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ABSTRACT 
 
This paper presents a methodology to economically size a home battery based on parametric analysis using home 
energy management system (HEMS) software to optimally dispatch the battery along with controllable loads under 
several use cases. We account for connected equipment, controls, renewable resources, and other factors such as 
building characteristics and utility tariffs. The paper defines an analytical pathway for such a sizing tool, develops 
initial sizing guidance, and clarifies technical and market opportunities for home batteries in the context of existing 
and emerging equipment and control technologies. A parametric analysis that included 132 scenarios has been 
performed based on different combinations of pertinent parameters. Results indicate that four variables dominate the 
decision-making process: application scenarios (new construction or retrofit), utility tariffs, existence of HEMS, and 
the anticipated payback time. Life-cycle cost analysis indicated that in the absence of utility incentives, batteries plus 
HEMS have a payback time of longer than 10 years for new construction under a time-of-use rate structure and feed-
in tariff; larger batteries have a longer payback time but may provide more benefits to utilities on reducing power 
backfeed under certain circumstances. 
 

1. INTRODUCTION 
 
Energy storage is an emerging technology for enabling important capabilities in the modernized smart grid. Energy 
storage supports improved system operation by enabling variable generation resources through temporal disconnection 
of generation from consumption. Storage also provides additional means of saving money under time-varying utility 
tariffs or demand rates, as well as the ability to participate in incentive-based grid services such as demand response. 
In a future smart home, residential energy storage may comprise several elements: 

1. Home battery—electrical energy storage in the form of batteries, such as today’s lithium-ion products; 
2. Thermal storage—thermal energy storage, such as water heater and heating, ventilation, and air conditioning 

(HVAC) systems coupled to thermal mass of the water tank and the building itself; and 
3. Virtual storage—load flexibility that permits the shifting of energy consumption in time (Zhao, et al., 2017). 

These energy storage elements are expected to be operated in a unified manner to achieve whole-building outcomes, 
so they should be sized and selected based on the whole-building opportunity. It is precisely this context that leads us 
to the operation-informed methodology presented in this paper. 
 
Customer-sited batteries are marketed today with three primary value propositions. First, the home battery can make 
a home more resilient by providing backup power to the house during a grid outage. Second, the home battery can 
help a home become more sustainable by consuming its own photovoltaic (PV)-generated energy. Third, the home 
battery can provide financial benefits and help save its owner money under certain utility rate structures. All these 
potential uses have merit but would result in different optimal battery sizes. When sizing for resiliency, the optimal 
size will depend on how long a grid outage the battery supports, the weather conditions during the outage, and what 
critical loads are expected to remain operable. Sizing for sustainability depends on the PV array size, the solar resource, 
and how much energy the home uses throughout the day. Sizing for financial reasons depends on the utility tariff 
contract structure and the available incentives, both for batteries and participation in other events such as demand 
response. In all these sizing cases, constraints on first-cost versus operating revenue must also be considered. 
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No standard cross-industry methods exist to assist a homeowner or builder in sizing a home battery and estimating its 
benefits. Because the first cost is still very high (typically over $5,000), we endeavored to design an analytical method 
for assessing payback time under different use cases and focused on sizing for financial reasons. We evaluated the 
relative benefits and tradeoffs for homeowners and utilities between home batteries, home batteries in combination 
with controllable end-use equipment, and controllable end-use equipment alone, when each is operated with model 
predictive control (MPC) via a local home energy management system (HEMS) (Jin, Baker, Christensen, & Isley, 
2017). Because equipment control could be used in some cases in lieu of charging or discharging the battery, it is 
expected that controllable load flexibility would result in different battery-cycling profiles and a smaller economically 
optimal battery size, compared with a battery alone. 
 
Several tools currently exist for sizing home batteries. EPRI has developed StorageVET™, a web-based tool for 
techno-economic analysis of battery systems both at utility and homeowner scale (Electric Power Research Institute, 
2016). The National Renewable Energy Laboratory has developed REopt, a techno-economic analysis tool that can 
be used to optimize energy systems—from individual buildings to microgrids—that includes the ability to model 
batteries, PV, and building loads (Cutler, et al., 2017). Some battery manufacturers also provide simple sizing tools 
that estimate battery size based on house size and the loads in a home (Tesla, 2018). Rules of thumb also exist for 
sizing batteries for on- and off-grid homes, but they are typically used when sizing battery systems for resiliency rather 
than financial reasons (Sanchez, 2017). However, none of these tools can fully account for controllable loads in the 
home and how their usage under MPC-driven HEMS can help maximize a smart home’s cost-effectiveness using a 
package of connected loads and battery. 
 
