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ABSTRACT 
 

Computational Fluid Dynamics (CFD) is a common and validated simulation method in research and industry for 

the analysis of fluid systems. In the past years, it has proven to become more and more applicable for modeling the 

flow physics inside positive displacement (PD) machines. The working chamber and thus the discretized flow 

domain of PD machines are changing in time, characterized by complex thermodynamics. Compressible fluids, real-

gas properties and leakage flows with trans- or supersonic characteristics are phenomena which have to be 

accounted for in order to properly model the behavior of the machine. As CFD methods evolve in general, but also 

for the application of PD machines in particular, the numerical model can replace a prototype during early stages of 

the product development. The desired simulation approach should be able to deliver sufficient accuracy at a feasible 

effort in terms of computational time and manpower to create the numerical model. 

 

This paper presents the methodology of creating the numerical model for a sample screw compressor provided by 

Sullair for research purposes. It is a dry running two stage twin screw compressor running with air at a rated power 

range between 160 and 250 kW. The two stages are gear driven by the main shaft at rotational speeds between 1180 

and 2100 rev/min. Each stage features different rotor profiles, where the first stage has a 4-6, the second stage a 5-7 

lobe combination. The total pressure ratio of the two stages combined is up to 10:1. To enhance the performance of 

the compressor, discharged air from the first stage is cooled down before entering the second stage.  

 

A specific meshing method is used to model the size-changing working chambers between rotors and casing, where 

only hexahedral cells are used and mesh topology is constant. The model accounts for radial and axial clearances 

between rotors and stator, where rotors and stator are connected with interfaces. The transient simulation results are 

compared to experimental measurements for torque, flow rate and volumetric efficiency. Also discharge pressure 

and temperature after first and second stage are compared to the experimental results. In addition, the possibilities of 

the simulation are exemplified by the gathering of time- and space-resolved monitor points like temperature or 

pressure at distinct points within the compressor. 

 

Apart from direct comparison to the experiment, also a sensitivity study regarding the change of housing clearances 

is presented, as leakage flow has severe impact on the compressor performance. These clearances and the resulting 

leakages are often not exactly known whereas they also vary because of manufacturing tolerances or deformations 

due to the load on rotors and stator. Here, the numerical simulation can serve as a helpful tool to estimate the 

sensitivity and change of machine characteristics, which is hard to determine in the scope of experiments. 
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1. INTRODUCTION 
 

While screw compressors are widely used in the industry, e. g. for pneumatic power tools or in the automotive 

industry oil free compressors are often used when purity of the air is critical. Within oil injected compressors, there 

is the risk of contaminated air which has an adverse effect on downstream processes and production. However, oil 

free compressors lack the sealing and cooling effect of the oil, thus in general the achieved pressure ratios are lower 

compared to oil flooded compressors. Compression ratio as well as the compression efficiency can be increased by 

using multi-stage compressors. The sample dry screw compressor from Sullair consists of two stages with pressure 

ratios up to 10:1 where each stage consists of two coaxial rotors. Furthermore, an intermediate cooler is located 

between the stages to cool the heated air discharged by the first stage in order to increase the compressor efficiency. 

For the manufacturer, reliable tools to evaluate overall machine performance such as compression ratio and power 

consumption as well as calculate losses and efficiency are of great desire. Also, the impact of design changes should 

be evaluated before actual prototypes are built so that developing costs can be reduced.  

 

Screw compressors and their numerical simulation are quite complex, where for a multi-stage compressor, 

additional challenges are imposed. One approach is to treat both stages separately. However, this approach cannot 

describe direct interaction between the stages (e.g. pressure pulsation). Moreover, the requirement of setting a 

boundary condition at the discharge side of the first stage is apparent, since influence of  the further downstream 

located second stage (and additional parts like an intermediate cooler) is a priori not known. Thus, an iterative 

simulation loop can be necessary in order to get a consistent solution.  

 

The paper presents another strategy, where both compressor stages are coupled by including them in a single 

simulation run. The modeling methodology is analogue to single stage screw compressors. The deforming rotor 

chambers are separated and meshed independently from the stator parts and connected for the simulation run via 

fluid-fluid interfaces. During the transient run, rotor chamber meshes are deformed according to the current rotor 

position. For the modeled two stage screw compressor in this paper, both stages feature different rotor profiles with 

different rotating speeds, which the rotor chamber modeling has to account for. Also the intermediate cooler is 

modeled in a simplified way in the simulation setup, by decreasing the temperature between the two stages. The 

paper presents the modeling approach for a simplified setup (e. g. simplified cooler, adiabatic walls) to evaluate the 

feasibility of the CFD approach. For this purpose, achieved results are compared with measurements of the real 

compressor. 

