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ABSTRACT 
 

Commercial rooftop units (RTUs) that incorporate variable-speed components are quickly entering the marketplace; 

however, the design and modeling tools that calculate the energy benefits of these units cannot properly estimate 

performance. This is because 1) there are insufficient measured performance data of real systems that can be input 

into these simulations, and 2) building energy simulators are unable to properly interpret performance data. Therefore, 

publicly available data sets designed to encompass the entire performance map coupled with control sequence 

information are needed as inputs for these modeling programs to accurately estimate energy savings and promote the 

benefits of variable-speed RTUs. As part of the Validation and Uncertainty Characterization for Energy Simulation 

project funded by the U.S. Department of Energy, the National Renewable Energy Laboratory recorded and published 

data across the entire performance range for two commercially available RTUs: one with a two-stage compressor and 

variable-speed supply fan and another with a fully variable-speed compressor, supply fan, and condenser fan. This 

paper details 1) how the design of experiments was created and 2) the operational limitations of the two units that 

complicate the measurement and interpretation of the performance maps. This paper also discusses methods for 

improving energy simulation programs to properly interpret these data sets and integrate them into building energy 

simulation models. 

 

1. INTRODUCTION 
 

A challenge facing building energy modelers is the scarcity of data and performance maps for packaged heating, 

ventilating, and air-conditioning (HVAC) systems. This is especially true for smaller systems in the range of 5–30 

tons because they are too small to merit specialized engineering assistance from manufacturers. Thus, most modelers 

must use either the default generic curves available within whole-building simulation computer programs or maps or 

curves that are extrapolated from commonly available ratings, such as the seasonal energy efficiency ratio (SEER) or 

integrated energy efficiency ratio (IEER). These modeling approaches are a relic of simpler equipment and create 

inaccuracies with today’s modern systems that have nonintuitive performance characteristics and control sequences. 

Modern variable equipment is unlikely to be well modeled by either of these approaches, both of which evolved when 

most equipment was single speed. To address this issue and create generic performance maps typical of newer variable 

equipment, the National Renewable Energy Laboratory (NREL) fully characterized two rooftop units (RTUs)—a 5-

ton/SEER 17 (RTU 1) and a 6-ton/IEER 23 (RTU 2)—with the purpose of developing comprehensive performance 

maps suitable for use with whole-building energy simulation computer programs. The SEER 17 contained a two-stage 

scroll compressor with R-410A, single-speed condenser fan, direct-drive variable-supply air fan with a high-efficiency 

motor, low leak dampers, hot gas reheat humidity control, and an economizer. The IEER 23 contained a variable-
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speed direct-drive compressor, variable-speed fans, and control logic that maintained the compressor and thermal 

expansion valve (TXV) within their performance limitations. The steady-state performance data from these units were 

tabulated with the caveat that 1) there are significant constraints on how to interpret the data, and 2) the time-variant 

performance is not captured. 

 

Tabularized performance maps are attractive because they facilitate downstream processing (often in the form of 

multidimensional curves) while maintaining the integrity of the original data. At least two initially independent groups 

have identified tabularized performance maps as the preferred way to store the data. The first is ASHRAE Standard 

Project Committee 205, Standard Representation of Performance Simulation Data for HVAC&R and Other Facility 

Equipment. This standard is being developed to encourage manufacturers to provide more extensive data and to make 

it easier for simulation programs to use the data. The second is the U.S. Department of Energy Technology 

Performance Exchange (TPEX), which is linked to the OpenStudio platform (NREL, 2018); however, in this project, 

we observed that the newest generation of variable equipment might require modifications to the tabularized construct.  

 

2. BACKGROUND 
 

This effort was part of a larger project sponsored by the Department of Energy’s Building Technologies Office to 

provide empirical data for the validation of whole-building energy simulation computer programs. The end goal is to 

add empirical validation test suites to ANSI/ASHRAE Standard 140, Method of Test for the Evaluation of Building 

Energy Analysis Computer Programs (ASHRAE, 2017). The methodology underpinning Standard 140 consists of 

three kinds of tests: analytical, comparative, and empirical (Judkoff & Neymark, 2006). Currently, the standard is 

populated with several analytical and comparative test suites, but it lacks empirical tests (Judkoff & Neymark, 1995). 