Recent research on home batteries has focused on scheduling flexible loads to provide grid services or increase self-
consumption of PV. Several studies have been performed looking at improving the integration of PV with the grid 
through forecasting and demand-side management for homes without batteries (Masa-Bote, et al., 2014; Widén, 2014; 
Castillo-Cagigal, et al., 2011). Other studies have included additional energy sources, including micro combined 
heating and power and micro-wind turbines (Molderink, Bakker, Bosman, Hurink, & Smit, 2010; Cao, Hassan, & 
Siren, 2013). The HEMS used in this paper has previously been used to manage building loads to improve energy 
efficiency or respond to demand-response events while maintaining thermal comfort for homes with PV and battery; 
but it only considered one size for the battery and PV (Jin, Baker, Christensen, & Isley, 2017). 
 
This paper focuses on financial metrics in specifying the battery capacity for homes with PV, under different use cases 
that in the future could include a utility self-supply tariff. Thus, the analytical method described supports two of the 
three messages described above. Sizing for resiliency is often driven by homeowner preference rather than economics 
and is not included here, although some recent work has tried to determine the economic benefit of resiliency for 
commercial buildings (Laws et al., 2018). It can also help quantify the gap in cost-effectiveness that a utility may 
compensate with an incentive, or that a manufacturer could target for product cost reductions, to achieve higher 
penetration of energy storage assets.  
 

2. PARAMETRIC APPROACH FOR OPTIMAL BATTERY SIZING  
 
We propose a parametric approach to determine the optimal battery size based on the information pertinent to all 
aspects of the building where the battery will be deployed, such as connected equipment, controls, renewable 
resources, climates, building characteristics, and utility rate structures. 
 
Unlike other sizing tools and algorithms that model battery size as an optimization variable, the proposed methodology 
uses a parametric approach to explore combinations of pertinent parameters, perform annual energy simulation for 
each combination, and make recommendations on the optimal battery size based on the analysis results of the 
simulation data. The unique advantage of the proposed approach is that the decision-making process is powered by a 
rich set of data generated from representative scenarios, making the results easier to understand and validate. 
Traditional sizing approaches usually require a modest amount of user input and recommend a product configuration 
without revealing how the decision was made.   
 
As shown in Figure 1, the parametric analysis starts with parameter selection, where combinations of different 
parameters are chosen from the parameter space. These are used to generate data from EnergyPlus for buildings that 
operate under different combinations of the parameters. Inverse gray-box building models are then created from the 
EnergyPlus data to explore the potential benefits of adopting HEMS-controlled smart appliances and/or home battery 
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systems (HBSs) in the building. EnergyPlus is not directly used in this process because it lacks interfaces with MPC; 
instead we calibrate a gray-box model using EnergyPlus data and use it as the prediction model inside MPC. Techno-
economic analysis is performed to identify the parameters that dominate the selection of battery sizes, narrow down 
the parameter space for additional simulations, and identify the decision criteria for selecting the optimal batteries 
sizes. The end goal of the study is to develop a set of criteria for selecting an HBS, which can then be quickly and 
simply used by end-users (e.g., homeowners, builders) to select the optimal battery sizes with a minimum set of inputs. 
 

 
Figure 1: A block diagram of the parametric approach for optimal sizing of batteries. 

 
2.1 Parameter Selection 
Table 1 lists the parameters that we consider in our parametric analysis. Each parameter has several levels within the 
typical range of the parameter. Five types of parameters are considered here: the first type is about the battery system, 
including the battery size and battery inverter size; the other four types include building characteristics, building 
equipment, building operation, and utility tariffs. Each unique combination of the parameters in Table 1 makes up a 
scenario. We explore the levels marked in bold for this paper. 
 
2.1.1 Battery Size 
A set of uniformly spaced battery sizes between 0 kWh and 9 kWh with a 3-kWh increment is considered in the study. 
A 0-kWh battery means the baseline case without battery. Two levels of battery inverter are also considered. Not all 
combinations of these two parameters are deemed reasonable; a 3-kW inverter is only paired with the 3-kWh battery 
packs, and a 6-kW inverter is paired with larger battery packs.  
 
