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ABSTRACT 

This study presents an improved simple equivalent model to calculate the bypass leakage mass flow rate along the tip 
seal in scroll compressors, where the complicated flow patterns through bypass clearances were decomposed into two 
thin representative rectangular cross-section leakage passes. The one is for the leakage along the tip seal and has the 
rectangular cross-section of the effective mean width by the thrust clearance height over the scroll wrap in front of the 
tip seal, where the pass length was represented by the equivalent leakage length, theoretically derived from the simple 
Darcy-Weisbach equation. The other is for the tangential leakage over the scroll wrap, through the minimum 
rectangular cross-section in front of the tip seal, and the pass length was represented by the effective mean length. The 
effective mean width and length were empirically determined with simple bypass leakage tests, where the pressure 
decay in a pressurized vessel with dry refrigerant gas R410A, due to the bypass leakages, were measured. The 
measured pressure decay characteristics were subsequently simulated using the Darcy-Weisbach equation with an 
empirical friction factor determined in our previous study for the leakage flow through axial clearances. Empirical 
values of the effective pass width and length were determined so that the measured pressure decays are well predicted 
by the calculations. Furthermore the effective pass width and length were reduced to a non-dimensional form and the 
physical meanings represented by the empirical values were examined, and finally the leakage flow velocities and 
leakage flow rates were presented. 

1. INTRODUCTION 

A previously developed simple equivalent method to calculate the bypass leakage mass flow rate along the tip seal in 
scroll compressors assumed that the pressure loss due to the tangential flow through the slot under the tip seal is 
negligible, as its cross-sectional area is comparatively large (see Ishii et. al., 2016). However, our subsequent studies 
showed that the assumption was wrong. Therefore, the present study was carefully carried out to develop an improved 
simple equivalent model to calculate the complicated bypass leakages, explicitly accounting for the previously ignored 
pressure loss.  

Our study proposes that the complicated flow patterns through bypass clearances can be classified into two 
representative flows through thin rectangular cross-sectional passages. One is for the leakage flow from the radial 
flow over the scroll wrap, to the axial flow in front of the tip seal, to the tangential flow through the tip seal slot, and 
then to the axial and radial flows, and which is denoted as leakage flow Model-1; it has a rectangular cross-section 
given by the product of the effective mean passage width and the thrust clearance height above the scroll wrap in front 
of the tip seal with a passage length represented by the equivalent leakage length which is theoretically derived using 
the Darcy-Weisbach equation with the momentum equation for incompressible viscous fluid under fully-developed 
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turbulent flow. The other – for tangential leakage over the scroll wrap, through the narrowing and spreading cross-
section in front of the tip seal– is denoted as leakage flow Model-2, in which the passage length is represented by the 
effective mean passage length to account for tangential leakage. 

In the present study the leakage passage effective mean width and effective mean length are determined from very 
simple bypass leakage tests, where the pressure drop characteristics due to leakages are measured in detail. For this 
purpose, a bypass leakage laboratory test model with precise clearances is developed to emulate a scroll compressor 
with a large cooling capacity. The resulting pressure drop in an attached large vessel with dry refrigerant gas R410A, 
pressurized up to 1.1 MPa, are measured. Initially, in the present tests, the flow passage of Model-1 was completely 
sealed and the pressure drop only due to the leakage through the flow passage of Model-2 was measured to identify 
the effective mean passage length for Model-2 by forcing the theoretically calculated results to agree well with the 
pressure drop slope just at the start of the measurements. Subsequently, similar tests and theoretical calculations were 
conducted for the combined leakage flow Model-1&2 after entirely removing the Model-1 seals, permitting the 
identification of the effective mean passage width for Model-1. Next, the pressure drop characteristics were 
theoretically calculated over the range of measurements, using the identified effective mean width and effective mean 
length of leakage passages, and showed good agreement with the test results. Additionally, the leakage passage 
effective mean width and effective mean length were reduced to non-dimensional forms, permitting the assessment of 
the physical meaning represented by the empirical values. Finally, the leakage flow velocities and leakage mass flow 
rate were computed and examined. The utility of applying of this method to other scroll compressor geometries is 
suggested for future studies. 

