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ABSTRACT 
 

In this work, the frost growth was detected using capacitive sensing approach. An interdigital electrode was 

designed and fabricated based on the fringing effect. Frost growth under different wall temperature, air temperature 

was conducted and also observed using high speed camera. The results show that the reading of the capacitive 

sensing can represent the frost thickness in a resolution of 0.00069mm- 0.0013 mm depending on different frost 

property. The capacitive sensing can follow the frost thickness changing trend very well and the capacitance 

changing rate can reflect different frost growth stage. The frost thickness is higher in a lower wall surface 

temperature, and the effect of air temperature on the frost thickness is depending on the frost growth stage. This 

work has a great potential for understanding the frost growth mechanism and defrost control.   

 

1. INTRODUCTION 
 

Frost buildup on surfaces could be an undesired situation in many applications (Guo et al., 2008; Zhi et al., 2015; 

Da Silva et al., 2017; Hwang and Cho, 2014; Zhang et al., 2018; Jia et al., 2018). In refrigeration and heat pump 

system, typically, frost grows on the fin surface of the heat exchanger due to different environmental/operational 

conditions. On one hand, it can block the air flow and increase air-side pressure drop; on the other hand, it can 

increase the thermal resistance and deteriorate heat transfer performance. As a result, frost buildup can significantly 

reduce the system’s COP. It is very common that systems encountered frost buildup have to run the defrost cycle, 

which relies on either the pre-build models or real time detection or both.    

The frost growth is a complex dynamic process and usually characterized by the frost parameters, of which the frost 

thickness and density (porosity) are important parameters.  The frost thickness and density (porosity) vary under 

different working conditions, including different surrounding air humidity, temperature, different air flow rate, 

different wall temperature, surface wettability, et. al.; they also vary with time as the frost layer builds up, because 

the frost/air interface temperature and local air humidity keep changing with time due to the variation of the thermal 

conductivity along the frost layer.  There are a lot of modeling work to predict frost growth (Hermes et al., 2009; 

Kim et al., 2008; Yang et al, 2006), and most models have one or several parameters heavily relying on 

experimental measurement, even for pure numerical work, they usually start with some initial assumptions and 

verify later with experimental results. Therefore, dynamically detecting frost growth is very important for both 

effective defrost control and precise frost modelling.   

There are a lot of approaches to detect frost growth. CCD images and image processing is the most commonly used 

method (Lee and Lee, 2018; Liu and Kulacki, 2018; Kim et al., 2015; Wu et al., 2016), which provides numerous 

information for understanding frost growth and could precisely measure frost thickness given a high resolution CCD 

selected for the observation. However, it is difficult to give a complete spatial detection along the surface due to the 

position of camera and light source, for the same reason, some measurement might be intrusive to air flow. And it is 

also challenging for measurement in limited space or poor light source in real application.  Other methods have been 
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proposed as well. Ostin and Andersson (1991) measured the frost growth under forced airflow using micrometer 

with a resolution of 0.005mm, in which the micrometer they used must touch the frost and the device might affect 

the airflow over the surface and induced errors. Qu et al. (2006) measured the frost thickness variation using a laser 

displacement gauge with an uncertainty of 0.01mm. Query (1989) reported a fiber optic sensor that could be used to 

detecting accumulated frost by sensing the light transmission amount on cold surface. Although these frost detection 

methods provide a high accuracy measurement, they are still far from the practical applications for defrost control, 

due to the large device cost and strict space requirement. Capacitive sensing method can be compact, effective and 

flexible, especially in limited space or extreme environment. The built-in interdigital electrodes (IDEs) for 

capacitive sensing can be very sensitive with a high resolution and its performance can be optimized by its geometry 

and substrate design (Igreja et al., 2004), which has been adopted in a lot of applications, such as real-time ice 

detection (Zhi et al., 2015), water level measurement (Chetpattananondh et al., 2014) chemical sensor (Kitsara et al., 

2007; Abu-Abed et al., 2008), humidity sensor (Fürjes et al., 2003), food inspection (Mohd Syaifudin et al., 2012). 

However, frost, as a mixture of ice and air, has a very low dielectric constant of about 1~53 depending on frost 

porosity. The frost thickness, porosity and interfacial morphology vary both spatially and temporally under different 

conditions, which makes the detection of frost using capacitance sensing much more difficult compared with 

detections of object with constant properties or high dielectric constant.  