 

2. ROTOR CHAMBER MODELING 
 

The spatial discretization of the rotor chambers can be realized with different approaches which all have to account 

for the deformation of the rotor chambers over time. The immersed solid method, remeshing or customized grid 

generation should be mentioned, where Spille-Kohoff (2015) points out the methodologies, advantages and 

disadvantages of the individual approaches more in detail. The numerical grids for the present screw compressor 

analysis are generated with the mesh generator TwinMesh, which provides automatically generated hexahedral grids 

for PD machines with two coaxial rotors. For the performed simulations, 3D meshes of the chamber volumes for all 

rotor positions that are considered in the transient simulation are generated prior to simulation. An O-type grid 

topology is used, where inflation layers in radial and axial direction are present to account for boundary layer 

resolution as well as a smooth volume change of grid cells towards axial clearances between rotors and housing. 

There are two O-type grids for each stage, which have a 1:1 connection. A detailed explanation of the utilized 

approach is given by Hesse (2014). A three dimensional view of the rotor chamber grids is shown in Figure 1. 
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Figure 1: Grids for first stage (top) and second stage (bottom) of the compressor 

 

 

Given that approach, it has to be considered that both compressor stages are modeled in one simulation setup, where 

the physical time step in the transient simulation is equal for the whole model. Thus, angle increments of the 

generated grids cannot be chosen arbitrarily for each stage. The ratio of angle increments for both stages has to 

represent the speed ratio of the two male rotors. The pitch angles and increments for both stages are given in the 

following table:  

 Stage 1 Stage 2 

Speed ratio (Stage 2/Stage 1) 1.53 

Pitch angle  90° 72° 

Number of grids per pitch angle  90 47 

Angle increment 1° 1.532° 

Angle increment ratio (Stage2/Stage1) 1.532 

Table 1: Angle increments according to the speed ratio of the modeled two stage screw compressor 

 

The angle increments are determined by a specified number of meshes per pitch angle, therefore the corresponding 

ratio slightly deviates from the exact ratio of 1.53. Hence the simulated revolution speed of the second stage will 

deviate from the reference value to the same small extend.  

 

For both stages, rotational periodicity is taken into account in a way, that only the pitch angle for each stage (360° 

divided by the number of lobes of the male rotor) is meshed with a fixed angle increment. The resulting set of grids 
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enables to run the simulation for as many revolutions as required in order to get a periodic solution over time (i. e. 

the time averaged value of monitored flow quantities is constant over time). It should be noted, that reuse of the 

same grid sets for all subsequent rotation angles higher than the meshed pitch angle range is not generally possible. 

It requires that grid nodes (with fixed indices) are at the same location within the fluid volume for initial and last 

rotor position within the pitch angle range. If this is not the case, the simulation has to be restarted, where flow 

quantities from the final rotor chamber grid are interpolated to the first grid. For the presented simulation, grid nodes 

attached to the stator curves (i. e. the stator walls around the rotors) are fixed in space, while all others can move 

according to the rotor motion. In that way, it is ensured that node positions of first and last generated grid match and 

no interpolation is required to reuse the same grid set during the simulation run.  

 

3. SIMULATION SETUP 
 

All simulations for the sample Sullair screw compressor are performed in the commercial solver ANSYS CFX. Both 

stages are modeled within one case setup. The stator grids are connected to the rotor chamber grids with fluid-fluid 

interfaces, where the latter include the volume for the axial and radial clearances. During the simulation, the rotor 

positions and so the corresponding rotor chamber grids are updated automatically by a FORTRAN routine based on 

the generated grids prior to the simulation start.  

 

The geometry of the intermediate cooler between the first and second stage is not discretized. Instead, the stages are 

connected with a free form duct, where the temperature loss caused by the cooler is modeled with an energy sink 

acting in the fluid volume of the duct. The location of the two stages relative to each other corresponds to the real 

compressor. Figure 2 shows the assembly of the case setup. The pressure loss due to the cooler was not measured in 

the experiment. It is expected to be in the magnitude of 0.10 to 0.15 bar. In the present setup, no pressure loss is 

defined in addition to the present pressure loss due to flow through the duct. However, it is an option in further 

investigations analogue to the modeling of temperature loss. 

 

 
Figure 2: Numerical model of the screw compressor with boundary conditions and grid lines 

 

The case is set up for three different operating points (OP), where the rotational speed of the stages is varied as well 

as inlet and outlet temperature (used only in case of backflow) according to the conditions indicated by experimental 
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data. In addition, one case with smaller housing clearances (uniformly decreased by approximately 20%) and 

smaller intermesh clearance (closest distance between the rotors decreased by approximately 50%) for each stage is 

simulated, while axial clearances remain unchanged. 

