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ABSTRACT 
 

This paper presents an online data-driven methodology which actively queries a new occupant for learning their 

personalized visual preferences. Preference is governed by a latent preference relation equivalent to a scalar utility 

function (the higher the utility, the higher the preference for that state). Information about occupant’s preferences is 

available via pairwise - comparison queries (duels between two different states).  We model our uncertainty about the 

utility via a Gaussian Process (GP) prior and the probability of the winner of each duel by means of a Bernoulli 

likelihood. This generalized preference model is then used in conjunction with pure exploration acquisition function 

to drive the elicitation process by actively selecting new queries to pose to the occupant. In this paper, an experimental 

framework is introduced which focusses on actively selecting new duels to learn the structure of utility everywhere in 

the state space with fewest possible queries. We illustrate the benefits of our framework by showing that these 

frameworks need drastically fewer duels for inferring the structure of underlying latent utility function as opposed to 

randomized data collection. In future, we are going to develop new frameworks which would help us in actively 

selecting new duels to infer the state with maximum utility function value (focusing on inferring the just the state with 

maximum utility function value rather than inferring it everywhere).  We are also going to use these newly developed 

frameworks for sequential design of experiments to infer the preferences of new occupants working inside private 

offices. 

 

1. INTRODUCTION 

 
Commercial buildings are one of the largest energy consuming sectors (6.5% of total energy consumption) in the 

United States. According to Commercial Buildings Energy Consumption Survey (CBECS), 17% of all electricity 

consumed in United States’ commercial buildings is for lighting, making it the largest end use of electricity. From 

previous literature, it is seen that occupants’ actions have significant impact upon lighting-energy use in these 

buildings (Gilani et al., 2018). Sadeghi et al. (2017) showed that occupants usually perform these actions so as to 

adapt their visual environment in response to an external discomfort stimuli (e.g., lowering the window shades when 

it is too bright, raising the window shades when it is dark or to improve the view, switching on electric lights when it 

gets too dark.) Occupants tend to interact with building systems in a way that is convenient to them rather than being 

energy-conserving. Such adaptive behaviors are stochastic in nature and can negatively influence building energy use 

(Gunay et al., 2014). In order to address these negative effects of occupants’ actions on building energy use, building 

systems with which the occupants interact (e.g. window shades, electric lighting, thermostats.) have been automated 

in many applications. 

Conservative window shades and electric lighting control systems tend to employ hard constraints on the set point 

values to account for individual variability, avoid occupant complaints and try to maintain acceptable comfort 

standards for the majority of the occupants (Guo et al., 2010). However, Xiong et al. (2018) observed that while 

preventing glare conditions is essential, achieving general visual comfort conditions does not translate into satisfaction 

with the visual environment (or optimal visual preference conditions). Visual comfort conditions vary from person to 

person, a fact which suggests that a systematic procedure to quantify personalized preferences is needed. 

mailto:nawalgao@purdue.edu
mailto:ibilion@purdue.edu
mailto:xiong29@purdue.edu
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Consequently, researchers have acknowledged these issues and have argued that instead of trying to maintain uniform 

indoor visual conditions, blinds and lighting automation systems should incorporate adaptive algorithms able to learn 

preferences of individual occupants.  

In this paper, our objective is to develop an adaptive preference elicitation framework for inferring personalized visual 

preferences of individual occupants working in private offices. Our model explicitly encodes the evident hypothesis 

that different occupants prefer different visual conditions. We hypothesize that occupant’s preference for one state of 

the room over another is governed by a latent (hidden) scalar utility function (Fishburn, 1970).  Our newly developed 

framework allows us to infer the structure of this utility which can only be queried through pairwise-comparisons 

(duels). This framework sequentially selects new duels with the highest uncertainty associated with the predictions. 

