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ABSTRACT 
 
This paper will highlight case studies of physical and chemical interactions between refrigerants, lubricants, and 
components in HVACR systems from recent evaluations of new low GWP refrigerants, and will emphasize the 
value of including lubricants as an integral component of technology and product development roadmaps. 
 
Refrigerant/lubricant mixture properties, such as miscibility, solubility, and viscosity, are critical to understand to 
meet design, operation, and reliability goals of HVACR equipment. In this paper, we will discuss miscibility and 
solubility challenges of specific new refrigerants, and review how these challenges have been addressed using 
advanced capabilities and deep understanding. Working viscosity is one of the most important factors to understand 
for optimal compressor efficiency and reliability, and is typically determined through 
Pressure/Viscosity/Temperature (PVT) measurements and corresponding models. We will compare working 
viscosities of current and new refrigerants, and discuss other factors to consider when defining lubrication 
requirements for alternative refrigerants. 

 
Relative to incumbent refrigerants, some of the new low GWP refrigerants will have fundamental differences in 
their chemical stability, or will be exposed to more demanding application conditions such as higher discharge 
temperature - both of which may contribute to reliability concerns. We will review some of these considerations and 
provide examples of lubricant selection and formulation approaches to mitigate potential reliability issues. 
 
This paper will highlight examples of physical and chemical interactions that should be considered early in the 
development of product applications for new low GWP refrigerants, and will illustrate the benefits that optimized 
lubricants may have on the performance, efficiency, and reliability of equipment. 
 

1. INTRODUCTION 
 
As the industry aims to lower the environmental impact of HVAC and refrigeration applications, there is significant 
focus on controlling factors that have the potential to contribute to global warming.  Major efforts have been 
underway over the past several years to identify and test lower GWP refrigerant alternatives for today’s high global 
warming hydrofluorocarbon (HFC) refrigerants.  In addition to establishing refrigerant options to meet different 
environmental, regulatory, and safety targets, the performance of these new fluids has been evaluated in test 
programs such as AHRI’s Low GWP Alternative Refrigerant Evaluation Program (Low GWP AREP) to ensure that 
the alternatives have similar or better efficiency in their target applications relative to the baseline.  This is important 
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to bear in mind when discussing refrigerant transitions because both the direct and indirect environmental impacts 
must be considered as part of the overall global picture.     

 
In this paper, we consider the role that lubrication and lubricants play in enabling the industry to reduce its direct 
and indirect environmental impacts.  Lubricant technology and associated engineering information are integral and 
critical components to facilitate the transition to lower GWP refrigerants, to maintain the design and application of 
reliable equipment, and to enable performance and efficiency targets to be achieved.   
 

Table 1 is a summary of hydrochlorofluorocarbon (HCFC) and HFC refrigerants that have been and may still be 
commonly used, and categorizes them into three pressure classes.  R-410A is categorized as a high pressure 
refrigerant.  R-507A, R-404A, R-502, R-22, and R-407C are designated as medium pressure, and R-134a, R-
245fa, and R-123 are referred to as low pressure refrigerants.  R-22 and all of the tabulated low pressure 
refrigerants are single-component fluids and thus each have the same bubble point and dew point values.   

 

Table 1: Relevant Information for Commonly Used HCFC and HFC Refrigerants 

Pressure 
Category 

Refrigerant 
Bubble Point at 1 

atm (°C) 
Dew Point at 1 

atm (°C) 
Critical 

Temperature (°C) 
GWP1 

High R-410A -51.4 -51.4 71.3 1924 

Medium 

R-507A -47.1 -47.1 70.9 3900 

R-404A -46.2 -45.5 72.0 3943 

R-502 -45.3 -45.1 81.5 4600 

R-22 -40.8 -40.8 96.1 1760 

R-407C -43.6 -36.6 86.0 1624 

Low 

R-134a -26.1 -26.1 101.1 1300 

R-245fa 15.1 15.1 154.0 858 

R-123 27.8 27.8 183.7 79 
1GWPs determined from Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report  

 
Lubrication and lubricant considerations for R-134a, R-404A, and R-410A alternatives will be reviewed in this 
paper, and specific examples will be given to highlight the benefits of newly developed lubricant platforms 
optimized for R-1234ze(E) and R-32. 
 

