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ABSTRACT

A comprehensive mechanistic model of an open-drive single-screw expander for waste heat recovery applications by
means of an Organic Rankine Cycle (ORC) has been previously developed and validated by the authors. The model
included sub-models of geometry, leakage flows, in-chamber heat transfer, simplified friction losses and a single-
lumped temperature overall energy balance. Furthermore, a non-symmetric approachwas also implemented to simulate
the simultaneous expansion process occurring on both side of the central rotor. In this work, the mechanistic model has
been extended to compute the loads on the starwheels bearings as well as the main rotor. Forces and moments analyses
allowed integration of a more detailed friction loss analysis and identification of a thermal resistance network of the
housing with multiple lumped temperatures. To the best of the author’s knowledge such a detailed integrated thermal
model of a single-screwmachine has not been reported in the available literature. Themulti-lumped temperature overall
energy balance (OEB) is validated with experimental data obtained from a dedicated ORC test stand. A comparison
between single-lumped and multi-lumped temperature approaches on the performance predictions is provided along
with a discussion about the losses distribution inside the machine.

1. INTRODUCTION

Deterministic models of single-screw compressors (SSC) and expanders (SSE) have been published in literature. One
of the first computer models reported in the literature was proposed by Bein and Hamilton (1982) for a low pressure oil-
flooded single-screw air compressor. An iterative approach based on a polytropic transformation was used to correlate
internal predictions with empirical values. Leakage paths were also considered, neglecting the two-phase flow through
the gaps. The heat transfer between the air in the compression chamber and oil was neglected. Successively, Boblitt
and Moore (1984) presented a FORTRAN-based computer model of an oil-flooded SSC operating at 100% capacity at
matched discharge pressures, meaning the pressure at the end of the compression process corresponded exactly with
the discharge pressure. The model is based on two empirical parameters, i.e. polytropic compression efficiency and the
discharge flow coefficient. The included leakage model is based on the model proposed by Bein and Hamilton (1982),
with the addition of the effect of the oil on the volumetric and isentropic efficiency. However, it was assumed that
only oil was leaking from the groove tip sealing lines and the refrigerant leakages were restricted to the the discharge
port. The heat transfer between the refrigerant and oil in the closed compression process was neglected. The oil
injection process was also included in the model. A total of six control volumes were introduced to analyze the overall
compression process. Thermal interactions between each control volumes were modeled by means of a steady-state
steady-flow First Law analysis. The closed compression process was divided into a number of steps corresponding to
a pressure increment, since the discharge state of a groove had to match the discharge pressure. The main rotor rotation
step was a result of the model. Wu and Jin (1988) and Hirai et al. (1986) included additional gas-oil mixture effects
into their compressor models as well as the analysis of a slide valve mechanism.

More recently, Wang et al. (2016) presented a detailed thermodynamic model of a SSC with multi-column meshing
profile in which continuity and energy conservation equations were applied to the refrigerant gas and lubricant oil.
The control volume analysis was applied to a single working chamber by assuming that all the others behaved in a
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similar manner. Suction gas heating due to the presence of the motor was also included. A two-phase flow model
was employed to calculate the flow rate through the discharge port. A correction coefficient was introduced based
upon experimental data. The heat transfer within the working chamber was modeled by including a correction factor
to account for the helical shape of the groove. Cooling capacity and shaft power were validated with experimental
data. The same authors extended the chamber model to investigate the effect of liquid refrigerant injection to reduce
the discharge temperature and to improve the compressor performance (Wang et al. (2018)).

With respect to expanders, Ziviani et al. (2014) and Shen et al. (2018) developed comprehensive models of single-
screw expanders for organic Rankine cycle applications by accounting for both leakage and frictional losses. The
models have been used to predict the performance of the machines and to determine the effect of leakage gaps and
operating conditions on the overall performance.

By analyzing all the models proposed in literature, the overall energy balance of the single-screw machine is not well
addressed especially in the case of hermetic or semi-hermetic designs. Ziviani et al. (2014) enforced a single-lumped
temperature energy balance to estimate the heat losses through the shell. However, such approach, although effective,
is not sufficient to have better understanding of the thermal interactions inside the machine as well as identifying the
thermal losses.