This project had two purposes: the first was to develop empirically derived performance maps suitable for energy 

modeling using NREL’s HVAC test facility; and the second was to use these maps in an update of two NREL reports, 

known as the HVAC BESTEST Volume 1 (Neymark & Judkoff, 2002) and Volume 2 (Neymark & Judkoff, 2004), 

which form the technical foundation of Standard 140 Section 5.3. The remainder of this paper describes the NREL 

effort to develop comprehensive performance maps for a 5-ton SEER 17 and a 6-ton IEER 23 RTU.  

  

3. APPROACH 
 

3.1 Design of Experiments 
To characterize the entire performance map for both RTUs, a design of experiments (DOE) needed to be developed. 

A mixed-central composite design of experiments (MCC-DOE) was chosen rather than a complete full factorial 

design because of the large performance space for each unit. This is commonly seen in many DOEs where, because 

of the size of the full factorial design, an alternative design must be chosen to characterize the system (NIST, 

2017).“Mixed” refers to the independent variables that were noncontinuous, such as wet and dry coil or compressor 

speed. Compressor speed was stated as a noncontinuous variable because it was either first or second stage, which 

corresponds to 67% and 100% volumetric capacity, for the first RTU or 25%, 50%, 75%, and 100% rotational speed 

(or volumetric capacity) for the second RTU. Separating the compressor speed into four distinct speeds (compressor 

stages) increased the number of tests; however, this was necessary because of the nature of the compressor 

performance map, which restricts maximum speed at several levels of compressor lift.  

 

Table 1 shows the independent continuous variables for each RTU and each state of operation. RTU 1 had four 

discrete levels, one for each combination of wet/dry coil and two compressor stages. Similarly, RTU 2 had eight 

discrete levels. For each discrete level, an MCC-DOE test matrix was performed. The wet coil DOEs for RTU 1 and 

RTU 2 used different indoor air conditions as independent variables (dew point versus wet-bulb). Wet-bulb 

temperatures were used in RTU 2 because the MCC-DOE better covered the useable range of operation on a 

psychrometric chart; however, both MCC-DOE designs produced similarly shaped maps for interpolation. 

 

The psychrometric and airflow boundaries were determined by the minimum and maximum expected values for a 

building: 15°C < TID,DB < 35°C, 12°C < TOD,DB < 52 °C, and 4°C < TID,DP < 28°C. Additionally, standard airflow per 

capacity was typically maintained between 42–60 l/s-kWthermal (320–450 CFM/t), which is typical of supply air flow 

rates. In the case of RTU 2, fan speed minimum was reached at 50% capacity, thus the airflow per kilowatt of 

capacity increased as compressor speed was reduced below 50%. RTU 2 reached as high as 110 l/s-kWthermal. 
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Table 1: Continuous variables for each design of experiments 

RTU 1: Wet Coil  

(Two Compressor 

Stages) 

RTU 1: Dry Coil 

(Two Compressor 

Stages) 

RTU 2: Wet Coil 

(Four Compressor 

Stages) 

RTU 2: Dry Coil 

(Four Compressor 

Stages) 

Indoor dewpoint 

(TID,DP) 

Indoor dry bulb 

(TID,DB) 

Indoor wet-bulb 

(TID,WB) 

Indoor dry bulb 

(TID,DB) 

Dewpoint depression 

(TID,DB– TID,DP) 

 Wet-bulb depression 

(TID,DB – TID,WB) 

 

Outdoor dry bulb 

(TOD,DB) 

Outdoor dry bulb 

(TOD,DB) 

Outdoor dry bulb 

(TOD,DB) 

Outdoor dry bulb 

(TOD,DB) 

Air mass flow rate 

(MFRSA) 

Air mass flow rate 

(MFRSA) 

Compressor lift 

(SCT – SST)  

Compressor lift 

(SCT – SST)  

 

Looking further into the boundaries for wet and dry tests, as well as for different stages, Table 2 and Table 3 show 

the limits for each DOE. When the system limitations prevented reaching the desired minimum or maximum, the 

component limitations were used instead. This case happened often when testing RTU 2 because of compressor and 

TXV limitations.  

