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Assessing Mechanistic Reasoning: Supporting Systems Tracing

Paul J. Weinberg

Oakland University

Abstract

Reasoning about mechanism is central to disciplined inquiry in science and engineering and should thus be one of the foundations of a
science, technology, engineering, and mathematics education. In addition, mechanistic reasoning is one of the core competencies listed in
the Next Generation Science Standards (NGSS) Engineering Concepts and Practices (NGSS Lead States, 2013). Mechanistic explanations
focus on the processes that underlie cause–effect relationships and consider how the activities of system components affect one another.

While some assessment work has been accomplished in engineering education, to date mechanistic reasoning is an area where limited
assessment development has been accomplished for pre-college populations. The data in this study come from the calibration of the Assessment
of Mechanistic Reasoning Project (AMRP) (Weinberg, 2012), designed to diagnose individuals’ mechanistic reasoning about systems of levers.
This assessment presents a domain-specific characterization of mechanistic reasoning and illuminates what is easy and difficult about this form
of reasoning. The study participants included elementary, middle, and high school students as well as college undergraduates and adults without
higher education. Within this calibration study, item analyses, reliability, and validity measures were conducted using item response theory
modeling; the AMRP assessment was found to have high reliability and validity. In addition, this study shows that machine characteristics such
as number of levers, lever type, and arrangement of levers can affect the difficulty of mechanistic reasoning.

Keywords: engineering education, assessment, science education

Introduction

Reasoning about mechanism is foundational to disciplined inquiry in science and engineering; thus, it should be one
of the foundations of a science, technology, engineering, and mathematics (STEM) education (Bolger, Kobiela, Weinberg,
& Lehrer, 2012; National Research Council [NRC], 2011; Russ, Scherr, Hammer, & Mikeska, 2008; Weinberg, 2017a,
2017b). The NRC (2009) indicates the tight connection between engineering principles, disciplinary knowledge, and
disciplinary practices (e.g., mechanistic reasoning). For example, K–12 engineering education should emphasize
engineering design. They indicate that the design process is ‘‘open to the idea that a problem may have many possible
solutions … [and provide] a meaningful context for learning scientific, mathematical, and technological concepts’’ (p. 4).
Supporting students to engage in mechanistic reasoning requires opportunities for students to reason in varied and diverse
ways, consider multiple forms of reasoning (e.g., reasoning about components, structure, and mechanisms), and construct
multiple solutions. In addition, the engineering design process further supports the development of mechanistic reasoning
within the learning of scientific phenomena. Accordingly, the Next Generation Science Standards (NGSS) Engineering
Concepts and Practices (NGSS Lead States, 2013) include mechanistic reasoning as one of their core competencies and
describe the ‘‘commitment to integrate engineering design into the structure of science education by raising engineering
design to the same level as scientific inquiry’’ (p. 1). Moreover, the NRC nominates systems thinking as an important
engineering habit-of-mind. While the development of mechanistic reasoning begins with a context-specific focus on
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individual systems (e.g., simple levers, gears), as indivi-
duals have opportunities for further reasoning about these
systems, mechanistic reasoning may become less localized
and more systematized.

Although the nation seems to be developing a new
emphasis around engineering education for K–12 students,
a consensus around what that should entail has not yet
emerged. While some significant assessment work has been
accomplished in engineering education to date (e.g., Marra
& Bogue, 2006; Purzer, Douglas, Folkerts, & Williams,
2017), further opportunities for assessment development
for pre-college populations will occur as states continue to
adopt and implement the NGSS. Moreover, advances in the
understanding and measurement of learning bring new
assumptions into play and offer the potential for richer and
more coherent assessments (e.g., Gearhart & Saxe, 2004;
Lehrer, Kim, Ayers, & Wilson, 2014; Pellegrino, Baxter, &
Glaser, 1999). Specifically, mechanistic reasoning is an
area where limited assessment work has been accomplished
to date, especially in engineering contexts.

Mechanistic explanations focus on the processes that
undergird causal relationships and consider how the ele-
ments (and the relations between these elements) of system
components affect one another. Machamer, Darden, and
Craver (2000) note that ‘‘[c]omplete descriptions of mecha-
nisms exhibit productive continuity without gaps from the
set up to terminal conditions’’ (p. 3). Lehrer and Schauble
(1998) interviewed second- and fifth-grade students, within
engineering tasks, to assess their reasoning about the
mechanics of gears. These researchers characterized mechan-
istic explanations of these systems as those that described
the transmission of motion as occurring through the
interaction of the gear teeth. Although the majority of
participants did not engage in mechanistic explanations,
fewer were able to engage in systems thinking. However,
those who did were able to use their reasoning about
simple systems of gears to describe the operation of an
eggbeater and a bicycle.

Russ et al. (2008) have reported on mechanistic reason-
ing from student verbal and written explanations within
classroom activity and flexible interviews, where codes
are applied to student conversational turns. Russ and
colleagues’ framework and discourse analysis tool take a
domain-general perspective on characterizing mechanistic
reasoning within student explanations of scientific pheno-
menon. Domain-general theories of development suggest
that individuals are born with cognitive mechanisms that
support and guide generalized learning, regardless of
the type of information being learned. However, domain-
specific theories argue that many aspects of cognition are
supported by specialized learning devices. The Assessment
of Mechanistic Reasoning Project (AMRP) is developed
from a domain-specific perspective on knowledge develop-
ment because learners do not simply apply general forms of
reasoning algorithmically; these forms of reasoning are tuned

to and affected by qualities of the devices that individuals
are diagnosing. Accordingly, the affordances of diagnosing
the mechanisms of systems of levers are not just that they
are ubiquitous, but that they are open and inspectable.
This quasi-transparency suggests that individuals of all ages
and educational backgrounds are likely to have the capacity
to reason about them.

Bolger et al. (2012) developed and verified mechanistic
elements that were specific to systems of levers, from
children’s explanations of their motion and their workings,
as well as those of professionals in engineering and physics.
The data were taken from one-on-one flexible interviews
(Ginsburg, Jacobs, & Lopez, 1998). The present study
reports on data from the AMRP (Weinberg, 2012), an
assessment developed using item response theory (IRT)
modeling that leverages children’s early capacities to reason
mechanistically about properties of mechanical objects. In
psychometrics, IRT is used in the design, analysis, and
scoring of tests, questionnaires, and similar instruments
measuring abilities, attitudes, or other variables. It is based on
the application of mathematical models to testing data.

