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ABSTRACT 
 

This paper describes the design and performance evaluation of a transcritical R744 (CO2) multi-temperature, mobile 

refrigerated container system. The efficient and widespread use of R744 in both large-scale supermarket refrigeration 

systems and small-scale glass-door merchandisers has been shown through numerous studies and field demonstrations 

in recent years, indicating the suitability of this refrigerant to almost any refrigeration application. However, the 

extreme operating conditions of this refrigeration application intended for use in ambient temperatures up to 57°C 

while still maintaining a frozen temperature of -20°C make using R744 as a refrigerant a unique challenge here. The 

targeted use of the refrigerated container is for military applications, but a successfully developed system will show 

that R744 is a suitable refrigerant for a range of container applications. In order to achieve reasonable efficiency at 

the extreme conditions of this application, several improvements have been implemented: Improved gas cooler 

performance with a microchannel heat exchanger, internal heat exchange, and expansion work recovery with an 

ejector. The benefits of each of these improvements are discussed, and preliminary results are presented to show the 

realistic performance enhancement that can be achieved with each of these improvements. The results presented in 

this paper show that while the very high ambient temperature of this system presents a unique challenge, it also allows 

for very significant COP improvement using each of the above improvements methods. 

 

 

1. INTRODUCTION 
 

The use of CO2 (R744) for refrigeration systems has been of interest for many years. Much attention has been given, 

particularly in recent years, to supermarket systems using transcritical CO2 as a working fluid, with several of these 

systems employing parallel ejectors for expansion work recovery (Hafner et al., 2014). However, the application of 

CO2 ejector technology to smaller-scale systems, such as refrigerated container systems, presents unique challenges. 

Of particular interest in this study is the development of a refrigerated container system using CO2 for military 

applications. 

 

The use of CO2 as a refrigerant for military applications has been of interest for several years, with one example of 

previous development focusing on the conversion of an R134a environmental control unit (ECU) to a CO2 system, as 

described in detail by Elbel and Hrnjak (2010). The authors of this study showed that in comparison to the existing 

R134a ECU, the CO2 ECU resulted in approximately 30 % higher COP and improved weight and volume compactness 

(per unit cooling) of approximately 60 % and 40 %, respectively; the air temperatures in this study were 52°C for the 

ambient air and 32°C for the indoor air. They also showed that in comparison to a commercially available R410A 

ECU, the CO2 ECU system provided a 20 % improvement in COP (based on manufacturer data). The results of this 

study showed the very promising potential that CO2 has to increase both efficiency and compactness of air 

conditioning and refrigeration systems in military applications compared to current units.  
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The objective of this study is to design and determine the performance of a 20 ft. ISO container with refrigeration 

system capable of providing cooling to both refrigerated and frozen compartments (multi-temperature container), 

meaning that a system with two separate evaporators would be most suitable. The refrigerated (medium-temperature, 

MT) compartment would occupy 3/4 of the length of container, while the frozen compartment would occupy 1/4 of 

the length of the container. The refrigeration unit is permanently mounted to an extension on the end of the container. 

Figure 1 shows an image of the existing unit with R404A and a diagram of the different compartments. The targeted 

design conditions and specifications of the CO2 container system are listed in Table 1. 

 

(a)

      

(b)

  
 

Figure 1: Refrigerated container unit used by U.S. Army: (a) image of existing unit and (b) diagram of 

different compartments. 

 

Table 1: Container design conditions and specifications. 

 

Parameter Value Parameter Value 

Ambient temperature 57.2°C (135°F) COP ≥ 1.0 

Refrigerated (MT) 

temperature 
3.3°C (38°F) Capacity 

30 % reserve capacity at 

design condition  

Frozen (LT) temperature 20.5°C (-5°F) 
Refrigeration unit 

dimensions 

1.8 m (W) x 0.6 m (D) x 

0.6 m (H) 

MT capacity 3.2 kW Weight < 540 kg (< 1200 lbs.) 

