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ABSTRACT 
 

Heat recovery is a common approach for effective energy management. With utilization of the waste heat the 

investment and operation costs can be reduced. The possibility of utilisation of the waste heat from flue gases in the 

maritime industry is presented and discussed. Combustion engine is a main source for electric energy consumed by 

all electrical devices in ships and yachts. Currently, the classic compression refrigeration systems driven by 
electricity generated in the generators are used for production of cold water used in AC units. Conversion of fuel 

energy into mechanical and electrical energy is related with creation of a significant amount of heat which is 

irretrievably removed. The proposed application of heat driven ejection refrigeration system may be thought as an 

excellent example of an industrial application with a strong potential for implementation. At the same time it 

combines all positive aspects of the environmentally-friendly cold production approach using clean technology and 

meets all standards in the use of ecological working fluids. 

 

1. INTRODUCTION 
 

Medium-speed piston engines are usually used on maritime vessels and yachts to propel the ships and to drive the 

generators to produce electricity. Piston engines works as a heat engines converting the thermal energy of the fuel to 

mechanical work and further to electrical energy. Usually, the machinery systems fitted on ships and yachts are 

designed to work with maximum efficiency and run for long periods. Analyzing data of various piston engine 

manufacturers it can be concluded that engines efficiency is in the range of 30-45 %. This means that the energy in 

the fuel cannot be completely converted into mechanical work. The most common and maximum energy loss from 

the engine is in the form of waste heat. This loss of heat has to be discharged and transferred to ambient by cooling 

fluids such as central cooling water system to avoid malfunction of the engine or breakdown of the machinery 

equipment. Utilization of the waste heat is a promising way for improvement the overall energy efficiency of the 
vessel. Various types of waste heat recovery technologies and the potential for ship-owners to decrease the fuel 

consumption costs, reduction of the emissions, and the positive effect on the ship  EEDI (Energy Efficiency Design 

Index) were presented in report of Diesel, MAN & Turbo (2011) and paper by Shu et al. (2013). The energy retrieve 

from the engine depends to a great extent on the size of the main engine of the ship, its load and ambient 

temperatures. The engine size, operation route, loading condition and environment should be taken into 

consideration before choosing an appropriate way to waste heat utilization. In any heat recovery situation it is 

essential to know the amount of the recoverable heat amount and also how it can be applied. Potential benefits of the 

ship waste heat recovery using a supercritical ORC (Organic Rankine Cycle) were discussed by McCracken and 

Buckingham (2015). Shu et al (2017) presented the evaluation of the ORC applied for the waste heat recovery based 

on thermal-economic model. Also, one of the commonly known application is use the waste heat to drive the 

absorption refrigeration unit. The main problem with absorption systems is that they required more space and they 
are significantly expansive than conventional vapor-compression systems. This is because absorption systems have 
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more components and as the heat and mass transfer of absorption equipment is poor so that large surface areas are 

required. Ezgi (2014) presented design and thermodynamic analysis of a water-lithium bromide absorption heat 

pump as an HVAC system for a naval surface ship application. Despite that the absorption system can be used in 

naval ships, they are not suitable for yachts due to its machinery room space restrictions. Typical distribution of the 
waste heat for piston engine is shown in Table 1. It should be noted that not all of the heat sources listed can be 

recovered separately, rather as combinations, depending on the engine unit. As showed in Table 1 part of heat from 

high temperature jacket cooling circuits and exhaust gases can be recovered without major technical shortcomings 

intended for heating on maritime vessels. Also, due to promising temperature level of the waste heat source it is 

possible to use this heat as a motive source for the ejection refrigeration system operating for air-conditioning 

purposes, Ezgi and Girgin (2015). As shown by Butrymowicz et al. (2014) and Śmierciew et al. (2017) the ejection 

refrigeration systems can operate with low-temperature heat source. Moreover, the temperature requirements for air-

condition system on the ship are favorable for ejection systems, since design temperature for summer is 24 ~ 28 C, 

Yan et al. (2011).   

