly being pushed to invest in research and to improve their products. 

 

A refrigeration system is composed by four main components: compressor, condenser, evaporator and expansion 

device. The condenser is the component responsible for the heat rejection to the external environment. There are 

several types of condenser geometries applied to domestic refrigerators, depending on economic, social and 

thermodynamic factors. Currently, hot-wall condensers (also known as skin condensers) are being widely used around 

the world, especially in the Asian market, mainly due to aesthetic and cost reasons. In this type of heat exchanger, the 

condenser tubes are attached to the inner surface of the refrigerator outer steel sheet by an adhesive tape (see Figure 

1), so that the external walls act as fins and enhance the heat transfer to the ambient. One of the main disadvantages 

of hot-wall condensers is that the increased wall temperature can lead to a higher thermal load over the refrigerated 

compartments. Also, the manufacturing process is a key variable on the heat exchanger performance since the tubes 

must be well attached to the refrigerator wall in order to avoid any increase in the thermal resistance. 

 

A few reports were found on this topic in the open literature. Rebora and Tagliafico (1998) carried out a numerical 

finite element analysis on the simultaneous use of skin condensers and skin evaporators in chest freezers and proposed 

some design recommendations. However, the only experimental validation concerned the temperature profile inside 

the insulation foam. Also, it was found that the evaporator behavior is independent of that of the condenser. Bansal 

and Chin (2002) developed and validated a simulation model for hot-wall condensers used in domestic refrigerators. 

The authors disregarded the effect of the aluminum adhesive tape and considered that all the heat was rejected through 
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the contact between the tube and the outer sheet, which was modeled as a fin. While recognizing that part of the heat 

is released to the refrigerated compartments, the mathematical model neglected any heat infiltration. The model 

predictions were compared to a set of in-house experimental data and deviations within a ±10% error band were 

observed. Gupta and Gopal (2008) carried out some modifications in the model proposed by Bansal and Chin (2002), 

including the effect of the heat transfer through the aluminum tape, which was treated as a fin. The model was validated 

against Bansal and Chin (2002) experimental data and a better agreement was observed, with deviations within ±2% 

error band. Colombo et al. (2016) developed a mathematical model that took into account both the heat transfer to the 

ambient and to the refrigerated compartments. The model predictions for the condenser heat transfer rate were 

compared to a set of in-house experimental data with deviations within a ±2% error band. The authors pointed out 

that, for a specific refrigerator tested on specific test conditions, on average 68% of the condenser heat released rate 

is transferred to the ambient while the remaining 32% is transferred to the refrigerated compartments.  

 

It can be seen that in all the previous works only one hot-wall condenser geometry was tested to validate the 

mathematical models. Also, the models were only used to predict the condenser heat transfer rate and not the system 

energy consumption. In this context, the aim of the present study was to extend the analysis of hot-wall condensers 

applied to household refrigeration systems. To this end, seven refrigerator samples of the same model were 

manufactured with distinct condenser designs. Furthermore, an in-house mathematical model for hot-wall condensers 

(Colombo et al., 2016) was coupled to an in-house system simulation tool (Hermes et al., 2009) to predict the samples 

energy consumption. Finally, a parametric analysis was carried out in order to evaluate the pros and cons of using hot-

wall condensers in household refrigerators. 

 

2. EXPERIMENTAL WORK 
 

Seven bottom-mount refrigerators of the same model were manufactured with distinct designs of hot-wall condensers. 

The refrigeration system is equipped with a single speed reciprocating compressor charged with isobutane. The 

evaporator is a finned-tube type and the capillary tube is placed in contact with the suction line in a counter-flow 

arrangement. Several condensers geometries were manufactured varying the following parameters: (i) adhesive tape 

material (aluminum or polyethylene), (ii) tube outer diameter (4 or 4.76 mm), (iii) condenser total length (10 or 11.5 

m) and (iv) lay-out. The geometric parameters of each condenser are summarized in Table 1. 