We call this pure exploration approach. This paper is organized as follows.  In section 2, we introduce the methodology 

that we follow to design experiments for learning the preferences of occupants. In section 3, we illustrate the benefits 

of the proposed framework compared to randomized data collection approach. In section 4, we conclude with some 

discussion and future lines of research. 

 

2. METHODOLOGY 

 
2.1 Preference Elicitation Scheme 
The statement that visual state 𝑥 of the room is preferred to 𝑥′ can simply be expressed as an inequality relation 

𝑢(𝑥) >  𝑢(𝑥′), and 𝑢(⋅) is a  latent utility function. For example, a particular occupant may prefer vertical illuminance 

value of 500 lx (𝑥) over 1000 lx (𝑥′). Consequently, 𝑢(500 lx) > 𝑢(1000 lx). The preference elicitation problem is 

that given a new occupant, we want to determine (or elicit) what the occupant’s preferences are by asking a small 

number of queries/questions to them. Put simply, we try to address the question “how can we learn occupants’ 

preferences without requiring unnecessary or excessive efforts from them?” In this paper, we focus on pairwise-

comparison queries (duels) for eliciting preferences since they are known to have low cognitive load (Conitzer, 2007). 

Our design of experiments (preference elicitation) scheme proceeds as follows: 

1. An occupant walks inside the room and is exposed to visual state 𝑥. This state can be defined by features 

such as vertical illuminance, shade position, luminance ratio, etc. For this paper, we are just going to consider 

a 1D feature space (vertical illuminance) to illustrate our results.  

2. After 10 minutes, we change the state of the room to a new state 𝑥′. 
3. In the middle of 10-minute set, we ask the occupant which state does the occupant prefers. 

4. If the occupant prefers the previous state, we consider the previous state as the winner of the duel and record 

discrete variable 𝑦 as 0. If the occupant prefers the current state, then we consider the current state as the 

winner of the duel and record discrete variable 𝑦 as 1. 

5. Based on the response, we update 𝑢(⋅) accordingly. 

6. Using the new estimate of 𝑢(⋅), we select the next state 𝑥new for querying (asking questions). We repeat this 

process until a stopping criterion is met. 

 

2.2 Likelihood Model 
Assume that 𝑁 duels have been performed so far. The resulting dataset is then given as: 

 

 𝐷N = {([𝐱𝑖, 𝐱𝑖+1], 𝑦𝑖) ;  𝑖 = 1, … , N} , (1) 

 

where  𝐱 ∈  ℝd is the feature vector defining the state of the room 𝑥 and d is the number of features used for that 

purpose. For each duel [𝐱, 𝐱′], the obtained feedback is a binary return 𝑦 ϵ {0, 1} representing which of the two state 

is preferred. Furthermore, the state 𝐱𝑖+1 is shared between two duels: duel 𝑖 and duel 𝑖 + 1. An example of this type 

of pairwise comparison data is shown in Table. 1. In the given, 1000 lx state is shared between duels 1 and 2 and 2000 

lx state between 2 and 3.  In a nutshell, for N duels, we are going to observe (N + 1) states. 

 

Table 1: Example of 1D (Vertical Illuminance) Pairwise Comparison Data 

Previous state (𝐱) Current state (𝐱′) Response variable (𝒚) 

500 lx 1000 lx 1 

1000 lx 2000 lx 0 

2000 lx 700 lx 1 
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The key hypothesis of this paper is that there is a latent utility function value associated with each training example 

which preserves the preference relations observed in the dataset. More specifically, for each duel [𝐱, 𝐱′], the probability 

of the current state 𝐱′ being preferred over previous state 𝐱, defined as the “preference probability”, is given as: 

 

𝑝(𝑦 = 1 | [𝐱, 𝐱′], 𝑢(⋅)) =  Φ(𝑢(𝐱′) − 𝑢(𝐱)), (2) 