The AMRP assesses individuals’ capacities to mechan-
istically parse simple systems of levers, while characteriz-
ing their forms of reasoning. This assessment introduces
students to mechanical principles through the mechanistic
tracing of these simple systems; this provides a foundation
for the building of knowledge about mechanical systems.

There are presently few assessments that leverage children’s
early capacities to reason about properties of mechanical
objects, promote domain-specific reasoning about mechan-
ism, and support the engineering design process as well as
engineering habits-of-mind. The American Association for
the Advancement of Science (2011), through Project 2061,
has developed an item bank that is aligned with current
science standards and informed by the ‘‘misconceptions’’
literature; however, none of the items focus on mechanistic
reasoning. The misconceptions literature states that adults
hold consistent and erroneous beliefs about the physical
world and that many of these beliefs are highly resistant to
change by instruction (e.g., Caramazza, McCloskey, &
Green, 1981). However, Smith III, diSessa, and Roschelle
(1993) note that viewing novice forms of reasoning as
misconceptions may be misleading. For example, diSessa
(1993) argues that everyday physics is better thought of as
both a large and diverse number of low-level explanatory
components that are evoked in different contexts. Accor-
dingly, the items in the AMRP attend to the resources that
students do have available to reason about this content.

Currently, the most widely used assessment of ideas
about force and motion is the Force Concept Inventory
(FCI) (Hestenes, Wells, & Swackhamer, 1992). This instru-
ment qualitatively discriminates between students who hold
Newtonian compared with more naı̈ve conceptions of mecha-
nical force. The FCI takes a top-down perspective on phy-
sics instruction. That is, it measures how closely students’
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conceptions accord with those of Newtonian principles by
asking students to reason about those principles in the con-
text of real-world situations. For example, the FCI assesses
individuals’ understandings of Newton’s third law in the
context of a collision between a large truck and a compact car
in terms of a ‘‘conflict metaphor’’ in action. In contrast, the
assessment described here tracks individuals’ abilities to
mechanistically parse systems of simple machines, character-
izing their forms of reasoning as they are observed without
trying to fit them into a Newtonian framework. This asses-
sment leverages children’s early capacities to make sense of
forces such as pushes and pulls, force vectors, and geometry
as an opportunity to develop their mechanical knowledge.
From this perspective, introducing students to general mecha-
nical principles through domain-specific mechanistic tracing
may provide a foundation for the building of important
knowledge about mechanical systems. In addition, the
AMRP supports the engineering design process. For
example, items in this assessment (a) have multiple
solutions, (b) provide meaningful contexts for learning
scientific and mathematical concepts, and (c) promote
systems thinking, modeling, and analysis (NRC, 2009). In
addition, this assessment incorporates numerous engineer-
ing habits-of-mind, including systems thinking, creativity,
collaboration, and communication.

Research Questions

Through the development and administration of this
assessment, the following research questions are addressed.
(1) How can mechanistic reasoning be characterized with a
standard paper-and-pencil assessment? (2) Can this assess-
ment provide insight into what aspects of mechanistic
reasoning are difficult?

Assessment Development

An assessment design begins with the specification of
the construct. The construct for the AMRP was developed
according to the research literature on causal reasoning in
infancy (Borton, 1979; Leslie & Keeble, 1987), early
childhood (Bullock, Gelman, & Baillargeon, 1982; Gopnik,
Sobel, Schulz, & Glymour, 2001; Nazzi & Gopnik, 2000),
and adulthood (Schauble, 1990, 1996). The construct was
also informed by literature about the difficulty individuals
have reconciling their intuitions about causality with forms
of mechanistic explanation valued by disciplines (Abrams
& Southerland, 2001; Chin & Brown, 2000; Hmelo-Silver
& Pfeffer, 2004; Talanquer, 2010). Finally, the construct
addressed what participants find difficult when reasoning
about simple mechanical systems (Bolger et al., 2012;
Lehrer & Schauble, 1998; Metz, 1985; Weinberg, 2017b).
This analysis resulted in a distinct construct focusing on
mechanistic reasoning about systems of levers; this construct
level has been called mechanistic tracing. This construct

measures an individual’s parsing of simple systems of levers,
diagnosing the mechanistic elements described by Bolger
and colleagues (2012): (a) related direction (i.e., attention to
the coordinated direction of the input and output of a
linkage), (b) rotation (i.e., attention to the rotary motion of
the levers), (c) lever arms (i.e., attention to the coordinated
opposite motion of the two lever arms), and (d) constraint
via the fixed pivot (i.e., attention to the causal relation
between the pivot being fixed to the board and the
resultant motion). Finally, tracing was determined accord-
ing to the following criteria: each mechanistic element
within a system was correctly diagnosed in sequence. These
mechanistic elements are ordered as levels in the construct
(Table 1). In addition, the five construct levels, descriptions,
and examples are presented.

Construct levels are ordered according to their hypothe-
sized difficulty. The actual difficulty ordering will be
determined through IRT analysis. This difficulty ordering
was developed by Bolger et al. (2012) according to the
frequency with which each mechanistic element was cited
within student explanations. In addition, the ordering was
also based on theoretical considerations concerning the
machines’ workings described by Weinberg (2012). The
mechanistic elements are ordered according to the follow-
ing hypothesized difficulty (from least to most difficult):
related direction, rotation, lever arms, constraint via the
fixed pivot, and tracing.

Item Design

After the construct levels and associated performances
were specified (Table 1), 21 assessment items were devel-
oped. The AMRP is composed of items with short-answer
questions that require participants to draw predicted lever
motion (e.g., Appendix A, Item).

Developing Scoring Exemplars

Once items were developed, scoring exemplars (i.e.,
scoring guides that relate item responses to the construct
map) were created. Scoring exemplars describe and provide
examples of potential participant responses for each item;
these responses are aligned with construct levels (Appendix
A, Exemplar). An item’s exemplar is structured like the
construct map; it is ordered from the least to most sophi-
sticated (or difficult) response. However, in an exemplar
only those construct levels relevant to that particular item
are represented.

Method

Participants

The participant groups that comprise the sample are
presented in Table 2.
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Table 1
Construct map: mechanistic tracing.

Level Mechanistic element Mechanistic element descriptions Mechanistic element example

5 Tracing Participant predicts all the mechanistic elements
sequentially from input to output.

4 Constraint via
the fixed pivot

Participant draws the opposite and/or rotary motion of the
two closest points on opposite sides of the fixed pivot.

3 Lever arms Participant draws arrows with opposite directions from
stars on opposite sides of a lever’s arms.

2 Rotation Participant draws arced paths. However, the location of these
paths must reasonably approximate fractions of circles
centered around either the fixed or floating pivot(s).