 

A sketch of the condensers circuitry is presented in Figure 2. They are all identical in the top wall and have 5 passes 

of tubes symmetrically distributed in the side walls. The maximum and minimum height of each condenser (Hmax and 

Hmin, respectively) vary to match the desired condenser positioning and its total length. The refrigerated compartments 

are divided by the freezer height, Hfz, which is equal to 0.76 m. Products 5 to 7 have Hmin higher than Hfz, which means 

that the condenser is positioned at the fresh-food region only. This is an attempt to reduce the heat infiltration rate 

since the temperature gradient is lower between the condenser tubes and the fresh-food compartment. On the other 

hand, Hmin is lower than Hfz in products 1 to 4, so that the condenser is distributed in both compartments. The 

refrigerator general dimensions and the components thermal properties are listed in Table 2. 

 

Table 1: Geometric parameters of the condensers Table 2: Refrigerators general dimensions 

Type 
Adhesive 

tape 

Tube 

diameter 

mm 

lc Hmax Hmin 

m m m 

1 Al 4.00 10.0 1.13 0.53 

2 Pe 4.76 10.0 1.13 0.53 

3 Pe 4.00 11.5 1.24 0.42 

4 Al 4.76 11.5 1.24 0.42 

5 Pe 4.00 10.0 1.58 0.98 

6 Al 4.00 11.5 1.66 0.85 

7 Pe 4.76 11.5 1.66 0.85 
 

Outer  

dimensions 

Height 1.8 m 

Depth 0.8 m 

Width 0.7 m 

Outer  

sheet 

properties 

Material Steel 

Thickness 0.5 mm 

Conductivity 50 W/(m·K) 

Thermal 

insulation 

properties 

Material Polyurethane 

FF thickness 55 mm 

FZ thickness 73 mm 

Conductivity 0.0214 W/(m·K) 
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Figure 1: Condenser discretization 

 

Figure 2: Sketch of the 

condensers circuitry 

 

The experimental work consisted of manufacturing, instrumenting and testing the refrigerators. All samples were 

submitted to cyclic energy consumption tests. Due to inherent difficulties in carrying out time-consuming standardized 

ISO 62552 (2015) energy consumption tests (e.g. tylose packages, +24h operation), a simplified methodology was 

adopted. The refrigerators were placed inside a climatic controlled chamber kept at 32°C and turned on in a thermostat-

guided cyclic operation. The system overall energy consumption was calculated as the time-integrated system power 

during 5h of cyclic operation, always considering complete on-off cycles. The refrigerated compartment temperatures 

were given by the arithmetic average of the readings of 3 thermocouples placed at the geometric center of each 

compartment shelf. Each refrigerator was submitted to two energy consumption tests, one keeping the temperature of 

the compartments above and another below reference values, which are -18°C for the freezer compartment and 5°C 

for the fresh-food compartment.  

 

3. MATHEMATICAL MODELLING 
 

The numerical approach consisted in the implementation of the in-house steady state simulation tool introduced by 

Hermes et al. (2009), in which the refrigeration system is divided into the following sub-models: compressor, 

evaporator, condenser and capillary tube-suction line heat exchanger. A few modifications needed to be made in the 

condenser model and also on the thermal load calculation. The condenser was simulated by another in-house 

mathematical model for hot-wall condensers (Colombo et al., 2016), which is capable of predicting the condenser heat 

transfer rate by taking into account the rates exchanged with the external ambient and the refrigerated compartments. 

The modelling approach consists in the condenser discretization into small elemental units of length ∆z. As shown in 

Figure 1, each element consists of a portion of the condenser tube, the outer sheet, the adhesive tape and the thermal 

insulation. 