In this paper, a detailed overall housing energy balance with a multi-lumped temperature thermal network is proposed
and integrated into the detailed expander model. An 11 kWe single-screw expander working with R245fa has been
selected as test case to validate the model and perform analyses. The experimental data points of the expander are
available from a previous study (Ziviani et al. (2016)).

Figure 1: Views of the single-screw expander assembly with the direction of rotation of meshing pair (left) and the
control volumes (right).

2. NON-SYMMETRIC MODELING APPROACH

The operating principle of a single-screw expander is based on the simultaneous filling of the grooves on both sides of
the main rotor through ports located on the internal cylindrical surface of the housing which hosts the main rotor. As
a groove rotates, it is exposed to the suction port until the trailing edge passes over the port. Once the portion of the
groove limited by the engaging tooth, by the three sides of the groove and the housing wall is filled with working fluid,
the closed expansion occurs until the tooth starts disengaging the groove, when the discharge process begins. Such
process occurs on both sides of the main rotor and therefore, when a groove is discharging on one side, it is filling on
the other side at the same time. Each groove is employed twice per revolution. By looking at Figure 1, the main rotor
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has six grooves, but due to the fact that two starwheels are engaged at the same time, there are six working chambers
on each side of the rotor, as mentioned by Wang et al. (Wang et al., 2016). To reduce the complexity of the model, it is
common practice to consider only one side of the rotor due to symmetry. A more general approach is adopted in this
work. In particular, a non-symmetric description of the machine is considered by computing the expansion process in
both sides of the rotor. By referring to Figure 1, the housing has been divided into four static control volumes (CV)
which are associated with the common inlet volume, the two internal ducts that connects the inlet to the suction pockets
and shell volume connected to the outlet of the expander. On each side of the rotor, six dynamic control volumes which
are changing according to the rotation angle are representative of the six working chambers. The rotation of the main
rotor is taken as reference. To relax the notation, the rotation angle of the main rotor, θsr, will be referred to as θ, unless
specified. A summary of the control volume definitions is available in Table 1

Table 1: Definition of the different control volumes in the single-screw expander.

Type Description Geometry

Static

inletshell
inletshell.1
inletshell.2
outletshell

V = 69 cm3, dV = 0 cm3

V = 70 cm3, dV = 0 cm3

V = 120 cm3, dV = 0 cm3

V = 569 cm3, dV = 0 cm3

Dynamic G1,...,G6 V=V(θ), dV=dV(θ) (Ziviani et al. (2018))

The complete evolution of the control volumes over one rotation of one side the main rotor is shown in Figure 2. The
control volume G1 is taken as reference. To be noted is that the remaining control volumes G2 � G6 (solid lines) are
phased by �jγi�j�1,2,3,4,5 and when each of them complete the revolution, they start wrapping on the opposite of the
rotor. At the same time, as new teeth start engaging after G1, new control volumes form from the groove that ended the
expansion process on the other side of the rotor (dashed lines). The present model handles all the CVs on both sides
simultaneously with no simplifications due to symmetry.
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Figure 2: Evolution of the main rotor control volumes over one complete rotation for one side of the main rotor.

The system of governing equations that expresses the conservation of total mass in the control volume, the conservation
of the oil mass and the conservation of energy for the general control volume are given as follows: Sub-models for
estimating the flow interactions between the working chambers and heat transfer model are necessary in order to carry
on the integration.

3. OVERALL ENERGY BALANCE

An overall energy balance of the expander housing is necessary to close the mechanistic model. In particular, thermal
interactions occur between the elements of the housing the working fluid during the entire expansion process. Thus, the
wall temperatures need to be estimated in order to calculate the associated heat transfer terms. Single-lumped temper-
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ature and multi-lumped temperatures are commonly used to enforce the overall energy balance depending on the com-
plexity required. The single-screw expander is an open-drive machine and both approaches are implemented.

Lumped
Mass Chambers

Inlet

Outlet

Mech.
losses

Ambient

Figure 3: Schematic of the single-lump overall energy balance of the open-drive single-screw expander.