1 Related directions Participant draws the coordinated motion of input and
output(s).

P.J. Weinberg / Journal of Pre-College Engineering Education Research 33
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As described in Weinberg (2017b), the elementary,
middle, and high school students came from public and
private schools in the southeastern USA. The university
undergraduates came from three universities, two in the
southeastern and one in the midwestern USA. Of the two
universities in the southeastern USA, one is a highly ranked
private university and the other is a large public university.
The university in the midwestern USA is a highly ranked
private liberal arts college. The public elementary, middle,
and high schools belong to Centennial Public School
District (a pseudonym). The percent of children attending
these three schools qualifying for free or reduced lunch
ranges between 60 to 90 from year to year. The adults
without college degrees were recruited from the custodial
staff at the highly ranked university in the southeastern
USA. Study participants represent various ethnic back-
grounds and life experiences. The diverse sample was
chosen in order to assess and characterize mechanistic
reasoning across age, socio-economic status, and experi-
ence. Although assessment items are typically calibrated
with more homogenous groups, it was important to popu-
late the construct map with diverse forms of reasoning.
This served to show greater applicability of the instrument.

Procedure

Each assessment administration was completed during
one day and lasted an average of 37.5 minutes (ranging
from 17 minutes to 78 minutes). The elementary school
students averaged 34.9 minutes, the middle school students
averaged 30.7 minutes, the high school students averaged
42.3 minutes, the college undergraduates averaged 38.9
minutes, and the adults averaged 48.7 minutes. These
sessions were recorded using one camera, with a table
microphone and were digitally rendered for further analysis.

The assessment was presented to participants on one of
seven test forms. Elementary and middle school students
were instructed to complete ten items per form, while high
school students, undergraduates, and non-college educated
adults were instructed to complete fifteen items per form.
Five items were indicated in each form that elementary and
middle school students were instructed to skip in order to
avoid interview fatigue. Using item difficulty estimates
from a previous study (Weinberg, 2017b), those items
that were skipped by elementary school students did not

have different mean item difficulty estimates (M 5 20.03
logits) from those that were not skipped (M 5 20.08,
one-tailed t-test). Thus, the assessment was identically
difficult for all age groups.

The AMRP items required respondents to draw predicted
motion. There were 21 items in which related direction and
rotation could be scored. In addition, there were 11 items in
which lever arms, constraint via the fixed pivot, and tracing
could be scored.

Conduct of the Interview

While participants responded to each AMRP item, a
clinical interview was conducted. The clinical interview was
developed by Piaget (1951) to study individuals’ knowledge
and reasoning processes. Participants were asked to read the
directions aloud for each item and think aloud as they
responded. When the participant completed the item, s/he was
asked for the rationale for the observed item response with
interviewer probes. Finally, participants were asked to report
any words that they found confusing as well as whether there
was any confusion about the item. The interview was
conducted in this manner to determine spontaneous thinking
throughout participant interaction with each item as well as to
assess mechanistic reasoning that was present, but possibly not
elicited during the think aloud with interviewer probes.

Analysis

Scoring items
Each item was scored according to its exemplar.

A demonstration of how one item was scored is presen-
ted in Appendix A (Item & Exemplar). Exemplars contain three
scoring categories: (1) the missing code (i.e., scores for missing
responses), (2) the non-linking code (i.e., scores for responses
that do not link to the construct map), and (3) construct linking
codes (i.e., scores for responses that link to the construct map).

Missing The ‘‘missing’’ code was assessed when partici-
pant responses were not present (Appendix A, Exemplar).
However, in this study participants responded to all items.

No linkage The ‘‘no link’’ code was assessed when parti-
cipant responses provided evidence that they did not
understand the nature of the task. This is seen in responses
like ‘‘I don’t know’’ (Appendix A, Exemplar).

Table 2
Participants.

Participants Number Included in analysis

Elementary school students 28 (female 5 17)
Middle school students 25 (female 5 16)
High school students 20 (female 5 4)
University undergraduates (non-science majors) 16 (female 5 13)
University undergraduates (engineering majors) 13 (female 5 5)
Adults (without college education) 10 (female 5 8)

34 P.J. Weinberg / Journal of Pre-College Engineering Education Research
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Construct linking codes The construct linking codes
include participant responses that (a) do not reason about
mechanism, (b) reason about the four mechanistic elements
(i.e., related direction, rotation, lever arms, constraint via
the fixed pivot), and (c) causally connect all mechanistic
elements from input to output (i.e., tracing) (Appendix A,
Exemplar).

No mechanistic elements are shown These participant
responses are not mechanistic. These may indicate parti-
cipant reasoning about individual system components,
machine structure, or idiosyncratic rules about machine
motion. This is seen in the participant response scored at
level 0 (Appendix A, Exemplar).

Related direction These participant responses indicate
identification of the coordinated motion of lever input and
output. This is seen in the participant response scored at
level 1 (Appendix A, Exemplar).

Rotation These participant responses indicate identification
of the rotary paths of the systems’ levers. This is seen in the
participant response scored at level 2 (Appendix A, Exemplar).

Lever arms These participant responses indicate identifi-
cation of the coordinated opposite direction of the lever’s
arms. This is seen in the participant response scored at
level 3 (Appendix A, Exemplar).

Constraint via the fixed pivot These participant responses
indicate identification of the coordinated motion around the

fixed pivot. This is seen in the participant response scored
at level 4 (Appendix A, Exemplar)

Tracing These participant responses indicate (a) identifi-
cation of all mechanistic elements and (b) the sequen-
tial coordination of these elements from input to output.
This is seen in the participant response scored at level 5
(Appendix A, Exemplar).

Participants were scored at the highest level (i.e., most
difficult mechanistic element) where they achieved compe-
tency. For example, if a participant was assessed at the levels
of both rotation and related direction on an item, they were
assessed at the level of rotation. To be scored at the level of
tracing, participants must have indicated a causal coordina-
tion of all elements. An outside researcher scored 10% of
the total items. The agreement was 95% (Table 3). Wilson
and Case (2000) indicate, in a study of a similarly formatted
assessment instrument, that this is within the standard of
85%. The range of interrater agreement, disaggregated by
item, ranges from 88% (Sequential Tracing-D1) to 100%
(e.g., Sequential Tracing-E2) (Figure 1).

Coding the clinical interview
In order to investigate participant thinking during the

AMRP administration, talk and gesture were coded accord-
ing to an analytic framework used in a previous study
(Bolger et al., 2012). A participant’s work on one item is
defined as a ‘‘performance.’’ Participants were coded at the
highest level where they achieved competency within each
performance. For example, if a participant was coded at the
levels of both constraint via the fixed pivot and tracing
within the same instance, they were reported at the level of

Table 3
Interrater agreement for scored items and coded interviews, by item.