2.1.2 Building Characteristics 
Application types, home size, envelope efficiency, and location are the parameters considered under the building 
characteristics category. Application types include new construction and retrofit, which result in large cost differences 
in purchasing and installing some equipment. Typical home sizes and two climate zones are considered in the study. 
 
2.1.3 Building Equipment 
For space heating, space cooling, and water heating, two types of technologies are considered for each equipment 
type: one is traditional technology with wider adoption, and the other is emerging technology with higher efficiency. 
Four levels of PV systems are considered. 
 
2.1.4 Building Operation 
Heating setpoint, cooling setpoint, and occupancy levels all have three values. Different combinations of controllable 
loads, namely, HVAC and water heater, are considered under this category. Possible combinations include none (i.e., 
traditional HVAC and water heater without smart controls), HVAC only, water heater only, and both equipment.  
 
2.1.5 Utility Tariffs 
A set of representative utility rate structures and tariffs are chosen for the parametric study. Two rate structures are 
studied: a flat rate (constant cost per kWh of energy consumption for every hour of the year) and a time-of-use (TOU) 
rate—where cost per kWh varies in steps throughout each day. We use a typical TOU rate structure as shown in 
Section 4.1. In each case study, we also apply net-metering (energy export is purchased by the utility at the current 
consumption rate) or feed-in tariff (FIT), where exported energy is credited at a lower rate than the homeowner is 
charged for consumption. The ratio between the energy export credit and the energy import cost for the FIT case may 
influence the control decision, which is a topic of future research. 
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Table 1: Parameter space for the parametric analysis 

Category Parameter # Levels Level(s) 

Battery Size Battery Size 4 0, 3, 6, 9 kWh 

Building 
Characteristics 

Application Type 2 New Construction, Retrofit 

Home Size 1 2000 

Envelope Efficiency 1 IECC 2009 

Location 2 Cold, Hot-Dry 

Building 
Equipment 

Heating System 1 Electric Resistance 

Cooling System 1 Central AC 

Water Heater 1 Electric Resistance 

PV System 3 0, 3, 6 kW 

Building 
Operation 

Heating Setpoint Temp 1 71 

Cooling Setpoint Temp 1 76 

Occupancy Levels  1 Medium 

Controllable Loads 2 None, both HVAC and Water Heater 

Utility Tariffs 

Electricity Rate 2 Flat, TOU 

Feed-In Tariff 2 Net Metering, FIT 

Demand Charge 1 No 

Key to acronyms: AC (air conditioner), ASHP (air-source heat pump), BA (Building America), FIT (feed-in tariff), 
HPWH (heat pump water heater), IECC (International Energy Conservation Code), TOU (time-of-use). 
 
2.2 Data Generation  
EnergyPlus models were created to simulate buildings, occupants, and appliances based on the parameters in Table 1. 
Annual building simulations were performed in EnergyPlus to generate training data for calibrating the gray-box 
building models in MPC. In the annual simulation, step changes in the heating and cooling setpoints were repeatedly 
imposed to excite the building such that the resultant building model can better capture the building dynamics. The 
calibrated model serves HEMS, HEMS + battery, and battery-alone studies in all parametric studies using that house.  
 
2.3 Model Calibration 

Table 2: Validation results of the gray-box models against EnergyPlus models 

Building 
Locations 

Models Water Heating 
Load (kWh) 

HVAC Load 
(kWh) 

Total Controllable 
Loads (kWh) 

Phoenix 

EnergyPlus 2,099 9,404 11,503 

Gray-Box Models 1,950 9,932 11,882 

Difference -7.10% 5.61% 3.29% 

Chicago 

EnergyPlus 3,676 21,494 25,170 
Gray-Box Models 3,623 21,426 25,049 
Difference -1.44% -0.32% -0.48% 