2. LUBRICATION CONSIDERATIONS FOR REFRIGERANT ALTERNATIVES 
 
2.1 Low Pressure R-134a Alternatives 
Table 2 contains information on R-134a and a number of proposed alternatives.  Several of the alternatives, such as 
R-1234yf, R-513A, and R-450A have similar vapor pressures compared to R-134a.  However, alternatives such as 
R-515A, R-1234ze(E), and R-600a operate at significantly lower pressures.  In general, and especially in these 
cases, it is important to make solubility and viscosity comparisons at fixed saturation temperatures that reflect the 
different operating pressures of the refrigerants in the application; otherwise misleading conclusions can be drawn 
that are irrelevant to the end use.  This approach is applied for the solubility and viscosity comparisons throughout 
this paper. 
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Table 2: Relevant Information on R-134a and Potential R-134a Alternatives 

Refrigerant Composition 

Average 
Molar 
Mass 

(g/mole) 

Bubble 
Point at 
1 atm 
(°C) 

Dew 
Point at 
1 atm 
(°C) 

Critical 
Temp. 
(°C) 

GWP 
ASHRAE 

Classification 

R-134a R-134a (100) 102.0 -26.1 -26.1 101.1 1300 A1 

R-513A 
R-134a/R-1234yf 
(44/56) 

108.4 -29.3 -29.2 96.5 573 A1 

R-450A 
R-134a/R-1234ze(E) 
(42/58) 108.7 -23.4 -22.8 105.6 546 A1 

R-515A 
R-1234ze(E)/R-227ea 
(88/12) 118.7 -19.0 -19.0 108.7 402 A1 

R-1234yf R-1234yf (100) 114.0 -29.5 -29.5 94.7 <1 A2L 

R-1234ze(E) R-1234ze(E) (100) 114.0 -19.0 -19.0 109.4 <1 A2L 

R-600a R-600a (100) 58.1 -11.7 -11.7 134.7 3 A3 
 
Many of the R-134a alternatives laid out in Table 2 have been extensively tested (Low GWP AREP) and some have 
been commercialized for use.  For example, the lower GWP Class A1 alternatives R-513A and R-450A are being 
offered as options for use in commercial HVAC applications that were originally designed for R-134a.  In these 
cases, the refrigerants are generally being applied in the same equipment that was used with R-134a, with only 
minor control or valve setting changes to adapt to slight differences in the refrigerant properties.  Significant work 
has been done by lubricant technology companies, refrigerant manufacturers, original equipment manufacturers 
(OEMs), and the industry overall to verify suitability of these lower GWP nonflammable options in existing 
equipment designs with existing lubricants.  For example, AHRI’s Low GWP AREP and Material Compatibility and 
Lubricants Research (MCLR) program, as well as several research studies sponsored through ASHRAE and other 
organizations, have resulted in a robust knowledge base to enable the industry to transition quickly to viable options 
with 50-60% lower GWP than R-134a.   
 
For the flammable lower GWP R-134a alternatives, there have been larger implementation hurdles, especially for 
applications with significant refrigerant charge sizes; however, the industry continues to close knowledge gaps 
(Cundy, 2017; Goetzler, 2013; Goetzler, 2016; Kim, 2017) and develop solutions that enable implementation of 
these very low GWP refrigerants; for example, R-1234yf in mobile air conditioning, R-600a (isobutane) in 
residential appliances, and R-1234ze(E) in commercial HVAC applications.  For these three very low GWP 
flammable options, lubricants originally designed for use with R-134a may need to be optimized slightly or 
completely overhauled depending on the refrigerant and the application requirements.    
 