 

Table 2: RTU 1 boundaries for each DOE [°C] 

  Compressor Stage TID,DB TOD,DB TID,DP TID,DP Depression 

    Min Max Min Max Min Max Min Max 

Wet 
Stage 1 15 35 18 35 4 28 3 15 

Stage 2 21 35 23 52 9 25 3 20 

Dry 
Stage 1 20 35 12 35         

Stage 2 19 35 13 52         

 

Table 3: RTU 2 boundaries for each DOE [°C] 

  Compressor Speed TID,DB TOD,DB TID,WB TID,WB Depression 

    Min Max Min Max Min Max Min Max 

Wet 

25%* 18 22 18 27 16 20 1 2 

50% 22 27 13 32 18 21 2 8 

75% 22 31 13 42 18 22 2 10.5 

100% 23 34 21 52 18 24 2 11.1 

Dry 

25% 20 27 18 27 

  
50% 27 34 17 39 

75% 27 35 17 42 

100% 27 35 18 49 
*A Box-Behnken DOE was performed for RTU 2 at 25% because of the small operational space. 

 

The wet tests were bounded by the dewpoint depression; if too large, it would result in a dry coil. The dewpoint 

depression criteria for wet coil operation is a function of airflow per capacity. As a result, RTU 2 running at 25% 

capacity has a dry coil when TID,DB > 22°C. The MCC-DOE also accounted for the saturated temperatures, as shown 

in Figure 1, which plots the predicted saturated evaporating dewpoint temperature (SST) and saturated condensing 

dewpoint temperature (SCT) along with the compressor’s operational boundaries. Zones 1 through 3 defined the 

allowable compressor speed: Zone 1 (60%–100%), Zone 2 (27%–100%), and Zone 3 (20%–100%). Zone 4 is a 

special case, whereby the unit’s operation at 25% capacity is constrained by the TXV. In this zone, the TXVs ability 

to meter refrigerant is restricted by the pressure difference across the valve. The last constraint applied was the 

system’s maximum allowable outdoor air temperature (52°C), which affected the maximum SCT for the 100% 

DOE. The MCC-DOE design pattern for RTU 2 was primarily done using SCT and SST as variables, which is 

discernable in these plots. 
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Figure 1: DOE for 25% and 50% compressor speeds (left) and for 75% and 100% compressor speeds (right) 

3.2 Laboratory Setup 
The laboratory apparatus was configured to supply three independently controlled airstreams to the experimental test 

stand and to accept three independently controlled return airstreams (Figure 3). The laboratory conditions the 

airstreams to the correct mass flow, temperature, and humidity using: 

 

1. Dry bulb using Type T thermocouples: ±0.4°C/±0.25°C absolute/delta-temperature accuracy 

2. Dewpoint using chilled mirror hygrometers: ±0.15°C/±0.05°C absolute/delta-dewpoint accuracy 

3. Airflow using ASME low beta flow nozzle array: ±2% of mass flow reading accuracy 

4. Ambient pressure: ±0.15% of reading 

5. Airstream delta static pressure: ±5 Pascal accuracy 

 

Other laboratory measurements included: 

 

1. Condensate flow rate using Coriolis flow meter: 0.1% of reading 

2. Power readings: 0.2% of reading (unit power, compressor, blower fan, condenser fan) 

3. Refrigerant pressures: 0–6.87 MPa, ±0.25% of full scale (suction, discharge, liquid line) 

4. Refrigerant temperatures: Type T thermocouples ±0.4°C (Compressor suction, discharge, middle of 

condenser, middle of evaporator) 

5. Special measurements for RTU 2:  

a. Compressor speed (0–10 VDC, signal tap)—maximum 4,500 RPM 

b. Supply fan speed (0–10 VDC, signal tap)—measured range: 1,118–2,523 SCFM 

c. Condenser fan speed (laser tachometer on fan hub)—maximum 1,000 RPM 

 

Dewpoint and dry bulb temperature were controlled to the set point within ±0.3°C and ±0.2°C. Airmass flow rates 

were controlled to ±1% of flow stability. The ventilation dampers on each system were sealed/taped shut to avoid 

small air leaks from the outdoor plenum to the inlet to the evaporator coil. This was done because performance maps 

are expected to represent the performance at the known evaporator inlet condition; however, crevices in the RTU 

cabinets’ construction and hatches allowed minute air leakage. Further, the combined air leak flow rate through 

crevices around hatches and dampers (when closed) were measured to be as high as 5% depending on the air 

pressure in the indoor air duct. As a result, these units provide up to 5% (potentially) unintended ventilation airflow 

when dampers are shut. 