Table 1: The typical distribution of waste heat for piston engine  

Energy source Temperature Portion of fuel energy 

Exhaust gas ~ 400-500 °C ~ 30% 

Jacket water ~ 85 °C ~ 6.5% 

High-temperature air charger ~ 90 °C ~ 9% 

Lubricating oil ~ 70 °C ~ 5.5 % 

Low-temperature air charger ~ 40 °C ~ 4 % 

Generator cooling (on gen-set) ~ 35 °C ~ 1.3% 

Engine radiation ~ 35 °C ~ 1.5% 

 

This paper presents the Phase 1 of the project dealing with developing of the ejection air-conditioning system driven 

by waste heat. The potential application of the ejection refrigeration system operating for the air-conditioning 

purposes and driven by waste heat collected from the vessel piston engine has been analysed. Preliminary 

calculation of the proposed system operating with environmentally friendly new HFO (hydro-fluoro-olefins) group 

refrigerant R-1234zeE are presented and discussed. Proposed fluid fulfils the requirements of Regulation of the 
European Parliament and the EU Council No. 517/2014 enacted on April 16th, 2014, Regulation (EU) (2014). The 

geometry of the ejector designed for the specific case and performance operation line are analyzed in the paper.   

 

2. EJECTION REFRIGERATION SYSTEM 
 

The ejection refrigeration system (Fig. 1) is a modification of a well-known vapor compression cycle. Instead of 
pressurizing the refrigerant by a mechanical compressor, an ejector compresses refrigerant vapor flowing from the 

evaporator and discharges it to the condenser. The motive vapor is generated in the vapor generator which is heated 

by heat recovered system from the piston engine. Recovery system consists of the high-temperature heat-exchanger 

powered by exhaust gas and the low-temperature heat-exchanger powered by rest of thermal energy source collected 

from the piston engine. 

The main difference between the ejection cycle and the conventional compression refrigeration cycle, besides 

elimination of a compressor, is that the ejection cycle requires three heat sources at different temperatures, namely 

the vapor generator level, which is the temperature of the waste heat source, a condensation level, which is the 

ambient temperature, and the evaporation temperature required for desirable cooling effect. The performance of the 

ejector depends on several quantities such as: operation pressures and temperatures at the ejector inlets and outlet, 

working fluid properties and the ejector geometry. The basic parameters describing the ejection cycle performance 

are mass entrainment ratio: 

e

g

m
U

m
= ,      (1) 

where: 
g

m  and 
e

m  are the primary (motive) and the secondary fluid mass flow rates, respectively, and compression 

ratio: 

c e

g e

p p

p p

−
 =

−
,      (2) 
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where: pc is condensation pressure, pe is evaporation pressure, pg is saturation pressure in the vapor generator. 

The coefficient of performance of the system is defined as: 

e

g

Q
COP

Q
= ,      (3) 

where 
g

Q  and eQ  are heat source capacity and cooling capacity, respectively. Thermal capacities are calculated as 

follows: 

g g g
Q m h=  ,      (4) 

e e e
Q m h=  .      (5) 

where Δhg and Δhe are enthalpy differences at outlet and inlet of the vapor generator and the evaporator, 

respectively. 

 

Figure 1: Schematic diagram of the waste heat recovery system that drives the ejection refrigeration system 

1– vapor generator; 2-three-way valve; 3-ejector; 4-condenser; 5-pump; 6-shut-off valve; 7-expansion valve;  

8-evaporator; 9- cooling/hot water piping system; 99-piston/jacket water cooling; 98-turbine; 97-HT charge air; 98-

LT charge air 95-lubricating oil; 94-exhaust gas heat-exchanger; 93-low-temperature heat-exchanger. 

 

 
Figure 2: The performance curve and operational modes of the vapor ejector 
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A typical performance curve of the vapor ejector for primary and secondary pressures (motive vapor pressure and 

evaporator pressure, respectively) is shown in Fig. 2. Three operation modes are distinguished. The most desirable 

operation mode is a critical mode, also called "on-design" operation mode. Under the critical mode the ejector 

operates with maximum mass entrainment ratio. Independently of the type of operation mode, the primary fluid 
reaches the supersonic velocity during expansion in the motive converging-diverging nozzle. The flow is also 

chocked. In the critical operation mode secondary flow reaches the speed of sound because of favorable conditions 

related with momentum transfer and pressure difference between both streams. When the secondary fluid achieves 

the speed of sound the flow is chocked. Now both fluids are chocked and remain in this state as long as the back-

pressure is lower than the critical pressure. In the critical mode, the shock wave which creates the compression 

effect is expected downstream the flow, either at the constant area mixing chamber or at the diffuser. However, if 

the back pressure increases the shock wave moves upstream the flow. For the back-pressure lower than the critical 

pressure the shock wave influences neither primary nor secondary mass flow rate. Therefore, the entrainment ratio is 

constant for the back-pressures lower than critical pressure. When the back-pressure is equal to critical pressure the 

shock wave is located exactly where the secondary flow achieves the speed of sound and where it was chocked. 