R-1234ze(E), and R-1234ze(E)-rich blends such as R-515A, present challenges for use with conventional lubricants.  
R-1234ze(E) is physically compatible and miscible with lubricants that have been applied with R-134a, but it has 
significantly higher solubility than R-134a (Figure 1).  To address the higher solubility and lower working viscosity 
of R-1234ze(E) relative to R-134a, one option for an equipment designer would be to increase the viscosity grade of 
the lubricant to achieve higher working viscosity under the same conditions. The tradeoff to this approach would be 
a negative efficiency impact from the additional electrical power required to move the higher viscosity lubricant.  
Another approach that could be considered is the use of hardware to separate the refrigerant and lubricant so that 
higher quality lubricant returns to the compressor sump.  The tradeoff to this approach is the cost of additional or 
optimized components, and potentially significant resource investments required for equipment redesign.  Another 
potential approach is to limit the equipment operating map so that low viscosity or high solubility conditions of 
concern cannot be reached in the application.  The tradeoff with this approach is that without taking on higher 
reliability risks, the equipment will have a reduced application range relative to its original design intent - potentially 
limiting its commercial viability.   
 
Another approach that can be considered is to change the lubricant chemistry such that the new refrigerant and 
lubricant combination behaves similarly to or better than the baseline refrigerant that the equipment was originally 
designed around.  One tradeoff to this approach is that to achieve this goal, new and different lubricant chemistries 
may be required that bring along technical, commercial, or regulatory unknowns that need to be fleshed out.  
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Another tradeoff is that as lubricants are changed to address a challenge with a specific new refrigerant, there is 
higher potential for them to become less optimized for the incumbent refrigerant.  In this case, a decision needs to be 
made on whether to take on the complexity of an additional lubricant, or to potentially sub-optimize lubrication for 
one or both refrigerants to maintain use of a single lubricant.   
 

 
Figure 1:  Solubility comparison of R-134a and R-1234ze(E) with the same conventional ISO 220 polyol ester 

lubricant at a saturation temperature of 60°C.  R-1234ze(E) exhibits higher solubility than R-134a. 
 
Because of the tradeoffs associated with any of these scenarios, two-way exchanges between the lubricant 
technology company and OEM or end user need to take place early and often to ensure there is mutual 
understanding of technology readiness and design flexibility, and to realize the best possible outcome in the 
timeframe of interest with the lowest possible investment.   
 
In the case of R-1234ze(E), a new lubricant platform has been developed that addresses the solubility challenges 
with conventional lubricants.  As shown in Figure 2, the optimized chemistry provides similar or slightly improved 
solubility with R-1234ze(E) compared to R-134a with conventional POEs of the same viscosity grade.  This solution 
enables system designers to apply the low GWP refrigerant 1234ze(E) with the same or lower viscosity grade 
lubricant as R-134a - eliminating an efficiency penalty - and removes the need to implement new hardware or 
operating map restrictions. 
 
As part of the lubricant qualification process, elastomer compatibility and chemical stability assessments with R-
1234ze(E) have been performed.  Figure 3 shows the elastomer volume change results after exposure to a 50/50 
(weight %) refrigerant/lubricant mixture for 1 week at 90°C.  Results indicate acceptable elastomer compatibility 
with all of the materials except the fluorocarbon material.  It is worth noting that this same material has been 
previously determined to be high risk for HVACR applications due to its tendency to excessively swell after 
refrigerant exposures and potentially deform during use (Majurin, 2014).   
 