Item Scorer IRR (%) Instances Coded IRR (%) Instances

Hands Fixed Pivot-Opposite 100 48 100 20
Machine Prediction-A2 92 48 94 35
Sequential Tracing-D1 88 74 90 49
Sequential Tracing-E2 100 49 86 7
Hands Fixed Pivot-Same 88 16 75 8
Machine Prediction-A1 100 4 75 8
Machine Prediction-A3 100 16 100 8
Machine Prediction-A39 92 24 100 16
Machine Prediction-B2 93 28 94 16
Machine Prediction-B29 100 20 100 16
Machine Prediction-D1 100 21 N/A N/A
Machine Prediction-D19 100 15 83 12
Sequential Tracing-A1 100 21 89 35
Sequential Tracing-A3 94 35 93 14
Sequential Tracing-A39 100 28 91 35
Sequential Tracing-B1 93 28 89 28
Sequential Tracing-B19 90 42 90 21
Sequential Tracing-B2 96 49 82 28
Sequential Tracing-D19 100 21 89 28
Sequential Tracing-E1 89 35 86 28
Sequential Tracing-CMT 100 35 89 28
Total 95 667 90 440

P.J. Weinberg / Journal of Pre-College Engineering Education Research 35
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tracing. All performances were coded using NVivo 11.0
software. An outside researcher coded 10% of the total
instances. The agreement was 90% (Table 3).

Item Response Theory Modeling

To model the data from respondents, IRT was used and a
partial credit model (PCM) was developed (Boone, 2016).
A one-dimensional PCM was used to fit the data because
the domain of mechanistic tracing is hypothesized to be
one-dimensional, as shown in the construct map (Table 1).
In addition, this assessment contains polytomous items;
polytomous models contain items that have more than two

possible scores; common examples are Likert items (e.g.,
rated on an ordinal scale of 1 to 5) and partial credit items
(e.g., an essay, which will typically be scored on an ordinal
scale). IRT models typically assume that the item scores
are integers. The polytomous categories are ordered, but
without the assumption of equal distance between adjacent
categories.

Item analysis
First, the item Wright Map is presented in order to

analyze the behavior of the assessment items. On a Wright
Map, a vertical line is marked out in logits; person esti-
mates and item locations are positioned on the left- and

Figure 1. The IRR of all assessment ranges from 88% (Sequential Tracing-D1, left) to 100% (e.g., Sequential Tracing-E2, right).

36 P.J. Weinberg / Journal of Pre-College Engineering Education Research
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right-hand sides, respectively, of the vertical line. The zero
point of the logit scale is where mean person ability and
item difficulty are equal (i.e., hj–bi50). A person’s ability
in logits is his or her natural log odds for succeeding on
items that are chosen to define the ‘‘zero’’ point of the
scale; and an item’s difficulty in logits is its natural log
odds for eliciting failure from persons with zero ability. The
closer to the bottom of the Wright Map, the less capable the
respondent and the less difficult the item; the reverse is true
at the top of the Wright Map. For example, if an item has an
item difficulty estimate of 1 logit, this indicates that those
participants with person ability estimates of 1 logit have a
0.5 probability of correctly answering the item.

Mean-square statistic
The mean-square (MNSQ) statistics are presented in order

to determine item fit. In Rasch analysis, item fit indexes are
reported for individual items. The MNSQ statistic is sensitive
to response patterns of persons whose ability estimates
match an item’s difficulty estimate. Overfit indicates that
the observations contain less variance than is predicted by
the model; underfit indicates more variance in the obser-
vations than is predicted by the model (e.g., the presence
of idiosyncratic groups). An item that equals 1 indicates
perfect fit. In general, a value between 0.75 and 1.33 is
considered to provide reasonable fit (Wilson, 2005).

Reliability

This section describes how it was determined that the
assessment operates with sufficient consistency across

individuals. In creating a construct and developing an
instrument, it is assumed that each respondent can be
placed somewhere on that construct and measured reliably.
The separation reliability was calculated. In addition, the
standard error of measurement (SEM) was calculated.

Separation reliability
In Rasch measurement, the person separation index is a

summary of the separation as a ratio scale index comparing
the spread of the measures with their measurement error. It
indicates the measure of spread of the sample participants
(or test items) in units of the test error in their measures.
The amount of measurement error is not uniform across the
range of a test, but is larger for more extreme scores (low
and high). Separation reliability has a maximum of one and
a minimum of zero. Moreover, separation reliability indi-
cates the extent to which the observed total variance, Var(h),
is accounted for by the model variance, Var(bh), which can be
indicated by the following formula:

bsp~
Var(h)

Var(bh)

~

1
J{1

PJ
j~1 (bhj{h){ 1

J

PJ
j~1 SEM(hj)

2

1
J{1

PJ
j~1 (bhj{h)

Standard error of measurement
An important difference between classical test theory

(CTT) and IRT is the treatment of measurement error,

Table 4
Item Wright Map results: mean item difficulty estimates, standard errors, and mechanistic elements assessed.

Item Mean item difficulty estimate
(logits)

Standard error Mechanistic elements assessed

Hands Fixed Pivot-Opposite 0.587 0.115 RD, R
Machine Prediction-A2 20.426 0.114 RD, R
Sequential Tracing-D1 0.171 0.079 RD, R, LA, CFP, T
Sequential Tracing-E2 0.323 0.109 RD, R, LA, CFP, T
Hands Fixed Pivot-Same 0.008 0.128 RD, R
Machine Prediction-A1 20.547 0.133 RD, R
Machine Prediction-A3 20.319 0.133 RD, R
Machine Prediction-A39 0.259 0.133 RD, R
Machine Prediction-B2 0.286 0.131 RD, R
Machine Prediction-B29 -0.391 0.135 RD, R
Machine Prediction-D1 0.711 0.144 RD, R
Machine Prediction-D19 0.543 0.142 RD, R
Sequential Tracing-A1 20.700 0.117 RD, R, LA, CFP, T
Sequential Tracing-A3 20.760 0.115 RD, R, LA, CFP, T
Sequential Tracing-A39 20.169 0.120 RD, R, LA, CFP, T
Sequential Tracing-B1 20.519 0.117 RD, R, LA, CFP, T
Sequential Tracing-B19 0.134 0.105 RD, R, LA, CFP, T
Sequential Tracing-B2 20.487 0.114 RD, R, LA, CFP, T
Sequential Tracing- D19 0.578 0.113 RD, R, LA, CFP, T
Sequential Tracing-E1 0.923 0.113 RD, R, LA, CFP, T
Sequential Tracing-CMT 20.205a RD, R, LA, CFP, T

Note. RD, related direction; R, rotation; LA, lever arms; CFP, constraint via the fixed pivot; T, tracing.
aEstimate is constrained.
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indexed by the SEM. A participant’s true score can
never be precisely known, but has an estimate, the
observed score. There is an amount of random error that
may push the observed score higher or lower than the
true score. CTT assumes that the amount of error is
the same for each examinee, but IRT allows it to vary; for
this reason, the SEM was calculated from the IRT
analysis.