 

The heat transfer rate on the elemental unit is calculated based on the temperature profile in the adhesive tape and the 

outer sheet, which were both treated as independent one-dimensional fins (see Figure 3). Both the outer sheet and 

adhesive tape fins were divided into sections as they exchange heat with different mediums along their extension 

(Figure 4). The first section of the adhesive tape is the region glued to the condenser tube. Due to the inherent 

variability of the manufacturing process, it was assumed that the tape is attached to half of the tube perimeter and 

follows a 90º angle with the outer sheet. Thus, section II is the region in contact with the air cavity and section III 

represents the region attached to the outer sheet. Section I of the outer sheet represents the contact area with the 

condenser tube. It was assumed a very small contact of 1 mm. Section II is the region in contact with the air cavity. 
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Section III represents the region in contact with the aluminum tape and section IV the region in contact with the 

thermal insulation.  

 

  
Figure 3: Independent one-dimensional fin Figure 4: Independent one-dimensional fin 

 

The heat transfer rate on each section of the fins is calculated through energy balances and by determining the 

respective temperature profile. Then, the heat released to the external ambient, Qex, is given by summing the heat 

transfer rates on the external surface of the outer sheet (bottom parts of sections I, II, III and IV). On the other hand, 

heat released to the refrigerated compartments, Qin, is given by summing the upper parts of the adhesive tape of 

sections I, II and III and the upper part of the outer sheet section IV. 

 

Calculating the thermal load over the refrigerated compartments is mandatory since it directly affects the compressor 

run-time ratio. As already mentioned, the thermal load model presented by Hermes et al. (2009) needed to be modified 

due to the presence of the hot-wall condensers. In order to account for the thermal load from the environment, the 

modelling strategy consisted in pondering the original global thermal conductance of each compartment (UAff and 

UAfz) in the area, discounting the area of the outer sheet that contains condenser tubes. Therefore, new conductances, 

UAff,nc and UAfz,nc,  were found for the refrigerator walls without condenser tubes. Thus, the total thermal load was 

given by summing the portions from the environment, the condenser, Qin, and also the evaporator fan, Qfan: 

 

 𝑄𝑡 = 𝑈𝐴𝑓𝑓,𝑛𝑐(𝑇𝑒𝑥 − 𝑇𝑓𝑓) + 𝑈𝐴𝑓𝑧,𝑛𝑐(𝑇𝑒𝑥 − 𝑇𝑓𝑧) + 𝑄𝑖𝑛 + 𝑄𝑓𝑎𝑛  (1) 

 

where the parameters UAff,nc and UAfz,nc are calculated by: 

 

 𝑈𝐴𝑓𝑓,𝑛𝑐 = 𝑈𝐴𝑓𝑓 − 𝑘𝑝𝑢𝑙𝑐,𝑓𝑓𝑤(𝑡𝑝𝑢,𝑓𝑓)
−1

 (2) 

 𝑈𝐴𝑓𝑧,𝑛𝑐 = 𝑈𝐴𝑓𝑧 − 𝑘𝑝𝑢𝑙𝑐,𝑓𝑧𝑤(𝑡𝑝𝑢,𝑓𝑧)
−1

 (3) 

 

being lc,ff and lc,fz respectively the length of condenser tubes in the fresh-food and freezer compartments, w the 

elemental unit width in the condenser discretization, kpu the polyurethane thermal conductivity and tpu,ff and tpu,fz 

respectively the thermal insulation thickness in the fresh-food and freezer compartments. 

 

Assuming that both thermal load (Qt) and cooling capacity (Qe) are constant along a periodic on-off cycle, the 

compressor run-time ratio can be calculated as follows: 

 

 𝑅𝑇𝑅 ≡  𝑡𝑜𝑛(𝑡𝑜𝑛+𝑡𝑜𝑓𝑓)−1 ≈ 𝑄𝑡(𝑄𝑒)−1 (4) 

 

Finally, the energy consumption (EC), in kWh/month, can be calculated through the following equation: 

 

 𝐸𝐶 ≈ 0.72(𝑊𝑘 + 𝑊𝑓𝑎𝑛) (5) 

 

where Wk is the compressor power and the constant 0.72 is a conversion factor from W to kWh/month. 
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4. RESULTS 
 

The test results and the input data for the model are shown in Table 3. The model validation is shown in the next 

section, as well as a parametric analysis exploring the effect of the condenser design parameters on the refrigerator 

energy consumption. 