In this work, a pair of gold deposited IDEs is designed to capture frost growth under different conditions. CCD 

imaging is also used to quantify frost thickness for calibration and comparison. The capacitance sensor can measure 

frost thickness with high sensitivity and precisely reflect the variation of frost properties during different frost 

growth stage. This work has a great potential in defrost control and important for frost mechanism understanding. 

 

2. EXPERIMENTAL APPARATUS AND PROCEDURE 
 

2.1 Experimental setup 
The experiments were conducted in a wind tunnel, as shown in Figure 1, in which the environmental condition (the 

air temperature, velocity and relative humidity) can be controlled at a desired value. The air temperature is 

controlled by a cooling coil connected to an isothermal bath and a heater as well, within a range of  ~5°C to ~ 45°C. 

The maximum air velocity is about 12.0 m/s and can be adjusted by the blower speed. The relative humidity is 

controlled by a humidifier located in the front of the blower, with an uncertainty of ± 5%. The air under the desired 

condition flows through the mixer, honey comb and contraction area in the wind tunnel and get the temperature 

distribution measured, and then it passes the test section labeled as 9 in Figure 1, with the temperature, pressure drop 

and velocity measured, and flows back to the starting section. 

 
Fig 1: Schematic diagram of experiment setup: 1. heater; 2. cooling coil; 3. cold mist humidifier; 4. blower; 5. 

mixer; 6. honey comb; 7. screen; 8. contraction; 9. test section; 10. orifice plate; 11. D & D/2 pressure taps 
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Frost grows on the aluminum surface of a cold plate which is located in 9 in Figure 1. The surface temperature is 

controlled to a range of -20°C to ~ 30°C through a chiller/heater connected to it. 4 thermocouples were embedded in 

channels below the surface with a distance to the surface of 2.5 mm, to measure the surface temperature of the cold 

plate. The capacitance sensor is located on one side of the cold plate and the CCD camera is on the other side, as 

shown in Figure 2. The dynamics of the frost growth is captured by the CCD camera with a sample rate of 24 fps. 

The frost thickness can be then measured based on image processing programmed in Matlab2012. 

 

 
Fig 2: Test section setup 

 

2.2 Capacitance sensor- the principle and fabrication 
The capacitance sensor, shown in Figure 3, includes an analog-to-digital converter, a PCB connector, and the 

electrodes. The analog-to-digital converter (FDC2214 from Texas Instruments) can simultaneously convert analog 

signals for 4 channels with a resolution of 0.0001pF and sample rate of 40 to 80Hz depending on the environmental 

noise. The PCB connector is fabricated with the designed electrical circuit to connect the electrodes to the digital 

converter, which has the converter input connected on one surface and the electrodes output attached on the other 

surface. The printed electric conducting wire connects them through the two surfaces of the connector. 

 The electrodes (interdigital electrodes) are the core part for sensing the capacitance changing during the frost 

growth, which includes 3 layers, as shown in Figure 4. A thin layer of gold (0.5µm in thickness) was deposited on 

the silicon wafer substrate by metal lift-off method in a pair of comb pattern, as shown in Figure 5. On the top of the 

electrodes layer, 1µm SiO2 was deposited by chemical vapor deposition approach for protection and insulation. 

The comb pattern of the electrodes has finger width (f) of 150µm, gaps distance (g) of 50µm, and total height of 15 

mm, which makes the total metallization ratio η=f/(f+g) of 75%, and effective measuring height for the target of 15 

mm. The electrical potential of the pair electrodes is at a fixed value ((+V or 0 respectively), and the capacitance 

reading changes from the initial value with air to a different value as the target appears close by due to the fringing 

effect. The variation of the capacitance reading is related to the target height, the target dielectric constant for a fixed 

structure electrodes. And the resolution of the sensor used in this work for frost thickness is 0.000694mm/0.001pF ~ 

0.0013mm/0.001pF depending on the frost porosity.  

 

            
Figure 4. schematic view of the 

electrode of capacitive frost sensor 

 

Figure 5. layout of interdigital 

electrodes 

 

Figure 3. packaged capacitive 

sensor with electrodes 
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2.3 Uncertainty and test matrix of the experiment 

The uncertainty and range in the reading of all measured parameters are listed in Table 1. 