Chemical stability assessments were carried out according to ASHRAE 97 by exposing R-1234ze(E) and the ISO 
220 optimized lubricant with aluminum, copper, and steel coupons in sealed glass tubes for two weeks at 175°C.  
Image 1 is a post-exposure image of the tubes and catalysts.  Tube contents were evaluated for appearance changes 
of the fluids and catalysts, and lubricant samples were analyzed for changes in color, total acid number (TAN), and 
dissolved elements.  Results demonstrate acceptable chemical stability, with a post-exposure TAN change of +0.05 
mg KOH/g of lubricant, no detection of dissolved aluminum, copper, or iron, and no notable visual changes to the 
fluids or catalysts.   
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Figure 2:  Solubility comparison of R-134a with ISO 68 and ISO 220 conventional polyol ester lubricants and R-

1234ze(E) with ISO 68 and ISO 220 optimized lubricant chemistry at saturation temperatures of 60°C.  The 
optimized lubricants applied with R-1234ze(E) result in similar or slightly lower solubility than the baseline 

conventional lubricants applied with R-134a. 
 

 
Figure 3:  Elastomer volume changes after exposure to 50% R-1234ze(E)/50% lubricant for 1 week at 90°C. 

 

       
 A     B 

Image 1: Post-exposure images of A) the sealed glass tubes with 20% R-1234ze(E)/80% ISO 220 optimized 
lubricant exposed with catalysts for 2 weeks at 175°C, and B) catalysts after removal from the tubes. 
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Sometimes, lubricant chemistry changes can result in intended or unintended benefits that are confirmed or 
discovered during qualification processes.  One of the benefits of the new lubricant platform is that it is less 
hygroscopic compared to conventional POEs (and other synthetics including polyvinyl ether (PVE) and 
polyalkylene glycol (PAG) lubricants).  As shown in Figure 4, the new lubricant chemistry saturates at about 25% 
lower moisture content compared to conventional POEs of the same viscosity grade, and has a lower moisture 
absorption rate.  This is anticipated to result in lower energy costs to keep the lubricant dry, and potentially shorter 
evacuation times on the equipment assembly line.   
 

 
Figure 4:  Moisture uptake comparison of optimized lubricant chemistry and conventional polyol ester lubricant 

chemistry, at 35°C and 80% relative humidity. 
 

Another significant benefit of the new lubricant platform is a higher pressure-viscosity coefficient than conventional 
POEs (Table 3).  Pressure-viscosity coefficient (alpha coefficient, α*) refers to the relationship between the load 
placed on the oil film (pressure) at the dynamic load zone and the thickness of the oil film (viscosity) at that load.  
This is of particular importance in the lubrication of heavily loaded concentrated contacts such as those found in 
rolling contact bearings and gears.  In commercial HVAC applications, R-134a and R-1234ze(E) are frequently 
applied in screw compressors with rolling element bearings that operate under very high contact pressures (up to a 
gigapascal, or 10,000 bar); alpha coefficient is a critical parameter to understand for these applications.   
 
Alpha coefficient determinations were conducted by measuring viscosities at three different temperatures with an in-
house high pressure viscometer that was developed to enable the measurement of contact pressure viscosities in the 
presence of refrigerant.  As shown in Table 3, the optimized neat lubricant’s empirically derived alpha coefficient 
was consistently 10% higher than a conventional POE lubricant of the same viscosity grade.   
 

Table 3: Relative Pressure-Viscosity Coefficient of the ISO 220 Optimized Lubricant Relative to ISO 220 
Conventional POE 

Temperature (°C) Relative α* of ISO 220 Optimized Lubricant 
Compared to ISO 220 Conventional 

40 1.12 
60 1.09 
80 1.11 

 
Figure 5 shows the impact of refrigerant and temperature on the measured alpha coefficient of the lubricant relative 
to the neat lubricant measured at the same temperature.  It is observed that dilutions in the range of 25% cause about 
a 35-40% reduction in alpha coefficient, and dilutions in the range of 10% cause a 15-20% reduction relative to the 
neat lubricant.   
 
It is believed that a cumulative lubrication benefit can be realized by simultaneously reducing refrigerant solubility 
and increasing alpha coefficient for refrigeration lubricant applications with rolling element bearings.     
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Figure 5:  Relative pressure-viscosity coefficient as a function of refrigerant concentration and temperature.  Values 

are determined relative to the ISO 220 optimized neat lubricant values at the corresponding temperature. 
 

