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ABSTRACT 
 
A cascaded approach for optimizing Central Energy Facility (CEF) operations with integrated incentive-based and 
price-based demand response programs is presented. The approach is geared towards the Economic Load Demand 
Response (ELDR) program and the Peak Load Contribution (PLC) charge structure in the Pennsylvania, Jersey, 
Maryland (PJM) region. However, it can be extended to accommodate other programs in different regions. The 
developed approach allows for an optimal allocation of CEF assets to guarantee the curtailment of the commitment in 
the ELDR program, in addition to minimizing the customer’s PLC during projected Coincidental Peak (CP) hours. 
Given predicted central energy facility loads, day-ahead and/or real-time Locational Marginal Prices (LMP), and PLC 
and resource rates, the optimization problem is solved over a horizon into the future using a mixed integer linear 
programming framework.  Furthermore, it is adaptive as it updates the allocation of assets based on feedback from the 
ELDR market and any changes in the projected CP hours. A case study of ELDR program integration in CEF 
optimization at Kent State University (KSU) is presented.  
 

1. INTRODUCTION 
 
Increasing efforts have been dedicated recently towards the development of advanced system controls to optimize 
Central Energy Facility (CEF) operations in order to reduce energy consumption, and, consequently, energy cost. 
Reduction of electricity consumption is beneficial for both consumers and the Regional Transmission Organization 
(RTO) managing the power grid. Therefore, RTOs have setup Incentive-Based Demand Response (IBDR) and Price-
Based Demand Response (PBDR) programs to incentivize customers to lower or shift their electricity usage or loads. 
IBDR programs are voluntary programs where consumers are compensated for reducing their electricity usage. On 
the other hand, PBDR programs motivate consumers to actively respond to peak charges and time-based rates to, 
consequently, lower their electricity cost (Albadi and El-Saadany, 2008). These strategies also help electricity 
suppliers reduce their costs due to reductions in peak demand and the ability to defer construction of new power plants 
and delivery systems. In addition, they help in maintaining the stability of the power grid by balancing supply and 
demand during peak periods. 
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IBDR and IBDR programs have evolved over the years and so has the variety of these programs. There has been 
significant research examining the evolution of these programs and their reliability (Nikzad and Mozafari, 2014) and 
(Paterakis et al 2017). The type of programs offered differ from one RTO to another. In the region managed by the 
Pennsylvania, Jersey, Maryland (PJM) Interconnection, several IBDR programs are offered (Walawalkar et al 2010). 
These include, but not limited to, Economic Load Demand Response (ELDR) and Frequency Regulation (FR). The 
ELDR program allows consumers to choose when and by how much to curtail their electric consumption in response 
to market prices. The consumer is then compensated for the amount of power curtailed at the Real-Time Locational 
Marginal Prices (RT LMP). In the PJM region, consumers are also subject to PLC charges, which is a type of a PBDR 
program. A PLC charge, which prompts consumers to shave or shift their peak load consumption,  is a demand charge 
structure based on a consumer’s contribution to the demand peaks which occur in a region or a zone managed by an 
RTO at certain hours over a base period. Charges associated with PLC are significant and a consumer is billed, in 
addition to the regular energy consumption and demand charges, a monthly charge during the billing period, based on 
their PLC during the base period in the prior year. 
 
The advent of IBDR and PBDR programs has resulted in an extensive research in the field of optimization and dynamic 
control of consumer assets in order to meet commitments in IBDR programs, while minimizing costs due to PBDR 
programs. Applications span residential to large-scale consumers and different types of assets. Kim et al (2017) 
addressed the optimization of multiple battery energy storage systems of a large-scale customer with a time-based 
energy rates. Muratori and Rizzoni (2015) studied the dynamic management of residential energy consumption for 
different electricity rate structures. Prodan and Zio (2014) developed a model predictive framework for energy 
management of a microgrid consisting of a local consumer, a renewable generator, and a storage facility. Shafie-khah 
et al (2017) studied the optimal behavior of smart households under different types of demand response programs. 
Wenzel et al (2014) developed an approach to the optimization of central plants with thermal energy storage.  In this 
work, CEF optimization with integrated IBDR and PBDR programs is addressed.  
 