 
We did not use EnergyPlus to implement MPC but instead used two weeks of EnergyPlus output data to train 
appropriate control models on a rolling basis. A gray-box building model (Jin et al, 2017) was calibrated using the 
training data following the optimization-based method described by Braun and Chaturvedi (2002). The calibrated 
model was validated against EnergyPlus by using another year’s weather profile that was different from the one used 
in the training stage. Annual simulations were performed in both EnergyPlus and MATLAB to comparatively evaluate 
the energy consumption. Two locations were considered in the initial study to evaluate the impact of climate on battery 
sizing. Phoenix and Chicago were selected due to their distinct weather conditions. As shown in Table 2, the annual 
HVAC and water heating energy differences were 3.29% for a home in Phoenix and -0.48% for a home in Chicago.  
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3.4 Building Energy Simulation 
The building energy simulation module loads the parameters for a specific scenario and performs annual simulations 
using a HEMS-based building energy simulation software (Jin et al., 2017) with the calibrated gray-box building 
model and other information exported from EnergyPlus. Annual building energy simulation is performed to evaluate 
the impact a HEMS/HBS technology on energy consumption, customer comfort, and interaction with the grid. As 
depicted in Figure 2, the HEMS-based simulation software comprises three main modules: an MPC module 
performing high-level planning, a real-time dispatch controller for implementing the decision from MPC, and building 
energy simulation models for simulating the responses of building equipment to the real-time control signals. The 
software operates at two epochs: the MPC implements at slow timescale for long-term planning, and the dispatch 
controller implements the MPC decisions in real time to control the simulated building equipment. The software plays 
a crucial role in the parametric simulation framework, and its inputs and outputs are specified in Figure 2 for 
interfacing with other modules in the framework. 

 
Figure 2: A block diagram of the building energy simulation software. 

 
The MPC aims to minimize the energy cost and thermal discomfort in air and water simultaneously. In this study, the 
HEMS was not explicitly designed to minimize exported power, although it may be provided as a side benefit under 
certain rate structures. The MPC’s prediction time step was set to 30 minutes and the receding prediction horizon was 
set to 16 prediction time steps, or 8 hours. Both the prediction time step and the horizon can be adjusted. CVX, a 
software for disciplined convex optimization, is used as the optimization engine (Grant & Boyd, 2013). 
 
The dispatch controller translates the fractional decisions (i.e., between 0 and 1) from MPC to control the equipment 
at fast timescale, subject to the physical constraints of the equipment. The CVX engine in MPC outputs run-time 
fractions that can be interpreted as duty-cycle signals, whereas most major equipment such as HVAC and water heaters 
use on/off control. Therefore, we used the dispatch controller to bridge the gap between MPC and real-time control of 
building equipment. The building energy models implement the control signals and provide updated status to MPC as 
sensor measurements. Both dispatch controller and building energy models were implemented at 1-min time intervals 
in this study. The calibrated gray-box models were used as the prediction models in MPC. The same models were also 
used as the building energy simulation models in the initial study and in the future will be replaced by more 
sophisticated building models to better capture the dynamics of the actual building equipment. In hardware-in-the-
loop experiments or field deployment, the building energy simulation models will be replaced by actual building 
equipment. For use cases without HEMS, we simply bypass the MPC module and implement deadband-based control 
strategies in the dispatch controller to mimic the behavior of traditional appliances. 
 

3. METRICS FOR TECHNO-ECONOMIC ANALYSIS 
 
Larger HBSs may provide more flexibility and operating cost savings, but these benefits come with higher upfront 
cost. Thermal storage and virtual storage controlled by HEMS can also serve as a battery and has the potential to 
reduce the size of the HBS. This section describes four metrics for evaluating the cost-effectiveness of the 
HEMS/HBS: annual operating cost savings, net present cost/benefit, battery degradation reduction, and backfeed 
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reduction. The first three metrics are from the homeowner’s perspective, and the last one is from the utility’s 
perspective.  

 
3.1 Annual Operating Cost Savings 
Annual operating cost savings (AOCS) is the difference between the operating cost on an annual basis before and after 
an HBS and/or a HEMS is deployed in a home. AOCS directly indicates the cost-effectiveness of a system during 
operation, but it does not consider the upfront cost such as hardware cost and installation cost. AOCS is also used in 
the internal rate of return and breakeven cost calculations. 
 
3.2 Net Present Cost/Benefit 
The cost-benefit analysis of a HEMS/HBS can be performed by comparing the net present cost (NPC) of the system 
and the net present benefit (NPB) to its owner (Maguire, 2013). If the NPB is higher than the NPC, then installing the 
HEMS/HBS would be cost effective over the evaluated period. 
 