 

Table 2 shows the four operating points taken into account: 

 

Case Main shaft speed 

[rev/min] 

Inlet Pressure 

[bar(a)] 

Outlet pressure 

[bar(a)] 

Inlet temp. 

1
st
 stage 

[C] 

Inlet temp. 

2
nd

 stage  

[C] 

Outlet temp. 

2
nd

 stage 

[C] 

OP1 1490 1.0 7.98 30.8 31.9 136.1 

OP2 1790 1.0 7.98 28.6 34.1 143.0 

OP3 2100 1.0 7.98 80.6 37.9 150.8 

OP4  

(Decreased radial 

clearances) 

1790 1.0 7.89 28.6 34.1 143.0 

Table 2: Boundary conditions for the performed simulations 

 

The individual stages are driven by the main shaft over a friction gear. The female rotor speed of each stage is given 

by the lobe ratio between male and female rotor. The ratios are 2/3 for the first stage and 5/7 for the second stage. 

 

All simulations are transient, where the angle increment was doubled by using every second of the generated rotor 

chamber grids. To model the accurate rotation speed of each rotor, the time step has to be doubled as well. The fluid 

is air as an ideal gas, with constant fluid properties except for the density. Turbulence is taken into account with the 

SST turbulence model. All walls are treated as adiabatic.   

 

4. SIMULATION RESULTS 
 

For both stages of the screw compressor, the compression inside the working chamber is visualized in Figure 3 by 

the instantaneous pressure distribution on the rotor walls. It is shown over one pitch angle of the corresponding 

stage. At the depicted rotor positions (0° to 60° for the first stage, 0° to 49° for the second stage), the pressure in the 

rotor chambers formed by male and female rotor lobes increases as the volume of the individual chambers is 

decreasing. Once the lobes reach the control edges, the connection of the chambers with the discharge port is 

established and compression process is finished. 

 

Time averaged over one male rotor revolution, the discharge pressure of the first stage is 3.33 bar at 1790 rpm 

(average value on a plane, approx. 10 mm above the discharge port), where the suction pressure upstream of the 

second stage is 3.23 bar in average (average value on a plane, approx. 30 mm above the suction port). A time 

resolved depiction of discharge and suction pressure is given in Figure 4. This is in good comparison to the 

experiment, where for the same shaft speed, the discharge pressure of the first stage is about 3.5 bar. Inlet and outlet 

pressure (i. e. upstream of the first stage and downstream of the second stage), are at a fixed value as a boundary 

condition according to the experimental setup (see Table 2).  
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Figure 3: Instantaneous pressure distribution at 1790 rpm for first (top) and second stage (bottom) over one pitch 

angle  

 

 
Figure 4: Discharge pressure of stage 1 (S1) and suction pressure of stage 2 (S2) over one male rotor revolution of 

the first stage at 1790 rpm 

 

The velocity field as well as the temperature field on a plane within the duct is visualized in Figure 5. As specified 

by the applied energy sink within the duct, the temperature drops gradually in order to provide cooled air at the 

suction side of the second stage.  
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Figure 5: Instantaneous velocity and temperature field on a plane in the center of the duct between the two stages 

 

The discharge temperatures at 1790 rpm of the first and second stage are quite constant with a maximum variation of 

about 8°C (first stage) and 0.5°C (second stage) respectively. The time averaged temperatures are approximately 

163°C for the first stage and 128°C for the second stage. Measured in the experiment, the discharge temperature of 

the first stage is around 175°C and 158°C for the second stage.  

 

The volumetric flow rates for all operating points at inlet and outlet of the compressor are shown in Figure 6. The 

given values correspond to the calculated mass flow rates divided by the reference density according to the inlet 

pressure and temperature. Due to numerical errors, the time averaged values of inlet and outlet flow rates are not 

exactly equal. However, the deviation is below 1% for all cases. The resulting volumetric flow rates are the mean 

values between inlet and outlet, each time averaged over 1 male rotor revolution of the first stage.  

 

 
Figure 6: Volumetric flow rates at inlet and outlet of the compressor for the different operating points over one male 

rotor revolution of the first stage 
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An increase of the average flow rate with an increasing shaft speed is apparent (while inlet and outlet pressure are 

kept unchanged). For the lowest simulated shaft speed of 1480 rpm, also backflow at the outlet can be identified 

over a certain angle range. The flow rates are 32.6 m³/min at 1490 rpm, 40.3 m³/min at 1790 rpm and 47.5 m³/min at 

2100 rpm shaft speed respectively. Qualitatively, it can be observed that the flow rate fluctuation at inlet and outlet 

is also more pronounced at higher shaft speeds.  