In summary, a new lubricant platform has been developed for R-1234ze(E) and other refrigerants with high POE 
lubricant solubility.  In addition to lower solubility, the new lubricant platform exhibits higher pressure-viscosity 
coefficient and lower moisture uptake relative to conventional POEs.  Screening tests indicate acceptable chemical 
stability and material compatibility.   
 
This example illustrates how lubricant chemistry may be modified to enable the implementation of highly soluble 
low GWP refrigerants without negatively impacting efficiency or reliability.  It also demonstrates the role lubricant 
technology plays in allowing equipment to be operated throughout a target application range, while minimizing 
additional design and manufacturing costs.   
 
2.2 Medium Pressure R-404A Alternatives 
Because of the very high GWP of R-404A, nonflammable lower GWP R-404A alternatives such as R-452A, R-
448A, and R-449A have had the earliest adoption and most experience in the field.  Hundreds if not thousands of 
stationary and transport refrigeration systems are using these refrigerants with existing equipment and existing 
lubricants applied with R-404A.  The rationale is clear since relative to R-404A, these design-compatible 
refrigerants provide a means to achieve 50-70% lower GWP than R-404A.  In addition to nonflammable HFC/HFO 
blend options for the medium pressure space, lower GWP nonflammable HFC blends in the R-407 series are also 
being proposed and applied.  These R-407 series blends are all compatible with existing lubricants applied for 
decades with HFC refrigerants including R-407C.  As the industry considers the flammable lower GWP options, 
there are generally two categories proposed and evaluated to date 1) HFO/HFC blends with GWP <300 including 
but not limited to R-454A, R-454C, R-455A, R-444B, and R-457A, and 2) the hydrocarbon R-290 (propane).  
Lubricants are available that meet the needs of all of these refrigerant options for today’s applications and will be 
reviewed separately.   
 
2.3 High Pressure R-410A Alternatives 
Table 4 includes information on select R-410A alternatives.  The three lower GWP options in this table are all 
classified as ASHRAE Class A2L, and are slightly flammable.  Other slightly flammable options with larger 
temperature glides, including R-446A, R-447A, R-447B, and R-459B have also been developed and evaluated.  
Nonflammable alternatives are also under consideration through ASHRAE Standard 34, or are potentially still under 
development, and are not reviewed here.   
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Table 4: Relevant Information on R-410A and Select Alternatives 

Refrigerant Composition 

Average 
Molar 
Mass 

(g/mole) 

Bubble 
Point at 
1 atm 
(°C) 

Dew 
Point at 
1 atm 
(°C) 

Critical 
Temp. 
(°C) 

GWP 
ASHRAE 

Classification 

R-410A R-32/R-125 (50/50) 72.6 -51.4 -51.4 71.3 1924 A1 

R-32 R-32 (100) 52.0 -51.7 -51.7 78.1 677 A2L 

R-452B R-32/125/1234yf 
(67/7/26) 63.5 -51.0 -50.2 79.7 675 A2L 

R-454B R-32/1234yf (68.9/31.1) 62.6 -50.9 -49.9 80.9 466 A2L 

 
Of the options presented in Table 4, R-32 has the most challenges with lubricants currently applied with R-410A.  
As illustrated in Figure 6, R-32 has miscibility challenges relative to R-410A and R-452B with conventional 
lubricants. The challenge with limited miscibility of this nature is concern that circulating lubricant may become 
trapped in the heat exchanger and not return to the oil sump where it is required to feed compressor bearings and 
other moving parts.   
 

 
Figure 6:  Miscibility of R-32 with an ISO 32 conventional POE lubricant (left), and miscibility of R-452B and R-

410A with the same ISO 32 conventional POE lubricant (right). 
 