 

RTU 1 was controlled using staged thermostat signals to control capacity. RTU 2 was controlled using a fictitious 

indoor temperature signal fed to the indoor temperature thermistor input. The laboratory control system maintained 

the proper measured compressor speed by varying the thermistor signal using a proportional-integral controller. 

These load control techniques ensured that the normal operational control logic of the RTUs was enabled. 
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Figure 3: Schematic of airstreams through RTU, plenums, and ducts 

Using the RTU cabinet as a control volume, power, supply airflow, and moisture removal balances were calculated 

using equations 1 through 3 with power and supply air mass balances for all data, as summarized in Table 4. When 

the enthalpy difference between the outdoor air and indoor air was similar, the power balance was typically 1.00 ± 

0.02. The measured values outside this range are thought to be from the cabinet air leaks and heat conduction 

through the cabinet. The dry-coil air-side moisture removal rate was measured to be less than ±0.15 kg/h. Periodic 

wet-coil checks between the air-side and liquid condensate measurements were within ±0.15 kg/h. 

 

 𝑈𝑛𝑖𝑡 𝑝𝑜𝑤𝑒𝑟 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = (
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑡𝑜𝑡𝑎𝑙+𝑃𝑜𝑤𝑒𝑟𝑢𝑛𝑖𝑡 𝑡𝑜𝑡𝑎𝑙

𝐻𝑒𝑎𝑡𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟
)   (1) 

 

 Supply air mass balance = (
𝑀𝐹𝑅𝑒𝑣𝑎𝑝 𝑖𝑛

𝑀𝐹𝑅𝑒𝑣𝑎𝑝 𝑜𝑢𝑡
)   (2) 

 

 Moisture removal balance = (
𝑀𝐹𝑅𝑎𝑖𝑟𝑠𝑖𝑑𝑒 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑟𝑒𝑚𝑜𝑣𝑎𝑙

𝑀𝐹𝑅𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
)   (3) 

 

Table 4: Measured power and evaporator air mass flow balances for all data points taken 

 RTU 1 

AVERAGE (RANGE) 

RTU 2 

AVERAGE (RANGE) 

UNIT POWER BALANCE 0.99 (0.94–1.05) 1.02 (0.97–1.08) 

EVAPORATOR AIR MASS BALANCE 0.99 (0.97–1.03) 1.00 (0.99–1.01) 

 

Test duration was dependent on the individual unit’s operation at each psychrometric condition. If unit operation 

was steady, the data were collected for 30 minutes while the power balance and latent capacity were steady to within 

±0.01 and ±0.15 kg/h. Both RTU 1 and RTU 2 exhibited non-steady behaviors. RTU 1 turned on the reheat coil for 

3 minutes every 90 minutes. The reheat coil caused 1) a decrease in total cooling and 2) a large decrease in latent 

cooling because condensed water on the reheat coil was evaporated into the supply air during this cycle. RTU 2 

operation less than 55% compressor speed had periodic changes in operation. The system ramped the compressor up 

to 55% for about 1½ minutes every 20 minutes. This cycle also occurred as the compressor first turned on and as it 

prepared to turn off. This time-variant operation affects real-life performance; for example, if a building load 

requires 25% capacity for 10 minutes, this unit will provide capacity at 55% for 5 minutes and then shut off. The 

 RTU Test Stand

 Outdoor Air Plenum Space:

Test Article: 

Unitary Roof Top 

Air Conditioning Unit

Lab Air Inlet #1

Lab Air Inlet #2

Outdoor Air

Combined/

Diffused
Outdoor Air 

Stream

Supply Fan

Condenser Fan

Condenser

Coil

Pressure Relief

To Lab Space

(Excess Air)

 

Delta Static 

Pressure

 

Delta-Pressure

Across Condenser

 

Delta-Pressure

OD Air Plenum - Ambient

 

Delta-Pressure

Supply Air Duct - Ambient

Unit Ventilation 

Damper

Sealed Shut

Evaporator

Coil

Condensate

Flow

 