LT capacity 2.5 kW   

 

The very high ambient temperature specified for this system (57°C) presents a significant challenge in terms of system 

design and performance, as transcritical CO2 systems are known to suffer from significantly reduced capacity and 

efficiency at even moderately high ambient temperatures. Commercial, single-temperature, CO2 refrigerated transport 

containers have recently been developed using a two-stage compressor with vapor injection at intermediate pressure 

for performance improvement at increased ambient temperature (Carrier, 2015). In comparison to the commercially 

available unit, the unit developed in this study will be multi-temperature and will be further enhanced in several ways 

to ensure sufficient capacity and efficiency even at very high ambient temperature. In order to achieve a COP of at 

least 1.0 at the extreme conditions targeted in this study, a number of improvements will need to be made to the 

standard transcritical CO2 cycle. The improvements investigated in this project are the use of a microchannel gas 

cooler instead of a round-tube-plate-fin gas cooler, use of an internal heat exchanger (IHX), and use of an ejector for 

expansion work recovery. This paper presents a discussion of the challenges of using CO2 as a refrigerant in this 

application and the results of a numerical study to predict the performance of a multi-temperature CO2 container unit, 

identifying the improvement that is offered by using a microchannel gas cooler, adding an IHX to the cycle, and 

integrating an ejector into the system. 

 

 

 

 

+38oF-5oF

Refrigeration 
System
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2. SYSTEM DESIGN 
 

A schematic and a pressure-specific enthalpy diagram of the intended cycle architecture (including IHX and ejector) 

are shown in Figure 2. Details and potential challenges of implementing this system are discussed below. 

 

(a)

  
 

(b)

  
 

Figure 2: Multi-temperature CO2 container (a) system schematic and (b) pressure-specific enthalpy diagram. 
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2.1 Compressor and Intercooler 
Due to the very large pressure ratio between the LT evaporator (approximately 16 bar) and the gas cooler (130 bar 

maximum allowable pressure), multiple stages of compression must be employed. At a minimum a subcritical booster 

compressor must be used to increase pressure from the LT evaporator to the MT evaporator. Additionally, multiple 

stages of compression between the MT evaporator and gas cooler (with intercooling in between the stages) would 

further enhance performance. However, compressors capable of operating between MT evaporator pressure 

(approximately 30 bar) and gas cooler pressure with a single stage of compressor are commercially available. In order 

to achieve reasonable efficiency, this study will target the use of a two-stage compressor with an intercooler, though 

it remains to be seen if a suitable multi-stage compressor is commercially available that can meet the operating 

requirements of this application (capacity and pressure range). Given the size and weight restrictions of the 

refrigeration unit, it would not be practical to use two separate transcritical compressors in place of the two-stage 

transcritical compressor.  

 

2.2 Heat Exchangers 
Two options have been considered for the type of heat exchangers to be used: Microchannel (MC) heat exchangers 

and round-tube-plate-fin (RTPF) heat exchangers. Examples of these two heat exchanger types are shown in Figure 

3. MC heat exchangers offer advantages over the more conventional RTPF heat exchangers because they are made of 

light-weight, low-cost aluminum and they offer improved air-side heat transfer performance due to greater contact 

between the fin and the tube. However, due to the parallel tube configuration in the inlet header, distribution of two-

phase refrigerant among the parallel tubes can be an issue (not a problem for the gas cooler). Additionally, MC heat 

exchangers are more susceptible to fouling and can be more susceptible to frosting, both of which would be of concern 

for evaporators. MC heat exchangers would be an easy choice for the gas cooler, but due to the disadvantages 

mentioned above, round-tube heat exchangers will likely be used for the evaporators. The numerical analysis below 

will investigate the effect of using MC gas cooler and evaporators compared to RTPF gas cooler and evaporators, 

identifying the improvements in both heat exchanger and cycle performance.  

 

(a)

      

(b)

  
 

Figure 3: Examples of (a) microchannel (MC) heat exchanger and (b) round-tube-plate-fin (RTPF) heat 

exchanger. 

 

2.3 Ejector 
An ejector is a simple, low-cost device that uses the expansion of the high-pressure fluid from the gas cooler (or IHX) 

to increase the pressure of the low-pressure fluid from the evaporator; the ejector replaces high-pressure control valve 

in conventional, direct expansion CO2 transcritical systems. Ejectors are most beneficial at high-ambient temperature 

conditions. As noted above, ejectors have been used in several recent CO2 supermarket installations, mainly in Europe. 