Validity

This section describes ways to develop evidence of
whether the instrument measures what it is intended to
measure (Boone, 2016;Wilson, 2005).

Construct validity

This section presents the item-step Wright Map. This
map analyses the polytomously scored items on the AMRP.

Figure 2. Item Wright Map. On an item Wright Map, a vertical line is marked out in logits; person estimates (X) and item locations (e.g., STD1) are
positioned on the left- and right-hand sides, respectively. The closer to the bottom of the Wright Map, the less capable the respondent and the less difficult
the item; the reverse is true at the top of the Wright Map.
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The item-step Wright Map presents the difficulty of endors-
ing each mechanistic element for each item. The item loca-
tions for polytomously response categories indicate the
ability score of persons who are more likely to reach level k
once they reach level k–1. For example, they indicate the
probability of a participant being diagnosed (on a particular
item) at the level of rotation once s/he has been assessed at
the level of related direction. Graphically, the item loca-
tions are the point at which the item response function
curves of two adjacent response categories (e.g., constraint
via the fixed pivot vs. tracing) cross.

The item thresholds that are plotted on the Wright Map
are Thurstone thresholds. Thurstone thresholds are cumu-
lative; a threshold is the point at which the probability of
responding below a category is equal to responding in or
above that category. For example, for a five-category item,

the Thurstone threshold for score category 3 (lever arms) is
the point at which participants are as likely to be observed
below 3 (rotation, related direction) as being observed at or
above 3 (lever arms, constraint via the fixed pivot, or tracing).

The item-step Wright Map is used to assess construct
validity by empirically determining whether participant
responses confirm hypotheses about the difficulty of the
mechanistic elements from the construct map (Boone, 2016).

Results

All AMRP items elicited responses that covered the
entire construct. In addition, all item responses could be
scored according to the exemplar levels. First, item analyses
are shown. Then, reliability and validity measures are
presented.

Figure 3. According to the item Wright Map, Sequential Tracing-E1 (left) is the most difficult item on the assessment (0.92 logits), while Sequential
Tracing-A39 (right) is the easiest (20.76 logits).
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Item Analysis

First, the item Wright Map is presented in order to
analyze the behavior of the items. Then, the MNSQ sta-
tistics are presented in order to determine item fit.

Item Wright Map
The item Wright Map is presented in Figure 2. Results

from this Wright Map (Table 4) make it possible to com-
pare the mean difficulty of each item across the sample.
The standard errors indicate the precision of the estimates.
Sequential Tracing-E1 (STE1) (Figure 3) is the most
difficult item, with a mean item difficulty of 0.92 logits.

The easiest item is Sequential Tracing-A39 (STA39)
(Figure 3), with a mean item difficulty of 20.76 logits.
Weinberg (2017b) reported that the following machine
characteristics impact participants’ diagnosis and causal
connection of a machine’s mechanisms: (a) item type,
(b) number of levers, (c) lever type (e.g., class 1 levers),
(d) arrangement of levers, and (e) the presence of speci-
alized and unfamiliar levers (e.g., a bent crank). The
number of levers, arrangement of levers, and inclu-
sion of a bent crank are not independent machine char-
acteristics. However, each is included in this analysis in
order to determine the singular effect each has on parti-
cipant mechanistic reasoning.

Figure 4. Machine Prediction-B2 (left) is a machine prediction item. Sequential Tracing-D1 (right) is a sequential tracing item.
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Figure 5. Sequential Tracing-A1 (left) is composed of two levers, while Sequential Tracing-CMT (right) is composed of four levers.
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Item type Two different item formats were used on the
AMRP: machine prediction and sequential tracing items
(Figure 4). Machine prediction items challenge respondents
to predict the motion of machine outputs; in addition,
sequential tracing items challenge respondents to predict
the motion of all the different machine parts from input to
output. There was no difference in item difficulty estimates
between these two types of items.

Number of levers Participants showed greater difficulty
diagnosing machines composed of three or more levers
(M 5 0.19 logits) than those with two or fewer (M 5 20.38
logits; p 5 0.003, one-tailed) (Figure 5).

Lever type Five items include machines composed of
class 1 levers; in addition, five items include machines
composed of class 3 levers (Figure 6). With class 1 levers,

the input and output move in the same direction; whereas,
with class 3 levers the input and output move in opposite
directions. Participants had more difficulty diagnosing
mechanisms of class 3 levers (M 5 20.03 logits) than of
class 1 levers (M 5 20.41 logits; p 5 0.08, one-tailed).

Arrangement of levers Seven items were composed of
one or more intermediate levers between the input and
output (Figure 7), while fourteen items did not include any
levers between the input and output. These seven items
were more difficult (M 5 0.43 logits) to diagnose than the
fourteen (M 5 20.22 logits; p 5 0.001, one-tailed).

Bent crank Participants had difficulty diagnosing machi-
nes that used non-standard intermediate levers. One inter-
mediate lever included on the AMRP was a bent crank.
The most difficult item on the assessment was Sequential

Figure 6. Sequential Tracing-A3 (left) is composed of a class 1 lever, while Sequential Tracing-A39 (right) is composed of a class 3 lever.
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Tracing-E1 (STE1) (Table 4; Figure 3, left), which included
a bent crank. Sequential Tracing-E2 (STE2) was another
item that used a bent crank as an intermediate link; this was
also one of the most difficult items on the AMRP.

Mean-square statistic
In Rasch analysis, item fit indices are reported for individual

items. An item that has a MNSQ statistic equal to 1 indicates
perfect fit. In general, a value between 0.75 and 1.33 indicates

good fit. The MNSQ statistic for all of the items is presented in
Table 5. Of the 21 items, 17 (81%) are good fits. Two items,
Hands Fixed Pivot-Opposite and Sequential Tracing-B19

(Figure 8) are slightly out of the good fit range. An additional
two items are farther out of this range: Machine Prediction-
B29 (0.60) and Sequential Tracing-D19 (MNSQ 5 1.66)
(Figure 9). Wright, Linacre, and Gustafson (2009) present
a professional standard for the interpretation of MNSQ
statistics. They indicate that only Sequential Tracing-D19

Figure 7. Sequential Tracing-A2 (left) is composed of no intermediate levers, while Sequential Tracing-D19 (right) is composed of one intermediate lever
between input and output.
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(MNSQ 5 1.66) would produce a misfit that would be
unproductive for assessment, but would not degrade the
assessment. Thus, none of the items would compromise the
assessment.