3.1 Single-lumped Temperature
The overall energy balance based on a single-lumped implied that all the expander elements are grouped into one
lumped mass having a temperature Tlump. Since spatial gradients are neglected, the lumped temperature is uniform.
The working fluid exchanges heat with the lumped mass during suction, closed expansion and discharge processes.
The heat generated by friction is also assumed to interact with the lumped mass. Last, the lumped mass exchanges heat
with the ambient. The overall energy balance for a single lumped element can be written as,

Ẇmech,loss �Q
i
Q̇i�Tlump� � 0 (1)

where Tlump is the mean temperature of the lumped mass of the expander shell and Q̇i represents all the heat transfer
interaction terms between the different parts of the expander and the housing. By referring to Figure 3, the overall
energy balance for the single-screw expander is given by:

Ẇmech,loss � Q̇cyl,lump � Q̇inletshell,lump � Q̇outletshell,lump �UAamb �Tlump� � 0 (2)

where the average value of the overall heat transfer coefficient UAamb is obtained from experimental data or assumed
accordingly.

3.2 Multi-lumped Temperature
In the multi-lumped temperature approach, the entire expander is divided into different elements, i.e., the lumps. It is
assumed that there is no temperature gradient in the individual expander elements, i.e., the lumped temperature analysis
method is used. The higher the number of elements identified, the more complex the thermal network model becomes.
The overall energy balance model developed for the single-screw expander is based on previous models applied to
rolling piston, scroll and reciprocating compressors (Liu, 1994; Chen, 2000; Kim, 2005). The schematic of the overall
energy balance of the single-screw expander and the corresponding thermal resistance network are given in Figure 4(a)
and Figure 5.

As shown in Figure 5, there are six unknown temperatures: the shell temperature, Tshell; temperature of refrigerant
gas in the housing, Tgas,shell; side plate temperatures, Tplate; suction temperatures, Tpipe1,suc and Tpipe2,suc; cylinder wall
temperature, Tcyl,wall. To be noted is that the temperature of the gas within the shell corresponds to the temperature
associated with the control volume outletshell. The amount of heat lost to the environment due to natural convection is
dependent on the temperatures of the housing according to Newton’s law of cooling. In order to derive the stedy-state
energy balance equations for each lumped-element, the following conventions are imposed (Padhy, 1992):

• heat addition to an element is considered positive;
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(a) (b)

Figure 4: �a� Schematic of the overall energy balance of the single-screw expander; �b� heat transfer between the
mixture of refrigerant and oil in the working chambers and the cylinder wall.

• heat transferred from the element is considered negative;
• internal heat generation which includes frictional heat generation is considered positive.

Figure 5: Thermal resistance network of the overall energy balance for single-screw expander.

By applying the energy conservation law to each component, the following equations can be derived:

ṁexp,1 �hsu,2 � hsu,4� � Q̇pipe1,amb � 0 (3)

ṁexp,2 �hsu,2 � hsu,6� � Q̇pipe2,amb � 0 (4)

ṁexp,1 �hsu,4 � hdis� � ṁexp,2 �hsu,6 � hdis� � ẆpV � Q̇cyl,wall (5)

ṁexp �hdis � hout,1� � Ẇfriction � Q̇gas,shell (6)

Q̇cyl,wall � Q̇top�plate,amb � Q̇bottom�plate,amb (7)

Q̇gas,shell � Q̇side�plate1,amb � Q̇side�plate2,amb � Q̇front�plate,amb (8)

By referring to Figure 4(b), the groove is approximated as a helical tube with non-circular cross section. The convective
heat transfer coefficient is obtained by correcting the Dittus-Boelter correlation to account for the groove geometry.
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Similar approach has been adopted for example by Bell (Bell, 2011) in the case of the spiral geometry of the scroll
wraps and byMathison et al. (2008) in the case of curved surfaces in two-stage rotary compressor. The final expression
of the heat transfer coefficient is given by:

hgroove � 0.023
kmix

rsw �
dsr,sw
cosθ

Re0.8mixPr
0.4
mix

Dh

deq,groove

¢̈̈¦̈̈¤1 � 1.77
rsw �

dsr,sw
cosθ

rsw � 1
2 �rsw � drmsr,sw

cosθ �
£̈̈§̈̈¥ (9)

where deq,groove represents the equivalent diameter of the groove and Dh is the hydraulic diameter of the groove calcu-
lated as:

Dh �
4Vgroove�θ�
Agroove�θ� (10)

The Reynolds number of the mixture in the screw groove is calculated by considering as mean velocity the peripheral
velocity evaluated at the groove center radius between tip and bottom. The instantaneous heat transfer rate between
the mixture and the cylinder wall is thus obtained as:

Q̇cyl,wall�θ� � hgrooveAcyl,wall�θ� �Tcyl,wall � T�θ�� (11)

Finally, the average heat transfer between the mixture in the working chambers and the cylinder walls over one rotation
is obtained from:

Q̇cyl,wall �
1
2π S

2π

0
�Q
CV

Q̇CV	dθ (12)

where the integration is done numerically with a trapezoidal rule.

The heat transfer rate terms Q̇pipe1,amb, Q̇pipe2,amb, Q̇top�plate,amb, Q̇bottom�plate,amb, Q̇side�plate1,amb, Q̇side�plate2,amb, Q̇front�plate,amb
and Q̇gas,shell are expressed in the form:

Q̇ �
Ta � Tb
Rab

(13)

where, Ta � Tb is the temperature difference between two elements and Rab is the heat transfer thermal resistance. In
order to find the thermal resistances, empirically correlated averaged Nusselt numbers are calculated.

The cylinder walls exchange heat with the gas within the shell by free convection as well as with the upper and lower
surfaces of the housing by conduction. Thus, the thermal conductance of the heat transfer between cylinder wall and
housing is given by:

UAcyl�wall,upper�plate �
2πkironLupper�plate
log

rupper�plate
rcyl�wall

(14)

where kiron is the thermal conductance of the cast iron housing approximated as 70 W~�mK�.
There are five types of free convection heat transfer mechanisms that can be identified on the single-screw hous-
ing:

• the heat transfer over the upper surface of a plate,
• over the lower surface of a plate
• along a vertical plate,
• along a horizontal pipe
• and that along a vertical pipe.

For each free convection heat transfer type, adequate correlations for the Nusselt number needs to be defined (Incropera
& Dewitt, 2002). In particular, for the free convection over the upper surface of a plate:

(a) hot plate, Ts A Tinf
NuL � 0.54Ra1~4L �104 B RaL B 107� (15)

(b) cold plate, Ts @ Tinf
NuL � 0.27Ra1~4L �105 B RaL B 1010� (16)
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For the free convection over a lower surface of a plate:

(a) hot plate, Ts A Tinf
NuL � 0.27Ra1~4L �105 B RaL B 1010� (17)

(b) cold plate, Ts @ Tinf
NuL � 0.15Ra1~3L �107 B RaL B 1011� (18)

Churchill and Chu (Churchill & Chu, 1975) proposed a correlation to calculate the averaged Nusselt number for the
free convective heat transfer along a vertical plate over the entire range of Rayleigh number, RaL:

Nu �
¢̈̈¦̈̈¤0.825 �

0.387Ra1~6L

�1 � �0.492
Pr

�9~16	
8~27

£̈̈§̈̈¥
2

(19)

In the case of laminar flow, the following correlation is suggested:

Nu � 0.680 �
0.670Ra1~4L

�1 � �0.492
Pr

�9~16	
4~9 (20)

For the case of a horizontal pipe

Nu �
¢̈̈¦̈̈¤0.600 �

0.387Ra1~6D

�1 � �0.559
Pr

�9~16	
8~27

£̈̈§̈̈¥
2

NuD B 1012 (21)

where the subscript D refer to the diameter of the pipe. Sparrow and Gregg (Sparrow & Gregg, 1956) suggested using
Equation 19 to calculate the Nusselt number for the free convection along a vertical pipe if the following condition is
satisfied:

D
L
C

35
Gr1~4L

(22)

where D is the pipe diameter, L is the pipe length and GrL is the Grashof number. The following modification factor
should be used to multiply the averaged Nusselt number if the above condition is not satisfied:

F �
1
3
� L~D
1~GrL 	

1~4

� 1 (23)

In all the free convection cases, the so-called film temperature is used to determine the fluid thermal properties which
can be defined as:

Tf �
Ts � Tinf

2
(24)

where Ts is the surface temperature and Tinf is the temperature of the ambient or working fluid depending on the
case.