Table 1: Range and uncertainty of the measured parameters 

 

Measured parameters/unit Range uncertainty 

Temperature/°C -60℃ - 100℃ ±0.1 

Air velocity/ ms-1 0 - 12m/s ±0.0073% of full scale 

Relative humidity 30% - 95% ±1% 

Pressure drop 0 - 5 in. W.C. ±0.14% of full scale 

Capacitance 0 - 250nF ±0.001 

Frost thickness/mm 0 - 8mm ±0.014mm 

 

The frost growth on flat aluminum surface was observed under different conditions, including air velocity, air 

temperature and flat surface temperature, both images and capacitance reading from the sensor are captured and the 

test matrix is shown in Table 2. 

Table 2: Test matrix 

 

Run Tw (℃) Ta(℃) ua (m/s) RH(%) 

1 -8.0 11.5 2.943 55 

2 -5.6 11.3 2.987 57 

3 -3.0 11.6 3.010 57 

4 -7.9 13.5 2.977 56 

5 -8.0 16.1 3.033 55 

 

3. RESULTS AND DISCUSSION 
 

3.1 Frost growth under different surface temperature  
The measured frost thickness (δ, dash line), capacitance reading (C, solid line) under different wall temperature (-8.0 

℃, -5.5℃ & -3.0 ℃) is shown in Figure 6. Air was controlled at the constant temperature (11.3℃), relative 

humidity (54% ~ 57%), and velocity (3.0 m/s). Around 220 minutes of frost growth was recorded, and it is divided 

into 4 different timing slots as shown in (a)-(d) in Figure 6.  It can be found that the frost thickness increases with 

time as frost growing, from 0 at the beginning to around 2mm at the end of the observation. The frost thickness is 

larger at a low cold surface temperature compared with that at a high cold wall temperature, which has been well 

demonstrated after 15 minutes of the frost growth.  The capacitance reading is well tracing the frost thickness 

changing with time, as well as its changing with cold wall temperature, which keeps increasing with time as frost 

growing, and is larger at the lower wall temperature. The range of capacitance changing during the whole frost 

growth period is around 1.500 pf, 2.200 pf, and 2.500 pf for surface temperature of -3.0℃, -5.5 ℃ and -8.0 ℃, 

respectively, which can provide enough sensitivity to detect detailed frost growth given a resolution of 0.001pf for 

the capacitance reading.   

The frost thickness measured by image processing keeps slowly increasing with time at a relative constant rate 

during the whole recorded frost growth period except for a turn around 6-12 minutes from the beginning under 

different surface temperature, as shown in Figure 6 (a). However, the capacitance reading from the sensor has the 

increasing rate fluctuated with time. Take the capacitance reading of frost growth at the surface temperature of -8.0 

℃as an example, the capacitance reading increases in a different rate with time, at the beginning (0-3 minutes) in a 

very small rate, and then a big rate (around 3-9 minutes), after that the increasing rate drops down again (9-22 

minutes roughly). The increasing is in a higher rate again from around 22-37 minutes, and it turns afterwards at 

around 55 minutes, 72 minutes, 77 minute, 90 minutes and so on. Referring to the surface images, it can be found 

that the fluctuation of the capacitance increasing rate reflects the condensation, solidification, crystal growth, 

melting on the frost-air interface and maturing growth, as shown in Figure 7(a), droplets coalesce at 4.326min, 

8.123min and 8.832min, then solidification happens at 6.734min, 10.232min and 10.453min for Tw = -8℃, Tw = -

5.5℃ and Tw = -3℃, respectively, which is close to the prediction by capacitance reading. The second fast increase 

in capacitance reading appears at 32.5min, 54.8min and 47.5min for Tw = -8℃, Tw = -5.5℃ and Tw = -3℃, 

respectively, and images in Figure 7(b) show that large crystal branches melt down between 34.142~36.324min; 
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57.634~60.432min and 47.754~48.242min, correspondingly. Meanwhile, frost density increases, since the melting 

water from crystals diffuses in the porous space of frost structure, and the frost thermal conductivity increases as 

well. This combined effect causes the fluctuation of capacitance reading during the crystals growth period. Though 

some crystal branches fall down, newly formed branches keep sticking out, this dynamic process can be expressed in 

capacitance reading as a steady but gradually slow down increase, since the crystals have the tendency to melt as the 

frost surface temperature increasing, and the frost growth rate is also slowing down. The last changing rate peak 

happens at 85.3min and 91.7min for Tw = -5.5℃ and Tw = -3℃, respectively, as shown in Figure 6(c). For wall 

temperature at -8.0℃, there are two peaks observed, at 73.2min and 95.2min. Frost images in Figure 2(c) show that 

frost surface roughness is much smaller than early growth period, and less crystal branches can be recognized, at 