Liquid

Mass Flow

Lab Air Inlet #3

Indoor Air Duct

Lab Air Outlet #3

Supply Air Duct

Lab Air Outlet #1 / #2

Condenser Air

Condenser 

Air Plenum
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blower and condenser fan speeds also ramped during these periods (Figure 4). In the figure, the quasi-steady-state 

performance was used (from start to finish lines) and had an average compressor speed of 22.8%. The time period 

selected was exactly 40 minutes to capture two full 20-minute cycles. Note that the 20-minute cycles are not 

identical but similar. Gathering sequential, identical cycles was not possible; however, small changes in compressor 

speed were determined to have little effect on efficiency (COP). The target speeds were 25%, 50%, 75%, or 100% ± 

2% compressor speed; however, exceptions were made for IEER measurement. For example, the 25% IEER point 

required the compressor to run at 23% speed to achieve 25% ± 3% of full load air-side total capacity (AHRI, 2015).  

 

 
Figure 4: Example component speed when operating at an average of 23% compressor capacity  

Figure 5 shows the inlet and outlet dewpoint during the same test point. During the short periods when the 

compressor ramped up, the evaporator coil provided some dehumidification; however, the water removed was re-

evaporated after the compressor ramped back down to nominal speed. The net sensible heat ratio was 1.00.  

 

 
Figure 5: Example outlet dewpoint temperatures during the same test as shown in Figure 4 

3.3 Adjustments for Elevation 
Laboratory methods and calculations conformed to ASHRAE Standard 37-2009 (ASHRAE, 2009); however, the 

laboratory is 1,783 meters above sea level elevation. Because sea level performance is desired, modification to 

typical procedures were implemented. The following criteria are necessary conditions to enable performance 

correction between altitude and sea level performance: 1) mass flow rates across the evaporator coil and condenser 

coils must be equal to that at sea level, and 2) the entering evaporator dry bulb and relative humidity must be equal 

to sea level conditions. The second criteria ensures that the dewpoint depressions (TID,DB – TID,DP) are the same 

between Golden, Colorado, (altitude) and sea level conditions. Given these criteria, the effectiveness of the 
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evaporator and condenser coils will be equal between altitude and sea level conditions. This is a result of the 

effectiveness of the finned coils being solely dependent on the number of transfer units (NTUs).  

 

 𝑁𝑇𝑈𝑓𝑖𝑛𝑛𝑒𝑑 𝑐𝑜𝑖𝑙 = (
U ∙ A

𝑀𝐹𝑅𝑎𝑖𝑟,𝑒𝑣𝑎𝑝 ∙ 𝐶𝑝,𝑎𝑖𝑟

)
𝑓𝑖𝑛𝑛𝑒𝑑 𝑐𝑜𝑖𝑙

 (4) 

   

For internal flows, the overall heat transfer coefficient (U) is solely a function of mass flow rate. Thus, maintaining 

equal mass flow ensures that the NTU and effectiveness are equal between altitude and sea level. As a result, the 

supply air temperature of a dry coil, SST, and SCT will be also be identical at altitude and sea level.  

 

When the evaporator coil is wet (providing dehumidification), then a small additional adjustment is required to 

calculate outlet conditions at sea level from those measured at altitude. Equation 5 is applied, which asserts that the 

refrigeration capacity is unchanged, thus the air-side capacity is equal between altitude and sea level. Applying 

Equation 6 is the result of the evaporator coil effectiveness remaining unchanged.  

 

 A𝑖𝑟 𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟: 𝛿ℎ𝑒𝑣𝑎𝑝,𝑆𝐿 = 𝛿ℎ𝑒𝑣𝑎𝑝,𝑎𝑙𝑡   (5) 

 

 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟 𝑎𝑖𝑟 𝑜𝑢𝑡𝑙𝑒𝑡: 𝑅𝐻𝑆𝐿 = 𝑅𝐻𝑎𝑙𝑡   (6) 

 

However, this wet coil correction introduces a small error in capacity and compressor power because the SST at 

altitude will be slightly more than that at sea level because of the increased evaporator moisture removal capacity at 

altitude. This phenomenon is because of the slope of the psychrometric saturation line is steeper at higher elevation. 