With a further increase in the back-pressure the shock wave moves upstream into the suction chamber. As a result, 

the pressure of the primary and the secondary fluid increases and velocity of both fluids subsequently decreases. 
Secondary flow cannot reach the speed of sound and the mass flow of the fluid is lower than in the critical operation 

mode. This mode is also called "off-design". In this mode the mass flow rate of the secondary flow is described by 

the equation continuity equation. The increase in the back-pressure leads to decrease in the velocity of the secondary 

fluid. Consequently, the mass flow rate decreases. Primary flow in the off-design operation mode is still chocked. 

This is the reason why the mass entrainment ratio decreases with the increase in the back-pressure in the subcritical 

or off-design operation mode. Under particular conditions, i.e. with the back pressure higher than breakdown 

pressure, the pressure in the suction chamber exceeds evaporation pressure and thus the reverse flow appears, 

whereas the ejector stop its operation. 

 

 

3. RESULTS 
 

The analysis of the performance of the ejection system in terms of mass entrainment ratio and compression ratio was 

performed for refrigerant R1234ze(E). Performance of the system operating with the ejectors of two different 

geometries were analyzed. The first ejector geometry was developed based on model proposed by Huang et al. 

(1999) and Kumar et al. (2014) for assumed operation conditions: motive source heat flux Qg = 100 kW, motive 

temperature and pressure: tg = 130 ºC, pg = 4 MPa (supercritical conditions), expected cooling capacity Qe = 25 kW, 

evaporation temperature te = 5 ºC, superheating in evaporator ΔTe = 5 K. Thermodynamic cycle in the pressure-
enthalpy diagram is shown in Fig. 3. It was assumed that the condenser will be cooled by sea water of temperature 

35 ºC as required by the standard ISO 7547:2002(E). It was also assumed that temperature increase in circulation 

pump is negligible. The second geometry was obtained by slight modification of the mixing chamber and the 

diffuser dimensions.  

 

The performance lines for both geometries were found. Numerical model based on Chen et al. (2013) was built. Real 

gas properties were applied, Akasaka (2010). Two cases for the evaporator temperature te1 = 0 ºC and te2 = 5ºC were 

analyzed. The motive temperature is assumed as constant tg = 130°C for both cases and condensation temperature is 

varied. The results of obtained for the basic geometrical diameters of the two analyzed ejectors are shown in Table 

2. 

 
Table 2. Geometrical parameters of ejector 

 Geometry No.1 Geometry No.2 

Nozzle throat diameter 5.7 mm 5.7 mm 

Diameter of the nozzle outlet 11.8 mm 11.8 mm 

Diameter of mixing chamber 20 mm 18 mm 

Diameter of diffuser 60 mm 60 mm 

 

Since motive parameters are constant then the diameters of the nozzle throat and nozzle outlet are the same for both 

geometries. As it was stated previously the mixing chamber diameter was modified for the second geometry.  
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The effect of the condensation temperature on mass entrainment ratio are shown in Fig. 4 and Fig. 5. In Fig. 4 the 

performance lines for evaporation temperature te1 = 0 ºC. 

 

 
 

Figure 3: The ejection refrigeration cycle for R1234zeE refrigerant and assumed operation parameters 

 

 
Figure 4:The effect of condensation temperature on mass entrainment ratio for two analyzed ejector geometries 

 

The results show that for both tested geometries the performance line is typical for the gas ejector. It is seen from 
this figure that for all investigated cases the ejector operates both under on-design and off-design conditions. 

However, for the case with geometry No. 1 the ejector operates with higher mass entrainment ratio. The maximum 

mass entrainment ratio predicted by the model is U1 = 0.37. Simultaneously, the critical condensation temperature is 

tc1* = 26 °C. With this critical condensation temperature, the ejector driven by tg = 130 °C starts to operate under off-

design conditions. With a further increase of the condensation temperature the mass entrainment ratio consequently 

decreases. The slope of the performance line indicates that the ejector of the geometry No. 1 will not operate for 

temperatures of condensation above 45 °C. It must be noted that ejector is dedicated for A/C system for yachts and 

therefore high condensation temperature can be expected especially in hot climate. Because of this the critical 

condensation temperature at level tc1* = 26 °C can be though as moderate in proposed system. On the other hand, the 

mass entrainment ratio at level U1 = 0.37 is relatively high compared to initially assumed value of U ≈ 0.25. 
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Therefore, the geometry was slightly modified in order to reduce mass entrainment ratio and extend the on-design 

operation of the ejector. The diameter of the mixing chamber was modified using trial-and-error method. The 

performance line for second geometry is also shown in Fig. 4. It is seen that decreasing of mixing chamber diameter 

reduces the mass entrainment ratio and extends the on-design operating regime, as expected. The maximum reported 
mass entrainment ratio was U2 = 0.25. For geometry No.2 the critical condensation temperature is tc2* = 31 °C. 