Given the diversity of assets within a CEF, the challenge becomes how to efficiently run the facility and allocate assets 
while meeting commitments to IBDR programs and minimizing cost due to PLC charges, electricity rates, and demand 
charges. A general cascaded approach is developed, which optimizes the asset allocation in a CEF in order to meet 
commitments to IBDR programs and actively respond to PBDR programs. The developed approach shows how any 
event based IBDR program can be modeled as an energy rate adjustment. Focus is given to the ELDR program and 
PLC charge structure in the PJM region. The CEF may consist of any combination of chillers, heat-recovery chillers, 
combustions turbines, boilers, thermal energy storage, battery energy storage systems, etc.  
 
Given actual and predicted ELDR market prices, an initial decision on participation is made. The initial set of 
participation hours along with the projected PLC coincidental peaks translate to an electricity rate adjustment in the 
objective function. The objective or cost function to be minimized consists of resource cost and revenue terms. The 
resulting optimization problem is then solved over a horizon into the future subject to operational constraints and 
given the adjusted electricity rates, demand charges, measured and predicted loads, weather forecast, and equipment 
efficiency curves using a mixed integer linear programing framework.    
 
The paper is divided as follows. The following section provides a brief description of the ELDR program. In section 
3, the PLC charge structure in the PJM region is presented. Section 4 shows the developed approach to CEF 
optimization with integrated IBDR and PBDR programs. The paper is then concluded with a case study of Kent State 
University, which actively participates in ELDR and where the developed approach has been implemented.  
 

2. ECONOMIC LOAD DEMAND RESPONSE PROGRAM 
 
The program description provided in this section is based on the program rules set forth by PJM (PJM, 2017). ELDR 
is an IBDR program, which allows consumers to generate revenue by reducing their electricity consumption during 
certain hours of the day. The consumer chooses the hours in the day during which to participate and the corresponding 
curtailment amount commitment and is then compensated for the amount curtailed at either the RT LMP or the Day-
Ahead LMP (DA LMP). The RTO measures the actual curtailment at a given participation hour in an event day by 
comparing the electricity usage during the event hour against a calculated baseline load referred to as the Customer 
Baseline Load (CBL). An event day is a day during which a customer participates in ELDR. Event hours are the hours 
in an event day during which the customer committed to participate in ELDR.  Customer transactions in ELDR are 
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usually managed by a Curtailment Service Provider (CSP), who handles the bidding and settlement processes with the 
RTO for the customer.  
 
There are two markets in PJM’s ELDR program, the Day-Ahead market and the Real-Time market. A customer can 
participate in either or both markets. The two markets differ in terms of the rate at which the customer gets 
compensated, the existence of a dispatch by the RTO, and the bidding process (PJM, 2018). In this work, it is assumed 
that the customer is participating in the Real-Time market and a description of the operations that take place in this 
market are described in the following subsection.  
 
2.1 ELDR Real-Time Market 
In the Real-Time market of ELDR, the customer can participate at any valid hour of the Operating Day as long as the 
bid is submitted at least 70 minutes prior to the top of the desired participation hour. Depending on the type of CBL 
assigned to a customer, some of the hours of the day may not be allowed for participation and these are referred to as 
restricted hours. In the Real-Time Market, customers with submitted bids will be dispatched by PJM. When a customer 
is dispatched, committed curtailment amounts must be met. The customer receives credit for any participation hour 
where the corresponding RT LMP,

iRTr , is greater than or equal to the Net Benefits Test (NBT) threshold and where a 
dispatch was issued by PJM as shown in (1). The NBT is a threshold point on the PJM Supply Curve where the net 
benefit exceeds the cost to load. It is the point where elasticity is equal to 1. The NBT is updated and posted by PJM 
for a calendar month on the 15th day of the prior month. The NBT results can be found on the PJM website by selecting 
markets & operations/ Demand Response/ Net Benefits Test Results. If a customer is dispatched and the RT LMP is 
lower than the NBT, the customer is compensated at the offer price, when the offer price is above the NBT threshold.  

 ( ),

0
i i

i

CBL i i RT RT
RT

e e r r NBT
R

otherwise

 − × ≥= 


 (1) 

where 
iRTR is the consumer revenue or credit received for participating at the thi hour, ,CBL ie is the customer baseline 

load, ie is the electricity import, and 
iRTr is the RT LMP.  

 
A Balancing Operating Reserve (BOR) charge is assessed for each hour where the actual power reduced deviates from 
the committed power by more than 20%. For a given rate, the BOR charge for a given hour is calculated as follows: 

  ( ) ( ), , 0.2

0
i i i iCBL i i com BOR CBL i i com com

BOR

e e e r e e e e
C

otherwise

 − − − − >= 


 (2) 

where BORC is the balancing operating reserve penalty at the thi hour and
icome is the participation amount commitment. 