The NPC is the cumulative discounted cost of the system—including initial cost, financing, tax impacts, incentives, 
and operations and maintenance (O&M)—equal to the sum of the cost in each year multiplied by the discount factor 
in that year. The NPC is: 

	ܥܲܰ ൌ 	ܥܫ	 ൅ ∑ ሺܥܯ௡ െ ௡ேܨܦ	௡ሻܫ
௡ୀ଴  ,                                                               (1) 

where IC is the system’s net installed cost, N is the study length, ܥܯ௡ is the O&M cost in year n, ܫ௡ is the incentive 

in year n, and ܨܦ௡ is the discount factor in year n. ܨܦ௡is defined as 
ଵ

ሺଵାௗሻ೙
, where d is the discount rate (5%). 

 
The NPB is the discounted cumulative benefits of operating cost savings over the evaluated period and is defined as: 

	ܤܲܰ ൌ 	∑ ሺܵܥܱܣ௡ ⋅ ௡ܨܦ ⋅ ௡ሻேܨܧܨ
௡ୀ଴  ,                                                           (2) 

where ܨܧܨ௡ is the fuel escalation factor in year n: ܨܧܨ௡ ൌ ሺ1 ൅ ݁ሻ௡, and e is the fuel escalation rate (0.5%). To 
calculate the breakeven cost of an HBS or HEMS, Equations (1) and (2) are combined and solved for ܥܫ, the breakeven 
cost. 
 
3.3 Battery Degradation Reduction 
Battery degradation can be modeled by calendar fade and cycling fade (Smith et al, 2013). Calendar fade represents 
solid electrolyte interphase growth and loss of cyclable lithium over time. Cycling fade accounts for active material 
structure degradation and mechanical fracture. Contributing factors of battery degradation include energy throughput, 
temperature, depth of discharge, resting state of charge, and discharge rates. Energy throughput is the dominating 
factor of cycling fade and is used in this paper to quantify the battery degradation under different operation strategies.  
 
3.4 Backfeed Reduction 
Power backfeed, or energy export, due to excessive PV generation or battery discharging in areas with high PV 
penetration has posed great challenges to utilities because the backfeed may cause overvoltage in the distribution 
feeder. Therefore, the amount of reduction in power backfeed provided by an HBS or HEMS is evaluated to quantify 
the benefits to utilities. This reduction may allow the utilities to support more PV on a given feeder.  
 

4. RESULTS AND DISCUSSION 
 
Following the procedures shown in Figure 1, some 132 annual simulations were implemented in MATLAB, one for 
each unique combination of parameters. HEMS operates at 30-minute intervals in applicable scenarios to control the 
HBS and building loads such as the HVAC and water heater, and load dispatch into the building energy simulation 
was performed at 1-minute intervals. This section summarizes the initial results and performs a techno-economic 
analysis to identify the parameters that dominate the optimal sizing of the HBS. 
 
4.1 HEMS/HBS Cost and Utility Tariffs 
It is critical to define the upfront cost of an HBS or HEMS because the cost directly impacts the NPC. The upfront 
installed cost and incentives of a HEMS and an HBS are listed in Table 3. It is assumed that the HEMS can be easily 
installed by homeowners or builders and therefore does not incur any installation cost. The hardware cost and 
installation cost of an HBS is different for retrofit (O’Shaughnessy, 2017) and new construction, so the upfront 



 
 3688, Page 7 

 

5th International High Performance Buildings Conference at Purdue, July 9-12, 2018 

installed cost of these two solutions are listed separately. The new construction cost estimate is based on the price 
quote from a battery manufacturer plus $500 builder installation cost. A $400/kWh incentive is assumed for HBS 
(Self-Generation Incentive Program, 2017). We assume that the smart thermostat cost is $250 and there is a $75 
incentive provided by the utility (Xcel, 2017). The connected water heater system consists of an electric water heater 
(A.O. Smith, 2017) and an add-on communication module (Lowes, 2017). 
 