89.323min, 92.531min and 98.243min for Tw = -8, Tw = -5.5℃ and Tw = -3℃, as Figure 7(c) shows. The last peak 

in capacitance increasing rate can be explained by the condensed water vapor staying on the frost surface instead of 

forming a crystal branch, due to the high frost surface temperature. After that, all condensed water drains to the base 

and forms an ice layer. Frost thickness further increase can be viewed as the developing of ice layer, which forms a 

new dynamic equilibrium. No fluctuation in capacitance reading was noticed in this mature growth period, as Figure 

6(d) shows. 

 

 
Fig 6: The frost thickness and the capacitance reading at wall temperature of -8.0℃, -5.5℃ and -3.0℃ within 

220min growth. 

 

3.2 Frost growth at different Air temperature 
Figure 8 shows frost growth at Ta = 11.3℃, Ta = 13.5℃ and Ta = 16.0℃, while other parameters, wall temperature 

(-8.0℃), relative humidity (55%~57%) and air velocity (3m/s) were kept the same. It can be noted that three stages 

of frost growth, droplets condensation/solidification, crystals growth /melting and frost mature growth, are 

represented as the capacitance changing rate. By comparing the time of these changing, it indicates that the frost 

mature growth starts at 25min at Ta = 16℃, while for Ta = 13.5℃ and Ta = 11.3℃, mature growth happens at 50min 
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and 72.5min, respectively. When increasing the airside temperature, however, frost thickness growth varies with 

time. Within 110min after condensation starts, frost at Ta = 16℃ grows thickest among three cases. It can be 

explained by airside vapor concentration gradient in different airside temperature. When the airside temperature 

arises, the humidity ratio must increase to keep the same relative humidity, which leads to a higher airside vapor 

concentration, so does the driving force of vapor diffusion. Therefore, more frost tends to form in higher airside 

temperature condition. Meanwhile, increasing in airside temperature also results in melting of crystals, as frost 

thickness increasing, growth rate will decrease, which explains that eventually at 220min, thickest frost layer formed 

at Ta =11.3℃ case. 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig 7: CCD images of frost formation at Tw = -8.0℃, Tw = -5.5℃ and Tw = -3.0℃. (a) the droplets condensation – 

solidification; (b) the crystals melting down; (c) frost mature growth. 

 

TW = -3℃ 

t=0min 
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TW = -5.5℃ 

t=0min 

 

 

 

 

 

TW = -5.5℃ 

t=10.232min 

 

TW = -8℃ 

t=0min 

 

 

 

 

 

TW = -8℃ 

t=6.734min 

 

TW = -3℃ 

t=47.754min 

 

 

 

 

 

 

 

 

 

 

 

 

TW = -3℃ 

t=48.242min 

 

TW = -5.5℃ 

t=57.634min 

 

 

 

 

 

 

 

 

 

 

TW = -5.5℃ 

t=60.432min 

 

TW = -8℃ 

t=34.142min 

 

 

 

 

 

 

 

 

 

 

TW = -8℃ 

t=36.324min 

 

TW = -3℃ 

t=98.243m

in 

TW = -5.5℃ 

t=92.531min 

TW = -8℃ 

t=89.323m

in 



 

 2272, Page 7 
 

17th International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018 

 
Fig 8: The frost thickness, capacitance reading at air temperature of 11.3℃, 13.5℃ and 16℃ 

 

4. CONCLUSIONS 
 

A real-time frost growth detection was conducted using capacitive sensing approach in this work. An interdigital 

electrode was designed and fabricated based on the fringing effect. The frost growth was also observed using high 

speed CCD and image processing to measure the frost thickness for comparison. Effect of different cold surface 

temperature, air temperature on frost growth were compared and discussed based on both approach. The results 

show that:  

The capacitive sensing measurement for the frost thickness can reach to a resolution of 0.00069mm- 0.0013 

(depending on the frost porosity).  

Both the capacitive sensing approach and the image processing observes the frost thickness increasing with time, 

however, the capacitive sensing can reflect the frost growth variation during different growth stage and provide 

more information of frost growth. 

The frost thickness is higher in a lower wall surface temperature, and the effect of air temperature on the frost 

thickness is depending on the frost growth stage, it takes a shorter time for the frost to reach the mature growth stage 

under a high air temperature compared that under the low air temperature.     
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