Deviations rates are usually less than one dollar per 1 MWh, based on historical deviations rates data from PJM. 
 
2.2 Customer Baseline Load (CBL) 
The Customer Baseline Load (CBL) is the threshold an RTO uses to calculate a customer’s electricity usage reduction 
for each hour the customer participates in the ELDR program. The CBL is used to determine the total amount of 
credits earned and charges accrued by a demand resource participating in ELDR on a given day (PJM, 2018). The 
CBL is determined for each event day. In general, a CBL is dependent on when the first and last participation hours 
occur on a given event day. There are several methods that PJM approves for CBL calculation, which leads to different 
CBL types. PJM has a testing scheme to help decide which CBL is suitable for a given customer. For a list of the 
different types of CBLs allowed, refer to the PJM manual on energy and ancillary services market operations (PJM, 
2017). In this work, it is assumed that the customer has a Same Day (3+2) CBL, which is used for Kent State 
University. The latter assumption is made for simplification purposes and without loss of generality of the proposed 
approach to other types of CBLs. 
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For a given operating day, the Same Day (3+2) baseline is the average of the hourly electricity usage during the first 
3 hours during the 4 hour period prior to the first event hour and the last 2 hours during the three hour period after the 
last event hour. The hour preceding the first event hour and the hour right after the last event hour are buffer or 
transition hours and are not used in the calculation of the baseline. This is a constant baseline type, which is used for 
each event hour in the operating day. If there are multiple non-contiguous events during the same day, the earliest 3 
hours and last 2 hours from the same day are used to calculate the baseline. For a resource with a Same Day (3+2) 
participation is not allowed in Hour Start (HS) 0, 1, 2, 3, 21, 22, 23 to ensure there are enough hours to calculate the 
CBL. The Same Day CBL is calculated as follows: 

 

2 3

4 2
, 0 23

5

m n

i j
i m j n

CBL k

e e
e k

− +

= − = +

+
= ∀ =
∑ ∑

      (3) 

where ,CBL ke is the Same Day (3+2) baseline for the operating day, ie is the electric load during the thi hour, m is the 
hour start of the first event hour in an operating day, and n is the hour start of the last event hour in an operating day. 
Figure 1 shows an example of the calculation of the Same Day (3+2) CBL. The participation hours are from HS 11 to 
HS 19. The hours used to calculate the CBL in this example are thus, HS 7, 8, 9, 21, and 22. The curtailment amount 
is the difference between the CBL and the actual electricity usage during the participation hours.  
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Figure 1:  Example of ELDR program participation with Same Day (3+2) CBL 

 
3. PEAK LOAD CONTRIBUTION 

 
Peak Load Contribution (PLC) is a customer’s contribution to the demand peaks which occur in a region or a zone 
managed by an RTO at certain hours over a base period. Charges associated with PLC are significant. Customers are 
billed, in addition to the regular energy consumption and demand charges, a monthly charge during the billing period, 
based on their PLC during the base period in the prior year. The hours during a region’s or zone’s demand peaks occur 
are known as Coincidental Peaks (CP) hours. The CP hours are determined by the RTO over its entire footprint or the 
region it manages during a base period. These hours are then used to calculate a customer’s PLC and the customer is 
billed with a PLC charge over the billing period. The billing period takes place the year after the base period. In other 
words, in a given year, customers set their PLC charge for the following year. The base period, billing period, and CP 
hours differ from one RTO to another. In PJM, during the Peak-Setting Period or Base Period, the peak days are 
recorded during June 1st of year Y to Sept 30th of year Y. The delivery year or billing period is June 1st of year Y+1 to 
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May 31st of year Y+2. Coincidental Peaks hours are the 5 hours with the highest loads over the 5 highest peak load 
days across PJM’s region or footprint. The CP hours usually occur during on-peak hours on weekdays. A customer’s 
PLC during year Y is the product of the average of the customer’s electric load during the 5 CP hours and a Capacity 
Loss Factor (CLF) as shown in (4). 

   
5

,

1 5
cp l

PLC CLF
l

e
e α

=

= ×∑  (4) 

where PLCe is the customer’s peak load contribution calculated during year Y, CLFα is the capacity loss factor, ,cp le is 

the customer’s electric load at the thl CP hour. A typical value for a CLF is 1.05. 
 