Analogically as for geometry No. 1 the slope of the performance line predicted by the model indicates that the 

ejector with geometry No. 2 will not operate for temperatures of condensation above 45 °C.   

 

 

 
Figure 5:. The effect of condensation temperature on mass entrainment ratio for two analyzed ejector geometries 

 

  
Figure 6: Compression ratio versus mass entrainment ratio for two analyzed ejector geometries  

 

Taking into consideration the requirements for air temperature in ship cabins during summer it can be postulate that 
the evaporation of refrigerant at temperature 0 ºC is not necessary, because the temperature of fresh supply air 

should be approximately 19 ºC. Cooling the air up to temperatures slightly above 0 ºC is not an effective solution, 

because in the next step the air should be heated up to provide proper supply air temperature. The second reason 

why one should avoid the excessive cooling of the air is to reduce the potential risk of condensation of water vapor 
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on a cold air-cooler surface. Operation performance of ejector of both geometries was tested for evaporation 

temperature te2 = 5 ºC. Again, the motive temperature was tg = 130 °C. Results are presented in Fig. 5. 

 

Figure 5 shows that increasing of evaporation temperature lead to increase of the mass entrainment ratio. For the 
ejector of the geometry No. 1 the mass entrainment ratio is U1 = 0.49 and the critical condensation temperature is 

approximately tc1* = 29 °C. The slope of the performance line in the off-design regime indicates that ejector should 

operate for condensation temperature up to 50 °C. For the case of ejector of the geometry No. 2 the maximum 

entrainment ratio is U2 = 0.33 and the critical condensation temperature is approximately tc2* = 34 °C. The 

temperature above which the ejector will not operate is predicted as 50 °C. It must be pointed out that performance 

of the both ejectors are very promising. The model predicts that on the off-design operating regime for temperature 

tc2 = 40 °C both ejector will have mass entrainment ratio at level of 0.20. 

 

The performance lines in terms on compression ratio versus mass entrainment ratio for te2 = 5 ºC are shown in Fig. 

6. The figures show that for the evaporation temperature te1 = 5 ºC the compression ratios corresponding to critical 

condensation temperatures are 1* = 0.08 and 2* = 0.10. The verticals line represents the on-design operating 

regime of ejector and the slope lines represents the off-design operating regime.  

 

 
Figure 7: Coefficient of performance versus condensation temperature for two analyzed ejector geometries 

 

The influence of the condensation temperature on the coefficient of performance COP of the ejection system is 
presented in Fig. 7. The coefficient of performance is directly related with mass entrainment ratio, therefore like in 

the case of mass entrainment ratio, the maximum level of COP = 0.33 was obtained for the geometry No. 1 and 

condensation temperatures below tc1* = 29 °C (i.e. the on-design operation regime). The lowest reported COP = 0.23 

at the on-design operation was obtained for the geometry No. 2. With mass entrainment ratio above the critical 

condensation temperature tc*  the COP of the tested ejector consequently decreases with subsequent increase in the 

condensation temperature.  

 

 

4. CONCLUSIONS 
 

The paper presents the results of the numerical prediction of the operation of the ejection refrigeration system for the 

air-conditioning purposes. Refrigerant R1234zeE was selected as a working fluid. Based on the presented results the 

following conclusion can be drawn: 

• The proposed ejection refrigeration system can utilize the waste heat collected from the piston engine as the 

motive source. 

• Wide range of the disposable temperature of the source allows to use the supercritical state of refrigerant to drive 

the system. 

• Reduction of the mixing chamber diameter leads to extension of the on-design operation regime of the ejector. 
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• The achievable coefficient of performance can be achieved for analyzed operation conditions  

• Temperature tc1* = 29 °C and tc2* = 34 °C were predicted as the critical condensation temperatures for operation 

temperatures te = 5 ºC and tg = 130 ºC. 
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