 

where Φ(⋅) is the Probit function which is given as: Φ(z) =  ∫ 𝒩(𝛾|0,1)𝑑𝛾
𝑧

−∞
. The probability density 𝒩(⋅ |0,1) 

represents a univariate normal density with mean equal to 0 and standard deviation equal to 1. Similarly, we have an 

expression for the probability of previous state 𝐱  being preferred over current state 𝐱′  which is given as: 

𝑝(𝑦 = 0 | [𝐱, 𝐱′], 𝑢(⋅)) = 1 −  𝑝(𝑦 = 1 | [𝐱, 𝐱′], 𝑢(⋅)) . Note that, for any duel [𝐱, 𝐱′]  in which current state is 

preferred over previous state (𝑢(𝐱′) >  𝑢(𝐱)), the expression  Φ(𝑢(𝐱′) − 𝑢(𝐱)) will always be greater than 0.5. 

Furthermore, assuming that occupant’s preference relationships are conditionally independent given the latent utility 

function values, the conditional data-likelihood is given as: 

𝑝(𝐷𝑁|𝑢(⋅)) =  ∏ 𝑝(𝑦𝑖|[𝐱𝑖, 𝐱𝑖+1], 𝑢(⋅))

𝑁

𝑖=1

 . (3) 

In the above discussion about the likelihood function, we have not provided any form, order or shape to describe the 

utility function 𝑢(⋅), but instead referred to this utility as an abstract function. In the coming section, Gaussian 

process model is introduced which formulates our beliefs about the utility function. 

 
2.3 Gaussian Process Prior 
Throughout this paper we follow a Bayesian methodology. We model our belief about latent utility function 𝑢(⋅) as a 

probability measure over function space using a Gaussian process (GP) and update this belief based on the duels data 

we observe. A GP defines a probability measure on the space of utility functions such that any finite collection of 

function values follows a multivariate Gaussian distribution. GPs use and properties are extensively reviewed by 

Rasmussen & Williams (2006). Mathematically, we write 𝑢(⋅) ∼ 𝒢𝒫(𝑚(⋅), 𝑘(⋅,⋅)), where 𝑚(⋅) is the mean function 

assumed to be equal to 0 in our model and 𝑘(⋅,⋅) is the covariance function. Due to the Bayesian non-parametric nature 

of GPs, we get a powerful/expressive model of the occupant’s utility function and can incorporate the evidence (i.e. 

responses of the occupant to our queries) in a structured manner. The joint multivariate normal distribution over the 

utility function values at all the observed states 𝐗 = {𝐱𝑖| 𝑖 = 1, … , N + 1} of the duels data 𝐷N, denoted by vector 𝐮 =

(𝑢(𝐱1), 𝑢(𝐱2), … , 𝑢(𝐱N), 𝑢(𝐱N+1)), is given as: 

 

(
𝑢(𝐱1)

⋮
𝑢(𝐱N+1)

)  ∼  𝒩 ((
0
⋮
0

) , (
𝑘(𝐱1, 𝐱1) … 𝑘(𝐱1, 𝐱N+1)

⋮ ⋱ ⋮
𝑘(𝐱N+1, 𝐱1) … 𝑘(𝐱N+1, 𝐱N+1)

)) , (4) 

 

where 𝒩(𝟎, 𝐊) is a multivariate Normal distribution with 𝟎 mean and covariance matrix 𝐊. As we can see from Eq. 

(4), GPs are fully specified by covariance function 𝑘(⋅,⋅). We use the most common squared exponential covariance 

function to define our GP prior which is given as : 𝑘(𝐱𝑖 , 𝐱𝑗) = 𝜈 exp (∑ −
1

2𝑙m
2 (𝐱𝑖,𝑚 −  𝐱𝑗,𝑚)