The customer’s PLC charge for year Y+1, assuming a constant PLC rate, is: 

    PLC PLC PLCC r e= ×  (5) 

where PLCC is the customer’s  total PLC charge billed over the delivery year Y+1 and  PLCr is the PLC rate.  
 
For PJM, if a customer is participating in an ELDR event during one of the CP hours, the utility will reconstitute the 
customer’s load, so that they cannot reduce their PLC value while earning ELDR revenue at the same time. If 
customers want to reduce their load during projected CP day for the purpose of reducing their capacity, transmission, 
and/or demand charge costs, they may submit a bid for the same hours in the ELDR market. However, if any of those 
hours ended up being a CP hour, the CP hour cannot be settled for revenue in the ELDR market.  
 

4. INTEGRATION OF IBDR AND PBDR PROGRAMS INTO THE OPTIMIZATION 
PROBLEM 

 
The multi-objective cost function of the optimization problem of a CEF of any size, with any set of assets, and different 
kind of resources can be written in a general format as shown in (6). The objective of the optimization problem is to 
determine the asset allocation that minimizes the total cost associated with the purchase of any resource, while meeting 
commitments to IBDR programs (Wenzel et al 2018). Electricity costs, for example, are a combination of electricity 
rates, single or multiple demand charges, and PLC charges. In the case of incentives, an example would be revenue 
generated from commitment to the ELDR program.  

 ( ) ( )
1

1 1

, ,
1

, ,
NS k h M k h

s s
p i v com i

i k v i ks S

J C S i R S i
+ − + −

= = ==

 
= − 

 
∑ ∑ ∑ ∑  (6) 

Where 1
...

N
S S  are the sources of a given resource, ( ), ,s

p iC S i is the cost associated with a resource amount ,
s
p iS  

purchased from source S , ( ), ,s
v com iR S i is the revenue associated with a commitment ,

s
com iS in an incentive program for 

a given resource, and M is the total number of incentive programs.  
 
The optimization problem is subject to the following constraint, which guarantees the balance between resources 
purchased, produced, and discharged and those consumed and requested over the optimization horizon h . Other 
constraints include CEF operational constraints and assets minimum turndowns and capacities based on equipment 
models.  

 
( ) ( ) ( )

[ ]

, , , , ,
1 1 1 1 1

, , , , , , 0 

, , 1

subplant subplant storagesource loadsN N NN N
s su su st
p i pr i su c i su su r i st st j i

s su su st j
S S X S X D X L

resource i k k h

γ γ γ
= = = = =

+ Φ − Φ + Φ − =

∀ ∀ ∈ + −

∑ ∑ ∑ ∑ ∑  (7) 
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Where ( ), , ,su
pr i suS Xγ Φ is the amount of resource produced by a subplant, ( ), , ,su

c i su suS Xγ Φ  is the amount consumed 

by a subplant, ( ), , ,st
r i st stD Xγ Φ is the amount discharged by a subplant, and ,j iL is the load on a given subplant. 

, ,su Xγ Φ are the equipment or subplant parameters, the subplant decision variables, and weather variables,  
respectively.  
 
As can be observed in (6), the objective function of the optimization problem may contain several revenue terms 
corresponding to different IBDR programs and several cost terms corresponding to different resource consumption. 
For the purpose of explaining the integration of the ELDR program and PLC charges in the optimization framework, 
consider the following objective, which specifically highlights the cost term corresponding to electricity consumption, 
ELDR revenue term, and the PLC charge.  

 ( )
1 1 1

,ˆ ˆ
i i

k h k h k h

o e i i DA CBL i i PLC i i
i k i k i k

J J r e p r e e r eλ
+ − + − + −

= = =

= + − − +∑ ∑ ∑  (8) 

where oJ represents the other cost, incentive, and penalty terms, ˆ
ier is the predicted or actual electricity rate, ip  is the 

participation decision variable, ˆ
iDAr is the predicted or actual DA LMP, ,CBL ie is the baseline value, and ie is the 

electricity import decision variable, iλ is the PLC decision variable, PLCr is a generic rate associated with the PLC 

charge, and k  is time instant at which the optimization is solved over the horizon h . 
 