Elbel and Lawrence (2016) provide further information on recent ejector research and its application to supermarket 

and other systems. When implementing ejectors in CO2 supermarket systems, it is common to use several ejectors in 

parallel, each of which can be controlled on or off independently in order to efficiently control high-side pressure and 

flow rate for different system conditions and capacities. However, for a smaller systems such as a refrigerated 

container, installing a set of 4 to 6 parallel ejectors with a complex control strategy is not practical. Thus, a different 

type of ejector, namely an adjustable ejector in which an adjustable position needle is used to control the effective size 

of the ejector nozzle throat, will be used. Adjustable ejectors are known to offer lower efficiency than fixed ejectors 
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due to additional losses associated with the needle; however, this seems to be the most reasonable method for 

controlling high-side pressure with an ejector for a smaller-scale refrigeration application.  

 

2.4 Separator 
An additional practical challenge of this cycle is the implementation of an efficiency liquid-vapor separator. A 

separator is required in this cycle at the ejector outlet to send vapor to the compressor suction and liquid to the 

evaporators. An efficient separator must be identified in order to prevent vapor from being sent to the evaporators and 

liquid from being sent to the compressor suction. At the same time, the oil in the liquid phase must be returned to the 

suction line. The design of efficiency, compact liquid-vapor separators and proper oil return methods for ejector 

refrigeration systems are topics that requires much additional research before ejectors can be applied to small-scale 

systems. However, for the analysis presented below, it is assumed that the separator operates with perfect separation, 

perfect oil return, and no pressure drop. 

 

 

3. SYSTEM PERFORMANCE PREDICTION 
 

3.1 Model description  

The cycle is modeled using individual component models linked together into a cycle through the physical constraints 

of the system (mass and energy balances between components). The cycle shown in Figure 2 has been implemented 

as well as simplified cycles without an ejector and without an internal heat exchanger. The computer software 

Engineering Equation Solver or EES (F-Chart Software, 2016) is used to simultaneously solve the set of non-linear 

equations used to model the cycle. The compressors were modeled by assuming values of compression efficiency 

(defined as specific enthalpy difference of refrigerant assuming isentropic compression over actual specific enthalpy 

different of refrigerant) and mechanical efficiency (defined as power transferred to refrigerant over total input power). 

The fans were modeled by assuming a constant efficiency (defined as the power of an isentropic fan over actual input 

power). The calculated COP takes into account the power required by the fan for each heat exchanger. The ejector 

was modeled by using the zero-dimensional, constant-pressure mixing model of Kornhauser (1990). The ejector model 

assumed that mixing occurred at a pressure 1 bar lower than the suction pressure. The design conditions used of 

simulation are shown in Table 2. The air flow rates are relatively high but will help achieve a high COP given the 

extreme temperatures. 

 

Table 2: Summary of system simulation parameters. 

 

Parameter Value Parameter Value 

LT air temperature -20.6°C Compressor efficiencies 

(all) 
0.70 

LT air flow rate 0.43 m3 s-1 

MT air temperature -3.3°C Fan efficiency 0.30 

MT air flow rate 0.43 m3 s-1 Ejector component 

efficiencies 
0.75 

Evaporator superheat 5 K 

Gas cooler air temperature 57.2°C 

 
Gas cooler air flow rate 0.98 m3 s-1 

Max. gas cooler pressure 130 bar 

Max. intercooler pressure 70 bar 

 

The heat exchangers were modeled using a finite-volume approach, in which each refrigerant tube is divided into 

discrete volumes or elements, and momentum and energy balances are applied to each element in order to determine 

the outlet of each element (and thus inlet of the next downstream element). The effectiveness-NTU method was used 

to determine heat transfer in each element. Refrigerant- and air-side pressure drops and heat transfer coefficients were 
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determined based on the inlet state of each element and empirical correlations from the open literature. Dry conditions 

were assumed in all heat exchangers. The correlations choices are shown in Table 3.  

 

Table 3: Summary of empirical correlations used in heat exchanger models. 