 

Table 3: Experimental results 

Test 

# 
Sample 

Tex  

[°C] 

Tff  

[°C] 

Tfz  

[°C] 

RTR  

[-] 

EC 

[kWh/month] 

1 1 31.3 1.8 -19.8 65.7 55.00 

2 1 31.4 6.1 -16.3 53.4 46.38 

3 2 30.9 2.3 -19.1 51.5 48.84 

4 2 31.2 5.6 -15.4 44.1 44.16 

5 3 32.7 1.5 -18.6 55.1 51.05 

6 3 32.9 5.0 -14.8 43.3 43.19 

7 4 32.2 2.6 -18.4 51.7 49.89 

8 4 32.4 6.1 -14.4 41.7 43.51 

9 5 31.8 1.9 -19.5 58.7 52.89 

10 5 31.9 5.5 -16.7 51.4 47.93 

11 6 33.5 1.6 -19.3 57.0 53.05 

12 6 32.9 5.9 -15.4 44.7 45.56 

13 7 32.6 1.3 -19.0 60.1 58.95 

14 7 32.8 4.3 -15.1 48.1 51.96 

 

4.1 Model validation 
Figures 5 and 6 compare the experimental results to the model predictions. A reasonable agreement was observed and 

the model was capable of predicting the refrigerator energy consumption and runtime ratio within a ±10% error band 

for all tests. In general, the model proved to be robust and was capable of capturing the experimental trends related to 

variations on the condensers design, such as the influence of the type of adhesive tape and the tubes positioning. The 

effect of the operational parameters, such as the compartments internal temperatures, could also be captured by the 

mathematical model. 

 

  
Figure 5: Validation of the energy consumption Figure 6: Validation of the run-time ratio 

 

4.2 Mathematical analysis 
As previously mentioned, the model is capable of calculating the thermal load over the refrigerator considering the 

contribution of the hot-wall condenser. A comparison was made between the thermal load calculated by the model for 

the refrigerator with hot-wall condensers and a hypothetic refrigerator, without heated walls. In this hypothetical case, 

the thermal load would be only due to the temperature difference between the external environment and the 

refrigerated compartments. This is the common case for the majority of refrigerators mounted with other condenser 

types, such as wire-on-tube or microchannel. The results are shown in Table 4. It can be seen that the presence of the 

hot-wall condenser increased, on average, 7.7% the thermal load over the refrigerator. This was expected since the 

heated walls increase the potential for heat infiltration. It must be pointed out here that usually the choice for skin 
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condensers is made based on aesthetics and cost reasons, so, in order to overcome the increased thermal load, the 

thermal insulation should be improved or the condensing temperature reduced. 

 

Table 4: Thermal load comparison 

Test 

# 

�̇�𝑡,𝐻𝑊

.[W] 

�̇�𝑡,ℎ𝑦𝑝 .  

[W] 

Increase 

[%] 

1 77.7 73.0 6.4 

2 70.7 65.7 7.7 

3 76.4 71.2 7.3 

4 71.0 65.5 8.5 

5 80.3 75.3 6.7 

6 72.6 67.2 8.1 

7 78.1 72.8 7.2 

8 72.1 66.5 8.4 

9 79.0 73.8 7.1 

10 73.3 67.7 8.2 

11 81.3 76.1 6.8 

12 74.0 68.3 8.3 

13 81.8 76.0 7.6 

14 76.1 69.9 8.9 

 

Next, a sensitivity analysis was carried out in order to evaluate the impact of some of the condenser design parameters 

on the refrigerator energy consumption. To this end, the geometry of sample 1 was selected, and the following 

operating parameters were considered: ambient temperature of 32°C, fresh-food temperature of 5°C, freezer 

temperature of -18°C and superheating degree of 2°C at the evaporator outlet.  