To address this miscibility challenge, the POE lubricant chemistry was changed so that the R-32 miscibility with the 
optimized lubricant matches the miscibility profile of R-410A with the baseline lubricant (Figure 7).  The value that 
this solution provides is similar miscibility performance with R-32 compared to the baseline R-410A, the refrigerant 
for which the equipment was originally designed and for which decades of application experience exist.     
 
New lubricant chemistries optimized for R-32 have been developed in viscosity grades up to ISO 100 and are 
compatible with R-452B, R-454B, and the baseline R-410A.  These solutions enable the OEM or end user to 
identify a single lubricant that may be applied with a range of potential R-410A alternative refrigerants.   
 

 
Figure 7:  Miscibility comparison of ISO 32 optimized POE and R-32 compared to ISO 32 conventional POE and 

R-410A. 
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3. CHEMICAL STABILITY 

 
One of the topics of interest in the industry is chemical stability of the new refrigerants.  Extensive internal and 
industry-sponsored studies (Rohatgi et al., 2012; Majurin et al., 2014) on thermal and chemical stability have been 
carried out on HFO refrigerants and blends of these refrigerants with R-32.  Results from these studies generally 
conclude that HFO refrigerants such as R-1234yf and R-1234ze(E) have acceptable chemical stability under typical 
application conditions.  However, they exhibit slightly higher chemical instability than R-134a and R-410A in the 
presence of high concentrations of air and in some cases, air and water.  At this stage, the industry has not reached 
consensus that refrigerant or lubricant additives are required to manage some marginally higher chemical instability 
of specific low GWP refrigerants in the presence of contaminants.  Some of the high pressure refrigerants, such as 
R-32, will operate at higher discharge temperatures when applied over the same operating map as R-410A or R-22.  
In general, engineering solutions are in place to limit these excessive temperatures.  However, as more experience is 
gained with low GWP refrigerants throughout a broader range of applications, and as new low GWP refrigerants 
continue to be developed, it will be important for compressor and system designers to work closely with lubricant 
technology companies to understand if and when lubricant chemistries or formulations need to change to manage 
chemical instability, and to understand the potential tradeoffs.   
 

4. CONCLUSIONS 

 
A new lubricant platform has been developed for R-1234ze(E) and other highly soluble refrigerants.  The new 
lubricants exhibit acceptable chemical stability and material compatibility and have less moisture uptake than 
conventional synthetic lubricants.  The new lubricant platform exhibits lower solubility with R-1234ze(E), and has a 
higher pressure-viscosity coefficient compared to conventional POE lubricants.  It is believed that the combination 
of lower solubility and higher pressure-viscosity coefficient will be particularly advantageous for applications with 
rolling element bearings.   
 
A new lubricant platform has been developed for R-32 that enables R-32 miscibility to match the baseline R-410A 
miscibility with conventional lubricants across a range of viscosity grades.  The new lubricant platform is 
compatible with HFO/HFC refrigerant alternatives such as R-452B and R-454B, as well as the baseline R-410A.   
 
These solutions provide examples of the benefits that deep fundamental understanding of lubricant technology, and 
the end uses that they are applied to, can bring to the industry as we navigate through the low GWP refrigerant 
landscape.  
 

NOMENCLATURE 
 
AHRI Air Conditioning, Heating and Refrigeration Institute 
AREP Alternative Refrigerants Evaluation Program 
ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers 
GWP Global Warming Potential 
HCFC hydrochlorofluorocarbon 
HFC hydrofluorocarbon 
HFO  hydrofluoroolefin 
HVACR Heating, Ventilation, Air Conditioning and Refrigeration 
ISO  International Standards Organization Viscosity Grade 
MCLR Material Compatibility and Lubricants Research 
OEM Original Equipment Manufacturer 
PAG polyalkylene glycol 
POE polyol ester 
PVE polyvinyl ether 
PVT Pressure/Viscosity/Temperature 
TAN Total Acid Number 
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