For the data presented in this paper, the error in SST was calculated to be less than 0.7°C, which results in a 1% 

average error in the measured compressor’s temperature lift (and resultant power) across all data points taken. 

 

Both RTUs controlled to the proper supply air mass flow rate. Thus, the internal static pressure drops were higher by 

the ratio of sea level to altitude ambient pressures. To properly correct the fan power, the sea level nominal static 

pressure across the supply inlet to supply outlet was set to 50 Pa and 62 Pa (for RTU 1 and RTU 2) and adjusted for 

measured ambient pressure as shown in Equation 7. The supply fan power was then adjusted to sea level 

performance (Equation 8), which is derived from fan laws. 

 

 𝛿𝑆𝑃𝑎𝑙𝑡 = 𝑉𝐹𝑅𝑎𝑖𝑟,𝑒𝑣𝑎𝑝 𝑜𝑢𝑡𝛿𝑆𝑃𝑆𝐿 (
101325 Pa

𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡
)  (7) 

 

 𝑊𝑆𝐹,𝑆𝐿 = 𝑊𝑆𝐹,𝑎𝑙𝑡 (
𝑃𝑎𝑙𝑡

101325 𝑃𝑎
) (8) 

 

The condenser volumetric airflow rate was characterized versus rotational speed. Condenser air mass flow rate was 

boosted using the laboratory fans during the tests using Equation 9. The condenser fan power was adjusted using fan 

law correlations from the characterized flow relationship. 

 

 𝑉𝐹𝑅𝑐𝑜𝑛𝑑.,𝑡𝑒𝑠𝑡 = 𝑉𝐹𝑅𝑐𝑜𝑛𝑑,𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑧𝑒𝑑 (
14.7 𝑝𝑠𝑖

𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡
)   (9) 

 

3.4 Verification of Experimental Accuracy 
As a final step to ensure proper calculations and laboratory setup, the AHRI Standard 340 rating conditions (AHRI, 

2015) were compared to the measured values. Standard rated values are the accepted measurement for system net 

capacity, energy efficiency ratio (EER), and IEER. The error shown is acceptable per the AHRI 210 and 340 

Standards (AHRI, 2008 & AHRI, 2015), which accounts for manufacturing variability.  

 

Table 5: Relative performance to standard rated performance as verification step for laboratory setup 

 RTU 1 RTU 2 

Measured capacity/standard rated capacity 102% 98% 

Measured EER/standard rated EER 95% 101% 

Measured IEER/standard rated IEER - 101% 
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3.5 Data Output 
The outputs also needed to meet the minimum TPEX requirements for performance maps, which are shown in Table 

6. This resulted in 71 and 97 measured test sets for RTU 1 and RTU 2 with the 10 variables displayed in Table 6 that 

were uploaded and are publicly available in the TPEX website (NREL, 2018). 

 

Additionally, statistical analysis software was used to determine the significant variables, which resulted in 

empirical polynomial models. Twelve and 24 models were created for RTU 1 and RTU 2 to fully define their 

performance. We used least squares regression with the same set of TPEX variables to predict dependent variables 

to within 5% error. Publishing the variables and their coefficients is too voluminous for this paper but is available 

via the TPEX website. The models for each RTU were then used to create a spatially even, full factorial set of 

performance data points that were also then entered into the TPEX database. Table 6 shows the TPEX variable list, 

with dependent variables calculated from the empirical models. 

 

Table 6: List of TPEX data variables. Dependent variables were calculated from the models derived for each. 

TPEX Data Requirements RTU 1 RTU 2 

TID,DB Independent Independent 

TID,WB Independent Independent 

TOD,DB Independent Independent 

MFRSA Independent Dependent 

Supply fan power Dependent Dependent 

Static pressure Independent Independent 

Gross cooling capacity Dependent Dependent 

Gross sensible heat ratio Dependent Dependent 

Gross power Dependent Dependent 

Stage/compressor speed Independent Independent 

 

As discussed earlier, RTU 1 maintained the set supply air mass flow rate, and RTU 2 varied the supply air mass flow 

rate to supply air at near constant temperature for compressor speed more than 50% and at constant airflow for 

compressor speed less than 50%. Building energy simulation tools, such as EnergyPlus, typically disaggregate 

refrigeration and supply fan control algorithms, and it is incumbent upon the building simulation user to input the 

correct control associations that link refrigeration capacity and supply air fan speed (energyplus.net, 2018). Further, 

EnergyPlus uses three psychrometric inputs to define the RTU capacity and power: TID,WB, TOD,DB, MFRSA; whereas 

TID,DB was shown to be a significant variable to define performance.  