Reliability

This section describes ways to investigate whether the
assessment operates with sufficient consistency across
individuals.

Separation reliability
In Rasch measurement, separation reliability indicates

how well the item parameters are separated; it has a
maximum of one and a minimum of zero. This value is
typically high and increases with increasing sample sizes.
The items on the AMRP have a separation reliability equal
to 0.94, suggesting that most observed total variance is
accounted for by the model variance.

Standard error of measurement
The SEM shows that for this assessment a participant whose

ability estimate is in the middle of the logit scale tends to have
smaller SEM values, whereas those on the two extremes tend to
have larger SEM values (Figure 10). The smaller the SEM, the
more reliable the ability estimates. The mean SEM for these
items is equal to 0.49, with a range from 0.27 to 1.10. The
relationship between the person ability estimate and the SEM
indicates high reliability of the assessment.

Validity

This section describes evidence that the AMRP targets
the construct map. The correspondence between the item-
step Wright Map and the construct map is discussed.

Item response and clinical interview
Items were scored according to the exemplars, whereas

participant talk and gesture were coded independently
according to an analytic framework (Bolger et al., 2012).
This coding was completed for 715 items (across parti-
cipants) (Table 6). There were 219 items that were scored
at the level of related direction using the exemplar; during
the interview 136 (62%) of those items were coded as
related direction. There were 199 items that were scored at
the level of rotation using the exemplar; during the
interview 136 (74%) of those items were coded as rotation.
There were 114 items that were scored at the level of
lever arms using the exemplar; during the interview 70
(61%) of those items were coded at the level of lever
arms. There were 109 items that were scored at the level
of constraint via the fixed pivot using the exemplar;
during the interview 49 (45%) of those items were coded
at the level of constraint via the fixed pivot. Finally, there
were 74 items that were scored at the level of tracing
using the exemplar; during the interview 35 (47%) of

those items were coded as tracing. The proportion of
coded mechanistic elements was different from the
proportion expected by chance (p , 0.0001; Chi-squared
test). This indicates a correspondence between responses
to items and cognitive interviews.

Item-step Wright Map
The item-step Wright Map is presented in Figure 11.

Results from the item-step Wright Map provide estimates
for each mechanistic element, by item, with corresponding
standard errors (Table 7). The standard error indicates the
precision of each estimate. For example, tracing has an
item difficulty estimate of 3.04 logits for the item Sequen-
tial Tracing-E1 (an item with a bent crank). This indicates
that respondents who have a person ability estimate of 3.04
logits will have a probability of 0.5 of being scored at the
level of tracing on this item.

This section describes machine characteristics that seem to
disrupt a participant’s propensity to trace. Twenty-five
participants showed the propensity to trace on at least one
item. However, two machine characteristics (‘‘lever type’’
and ‘‘bent crank’’) made a difference in these participants’
propensities to consistently apply tracing. There were eleven
items in which tracing could be assessed. The number of
items per form where this level could be assessed ranged
from three to eight, with a mean of six (median 5 6).

Lever type
Of those participants who had scored at the level of

tracing, 0% did so on items with machines with class 3
levers; whereas, 80% had scored at the level of tracing for

Table 5
MNSQ fit statistic for each item.

Item MNSQ statistic

Hands Fixed Pivot-Opposite 1.34a

Machine Prediction-A2 1.22
Hands Fixed Pivot-Same 1.13
Machine Prediction-A1 1.23
Machine Prediction-A3 1.16
Machine Prediction-A39 0.90
Machine Prediction-B2 0.97
Machine Prediction-B29 0.60b

Machine Prediction-D1 0.98
Machine Prediction-D19 0.94
Sequential Tracing-A1 1.10
Sequential Tracing-A3 1.02
Sequential Tracing-A39 0.78
Sequential Tracing-B1 0.78
Sequential Tracing-B19 1.37a

Sequential Tracing-B2 1.10
Sequential Tracing-D1 1.07
Sequential Tracing-D19 1.66b

Sequential Tracing-E1 1.21
Sequential Tracing-E2 1.03
Sequential Tracing-CMT 1.15

aNot considered a good fit.
bMarginally out of good fit range.
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items with class 1 levers (Table 8). There is a difference in
the proportion of participants able to apply tracing on
machines with class 3 levers and those able to apply tracing
on machines with class 1 levers (p 5 0.0005, sign test).

Bent cranks
Of those participants who had scored at the level of tra-

cing, 26% did so on items with machines with bent cranks;
whereas, 71% had scored at the level of tracing for items
with machines without bent cranks (Table 8). There is a diff-
erence in the proportion of participants able to apply tracing
on machines with bent cranks and those able to apply tracing
on machines without bent cranks (p 5 0.01, sign test).

Rank Ordering the Mechanistic Elements

The item difficulties for each mechanistic element, by
item, are presented in Table 7. The item difficulty means

for all of the mechanistic elements have been rank ordered
as follows (from the easiest to most difficult): (1) lever
arms, (2) related direction, (3) rotation, (4) constraint via
the fixed pivot, and (5) tracing. There were mean dif-
ferences in difficulty between rotation (M 5 20.36) and
constraint via the fixed pivot (M 5 0.52; p , 0.1, one-
tailed t-test), as well as between constraint via the fixed
pivot and tracing (M 5 1.80; p , 0.0001, one-tailed t-test).
Thus, there is no difference between the three easiest levels
and this confirms to the hypothesized construct level
(Table 1) ordering.

Discussion

Reasoning about mechanism is central to disciplined
inquiry within STEM fields. The AMRP has characterized
this form of reasoning about simple systems of levers.
In addition, it has helped to explain why this form of

Figure 8. Hands Fixed Pivot-Opposite (left) and Sequential Tracing-B19 (right) are two items that that are slightly out of the MNSQ ‘‘good fit’’ range.
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reasoning is difficult and what accounts for this difficulty.
For example, this study shows that machine character-
istics (e.g., lever type, bent crank) affect the difficulty of
mechanistic reasoning.