2𝑑
𝑚=1 ), where 𝑑 is the 

number of features used to define the state of the room (in this paper, we are using vertical illuminance to define the 

state of the room and hence 𝑑 = 1) and 𝐱𝑖,𝑚 denotes the 𝑚-th element of 𝐱𝑖.We denote the parameters variance 𝜈 and 

length-scales 𝑙𝑚 of the covariance kernel (so-called hyper-parameters) by 𝛉 = (𝜈, 𝑙1, 𝑙2 … , 𝑙𝑑). Following Bayesian 

modeling approach, we need to place priors over these hyper-parameters 𝛉 such that they reflect our beliefs about 

them. We assign uninformative prior distribution over 𝜈 and 𝑙𝑚: 

 

𝑝(𝜈|𝛼1, 𝛽1) ∼  𝒢(𝛼1, 𝛽1),   
and  

𝑝(𝑙𝑚|𝛼2, 𝛽2) ∼  𝒢(𝛼2, 𝛽2),  
 

where 𝒢(𝛼, 𝛽) is the probability distribution function (PDF) of Gamma distribution with a shape parameter  𝛼 and 

scale parameter 𝛽. Here we set parameters 𝛼1, = 1, 𝛽1 = 1, 𝛼2 = 1 and 𝛽2 = 1. Now that we have defined GP prior 

𝑝(𝐮|𝛉) (Eq. (4)) and prior over hyper-parameters 𝑝(𝛉) =  𝑝(𝜈|𝛼1, 𝛽1)𝑝(𝑙𝑚|𝛼2, 𝛽2), we condition our model based on 

the duels data we observe to infer the posterior distribution over the quantities of interests. 



 

 3716, Page 4 
 

5th International High Performance Buildings Conference at Purdue, July 9-12, 2018 

 

  

2.4 Posterior Distribution 
Given a set of pairwise comparison data and prior distribution over latent utility function values, our next task is 

learning the posterior distribution over utility function values. Using Bayes’ rule, we can obtain the posterior 

distribution as: 

𝑝(𝐮, 𝛉|𝒟N) =  
𝑝(𝒟N|𝐮)𝑝(𝐮|𝛉)𝑝(𝛉)

𝑝(𝒟N)
 . (5) 

 

The non-Gaussian nature of the conditional likelihood term (eq. (3)) makes the above integral analytically intractable 

but it can be approximated via Hamiltonian Monte Carlo (HMC) sampling technique (see Subsection 2.6).  

 

2.5 Prediction 
Now that we have quantified our posterior beliefs regarding the utility function values, we shift our attention to 

predictions of utility function values and the preference probability (see Eq. (2)). We are interested in answering the 

question, “given a completely new duel [𝐫, 𝐬], what is the probability of  𝐬 being preferred over 𝐫 and vice versa?” We 

call this quantity the “preference probability”. The task of inferring preference probabilities is divided into two steps. 

First, we compute posterior predicted utility function values for these two states. The posterior predictive distribution 

over utility function values 𝐮𝑡 = (𝑢(𝐫), 𝑢(𝐬))
𝑇
 is given as: 

𝑝(𝐮𝑡|[𝐫, 𝐬], 𝐗, 𝒟N) =  ∫ 𝑝(𝐮𝑡|[𝐫, 𝐬], 𝐗, 𝐮, 𝛉)𝑝(𝐮, 𝛉|𝒟N) 𝑑𝐮𝑑𝛉, (6) 

where  𝑝(𝐮, 𝛉|𝒟N) is the joint posterior distribution and conditional prior 𝑝(𝐮𝑡|[𝐫, 𝐬], 𝐗, 𝐮, 𝛉) is given as: 

 

𝑝(𝐮𝑡|[𝐫, 𝐬], 𝐗, 𝐮, 𝛉) =   𝒩(𝐤𝑡
𝑇𝚺−1𝐮𝐊𝑡 , 𝐊𝑡 −  𝐤𝑡

𝑇𝐊−1𝐤𝑡), 
 

where 𝐤𝑡 =  (
𝑘(𝐫, 𝐱1), 𝑘(𝐫, 𝐱1), … , 𝑘(𝐫, 𝐱N), 𝑘(𝐫, 𝐱′

N)