 

To meet a building energy simulation’s thermal and latent loads, EnergyPlus also interpolates between stages or 

compressor speeds to determine performance; however, RTU 2 clearly shows that this algorithm would fail because 

the operational space is limited for each speed. As an example, the simulation might erroneously interpolate between 

25% and 50% speeds in a space were 25% speed will not run (e.g. TID,DB > 22°C). In this case, the unit would 

instead cycle. To further complicate the issue, cycling operation is constrained to the start-up/shutdown sequencing 

of the unit, such that 55% capacity would be used for a portion of the cycling behavior.  

 

6. CONCLUSIONS 
 

A method of creating performance maps using MCC-DOE was used to characterize two modern RTUs. These units 

were tested at an elevation of 1,783 m (81.7 kPa std. pressure), and a proposed method for adjusting the performance 

to sea level pressure was applied. The characterized RTUs resulted in 71 and 97 measured data sets. A second, full 

factorial, evenly spaced data set was derived using statistical software, and this created empirical models of key 

dependent variables. Interpolated data sets were developed based on the empirical models to provide tabular results. 

The measured and full factorial data sets were all uploaded on a publicly available website.  

 

To properly use the publicly available data sets for advanced RTU modeling, building energy simulation tools require 

the ability to properly interpret which models to use based on limitations of the systems’ operational ranges and 

onboard control strategies. Further, time-variant operations of these RTUs are not incorporated into these performance 

maps. This represents a challenge for existing building simulation programs, which are not inherently set up to handle 

the complex logic required to properly predict performance.  
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The variable-speed RTU particularly requires careful attention to understand the limitations for each compressor speed 

as it pertained to input psychrometric conditions. Real operation of high temperature at low capacity results in cycling 

of the refrigeration system rather than steady-state operation at a lower speed. These operational characteristics are 

the result of the manufacturer’s choice of compressor and TXV combination. Other manufacturer’s component choices 

will likely require an in-depth study, such as was done in this report, to determine the operational characteristics.  

 

Future work will focus on how to better incorporate the advanced controls of these modern RTUs into building energy 

simulation programs. One such method will be to investigate a co-simulation modeling approach that uses time-variant 

control algorithms in combination with a tabulated performance map to properly output the performance. The control 

algorithm would account for start-up/shutdown sequences and limitations because of internal component 

specifications. This method could be programmed and publicly provided as stand-alone code to be incorporated or co-

simulated with building energy simulation programs. As additional air conditioners are characterized, a library of co-

simulation code sets would be available to the energy modeling community. 

 

NOMENCLATURE 
 

Variables  

A area m2  

Cp constant pressure specific heat kJ/kg-°C 

DOE design of experiments - 

h enthalpy change kJ/kg 

SP delta static pressure Pascal (Pa) 

EER energy efficiency ratio Btu/W-h 

IEER integrated energy efficiency ratio Btu/W-h 

MCC-DOE mixed central composite design of experiments - 

MFR mass flow rate kg/s 

NTU number of transfer units - 

P pressure Pascal (Pa) 

RH relative humidity % 

RTU rooftop unit - 

SCT saturated condensing dewpoint temperature °C 

 converted from R410A pressure measurements (F-Chart Software, 2018)  

SST saturated evaporating dewpoint temperature °C 

 converted from R410A pressure measurements (F-Chart Software, 2018) 

T temperature °C 

TXV   thermal expansion valve - 

U overall heat transfer coefficient kW/ m2-°C 

VFR volumetric flow rate liters/s 

W work kW 

 

Subscript   

alt at measured altitude pressure 

ambient ambient conditions 

cond condenser 

evap evaporator 

DB dry bulb  

DP dewpoint 

ID indoor 

OD outdoor 

SA supply air 

SF supply fan 

SL sea level 

WB wet-bulb 
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