2. EQUIVALENT LEAKAGE FLOW MODEL WITH PARALLEL PASSAGES  
WITH RECTANGULAR CROSS-SECTION 

2.1 Basic Configuration of Bypass Leakage Flows 

The configuration of general installation of the tip seals into a rectangular slot machined on the top of the scroll wrap 
is shown in Figure 1(a). The right hand side faces a high pressure region and the left hand side faces a low pressure 
region. The tip seals are pressed against the left side wall of the slot and upward onto the orbiting thrust plate, caused 
by hydrodynamic effects. Nonetheless, leakage clearancesr0 and a0 remain behind and above the tip seal, 
respectively. In the present study, however, these leakages through these clearances r0 and a0 (labelled ①’, ②’, ⑤’, 
④’), are assumed to be negligible when compared with the other leakages. The major bypass leakages occur through 

 
Figure 1: Configuration of bypass leakage flows: 

 (a) A-A’ cross-sectional view of installation of tip seal into slot on scroll wrap; (b) Top view of bypass leakage 
flow patterns; (c) U-U’ cross-sectional view of in-flow from high pressure region to tip-seal slot; (d) D-D’ cross-

sectional view of out-flow from tip-seal slot to low pressure region 
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the leakage region “A” over the front scroll wrap, the 
leakage region “B” in front of the tip seal and the 
leakage region “C” in the tip seal slot. A top view of 
the bypass leakage flow patterns is illustrated in Figure 
1(b). The flow in the region “A” above the scroll wrap 
consists of radial and tangential flows. The radial flow 
(labelled ①) from the high pressure region changes its 
direction downward in front of the tip seal and flows 
into the region “B” (labelled ②) and then into the slot 
under the tip seal; furthermore, the flow changes its 
direction again in the tangential direction along the tip 
seal slot indicated in region “C” (labelled ③), as shown 
in Figure 1(c). The out-flow (labelled ③ to ⑤) from 
the tip seal slot into the low pressure region mirrors the 
in-flow (labelled ① to ③), as explained above, and 
shown in Figure 1(d). The tangential flow in the region 
“A” (labelled ③’) directly flows from the high pressure 
region into the low pressure region.  

2.2 Equivalent Parallel Rectangular-Cross-
Section Passages 

The in- and out-flows, labelled ① to ⑤, are classified 
as a leakage flow Model-1, which can be represented 
as the leakage flow through a simple thin rectangular 
cross-sectional passage with the effective mean 
passage width and an equivalent length. The 
fundamental idea for the effective mean passage width 
is developed in Figure 2. The radial in-flow velocity 
distribution along the tangential direction over the 
scroll wrap is illustrated. The high pressure region 
between the outer scroll So and the inner scroll Si forms 
a wedge, and hence the refrigerant gas is concentrated 
into the tip of the wedge and then flows out in the radial 
direction over the outer scroll, thus exhibiting an 
increase in radial flow velocity as it approaches the 
contact point of the outer and inner scrolls. This kind 
of flow may be analyzed with FEM computer 
calculations, but such a time-consuming method is 
seldom effective in practical calculations of the volumetric efficiency of scroll compressors under a variety of various 
operating conditions. A very simple scheme to roughly evaluate this leakage flow, which in turn can afford an accurate 
calculation of the leakage mass flow rate, is essential. For this purpose, the concept of “effective mean width”, 
represented by w, is introduced, in which the flow velocity is assumed constant. The proposed effective mean passage 
width depends naturally upon the pressure difference between the high and low pressure regions; its empirical value 
can be easily determined by leakage tests.  

With the introduction of the effective mean passage width w, the in- and out-flows, labelled ① to ⑤, can be 
represented by a very simple step-like passage with the same effective mean passage width for all the flow steps, as 
shown in Figure 3. However, the flow passage width for the tip seal slot flow, labelled ③, results in Ws. The clearance 
and length of each passage is a and L1 for the flows ① and ⑤, while s and 2w for the flow ③,rt and L2 for the 
flows ② and ④. L1 and L2 are given by the values added each actual pass length to 1/2 of rt and a, respectively. 