𝑘(𝐬, 𝐱1), 𝑘(𝐬, 𝐱1), … , 𝑘(𝐬, 𝐱N), 𝑘(𝐬, 𝐱′
N)

)
𝑇

and 𝐊𝑡 =  (
𝑘(𝐫, 𝐫) 𝑘(𝐫, 𝐬)
𝑘(𝐬, 𝐫) 𝑘(𝐬, 𝐬)

). In Eq. (6), the utility function 

values 𝐮  and hyper-parameters 𝛉  are marginalized out. Second, we compute the posterior predicted preference 

probability distribution as: 

𝑝(𝑦𝑡 = 1|[𝐫, 𝐬], 𝐷N) =  ∫ Φ(𝑢(𝐬) − 𝑢(𝐫)|𝐮𝑡)𝑝(𝐮𝑡|[𝐫, 𝐬], 𝐗, 𝒟N)𝑑𝐮𝑡 . (7) 

In Eq. (7), we marginalize over the new duel’s posterior utility function values to infer posterior predicted preference 

probability. 

 

2.6 Training and Sampling 
We make use of Python’s GPflow 0.4.0 package (Matthews et al., 2017) to sample from the joint posterior distribution 

over utility function and hyper-parameters 𝑝(𝐮, 𝛉|𝒟N) (see Eq.(5)) via HMC sampling (Duane et al., 1987). Using 

these joint posterior samples (𝐮(𝑗), 𝛉(𝑗)|𝒟N) ∽ 𝑝(𝐮, 𝛉|𝒟N), 𝑗 = 1, 2, … . , S = 2000 ,we approximate the posterior 

predictive utility function values for new room states (Sec. 2.5) as: 

𝑝(𝐮𝑡|[𝐫, 𝐬], 𝐗, 𝒟N)  ≈
1

S
 ∑ 𝑝(𝐮𝑡|[𝐫, 𝐬], 𝐗, 𝐮(𝑗), 𝛉(𝑗))

S

𝑗 =1

. (8) 

Similarly, posterior predicted preference probability distribution is given as: 

𝑝(𝑦𝑡 = 1|[𝐫, 𝐬], 𝒟N)  ≈  
1

𝑆
∑ Φ(𝑢(𝐬)(𝑗) − 𝑢(𝐫)(𝑗))

S

𝑗=1

, (9) 

where  [𝑢(𝐬)(𝑗), 𝑢(𝐫)(𝑗) are posterior utility function values sampled from 𝑝(𝐮𝑡|[𝐫, 𝐬], 𝐗, 𝒟N) (Eq.(8)). 

 

2.7 Sequential Learning  
We now have all the main components required to set up our preference elicitation framework. Our main objective in 

this section is to develop a framework which uses previously seen duels data in order to design future experiments 

(select future queries to elicit/ask the occupants) and to incorporate the information obtained from occupant’s 

responses back into our model in a structured manner. Put simply, in this section, we address the question of “if we 

had time/budget to elicit 𝑀 extra duels from the occupant (in addition to the previously known duels data 𝐷𝑁, how 
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should we do it?” Note that, in our problem, one data point (state) is always shared between two duels (refer to Eq. 

(1)). Our goal in this section is to model a sequential design of experiments/elicitation policy for selecting the next 

datapoint for completing the last duel [𝐱N+1, 𝐱N+2 ] and is given as: 

 

𝐱N+2
∗ =  arg max 𝛼(𝐱N+2|𝐷N , 𝛉). (10) 

 

We define 𝐱new
∗  as the new datapoint of the last duel (NDLD state). 𝛼(⋅) denotes the acquisition function (Brochu et 

al., 2010) we are going to use. This elicitation framework algorithm is described in Fig. 2. The sequential design of 

experiments policy help us to converge to the true global utility with as few queries to the occupant as possible. For 

inferring the true global utility (and thereby the true preference probability), we propose to use the pure exploration 

(PE) acquisition function. For simplicity in writing equations, in the coming part of this Sub-section, we drop the 

dependency of all quantities on the hyper-parameters 𝛉 and observed states 𝐗. 