 

The refrigerator outer sheet is responsible for diffusing the heat released by the condenser tubes, mainly to the external 

environment. Therefore, it’s expected that its design parameters are important to the system performance. Figure 7 

shows the influence of the outer sheet thermal conductivity in the refrigerator energy consumption. It can be verified 

that its thermal conductivity is crucial. The original steel outer sheet proved to be suitable for the application (k = 50 

W/m·K). Materials with a better thermal conductivity could improve the system performance (200 W/m·K reduces 

the energy consumption in 2.5%), but would be much more expensive. On the other hand, polymeric materials shall 

not be used in the outer sheet of hot-wall condensers, because their lower thermal conductivity strongly reduce the 

condenser heat transfer rate, which leads to an increase in the condensing pressure and consequently in system energy 

consumption. 

 

  
Figure 7: Energy consumption as a function of the 

outer sheet thermal conductivity 

Figure 8: Energy consumption as a function of the 

outer sheet thickness 

 

In line with the previous analysis, Figure 8 shows the influence of the outer sheet thickness. As the outer sheet behaves 

as a fin, an increase in its thickness leads to an increase in the fin cross-sectional area, which enhances the heat 

diffusion process. The original thickness of the outer sheet is 0.5 mm, which is also suitable for this kind of application. 

Thicker plates of 2 mm, for instance, could reduce up to 2.5% the energy consumption, but would be much more 
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expensive and would also complicate the manufacturing process. Thinner plates could be cheaper, however, they can 

strongly increase the energy consumption and may also hinder the refrigerator physical structure. 

 

Bansal and Chin (2002) stated that almost 70% of the heat dissipated by the outer sheet is related to radiation. 

Therefore, the outer sheet emissivity is very important to the system performance. As can be seen in Figure 9, the 

energy consumption can increase by up to 13.2% if the emissivity drops from 0.95 to 0.2. However, this should not 

be a big concern since the materials commonly used in the outer sheet have an emissivity higher than 0.8. 

 

The adhesive tape also plays an important role on the heat transfer process. Figure 10 shows the system energy 

consumption as a function of the adhesive tape thermal conductivity, considering three different contact areas (1 mm, 

2 mm and 3 mm). It can be noted that for a small contact area between the condenser tube and the outer sheet (1 mm), 

the use of a polyethylene (k = 0.5 W/m·K) instead of an aluminum tape (k = 170 W/m·K) would increase the energy 

consumption by 8%. On the other hand, for a larger contact area (3 mm), the increase in energy consumption is only 

of 2%. The heat released from the refrigerant must be dissipated through the adhesive tape and/or the contact area 

between tube and outer sheet. Therefore, there is a tradeoff between the adhesive tape thermal conductivity and the 

contact area. It is possible then to manufacture a variety of condenser designs with the same performance by combining 

these parameters. As the condenser tube is commonly circular (i.e very small contact area), aluminum tapes are 

generally used to provide a better performance. However, the aluminum tape could be replaced by a cheaper polymeric 

tape as long as an alternative to increase the contact area is used, such as a D-profile tube. Furthermore, the tubes must 

be well attached to the outer sheet in order to avoid an increase in the contact thermal resistance. 

 

  
Figure 9: Energy consumption as a function of the 

outer sheet emissivity 

Figure 10: Energy consumption as a function of the 

tape thermal conductivity 

 

Regarding the outer sheet, it is important to use the largest possible area to attach the condenser tubes, as long as the 

surfaces are metallic (higher thermal conductivity). However, it is important to optimize the thickness of the thermal 

insulation of the refrigerated compartments in order to avoid an increase in the thermal load. It must be considered 

that the thermal gradient is higher in the freezer compartment, and therefore the thermal insulation must be properly 

compensated. Keeping this in mind, another analysis was carried out to evaluate this effect. Two different condenser 

designs were simulated, case A and B, as shown in Figures 11 and 12. Both have similar design characteristics (same 

tube type, adhesive tape and tube length), but in configuration A the condenser was distributed in both fresh-food and 

freezer compartments, while in configuration B the condenser was positioned only in the fresh-food (lower thermal 

gradient). Then, the thickness of the thermal insulation of the freezer compartment in configuration A was varied, 