Here, the Darcy-Weisbach equation is applied to each flow labelled ①, ②, ③, ④ and ⑤: 

 
Figure 2: Effective mean passage width for radial flow 

over outer scroll (scroll wrap, labelled So) and its 
representative value for non-dimensional form 

 

Figure 3: Equivalent step-like passages with effective 
width, for flows labelled 1 to 5 of bypass leakage 

 

Figure 4: Equivalent flow model of parallel 
rectangular-cross-section passage, consisted of Model 1 

and Model 2, for bypass leakages 
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 , , ,  

,                                                        (1) 

In the previous study (Ishii et al., 2016), the pressure loss for the flow labelled ③ was disregarded since the passage 
cross-section area is comparatively large and the corresponding pressure loss due to flow friction was assumed to be 
negligible. Our later studies, however, showed that the pressure loss cannot be disregarded; thus, the pressure loss 
through flow passage ③ is included in the present more precise analysis. P represents the pressure and um the flow 
velocity. The density is constant (incompressible flow assumption) and g is gravitational acceleration. The hydraulic 
diameter is given by 2a for the flow passages ① and ⑤, and 2rt for the flow passages ② and ④. In contrast, the 
hydraulic diameter for the flow passage ③ is given by 4 times s Ws/{2(s + Ws) which is the hydraulic mean depth of 
the rectangular cross-section with the flow passage width Ws and clearance height s. Pressure losses due to flow 
bending  and large area expansion and contraction have been neglected. The continuity equations require that 

. (2) 

The summation of each side of the Darcy-Weisbach equations in (1), with consideration of the continuity equation (2), 
results in the following: 

    =  , where ≡ 2 + 2 + ⋅ + 1              (3) 

Equation (3) represents the reduction of the step-like passages, shown in Figure 3, to the simplest rectangular cross-
section passage, as shown by the leakage Model-1 in Figure 4. The clearance height is a. The equivalent length  is 
defined in Equation (3). 

An additional leakage, beyond that of Model-1, is the tangential upstream and downstream flows over the scroll wrap, 
labelled ③’, as shown in Figures 1(c) and (d). This tangential flow through the minimal rectangular cross-section with 
the clearance height a and the width L1 can be simply represented by a flow through the rectangular cross-section 
passage with the effective mean passage length 2 , as shown by the leakage Model-2 in Figure 4. The leakage flow 
through Model-2 is also modeled using the Darcy-Weisbach equation: 

. (4) 

The leakage-induced pressure drop tests were initially conducted to determine the empirical value of the effective 
mean passage length for the leakage passage Model-2. Subsequently, the leakage-induced pressure drop tests were 
repeated for the combined leakage passage Model-1&2 to determine the effective mean passage width w. 

3. EMPIRICAL VALUES OF EFFECTIVE MEAN LENGTH AND WIDTH OF 
PARALLEL RECTANGULAR CROSS-SECTION PASSAGES  

3.1 Leakage Test Set-Up 

Photos of the present leakage test set-up are shown in Figure 5. The mating scrolls are both curved, and the scroll on 
the tip seal side, S0, is made straight, for easy high-precision machining, while the mating scroll Si is curved with a 
radius of 241 mm. Such a model represents the form which tapers toward the scroll contact point. The plane drawing 
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is shown in the center of Figure 5, and the B-B’ section 
view is on the right side. The straight tip seal slot with a 
width Ws of 2.0 mm and a depth of 2.4 mm is machined 
on the straight scroll S0 at 1.0 mm (Wsi) from its front 
face. The outer face of the slot is machined down 0.13 
mm to secure the axial clearance height a, while the 
inner is machined down 2.1 mm. The straight tip seal T 
with a thickness of 2.1 mm is mounted on the inner face, 
and thus the upper face of T is on the same level as the 
original upper face of S0 and the slot with a depth of 0.3 
mm (s) is left under T. The front face of T is machined 
by 0.1 mm to secure precisely the radial clearance rt. 
The leakage flow passages ① to ⑤ labeled in Figure 
1(c) and 1(d) can be precisely modeled with the present 
set-up. The major specifications for the present leakage 
tests are listed in Table 1. The pass length L1 for leakage 
flows ① & ⑤ and L2 for leakage flows ② & ④ are 1.06 
mm and 2.035 mm, respectively.  

The test model is sandwiched between the upper and 
lower plates and fixed on the lower-side pressurized 
tank, as shown in photos on the left side of Figure 5. In 
the process of fixing, careful attention was paid to seal 
perfectly the contact surfaces between the parts, with a 
fluid gasket, so that the bypass passages are not sealed. 
The high pressure chamber of PH is connected to the 
pressurized tank with a volume of 860 cm3. The low 
pressure region of PS is connected to a refrigerant 
recovery tank through the release valve.  