Assessment Validation

Item analyses were conducted to characterize item
difficulty, item fit, and item standard error. All items fell
within appropriate parameters. This assessment shows high
reliability by analyzing separation reliability and the SEM.

The separation reliability was equal to 0.94, indicating that
the model variance accounts for most total variance. The
SEM shows that on the AMRP a participant whose ability
estimate is in the middle of the logit scale tends to have
smaller SEM values, whereas those on the two extremes
tend to have larger SEM values. The smaller the SEM, the
more reliable the ability estimates. The relationship between
person ability estimate and SEM indicates high reliability.
Validity measures were taken through use of the clinical
interview and the item-step Wright Map. Participants
were likely to be scored similarly on AMRP items and

Figure 9. Machine Prediction-B29 (left) and Sequential Tracing-D19 (right) are two items that that are considered to be out of the MNSQ
‘‘good fit’’ range.
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in the clinical interviews. This is an indication of con-
struct validity and shows that the assessment is mea-
suring participants’ capacity to reason about the targeted
mechanistic elements. Finally, the item-step Wright Map
validated construct map levels (Table 1).

Study Limitations

This study’s diverse and necessarily small sample was
identified to ensure that the items were correctly asses-
sing construct levels; thus, the need to conduct clinical
interviews during the AMRP’s administration limited the
sample size. Now that the AMRP has been calibrated,
it will be important to administer it to a larger sample.
Such an administration would provide more evidence
about participant means to support mechanistic reasoning
as well as those aspects of systems of levers that make
mechanistic reasoning more or less difficult. This assess-
ment administration provided substantial information with
which to revise these items. For example, the MNSQ
statistic indicated that Hands Fixed Pivot-Opposite,
Sequential Tracing-B19, Machine Prediction-B29, and
Sequential Tracing-D19 are slightly out of the good fit
range (Figures 8 and 9). Thus, these items will be recon-
ceptualized and redesigned. In addition, another adminis-
tration to a larger sample may more clearly differentiate the
difficulty of all of the mechanistic elements. Moreover,
in the next iteration of design, the AMRP should only be
administered to elementary and middle school students to

avoid potential ceiling effects with some high school and
college students.

Additional Forms of Reasoning to be Assessed

As the assessment is further developed, it may be
expanded to assess additional learning targets. In a previous
study of children’s naı̈ve mechanistic reasoning, Bolger
and colleagues (2012) noted that children rarely paid
attention to how far output levers moved for given inputs,
even when a paired contrast was used to draw their atten-
tion to this feature. Moreover, no child’s explanation of this
phenomenon went beyond the noticing of an empirical
pattern (e.g., ‘‘when the brads are closer to each other, the
lever moves more’’). This may be because explaining the
relative input to output distances relies upon mathemati-
cal relationships that were not apparent to the children.
It could be valuable to develop items that target (at least
qualitatively) the relationship between input and output
distance. This relationship blends mechanistic and quanti-
tative reasoning.

System Tracing

In order to diagnose this system, individuals must
recognize the push–pull interactions of the various compo-
nents as they trace the transmission of force. The observa-
tions that are made of these mechanisms determine whether
and how they may be causally coordinated. For example,
how individuals inspect systems makes the difference bet-
ween whether they see endpoints of motion (e.g., related
direction) or complete rotary paths (e.g., rotation). In addi-
tion, the capacity to infer less visible mechanisms (e.g.,
constraint via the fixed pivot) based on other visible mecha-
nisms and an understanding of the system seems critical
to tracing.

Perspectives for STEM Education

Because mechanistic reasoning depends on the devel-
opment of domain-specific content and processes
(Weinberg, 2017b), it is important that these are taught
and learned across K–12 STEM education. The National

Table 6
Relationship between how mechanistic elements were scored on exemplars and in cognitive interviews.

Related direction* Rotation* Lever arms* Constraint via
the fixed pivot*

Tracing* Total

Exemplars 219 199 114 109 74 715
Analytic framework (%) 62 (n 5 136) 74 (n 5 147) 61 (n 5 70) 45 (n 5 49) 47 (n 5 35) 100
Mechanistic elements

in sample (%)
31 28 16 15 10 100

Note. Chi-squared goodness-of-fit (*p , 0.0001, non-directional). The analytic framework used to code the cognitive interviews is presented in Bolger
et al. (2012).

Figure 10. Scatter plot: person ability estimates versus standard error of
measurement (SEM).
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Academy of Engineering Committee on Standards in
K–12 Engineering Education (NRC, 2010) has identified
core engineering concepts, skills, and dispositions for
K–12 education. Such a program could benefit from
content and assessment instruments that can support
the development of mechanistic reasoning. In addition,
researchers and educators (Brophy, Klein, Portsmore,
& Rogers, 2008; Coyle, Jamieson, & Oaks, 2005;
Cunningham, 2009; Hynes et al., 2011; Lachapelle &
Cunningham, 2014; Marshall & Berland, 2012; Moore
et al., 2014; Moore, Tank, Glancy, & Kersten, 2015;
Roehrig, Moore, Wang, & Park, 2012) have done

important work and taken significant steps toward the
reconceptualization of learning within the STEM dis-
ciplines, across the grades. These attempts to develop a
curricular program for K–12 STEM education align well
with these efforts to identify core engineering concepts,
skills, and dispositions for K–12 education (NRC, 2010,
2011). Accordingly, a program could benefit from con-
tent and an assessment that can support the development
of mechanistic reasoning. For instance, the affordances
of diagnosing the mechanisms of systems of levers are
that they are ubiquitous as well as that their parts are
open and inspectable. In addition, there is only one point

Figure 11. Item-step Wright Map. On an item-step Wright Map, a vertical line is marked out in logits; person estimates (X’s) and item-step locations (e.g.,
MPRD.RD, the difficulty of scoring related direction on item MPRD) are positioned on the left- and right-hand sides, respectively. The closer to the bottom of the
Wright Map, the less capable the respondent and the less difficult the mechanistic element for each item; the reverse is true at the top of the Wright Map.
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of attachment between each two levers. This contrasts
systems, like gears that have multiple points of attach-
ments, and circuits, whose parts and mechanisms are not
at all visible.