We make use of PE acquisition function for inferring true preference probabilities/global utility function values with 

as few queries to the occupant as possible. We want to be more confident in our predictions about preference 

probabilities. Being Bayesian, this means that we want to minimize the uncertainty (variance) associated with our 

predicted (posterior) preference probabilities. The more we explore the states space, the lower will be the uncertainty 

associated with our predictions, i.e. our model will become more and more confident in its predictions. PE searches 

the state for which we are most uncertain about the probability of the outcome, i.e.,  it has the highest variance 

for Φ(𝑢(𝐱N+2) − 𝑢(𝐱N+1)) , which is the result of transforming out epistemic uncertainty about 𝑢(⋅), modeled by a 

GP, through the probit function. PE can be carried out by maximizing: 

 

𝛼PE(𝐱N+2|𝐷N) =  𝕍[Φ(𝑢(𝐱N+2) − 𝑢(𝐱N+1))|[𝐱N+1, 𝐱N+2], 𝐷N], (11) 

where, 

 

𝕍([Φ(𝑢(𝐱N+2) − 𝑢(𝐱N+1))|[𝐱N+1, 𝐱N+2], 𝐷N) =  ∫
𝑍2 𝑝(𝑢(𝐱N+2), 𝑢(𝐱N+1)|𝐷N, [𝐱N+1, 𝐱N+2], 𝛉)

𝑑𝑢(𝐱N+2)𝑑𝑢(𝐱N+1),
 (12) 

 

 

where 𝑍 =  (Φ(𝑢(𝐱N+2) − 𝑢(𝐱N+1)) −  𝔼[Φ(𝑢(𝐱N+2) − 𝑢(𝐱N+1))]) and 𝔼[⋅]  calculates the expectation of the 

probability density distribution. Note that in the elicitation process driven by PE, duels that have already been queried 

will have a lower chance of being visited again (since the uncertainty associated with the given duel is low). Since 

integral in Eq. (12) is intractable, we approximate it using HMC (see Sub section 2.6, Eq. (9)).  

Now that we have proposed pure exploration based preference elicitation frameworks, in this section, we are going to 

validate our framework in terms of its performance. We are going to need some data to test our framework on.  Let us 

formulate a simple 1D example in which we assume that we have an imaginary occupant whose utility for different 

state values is as shown in the Fig.2. Our job is infer the structure of this utility everywhere in the state space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Sequential Design of Experiments Algorithm 

 

Require: Duels dataset 𝐷N = {([𝐱𝑖, 𝐱𝑖+1], 𝑦𝑖) ;  𝑖 = 1, … , N} and the budget (remaining evaluations)  M. 

 

for 𝑗 = 0 to M do 

1. Fit a GP model using observed data 𝐷N+𝑗 and learn utility 𝑢(⋅)| 𝐷N+𝑗. 

2. Compute the acquisition function 𝛼(⋅). 

3. Infer NDLD state: 𝐱N+2
∗ =  arg max 𝛼(𝐱N+2|𝐷N , 𝛉). 

4. Query the occupant for duel [𝐱N+1, 𝐱N+2 ] and obtain 𝑦N+𝑗. 

5. Augment data: 𝐷N+𝑗+1 = {𝐷N+𝑗  ∪ ( [𝐱N+1, 𝐱N+2
∗  ], 𝑦N+𝑗  )}. 

end for   

 

Fit a GP model to 𝐷N+M and learn 𝑢(⋅)| 𝐷N+M . 