3.2 Pressure Decay Test Results and 
Determination of Effective Mean Width for 
Leakage Model-1 and Effective Mean Length for Leakage Model-2  

The test itself is very simple and easily conducted. Initially, the release valve is closed to extract air with a vacuum 
pump from inside of the whole system. Then the system is charged with refrigerant gas R410A. The release valve is 
opened as quickly as possible and the pressure decay in the pressurized tank, due to gas leakage, is measured until the 
pressure in the high pressure tank decreases to atmospheric pressure. The initial high pressure in the tank, PH, was 

 
Figure 5: Configuration of lubrication test set-up. 
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Table 1: Major specifications for bypass leakage tests. 

 
 

Table 2: Initial conditions of temperature, density 
and viscous coefficient for leakage tests with 

pressure difference P up to 1.1 MPa. 

Pass length L 1 [mm] 1.05
Pass length L 2 [mm] 2.035

High pressure P H  [MPa] 0.4〜1.2
Low pressure P S  [MPa] 0.1

Inner scroll radius R  [mm] 241
Slot width W s  [mm] 2.0

Width W st  [mm] 1.0
Axial clearance  a  [m] 130

Radial clearance  rt  [m] 100
Slot height  s  [m] 300

ΔP Temp. Density μ Temp. Density μ

 (MPa) (K)
 0

(kg/m
3
)

(×10
-6

Pa・s)
(K)

 0

(kg/m
3
)

(×10
-6

Pa・s)

1.1 295.05 43.65 13.34 295.65 43.46 13.37
1.0 294.15 39.36 13.27 295.65 38.97 13.34
0.9 293.25 35.22 13.21 295.75 34.68 13.32
0.8 293.45 31.01 13.20 295.65 30.62 13.30
0.7 294.35 26.90 13.22 295.75 26.71 13.29
0.6 293.95 23.16 13.19 296.25 22.90 13.29
0.5 294.85 19.43 13.22 296.45 19.29 13.29
0.4 295.05 15.91 13.22 296.65 15.80 13.29
0.3 294.85 12.54 13.21 296.75 12.44 13.29
0.2 294.75 9.27 13.20 297.25 9.18 13.31
0.1 294.55 6.09 13.19 297.05 6.04 13.30

Model- 2Model - 1&2
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increased from 0.2 MPa to 1.2 MPa in steps of 0.1 MPa, relative to the atmospheric low pressure PS of 0.1 MPa. Thus, 
the pressure difference p changed from 0.3 to 1.1 MPa. The initial conditions for the present leakage tests are 
presented in Table 2. 

The pressure decay due to bypass leakage was detected with a pressure transducer (JTEKT, PMS-5M). Measured 
pressure characteristics are shown by a solid line (black) in Figure 6. Figure 6(a) shows the transient pressure decay 
due to the resultant leakage for combined Models-1&2, while Figure 6(b) shows the pressure decay due to a leakage 
only for Model-2, where the leakage passages for Model-1 were completely and carefully sealed. The leakage cross-
section area for Model-2 is v ery small compared with that for Model-1 and, hence, the pressure decay shown in Figure 
6(b) takes far more time the pressure decay shown in Figure 6(a) for Models-1&2. 

The empirical friction factor in the Darcy-Weisbach equation was empirically determined by Ishii et al. (1996, 2011) 
and Oku et al. (2005), which together indicated that values are essentially independent of the kind of refrigerant. 
Furthermore, our recent studies revealed in detail the effects of temperature, surface roughness and oil wetness. As a 
result, the empirical friction factor can be represented by a Nikuradse-style turbulent flow formula: 

, where the Reynolds number is ,  (5)  

This empirical formula, considered most reliable at the present stage, was used for the present theoretical calculations 
of pressure drop (the details of research will be reported in near future). The viscosity is given bythe Reynolds 
number is Re reaching a maximum value of 1.4×105 in the present tests. The empirical friction factor in over a 
range of Reynolds number is shown by the solid line on the Moody diagram (for pipe flows) in Figure 7.  The mean 
roughness of the leakage flow passages of the present test model, , was 0.34 m, and the clearance height  was 130 
m for the flow pass ① and 100 m for the flow pass ②. As a result, the relative roughness  /d(= /2) for the 
equivalent circular pipe takes about 0.002. The leakage flow velocity um1 and um can calculated from be Equations (3) 
to (5), and thus the mass flow rate  can be calculated by  

 (6)  

where the density can be calculated by  
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(a) Pressure decay for Model-1&2.                             (b) Pressure decay for Model-2. 