Assessment Use

Although this assessment is undergoing further iterations
of design, the AMRP has potential uses for researchers,
teacher educators, and teachers. Although mechanistic
reasoning is domain-specific (Weinberg, 2017b), the AMRP
can assess and support the development of prerequisite
knowledge for and reasoning about diverse and complex
systems. This assessment is intended to be used with students
at the elementary level. This assessment has principally been
used in studies focused on mechanistic reasoning about simple
systems of levers (Weinberg, 2012, 2014, 2017a, 2017b;

Weinberg & Sorensen, 2018). Thus, this assessment would
also have been useful in other research focused on children’s
mechanistic reasoning about systems of linkages (Bolger
et al., 2012; Bolger, Kobiela, Weinberg, & Lehrer, 2009;
Bolger, Kobiela, Weinberg, & Lehrer, 2010; Bolger,
Weinberg, Kobiela, Rouse, & Lehrer, 2011; Kobiela,
Bolger, Weinberg, & Rouse, 2011).

In addition, the AMRP can assess prerequisite reason-
ing about many more simple and complex systems. For
instance, scissors, bicycles, and eggbeaters are systems that
rely on understandings of many of the same mechanisms
present in levers. Two levers and a screw are the con-
stituent parts of a pair of scissors; bicycles and eggbeaters
are compound machines that include gears. Accordingly,
this assessment would also have been useful in the
characterization of mechanistic reasoning about similarly
inspectable systems (e.g., systems of gears) (Lehrer &
Schauble, 1998; Metz, 1985,1991).

Bryk, Gomez, Grunow, and LeMahieu (2015) draw a
distinction between assessment tools that are used for
improvement and those that are used for evaluation. In the
above studies, the AMRP was used as a summative
assessment. Participant mechanistic reasoning was asses-
sed to make characterizations about how individuals and
groups reasoned. In addition, the AMRP could further
summatively assess how reasoning about linkages can aid
children and adults in understanding mechanisms within
many simple and compound systems. Rouse (2014) described

Table 8
Tracing by machine characteristics.

Machine characteristics Scored at the level of
tracing (%)

Lever type Class 3 lever(s) 0
Class 1 lever(s) 80**

Bent crank With bent crank 26
Without bent crank 71*

Sign test: **p , 0.001,

Table 7
Item-step Wright Map: item thresholds.

Item Related direction Rotation Lever arms Constraint via the fixed
pivot

Tracing

Hands Fixed Pivot-Opposite 20.41 1.59
Machine Prediction-A2 21.55 0.70
Sequential Tracing-D1 0.25 20.45 20.59 20.36 1.83
Hands Fixed Pivot-Same 0.38 20.37
Machine Prediction-A1 21.17 20.08
Machine Prediction-A3 20.84 0.20
Machine Prediction-A39 20.98 1.49
Machine Prediction-B2 20.20 0.77
Machine Prediction-B29 21.59 0.80
Machine Prediction-D1 0.71
Machine Prediction-D19 0.55
Sequential Tracing-A1 21.79 21.68 22.12 1.51 0.61
Sequential Tracing-A3 21.73 22.41 21.07 1.04 0.38
Sequential Tracing-A39 21.22 0.38 21.44 1.54
Sequential Tracing-B1 22.18 21.52 21.00 0.20 1.89
Sequential Tracing-B19 20.07 20.69 20.83 20.55 2.65
Sequential Tracing-B2 21.11 21.46 21.87 0.50 1.48
Sequential Tracing-D19 0.95 20.27 20.37 20.08 2.48
Sequential Tracing-E1 0.96 20.60 1.19 0.01 3.04
Sequential Tracing-E2 20.46 20.29 0.35 1.57
Sequential Tracing-CMT 21.00 21.07 21.24 0.33 1.86
Mean 20.60 20.36 20.82 0.52* 1.80**

Note. Machine prediction and hands items can only assess related direction and rotation.
**p , 0.01,
*p , 0.1.
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how he supported engineering practices through the design
of paper pop-up books with 7th graders. The physical
system in Rouse’s work is similar to, but less inspectable
than, the simple systems of levers in the AMRP. However,
the AMRP can assess and support the prerequisite reason-
ing for these more complex systems, which principally rely
on lever motion. In addition, English, Hudson, and Dawes
(2013) supported students to reason about the design of
trebuchet catapults; these catapults similarly rely on lever
motion. Thus, the AMRP could also have assessed and
supported prerequisite knowledge for reasoning about
this system.

Instead of being used for evaluation, this assessment may
also be used for improvement (Bryk et al., 2015). For
example, teachers who are interested in supporting their
students to reason mechanistically may use this assessment
formatively. These teachers may choose to use the AMRP
throughout the academic year to assess individual and
group change in mechanistic reasoning over time. More-
over, science and engineering educators working in teacher
education may utilize the AMRP to diagnose how effec-
tively their interns can support mechanistic reasoning with
their K–12 students in their field placements and class-
rooms. The purpose of measurement for improvement is
to ‘‘inform efforts to change’’ (p. 8). Such work must
include a theory of how pre- and in-service teachers’ work
with mechanistic reasoning changes and develops with time
and experience. Weinberg and Sorensen (2018) have laid
out a trajectory of development of mechanistic reasoning
with third-grade students. The AMRP can more effectively
be used for improvement when such a trajectory of
development has been elaborated and articulated across
K–12 STEM education.
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Appendix A

Figure A. Item Sequential Tracing-A1 (STA1).
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Exemplar. Exemplar for Sequential Tracing A1 (STA1).

Level Mechanistic element Mechanistic element descriptions Mechanistic element example

5 Tracing Participant diagnoses all mechanistic
elements (without gaps) from input
to output.

4 Constraint via the
fixed pivot

Participant draws the opposite motion
of the two closest points on opposite
sides of the fixed pivot.

3 Lever arms Participant draws arrows with opposite
directions from stars on opposite
sides of a lever’s arms.

2 Rotation Participant draws arced paths. However,
the location of these paths must
reasonably approximate fractions of
circles centered around either the
fixed or floating pivot.

Note: Although these paths are centered
around the fixed pivot, this element
of mechanistic reasoning does not
make this distinction.

1 Related direction Participant draws the coordinated
input/output motion.
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Level Mechanistic element Mechanistic element descriptions Mechanistic element example

0 Student diagnoses
no mechanistic
elements

No mechanistic
elements are shown.

NL No link It is not clear if the participant
understood the nature of the task.

‘‘I don’t know’’

M Missing response

Note. This item assesses students’ ability to diagnose the mechanistic elements of related direction, rotation, lever arms, and constraint via the fixed pivot
as well as tracing. No link (NL) indicates an item response that does not provide any evidence of mechanistic reasoning (i.e., diagnosis of no mechanistic
elements). ‘‘Missing’’ indicates that the item was left completely blank. The ‘‘stars’’ have been placed on the levers to allow participants to indicate lever
motion. A ‘‘little person’’ has been included on the output lever to make the system output salient.

Exemplar. Exemplar for Sequential Tracing A1 (STA1). (continued)
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