 

Report the learned utility and preference probabilities. 
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3. NUMERICAL RESULTS 

 
3.1 Synthetic Occupant Data Generation 
For generating synthetic duels, the set-up is as follows: 

1. We assume that the visual state of the room is defined by vertical illuminance feature (1D case). 

2. We assume that we have an imaginary occupant working inside a given office whose utility for different 

states (vertical illuminance values) is as seen in Fig. 2.  We want to learn this utility. 

3. We assume that we can only query information about this utility function through pairwise comparisons. 

4. The outcome (response of the occupant) for a given pairwise comparison is generated as described in section. 

3 i.e., the outcome is drawn from a Bernoulli distribution of which the sample probability is computed 

according to Φ(𝑢(𝐱′) − 𝑢(𝐱)). Example initial duels generated using utility function in Fig. 3 is shown in 

Table 2. 

 
Figure 2: Actual utility function and preference probability contour plots. Left: Utility function value given vertical 

illuminance. From this 1D utility plot, we can say that the given imaginary occupant is going to prefer VI =
720 lx over all the other states (VI values). Right: Preference Probability Contour Plot. This plot shows the 

probability of state 𝑥′ being preferred over 𝑥. 

 

3.2 Framework in Action 
For selecting the NDLD state, the set-up is as follows: 

1. The search for NDLD state is performed in a grid of size 40 from min vertical illuminance value of 1 lx to 

maximum vertical illuminance value of 2700 lx. 

2. Each elicitation process starts with 2 initial (randomly selected) duels and a total budget of 100 duels (for 

random-search) and 100 duels (for PE search) are run. 

3. The PE framework vs. randomized data collection in action is shown in Fig. 3. 

As we can see from Fig. 3 (top 3 rows, right columns), pure exploration approach is searching through the whole space 

of allowed vertical illuminance values (the duels are selected in such a way that they are far apart from each other in 

the search space). Elicitation in such a manner (PE) helps to decrease the uncertainty associated with predicted 

preference probabilities and thereby helps to converge to the true utility of the occupant in the smallest possible 

number of duels.  

 

Table 2: Example of initial duels data generated using utility function shown in Fig. 3. 

 

Previous state (𝐱) Current state (𝐱′) 
Actual Preference 

Probability (𝒑) 

Response of the 

Imaginary Occupant (𝒑) 

 TRIAL 1 

495.9 

606.12 

606.12 

275.51 

0.549 

0.302 

1 

0 

TRIAL 2 

2038.77 

2369.38 

2369.38 

661.22 

0.473 

0.829 

0 

1 

TRIAL 3 

2204.08 

826.53 

826.53 

2479.59 

0.83 

0.163 

1 

0 
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Addition of 1 more datapoint (j = 1) to the previously known duels data (N = 2)  

 
Addition of 1 more datapoint (j = 1) to the previously known duels data (N = 3) 

 
 

Addition of 1 more datapoint (j = 1) to the previously known duels data (N = 4) 

 
 

Addition of 1 more datapoint (j = 1) to the previously known duels data (N = 49) 

  
Figure 3 Random Search (left) vs. Pure Exploration (right) preference elicitation: selection of next data point 

(denoted by green circles) when we know previous duel values (denoted by red circles). 
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3.3 Evaluation Methodology  
For framework evaluation, the set-up is as follows: 

1. Each algorithm is run for 3 times (trials) with different initial duels (same for both random search and pure 

exploration elicitation) and we report the average performance across all trials. 
2. For evaluating the performance of PE vs randomized data collection, hit rate accuracy (HRA), normalized 

Euclidean distance (NED), normalized variance in posterior preference probability samples (NVAR) and out-

of-sample deviance (OSD) performance metrics (Sub-section 3.3) are considered. These metrics are 

evaluated on 200 testing duels data  𝐷test = {([𝐭k, 𝐭′
k], 𝑦actual

(𝑘)
)| 𝑘 = 1, … , T ; T = 200} (which are different 

from the duels data on which the model is trained). 