Figure 6: Measured time-dependent pressure decay characteristics and theoretical simulation for determining 
effective mean passage width w for Model-1 and effective mean passage length  for Model-2. 
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The initial pressure and density are represented by 
P0 and 0, respectively. The residual refrigerant 
mass in the high pressure chamber, G, can be 
calculated by subtracting the total leakage mass 
from the initial refrigerant mass G0: 

 (8)  

G0 can be calculated with the initial density and the 
pressurized tank volume (860 cm3). Finally, 
assuming a polytropic process with exponent n, the 
pressure decay P in the high pressure chamber 
over a small time t can be calculated: = . (9) 

Given the initial temperature and pressure, the 
initial density 0 and viscosity coefficient for 
R410A are determined from the refrigerant 
characteristics program (REFPROP 8.0 NIST, 
2007), as listed in Table 2. Next, the leakage flow 
velocity can be calc ulated using Equation (3) or (4) 
and Equation (5) representing the empirical friction 
factor and the Reynolds number Re, with the 
repeated calculation method. Subsequently, the 
mass flow rate can be calculated from Equations (6) 
and (7), and the refrigerant mass which remained in 
the pressurized tank from Equation (8) and finally 
the pressure drop value from Equation (9). 

First in theoretical simulation of the pressure drop 
curve, the effective mean passage length was 
identified by repeated assumption of an empirical 
value which when fitted to test results for Model-2, 
shown in Figure 6(b), gave a computed transient 
pressure that matched the measured pressure drop 
curve (solid line), over the short time range 
(marked by the slender aspect ratio rectangle) just 
after starting measurement. Using the converged value of passage length  in the pressure drop calculation yielded 
the predicted curve with a negative slope (dashed line). Similar simulations were conducted for each set of the 
measured pressure drop data, thus identifying the effective mean passage length for each initial pressure difference 
P, as denoted as the parameter. In addition, the empirical values are shown over the initial pressure difference P in 
Figure 8. Then, using the identified empirical values for , the pressure drop for combined Model-1&2, shown in 
Figure 6(a), was theoretically calculated for an assumed value of w. As in the Model-1 case, the effective mean passage 
width w was iterated until the measured pressure drop curve over a small time range just after starting measurement 
was well predicted by the theoretical calculations. The empirical values of w are included as the parameter in Figure 
6(a) and in Figure 8. With increasing pressure difference P, the effective mean passage length increases linearly 
to about 4.4 mm  at P =1.1 MPa. The effective mean passage width w exhibits a monotonic, non-linear increase and 
approaches about 24.1 mm at P =1.1 MPa. These results suggest that the leakage flow is enhanced with decreasing 
pressure. 
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Figure 7: Empirical friction factor on the Moody diagram.
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4. CONFIRMATION OF VALIDITY OF EMPIRICAL CALCULATION METHOD  

As shown in Figu re 6, the theoretically simulated values of pressure decay diverge from the measured values with 
larger values of time. This difference is due assuming constant values of the effective mean passage width w and 
passage length  in the simulations. The values for these two parameters were kept at the values determined from 
the data at the time immediately after the measurement started. In fact, however, both w and decreases as the 
pressure decreases, as shown in Figure 8, suggesting that leakage flow increases with decreasing the pressure. 
Therefore, if the pressure-dependent empirical values of w and , shown in Figure 8, are included in the theoretical 
simulations, the simulated the pressure decay is expected come into close agreement over the entire time duration.  
Such simulated pressure decay characteristics, including the empirical pressure-dependent parameters, as shown in 
Figures 9(a) and 9(b), confirm this expectation. In Figures 9(a) and 9(b), the calculated results are shown by the blue 
dashed lines agree well agreement with the measured values (solid black lines) over the entire duration. As a result, 
one may conclude that by including the tendency for increased leakage with decreasing pressure, the proposed very 
simplified method of representing the complicated bypass leakage flows by the flows through parallel rectangular 
cross-section passages can reproduce measured data with high accuracy.  

Furthermore, the effective mean passage width w can be normalized by the representative tangential length w0, 
presented in Figure 2, and the effective mean passage length by the width L1 of the passage cross-section “A” 
labelled in Figure 1(a): 

 (10) 

in which w0 is the horizontal (tangential) length from the contact point to the position where the clearance height H 
between the outer and inner scrolls becomes equal to the scroll thickness in front of the tip seal, Wsi (see Figure 2), 
taking on a value of 22.0 mm for the present test set-up.  