 

Parameter 
Correlation 

MC Heat Exchangers RTPF Heat Exchangers 

Air-side 

Heat transfer coefficient Park and Jacobi (2009) Wang et al. (2000) 

Pressure drop Park and Jacobi (2009) Wang et al. (2000) 

Refrigerant-side two-phase region 

Heat transfer coefficient Gungor and Winterton (1986) Gungor and Winterton (1986) 

Void fraction Zivi (1964) Zivi (1964) 

Frictional pressure drop Lee and Mudawar (2004) Friedel (1979) 

Refrigerant-side single-phase region 

Heat transfer coefficient Gnielinski (1976) Gnielinski (1976) 

Frictional pressure drop Churchill (1977) Churchill (1977) 

 

3.2 Comparison of Microchannel and Round-tube Gas Coolers 

A comparison of the system performance with MC heat exchangers compared to RTPF heat exchangers of the same 

size is presented here. The dimensions of the heat exchangers are shown in Table 4.  

 

Table 4: Comparison of dimensions used in MC heat exchangers and RTPF heat exchangers. 

 

Parameter 
Evaporators Gas Cooler 

MC RTPF MC RTPF 

Height 0.36 m 0.36 m 0.50 m 0.50 m 

Width 0.61 m 0.61 m 0.81 m 0.81 m 

Number of slabs/rows 

(parallel to air flow) 
2 2 4 2 

Tubes per slab 73 20 84 28 

Inner diameter - 4.8 mm - 6.3 mm 

Outer diameter - 6.3 mm - 4.8 mm 

Ports per tube 6 - 4 - 

Port hydraulic diameter 0.8 mm - 0.9 mm - 

Tube pitch 8.2 mm 18.0 mm 9.7 mm 18.0 mm 

Fin depth per slab 7.9 mm 11.0 mm 6.4 mm 16.8 mm 

Fin pitch 1.4 mm 1.4 mm 1.4 mm 1.4 mm 

Fin thickness 0.1 mm 0.1 mm 0.1 mm 0.1 mm 
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The same evaporator used for both MT and LT. All heat exchangers were configured in a cross-counterflow 

arrangement. Table 5 shows the total air- and refrigerant-side heat transfer areas (Aair and Aref) of the different heat 

exchangers. It can be seen that the RTPF heat exchangers has about 10 – 20 % higher air-side area compared to the 

MC heat exchangers. Note that greater air-side area will generally translate to a heavier and more expensive heat 

exchanger. The RTPF heat exchangers also have about 50 – 60 % lower refrigerant-side area, which will hurt their 

performance compared to MC heat exchangers. 

 

Table 5: Comparison of heat transfer areas of MC heat exchangers and RTPF heat exchangers. 

 

 
MC Heat Exchanger RTPF Heat Exchanger 

Aair Aref Aair Aref 

Evaporators 6.11 m2 0.75 m2 7.42 m2 0.37 m2 

Gas Cooler 18.29 m2 1.78 m2 20.60 m2 0.69 m2 

 

Table 6 presents a comparison of the conventional direct expansion booster cycle with intercooler (no IHX and no 

ejector) with all MC heat exchangers and with all RTPF heat exchangers. It can be seen that the system COP increases 

by a very noticeable 6.2 % when all MC heat exchangers are used instead of all RTPF heat exchangers. The 

performance of the heat exchangers can be measured by their overall heat transfer coefficient-area product (UA), with 

higher UA meaning better heat exchanger performance. It can be seen that the UA of the LT evaporator is 9.8 % 

higher with the MC heat exchanger; however, this yields only 0.3 bar higher evaporator pressure and contributes only 

0.5 percentage points to the observed increase in COP. Furthermore, essentially no difference in UA is observed 

between MC and RTPF heat exchangers for the MT evaporator. This indicates that using MC heat exchangers as 

evaporators is not so critical for system performance. On the other hand, using an MC heat exchanger as the gas cooler 

yields 32.4 % higher UA and 1.0 K lower gas cooler refrigerant outlet temperature, contributing 5.6 percentage points 

to the observed increase in COP, indicating the importance of using a microchannel gas cooler in this application. 

 

Table 6: Comparison of heat exchanger and conventional direct expansion booster cycle performance using 

MC heat exchangers and RTPF heat exchangers. 