always keeping the thickness of the fresh-food walls constant and equal to 54 mm. As can be seen in Figure 13, the 

lower the thickness of the freezer insulation, the higher the refrigerator energy consumption due to the increased 

thermal load. It can also be noted that there is a point in which configurations A and B present nearly the same energy 

consumption. This point is close to 73 mm, which is the original thickness of the freezer insulation. Therefore, for this 

specific case, the walls insulations were already reasonably balanced and the condenser tubes could be positioned 

anywhere in the refrigerator outer sheet without penalizing the system overall energy consumption. However, if the 

insulation was thinner than this, the positioning of the condenser tubes in the region of the freezer compartment would 

decrease the system performance due to the increased thermal load. 
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Figure 11: Configuration A Figure 12: Configuration B 

 

An additional analysis was also put forward with configuration A (see Figure 11) in order to check the effect of the 

tube pitch on the system performance. The simulation results are shown in Figure 14. It can be seen that there is a tube 

pitch that minimizes the energy consumption. For this specific geometry, the minimum energy consumption is 

achieved when the number of tube passes is close to 5, which is the original value. Initially, the increase in the number 

of tubes causes an increase in the average temperature of the outer sheet, resulting in a higher heat transfer rate to the 

external environment and a better performance of the system. However, as the number of tube passes further increases, 

the tubes become very close to each other, which gradually reduces the fin width, responsible for the heat diffusion. 

Consequently, the condensing temperature starts to increase leading to a higher energy consumption. 

 

  
Figure 13: Energy consumption as a function of the 

thickness of the freezer insulation 

Figure 14: Energy consumption as a function of the 

number of tube passes 

 

5. CONCLUSIONS 
 

This work addressed an investigation on the pros and cons of the use of hot-wall condensers in household refrigerators, 

based on both numerical and experimental approaches. Seven different configurations of hot-wall condensers were 

manufactured in a specific household refrigerator model. Cyclic energy consumption tests were carried out and the 

results were compared to the mathematical model predictions. A good agreement was observed, with deviations within 

a ±10% error band. It was noted that the outer sheet thermal conductivity, thickness and emissivity are very important 
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to the refrigerator performance, and that polymeric materials shall not be used. It was verified that the adhesive tape 

plays a very important role on the condenser performance, and that a trade-off must be considered when selecting the 

tape. Either the tape must have a good thermal conductivity, such as aluminum tapes, or the contact area between the 

condenser tube and the outer sheet must be increased in order to select a cheaper adhesive tape with a lower thermal 

conductivity, such as polyethylene. It was noticed that the largest area of the outer sheet shall be used to place the 

condenser tubes, however the thickness of the thermal insulation of both refrigerated compartments must be properly 

balanced in order to avoid an increase in the thermal load. It also could be seen that for a specific condenser geometry, 

there is a tube pitch that minimizes the system energy consumption. Finally, it must be pointed out that these analyses 

are always product-dependent. Thus, any specific new refrigerator mounted with a hot-wall condenser must be 

simulated, and the mathematical models proposed herein become a valuable tool for this task. Despite the relevance 

of the proposed recommendations, the manufacturing feasibility and costs must be carefully analyzed before any 

implementation. 

 

NOMENCLATURE 
 

Δz elemental unit length  (m) 

H height  (m) 

k thermal conductivity  (W/(m·K)) 

l length  (m) 

Q heat transfer rate  (W) 

RTR compressor run-time ratio  (-) 

t thickness, time  (m, s)   

T temperature  (°C) 

UA global thermal conductance  (W/K) 

w elemental unit width  (m) 

W power  (W) 

 

Subscripts   

c condenser 

e evaporator 

ex external 

fan evaporator fan 

ff fresh-food compartment 

fz freezer compartment 

HW hot-wall 

hyp hypothetical 

in internal 

k compressor 

max maximum 

min minimum 

nc with no condenser tubes 

os outer sheet 

PU polyurethane 

r refrigerant 

t tape, thermal load 
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