The values of normalized quantities, denoted as the reduced mean passage width  and the reduced mean passage 
length 

2l   are plotted on secondary axis to the right in Figure 8. The reduced mean width exhibits a 
monotonic increase approaching the asymptotic value of about 1.1 for values of P larger than 0.8 MPa. It is suggested 
that the reduced mean width is appropriate for most standard scroll designs. On the other hand, the reduced mean 
passage length 

2l  increases linearly to a maximum values of about 4.4 at P = 1.1 MPa. It is suggested that this value 
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Figure 9: Theoretical simulation of pressure decay for Model-1&2 and Model-2 compared with measured 
data 
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changes depending upon the scroll curvature radius. Further detailed experiments are needed for standard scroll 
designs. Careful examination of the physical meaning of these values will be also needed. 

5. LEAKAGE VELOCITY AND MASS FLOW RATE 

In the process of the pressure decay simulations, the leakage flow velocity um1 for Model-1 and um for Model-2, and 
corresponding mass flow rates  have been calculated from the measured pressure drops, as shown in Figure 10(a) 
and 10(b), for the range of pressure differences P. The leakage flow velocity um1 is larger than um, since the passage 
drag is smaller for Model-1 than for Model-2. However, the leakage velocity is lower than the speed of sound for 
R410A (shown by the dashed lines), even for highest pressure difference. It is natural that the leakage flow velocity 
decreases with decreasing the pressure difference P. 

All data of the mass flow rate align well along the solid and dashed lines, respectively, as shown in Figure 10(b). 
The upper solid line is for the leakage by Model-1&2, and the lower dashed line is for Model-2, both of which increase 
approximately linearly with increasing the pressure difference. When the pressure difference is 1.1 MPa at maximum, 
the mass flow rate reaches the maximum of for Model-1&2 and for Model-2. The 
leakage by Model-1 is far dominant. From this result, the ratio of leakage flow rates for Model-1 to Model-2 is about 
2 to 1 for the present test set-up model.  

6. CONCLUSIONS 

In the present study, the hypothesized treatment of complicated bypass leakage in scroll compressors using a very 
simple flow model was validated. In the flow model parallel rectangular cross-section passages, classified into Model-
1 with the effective mean passage width for the radial leakage along the tip seal and Model-2 with the effective mean 
passage length for the tangential leakage over the scroll wrap in front of the tip seal are used to simulate the bypass 
leakage flow. The effective mean passage width and the effective mean passage length were determined by very 
simple and easily conducted pressure decay tests, where the measured pressure decays were all successfully simulated 
by very simple theoretical calculations, based on the Darcy-Weisbach equation for incompressible viscous fluid flow. 
Furthermore, the level of contribution to the resultant leakage is examined to conclude that the leakage by Model-1 is 
by far the dominant effect and the complicated bypass leakage can be calculated by just one rectangular cross-section 
passage represented by Model-1, if an error of about 5% is permissible. Finally, the effective mean passage width for 
Model-1 was normalized with the representative tangential length from the contact point of the outer and inner scrolls, 
where the distance between the outer and inner scrolls becomes equal to the thickness of outer scroll wrap in front of 
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Figure 10:  Empirical data of leakage flow velocities um1, um, and mass flow rate  for the range of pressure 
differences, P, considered in this study 
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the tip seal. In this way, the reduced effective mean passage width was formulated, and the present scheme for 
empirically calculating the complicated bypass leakage was generalized for possible application to all cases of scroll 
contact area geometry. 

The present study was motivated through possible developments of super large scroll compressors with shaft power 
more than 1000 kW, where the bypass leakage effect on the volumetric efficiency was one unknown factor for the 
authors. The present scheme for evaluating the complicated bypass leakage will be applied to predict the possible high 
volumetric efficiency of super large scroll compressors.  

NOMENCLATURE 
 
G, G0  : Refrigerant mass [kg] 
g  : Acc. of Gravity   [m/s2] 
L1, L2   : Length   [m]
l1, l2  : Equivalent length  [m] 

  : Mass flow rate  [kg/s] 
n  : Polytropic index  [-] 
PH, Ps, PL, P12, P45 : Pressure  [Pa] 

Re  : Reynolds number [-] 
t  : Time   [s] 
um1, um2, um3, um4 : Mean velocity   [m/s] 
Ws  : Width   [m]
a, rt, a0, r0 : Clearance   [m] 
  : Friction factor   [-] 
  : Density  [kg/m3] 
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