 

Analogue to the flow rates, the indicated power is examined for all operating points. It is only calculated based on 

the torque which results from pressure forces acting on the rotors during the compression of the air inside the 

working chambers. Mechanical losses, like e. g. friction due to bearings, shaft sealing or lobe intermeshing are not 

included. Like the flow rates, power is increasing nearly linearly with rising shaft speed, what matches the expected 

behavior of the screw compressor. The calculated power for both stages combined is 188 kW at 1490 rpm, 230 kW 

at 1790 rpm and 276 kW for 2100 rpm respectively. For all shaft speeds, the first stage contributes about 55% of the 

total power. The time resolved power data are shown in Figure 7. 

 
Figure 7: Power of the compressor for the different operating points over one male rotor revolution of the first stage 

 

The simulation results are compared to measurements in Figure 8 and Table 3 of the real screw compressor in terms 

of measured volumetric flow, power and specific power. 

 
Figure 8: Comparison of experimental measurements and CFD results for all considered operating points 
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 Measurements CFD Results Relative Deviation 

 Flow 

Rate 

[m³/min] 

Power 

 

[kW] 

Specific 

Power  

[kW/(m³/min)] 

Flow 

Rate 

[m³/min] 

Power 

 

[kW] 

Specific 

Power  

[kW/(m³/min)] 

Flow Rate 

 

[%] 

Power 

 

[%] 

Specific 

Power  

[%] 

OP1 36.35 207.4 5.705 32.58 188.0 5.770 -10.4% -9.4% 1.1% 

OP2 42.85 258.4 6.030 40.33 230.4 5.712 -5.9% -10.8% -5.3% 

OP3 51.43 313.8 6.102 47.45 276.0 5.817 -7.7% -12% -4.7% 

OP4 - - - 40.96 229.4 5.601 -4.4% -11.2% -7.1% 

Table 3: Comparison of experimental measurements and CFD results for all considered operating points 

 

It can be seen that volumetric flow rate as well as power are computed lower than measured for the real compressor. 

For the flow rates, CFD results are about 8% to 10% lower, whereas the power is about 9% to 12% lower. Given the 

lower flow rate, a lower power is evident. Hence, also the specific power is compared. Due to the lack of mechanical 

losses present in the CFD simulation, the specific power is expected to be lower than of the real compressor. This is 

the Case for OP2 to OP4, where the specific power is about 5% to 7% below the measured value. However, for OP1 

the calculated value exceeds the experimental value by 1%. At this point it is not clear why this is the case and it 

needs further investigation. After all, it is noteworthy that the specific power for OP1 also deviates from OP2 and 

OP3 in the experiment.  

 

A significant influence of the decreased clearances for 1790 rpm (i. e. the same as for OP2) cannot be observed, as 

flow rate and power remain approximately the same. Concerning the power, the averaged value is even slightly 

lower, whereas a higher value would be expected. One reason for the miniscule influence of the decreased 

clearances could be the utilized meshing strategy, where nodes are fixed on the stator curves and slide over the rotor 

walls. The 3D mesh including the twist angle is generated by 2D mesh slices where linear interpolation is present 

between the individual slices depending on the number of grid nodes in axial direction. Within the 3D mesh, this can 

lead to higher clearances than present in the 2D mesh slices. A different meshing strategy (e. g. fixing the grid nodes 

on the rotor curves instead of on the stator curves) could achieve better control over the gap sizes, however this 

approach was not realized because of the reasons stated in chapter 2 (i.e. the ability to combine both stages in one 

setup and using a small set of meshes to perform an arbitrary amount of time steps without interpolation). 

 

In addition to direct comparison to experimental data of the real compressor, a simple estimation of the theoretical 

compressor power is done according to the Compressed Air and Gas Handbook (2016), assuming an isentropic 

compression:  

 
𝑷 =

𝑸𝟏𝒑𝟏

𝟔𝟒. 𝟖𝟓
[(

𝒑𝟐

𝒑𝟏

)
(𝒌−𝟏)/𝒌

− 𝟏] 
(1) 

 

In this estimation, 𝑄1is the volumetric flow rate at inlet conditions, 𝑝1and 𝑝2 the inlet and outlet pressure and 𝑘 the 

isentropic exponent, which is about 1.4 for air. It should be noted that for this formula, pressure units are in psi and 

flow rates in cfm, where the theoretical power is in hp. For convenience, the results are presented in SI units 

hereinafter. Since this theoretical power assumes isentropic compression without any mechanical losses, the 

efficiency of the screw compressor can be taken into account. The total efficiency 𝜂𝑡𝑜𝑡 is given by Sullair for the 

individual operating points and includes all losses, i. e. thermodynamic and mechanical losses. Hence, the additional 

power due to the losses can be added to the theoretically determined power:  