Finally, the overall energy balance of the expander that must be satisfied is given by,

Ẇexp,shaft � ṁexp �hsu,2 � hout,1� �Q
i
Q̇i �Tamb� (25)

where Q̇i,amb �Tamb� represents the i � th heat transfer loss through the housing (see Equations 3 to 8).

The system of non-linear equations is solved by employing a modified Broyden’s method (Bradie, 2006) to ensure
proper bounding of the lumped temperature values.
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Figure 6: Comparison between measured and calculated discharge temperature by employing single-lump and multi-
lump temperature formulations: �a� parity plot; �b� discharge temperature as a function of the pressure ratio across
the expander.
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Figure 7: �a� Comparison between single-lump temperature (Tlump) and multi-lump temperatures models for two
operating conditions; �b� averaged heat losses distribution.

4. RESULTS AND DISCUSSION

The performance characterization of the single-screw expander installed in an organic Rankine cycle has already been
described in Ziviani et al. (2016). The heat source inlet temperature has been kept constant at 125 XC and two working
fluids have been tested, i.e. R245fa and SES36, at different pressure ratios and operating conditions. An in-depth
validation of the mechanistic model in terms of mass flow rate, discharge temperature, power output, and overall
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isentropic efficiency has been proposed in Ziviani et al. (2017). By using the data set of R245fa, the single-lumped
temperature formulation and the detailed thermal network model are compared in terms of accuracy in predicting
the discharge temperature of the expander. In particular, Figure 6(a) shows the comparison between measured and
calculated discharge temperatures with both numerical approaches. Generally, it can be seen that the single-lump
model underpredicts the discharge temperature which is related to an overestimation of the heat losses through the
housing. Themulti-lumped temperaturemodel improved significantly the overall predictions of themechanistic model.
The accuracy of the model can also be appreciated by looking at Figure 6(b), where the discharge temperatures are
plotted as a function of the pressure ratios. The detailed thermal-network is able to capture the physical behavior of
the expander more consistently.

The two modeling approaches have been further exercised to predict the temperatures of the expander housing. Such
analysis has been conducted by considering two operating conditions having the same suction temperature and different
pressure ratio. The operating conditions and the results are reported in Figure 7(a). It can be seen that the single-lump
temperature model converges to housing temperatures closer to the suction temperature. The UAamb can be tuned to
improve the predictions on the discharge temperatures. However, the multi-lump temperature model allows to better
understand the temperature distribution of the housing. As expected in the real system, the inlet pipes present a higher
surface temperatures than the discharge side. The cylindrical walls surrounding the main rotor have an intermediate
temperature level determined by the closed expansion process. The averaged heat losses distribution through the
housing of the expander is shown Figure 7(b).

5. CONCLUSIONS

In this paper, a detailed thermal model of an open-drive single-screw expander have been described and integrated into
a comprehensive mechanistic model. The following conclusions can be drawn:

• the detailed thermal network model improved the predictions of the expander discharge temperatures;
• the single-lumped temperature approach leads to higher shell temperatures. Whereas, by considering different
lumped-temperatures, the model is able to predict higher surface temperatures in the suction side and lower
temperatures in the rest of the housing. As part of future work, multiple temperature sensors will be installed to
further validated the detailed thermal network;

• the thermal network developed can be easily extended to account for hermetic or semi-hermetic single-screw
designs.

NOMENCLATURE

A area (m2)
c centroid coordinates (m)
d distance (m)
D diameter (m)
Dh hydraulic diameter (m)
F force (N)
Gr Grashof number (-)
h specific enthalpy (kJ/kg)

heat transfer coeff. (kW/(m2K))
k thermal conductivity (W/(K-m)
L length (m)
ṁ mass flow rate (kg/s)
Q̇ heat transfer rate (kg/s)
Nu Nusselt number (-)
Pr Prandtl number (-)
T temperature (XC)
r radius (m)

R thermal resistance (K/W)
Ra Rayleigh number (-)
Re Reynolds number (-)
V volume (m3)
Ẇ work rate (W)
θ crank angle (rad)
ω angular speed (rad/s)
Subscript
amb ambient
CV control volume
cyl cylinder
exp expander
dis discharge
fr friction
out outlet
s surface
su supply
sw starwheel
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