 

 MC Heat Exchangers RTPF Heat Exchangers 

𝑪𝑶𝑷 0.567 0.534 

𝑼𝑨𝒆𝒗𝒂𝒑,𝑳𝑻 0.640 kW K-1 0.583 kW K-1 

𝑼𝑨𝒆𝒗𝒂𝒑,𝑴𝑻 0.677 kW K-1 0.678 kW K-1 

𝑼𝑨𝒈𝒄 1.013 kW K-1 0.765 kW K-1 

𝑷𝒆𝒗𝒂𝒑.𝑳𝑻 15.9 bar 15.6 bar 

𝑷𝒆𝒗𝒂𝒑.𝑯𝑻 30.5 bar 30.5 bar 

𝚫𝑻𝒈𝒄 0.3 K 1.3 K 

 

3.3 Improvement through Internal Heat Exchange and Expansion Work Recovery 

Table 7 compares the 𝐶𝑂𝑃, power (𝑊̇𝑐) of each compressor, heat transfer in the IHX (𝑄̇𝐼𝐻𝑋), and power recovered by 

the ejector (𝑊̇𝑒𝑗𝑒𝑐) for the conventional direct expansion (DX), the cycle with the ejector in place of the high-pressure 

control valve (Ejec), and the addition of an IHX to each cycle. Recall that capacity in each evaporator was the same 

for all cycles. For reference, the ‘Ejec + IHX’ cycle is the cycle shown in Figure 2. It can be seen that replacing the 

conventional expansion valve with the ejector can yield up to 27.3 % COP improvement. This very favorable COP 

improvement is due to the very high ambient temperature that the system operates at. A similar COP improvement of 

35.3 % can be achieved by adding an IHX to the cycle. The COP of the cycle with both IHX and ejector is the highest, 

offering a 68.6 % % improvement in COP compared to the DX cycle. These results demonstrate the importance of the 
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IHX and the ejector in achieving a sufficiently high COP, especially at the very high design ambient temperature 

required for this application. 

 

Table 7: Comparison of cycle performance for cycles with and without IHX and ejector. 

 

Cycle 𝑪𝑶𝑷 𝑾̇𝒄,𝑳𝑻 𝑾̇𝒄,𝑯𝑻𝑳𝑺 𝑾̇𝒄,𝑯𝑻𝑯𝑺 𝑸̇𝑰𝑯𝑿 𝑾̇𝒆𝒋𝒆𝒄 

DX 0.567 1.14 kW 4.62 kW 3.49 kW - - 

DX + IHX 0.767 0.90 kW 3.65 kW 2.36 kW 2.05 kW - 

Ejec 0.722 0.57 kW 2.56 kW 4.51 kW - 0.49 kW 

Ejec + IHX 0.956 0.52 kW 2.73 kW 2.20 kW 3.00 kW 0.21 kW 

 

 

4. CONCLUSIONS 
 

This paper has presented an analysis of the design and performance of a multi-temperature, transcritical CO2 

refrigerated container system. The results of the numerical investigation have shown that the use of a microchannel 

gas cooler and the addition of an IHX and an ejector to the cycle are all important for enhancing cycle performance 

and achieving reasonable COP (up to 0.96 at very high ambient temperature of 57°C). It has been seen that a 

microchannel gas cooler improves COP by 5.6 % compared to a round-tube gas cooler. It has also been seen that an 

IHX can improve COP by up to 35.3 % and an ejector can improve COP by up to 27.3 %, while the combination of 

the two improves COP by up to 68.6 %.  

 

In practical terms, it seems that a microchannel gas cooler would be a necessary enhancement of the system, though 

given the disadvantages of microchannel heat exchangers when used as evaporators and the very little cycle 

performance improvement they offer, it does not make sense to proceed with using microchannel evaporators. 

Challenges still remain in terms of achieving reasonable efficiency with an adjustable and obtaining an efficient, 

compact liquid-vapor separator in a small-scale refrigeration application, such as the refrigerated container in this 

project. Even with the addition of an IHX and an ejector, the COP is still slightly lower than the target COP of 1.0, 

meaning that even higher compressor, evaporator, or ejector efficiency will still be necessary in order to achieve the 

target COP (as the gas cooler and IHX are already achieving very high performance). It should also be noted that it is 

currently difficult to find multi-stage, transcritical CO2 compressors suitable for the capacity and pressure range of 

this application. This would further decrease the COP compared to the target value. Nonetheless, the results show that 

through proper design of each component, a reasonable efficiency of this transcritical CO2 refrigerated container unit 

can still be achieved even at the very high ambient condition of this project. 
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