 
𝑃𝑡 =

𝑃

𝜂𝑡𝑜𝑡

 
(2) 

 

The power estimation and comparison to both, measurements and CFD results is shown in Table 4. The theoretical 

assumption combined with the stated total efficiency by Sullair is very close to the measured power. Compared to 

the CFD results, it is also in good agreement. For OP1, the power is slightly overestimated by 0.5%, where it is 

about 6% to 8% lower for OP2 and OP4. This corresponds to the deviations regarding the specific power shown in 

Table 3. Analogue to the results for the specific power, it should also be noted here that a lower compressor power 

value would be expected for OP1 (i.e. it should be lower than the theoretical combined with the total efficiency). It 

remains uncertain if there are inaccuracies in the CFD calculation or the measurements as well as the determined 

total efficiency which is the basis of the theoretical power calculation. 
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  Measurements Relative Deviation CFD Results Relative Deviation 

 𝜂𝑡𝑜𝑡 
[%] 

𝑃 
[kW] 

𝑃𝑡  
[kW] 

Power 

[kW] 

 𝑃 
[kW] 

𝑃𝑡  
[kW] 

Power 

[kW] 

 

OP1 82.01 171.1 208.6 207.4 -0.6% 153.3 187.0 188.0 0.5% 

OP2 77.59 201.7 260.0 258.4 -0.6% 189.8 244.7 230.4 -6.2% 

OP3 76.60 242.1 316.0 313.8 -0.7% 223.3 291.5 276.0 -5.6% 

OP4 (77.59) - - - - 192.8 248.5 229.4 -8.3% 

Table 4: Theoretical power estimation in comparison with experimental measurements and CFD results 

 

5. CONCLUSION AND OUTLOOK 
 

This paper shows a CFD approach to simulate the sample dry screw compressor provided by Sullair. This 

compressor consists of two compressor stages with an intermediate cooler. In the presented approach, both stages as 

well as the interstage cooling are modeled within one setup, allowing a direct coupling of the stages without the 

need to specify boundary conditions at the outlet of the first stage or at the inlet of the second stage respectively. The 

cooler is replaced with a simple duct, where the temperature drop (i. e. a specified suction temperature for the 

second stage is reached) is realized with an energy sink.  

The simulations are performed for a total pressure ratio (both stages combined) of 7.98 for three different rotational 

speeds. In addition, for one shaft speed, radial clearances (i.e. housing and intermesh gaps) are reduced. The CFD 

results are compared with measurements of the real compressor. The values for the flow rate and compressor power 

are in good match with the experiment, so it is indicated that the overall working mechanism of the two stage 

compressor is appropriately captured. In general the simulations with reference clearances underestimate the flow 

rates by about 6% to 10%. The uncertainties regarding clearance sizes in the 3D mesh mentioned in chapter 4 are 

expected to contribute to these findings. Moreover it has to be noted that deformations due to pressure and 

temperature loads are not taken into account in the simulation. These deformations present in real compressors after 

heating up can also lead to a change in clearances sizes, affecting the flow rate. Being a highly complex machine, 

other influences like e. g. the flow conditions upstream, downstream and between the stages as well as the wall heat 

transfer, which are all neglected in the simulation approach, are expected to have a significant influence on the 

compressor performance.  

However, the presented model serves for a solid basis to further investigations and allows including or enhancing 

neglected or simplified parts of the model (e. g. the intermediate cooler, the assumption of adiabatic walls or a better 

representation of the cooler regarding total pressure loss). Future work on the model will focus on a more detailed 

investigation of clearances and leakage flows and the associated meshing strategies. Also the heat transfer is of 

interest, thus rotor and stator solids as well as active cooling of stator components should be included to the existing 

model to validate and improve the simulation results. As a goal for the industry, a precise distinction and 

quantification of thermal and mechanical losses is desired in order to optimize their compressors.  

 

NOMENCLATURE 

𝑃 Theoretical compressor power [W]  k Isentropic exponent [ - ] 

𝑃𝑡 Theoretical compressor power 

including total compressor efficiency 

[W]  𝑄𝟏 Volumetric flow rate at inlet 

conditions 

[cfm] 

𝜂𝑡𝑜𝑡 Total compressor efficiency [%]  𝑝1, 𝑝2 Suction and discharge pressure [psi] 
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