The PLC cost term is also a function of the electricity import over the horizon. Unlike the demand charge, where it is 
known over which period the demand is calculated, the hours during which the PLC is calculated are not known in 
advance. In order to allocate a given asset for the purpose of reducing customer’s PLC charges, a projection of the 
hours where demand peaks occurs is necessary. The projected CP hours can then be used as an estimate of the actual 
CP hours by the optimization solver, which optimally allocates a given asset(s) to minimize the customer’s 
consumption during those hours. Therefore, in order to minimize a customer’s PLC using the optimization framework, 
an approach to predict the CP hours is required. Prediction of the 5 CP hours is beyond the scope of this work. 
Therefore, an alternative approach is to have an hourly mask iλ representing which hours are projected to be CP hours 
and which are not. The hourly mask  is predefined by the user as set of 0’s and 1’s, where 0 implies that the 
corresponding hour is not projected to be a CP hour and 1 implies that the corresponding hour is projected to be a CP 
hour. Using the hourly mask concept, the user, as a safety measure, can assume any number of hours over the PLC 
peak setting period to be CP hours. The hourly mask concept also allows for a generic implementation of the PLC 
reduction feature in the optimization problem shown in (8). 
 
The electricity import over the horizon is a function of the campus electric load and the control decisions of any 
equipment that produces or requests electricity (combustion turbines, electric chiller, etc.). Based on ELDR operations, 
as mentioned earlier, a customer’s compensation is based on the difference between a baseline value and the actual 
electricity import during participation hours. In (8), the ELDR revenue term is a bilinear term, where the integer 
variable ip multiplies the decision variables that contribute to the electricity import over the horizon. However, in 
order to solve the optimization problem using mixed-integer linear programming in a reasonable time appropriate for 
online operation, it is necessary to linearize this term. In this case, linearization can be achieved by making the 
assumption that the participation decision variables are determined through an external process and are not part of the 
decision process of the optimization problem. Therefore, a cascaded approach to solving the optimization problem in 
this case is adopted. The cascaded approach assumes an initial participation hours selector, which gives a preliminary 
decision as to when to participate. This decision can be either based on a separate optimization problem, where the 
electricity import is assumed to be known, or simply on selecting the hours where the predicted RT LMP and/or the 
actual and predicted DA LMP are greater than or equal to the NBT. The preliminary participation decision is then 
passed to the main optimization problem shown in (8), where the final participation hours and amounts are determined.  
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Under the assumption of having preliminary values for the participation decision variables, where 1ip = indicates a 

participation hour and 0ip =  otherwise, and given that iλ is also given by the user, equation (8) can be rearranged 
yielding the following equivalent objective function:  

 ( )
1

ˆ
i

k h

o e i i
i k

J J r a e
+ −

=

= + +∑  (9) 

where 

 

( )ˆ 0     CBL hours/ 1

ˆ                / 1

               / 1
0                  otherwise

j

i

i DA j

i DA i

i PLC i

i

a f r i p

a r i p

a r i
a

λ

= − < ∀ ∈ =

= ∀ =

= ∀ =

=

 (10)  

Thus, the integration of the ELDR program revenue and the PLC charge in the optimization framework translates to 
a rate adjustment of the electricity rates as shown in (9). As shown in (10), the rates during the baseline hours are 
adjusted by an amount that is a function of the predicted or actual DA LMP. The latter adjustment varies from one 
type of baseline to another. For example, for a Same Day (3+2) CBL and for the participation scenario shown in Figure 
1, the rate adjustment amount during the baseline hours is as shown below: 

 ( )
19

11

ˆ
ˆ    CBL hours

5

i

j

DA
j

i DA

r
a f r i== − = − ∀ ∈

∑
 (11) 

Assuming a constant electricity rate. The resulting adjusted rate is as shown in Figure 2.  
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Figure 2:  Example of rate adjustment due to a participation in ELDR with a Same Day (3+2) CBL 

As can be observed in Figure 2, the electricity rate during the CBL hours are adjusted by a negative term, those during 
the participation hours are adjusted by a positive term, and the rates of the hours which are neither a CBL or a 
participation hour are not affected. The rate adjustment causes the optimization to make the appropriate decisions and 
optimally allocate assets in order to meet the commitments in the ELDR market. For the case of a PLC charge, where 
projected CP hours fall within the optimization horizon, the rate during the projected CP hours will be adjusted 
positively, which causes the optimization to turn on on-site generation equipment and/or reduce electricity 
consumption during those hours.  
 