 

3.4 Performance Metrics 

Performance is evaluated on testing duels given as: 𝐷test = {([𝐭𝑘, 𝐭′
𝑘], 𝑦actual

(𝑘)
)| 𝑘 = 1, … , T ; T = 200}. Definitions of 

different performance metrics used for evaluating elicitation frameworks are given below: 

 

6.3.1 Hit-Rate Accuracy (HRA) 

HRA is used as a statistical measure of how well a binary classification model correctly identifies or excludes a 

condition. Put simply, HRA is defined as the average chance of correct prediction. Higher the value of HRA, the better 

the elicitation framework is. In our case, HRA is given as: 

 HRA = 1 −   
∑ |𝑦

pred

(𝑘)
− 𝑦(𝑘)

actual
|T

𝑘=1

T
, (13) 

where 𝑦pred
(𝑘)

= 1 if 𝑝mean
(𝑘)

 i.e. 𝔼[𝑝(𝑦𝑘 = 1|𝐷N, [𝐭𝑘, 𝐭𝑘′])] >  0.5 and 0 otherwise. 

 

6.3.2 Normalized Euclidean Distance (NED) 

NED between two vectors gives a measure of “similarity” between the two vectors. In our, we calculate the Euclidean 

distance between predicted preference probability and actual preferences in the test set and divide it by the number of 

test data points T. The lower the value of NED metric, the better the given framework and vice versa. It is given as: 

NED =  
1

T
√∑(𝑝mean

(𝑘)
− 𝑦actual

(𝑘)
)

2
T

𝑘=1

, (14) 

where 𝑝mean
(𝑘)

=   𝔼[𝑝(𝑦𝑘 = 1|𝐷N, [𝐭𝑘 , 𝐭𝑘′], 𝛉)].  
 

6.3.3 Normalized Variance in Posterior Preference Probabilities (NVAR) 

Variance gives a measure of how much uncertainty there is, in our predictions. The lower the value of NVAR, the 

better the given framework and vice versa. It is given as: 

NVAR =
1

T
 (∑ 𝑝var

(𝑘)

T

𝑘=1

) , (15)  

where 𝑝var
(𝑘)

=  𝕍[𝑝(𝑦𝑘|𝐷N, [𝐭𝑘 , 𝐭𝑘′])] . 
 

6.3.3 Out of Sample Deviance (OSD) 

In information theory literature, deviance is introduced as a principled way to measure distance of different models’ 

predictive distributions (let’s say model a and model b) from that of the target (true) distribution (c). The lower the 

value of OSD, the better the given framework and vice versa. In our case, it is defined as: 

OSD =  −2 ×  
1

𝑇
 ∑ log (𝔼[𝑝(𝑦𝑘|𝐷𝑁 , [𝐭𝑘, 𝐭𝑘′], 𝛉)]).

𝑇

𝑘=1

(16) 

Fig. 4 shows the performance of PE approach against randomized data collection (as we add more and more duels). 

The results are consistent across all the four performance metrics plot, that is, pure exploration approach has 

consistently been proven better than randomized data collection. 
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Figure. 4 Comparison of performance (Pure Exploration vs. Random Search). 

 Top left: mean variance metric; Top right: hit rate accuracy metric 

Bottom left: average Euclidean distance metric; Bottom right: out of sample deviance metric 

 

 

4. CONCLUSIONS AND FUTURE WORK 

 

In this work we present new design of experiments framework for eliciting the visual preferences of new occupants 

who are going to work inside private offices. The key concept of this paper is to model latent utility function which 

governs occupant’s preference as a Gaussian Process, which helps us in quantifying the epistemic uncertainty 

associated with our predictions. This epistemic uncertainty drives our future elicitation efforts. We have proposed new 

pure exploration based acquisition function. We show that PE approach converges faster to the true utility function 

values as compared to randomized data collection approach and are therefore less intrusive.  In future, using this 

framework, we are going to design new experiments for learning the preferences of actual occupants working inside 

these private offices. 
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