This simplifies the problem at hand and eliminates the need for solving a bilinear optimization problem, which would 
necessitate the introduction of a large number of auxiliary variables. The cascaded approach also allows for reducing 
the computational time of the optimization solver, which can increase exponentially for large-scale CEF. 
Consequently, it is then possible to implement this approach for real-time operation of CEF.  
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Figure 3 shows a high level view of the optimization framework of a CEF with integrated ELDR and PLC charges. 
At any instant in time, measurements of loads are obtained, along with a weather forecast. The latter is used to 
predicted loads and rates over the optimization horizon using the methods shown in ElBsat, M. N. & Wenzel, M. J. 
(2016). RT LMP, DA LMP, and NBT threshold are obtained from the ELDR market and passed to the initial 
participation hours selector. In addition, if PLC charges are applicable, a projected CP hours vector is passed to the 
optimization problem, along with the preliminary participation hours decision. The optimization problem is solved 
over the horizon and the CEF assets are allocated optimally subject to the set of constraint defined in the problem.  
 
Recall that if a customer is participating in the ELDR program, the customer must not include the actual CP hours in 
the ELDR settlement for the days where the CP hours happen. Operationally, for projected CP hours, when the hourly 
mask iλ is 1 for a given hour, the corresponding ELDR participation mask can be forced to 0 to reflect the possibility 
of not making ELDR revenue for said hour.  
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Figure 3:  Example of CEF optimization with integrated ELDR and PLC  

 
5. KENT STATE UNIVERSITY CASE STUDY 

 
The central energy facility at KSU provides chilled water, steam, and on-site electricity generation to the campus. The 
facility consists of seven chilled water plants capable of providing a total of 40,716 kW of cooling over three chilled 
water loop. In addition, the facility is capable of meeting 99,620 kW of steam load using two boilers and two heat 
recovery steam generators. The facility also has two combustion turbines with 12 MW capacity. KSU is located in 
Kent, OH USA, which is within the region managed by PJM. KSU Power Plant is a participant in the ELDR program 
offered by PJM. KSU’s CBL is of the Same Day (3+2) type. The developed approach has been implemented at KSU 
Power Plant, where the facility assets are allocated optimally to minimize resource costs, while determining which 
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hours to commit to the ELDR program. The algorithm implemented at KSU does not currently include PLC charges. 
On-site operations thus far has shown the feasibility of the developed approach. The allocation of the combustion 
turbines is determined automatically in response to ELDR market prices, plant conditions, and predicted loads over 
the horizon. The latter guarantees that the power plant is capable of meeting any ELDR market commitments made. 
If, for example, one of the combustion turbines is scheduled out-of-service, the optimization algorithm takes this into 
consideration and reevaluates future ELDR commitments in order to avoid over or under performance in the market. 
Figures 4 through 7 show examples of actual KSU Power Plant ELDR participation performance. On 04/22/2018, 
participation started at 5 AM and ended at 8 PM. The combustion turbine is turned on during the hour between 4 AM 
and 5 AM, in preparation to meeting commitments made for the day. As can be observed, from 12 PM to 4 PM, the 
plant was not dispatched in the Real-Time market, but the combustion turbine was allocated to stay on due to the 
simultaneous minimization of electricity costs. 
  

 
Figure 4:  Actual ELDR participation performance at KSU Power Plant on 04/22/2018 

 
Figure 5:  Actual ELDR participation performance at KSU Power Plant on 04/23/2018 

 
Figure 6:  Allocation of the combustion turbines (Cogen 1 and 2) at KSU Power Plant in response of participation 

in ELDR 
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Figure 7:  KSU participation in ELDR from 04/22/2018 to 04/28/2018 

 
6. CONCLUSIONS 

 
A general framework for CEF optimization with integrated incentive-based demand response and price-based 
demand-response programs is developed. Assets of the CEF are allocated optimally to minimize costs associated with 
resource purchase, while meeting commitments to incentive-based demand response programs. It was shown by 
considering electricity as an example that the developed approach allows for the optimization of a CEF by 
transforming demand response program rates to a rate adjustment. The latter allows for a simplified linear optimization 
problem which can be solved using mixed –integer linear programing techniques. The developed approach has been 
implemented at Kent State University which is a participant in economic load demand response program. On site 
operations show the feasibility of the approach. Future work include developing methods for forecasting possible 
coincidental peak hours, which would serve as an input to the optimization problem.  
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