Table 3: Cost and incentive assumptions for HBS, HEMS, and connected devices 

  Cost Incentive 
Retrofit New Construction  

HBS Upfront 
Installed Cost  

Inverter $1,271/kW $630/kW $0/kW 
Battery $1,060/kWh $338/kWh $400/kWh 
Base cost $0 $500 $0 

HEMS 
Hardware Cost 

HEMS $100 $0 
Sensors $250 $0 
Smart thermostat $250 $75 
Connected water heater $575 (water heater) + $40 (controller) $0 

 
Three utility tariffs were used in the simulation analysis based on a recent utility rate sheet (Southern California 
Edison, 2017): 

 TOU + FIT: TOU rates for energy import, and $0.03/kWh for energy export 
 TOU + Net Metering: Same TOU rates for energy import and export 
 Flat Rate + FIT: $0.16/kWh for energy import, and $0.03/kWh for energy export 

where the TOU rates are defined as: 
 Winter: $0.13/kWh (off-peak), $0.27/kWh (mid-peak), and $0.34/kWh (on-peak) 
 Summer: $0.13/kWh (off-peak), $0.28/kWh (mid-peak), and $0.45/kWh (on-peak) 
 Weekends: On-peak is at mid-peak costs 

 
4.2 Techno-Economic Analysis of the Simulation Data 

4.2.1 Annual Operating Cost Savings 

Figure 3: Annual operating cost savings for the Phoenix home under different HEMS and HBS combinations. 
 
Figure 3 summarizes the AOCS for the Phoenix home under different combinations of connected loads and HBS. The 
following observations can be made from Figure 3: 

 For homes with batteries only, increasing the battery size does not significantly improve the annual operating 
cost savings in the presence of FIT. 

 For homes with HEMS, adding a small battery improves annual operating cost savings, but adding larger 
batteries is less cost-effective without net metering. 

 Utility tariffs have significant impact on annual operating cost savings. The same solution has more cost 
savings under TOU and little cost savings under flat rate. 
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Location has a minor influence on the annual operating cost savings. The Chicago home has a very similar AOCS 
except that it has slightly more cost savings under TOU + FIT and less cost savings under Flat Rate + FIT. 
 
4.2.2 Cost-Benefit Analysis: NPB vs. NPC 
Figure 4 compares the NPBs of different solutions to the NPC for new construction with and without the $400/kWh 
incentive for batteries. The $75 incentive for a smart thermostat was still applied. Results from Figure 4 indicate: 

 Without incentives, the NPC of the HEMS-only solution is lower than the 5-year NPB, whereas the NPCs of 
battery-only solutions are higher than the corresponding 20-year NPBs. 

 With incentives, the NPCs of battery-only solutions become lower than the 20-year NPBs, but they are still 
much higher than the 10-year NPBs in all three cases. The 9-kWh battery has a lower NPC than the 6-kWh 
battery because the inverter cost is the same whereas the incremental cost for increasing the battery size is 
negative for new construction (i.e., $338/kWh cost - $400/kWh incentive).  

 With incentives, the NPCs of the HEMS + HBS solutions are lower than the corresponding 15-year NPBs in 
all three cases. HEMS + 3-kWh battery becomes cost-effective between 5 years and 10 years; HEMS + 6 
kWh/9kWh battery breaks even between 10 and 15 years. 

 
For retrofit solutions, due to the high upfront installed cost for inverter and battery, HEMS is the only cost-effective 
solutions under the TOU + FIT rate structure. The payback periods for new construction and retrofit applications of 
the Chicago home are even longer than those of the Phoenix home. 
 
This information can be used by utilities to determine the appropriate amount of incentives for encouraging behind-
the-meter battery-storage deployment in areas with high-penetration PV. Equipment manufacturers can also use this 
information to set the target for price reduction. 

 
Figure 4: Comparison of NPC and NPB for the Phoenix home (new construction) under TOU and FIT. 

 
4.2.3 Battery Degradation 

 
Figure 5: Annual battery energy throughput for HBS in the Phoenix home under TOU and FIT. 

 
As shown in Figure 5, combining battery with HEMS significantly extends the battery lifetime by reducing the battery 
energy throughput. The larger battery has a higher percentage reduction of energy throughput. Future research includes 
incorporating a battery life model to quantify the battery degradation in terms of capacity loss. 
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4.2.4 Annual Backfeed Reduction 
Reducing power backfeed helps mitigate the issues of feeder overvoltage and voltage variation, and thus, it maintains 
grid reliability for areas with high levels of PV penetration. Backfeed reduction was evaluated over 30-minute intervals 
for the entire simulation period. As shown in Figure 6, the following are found under TOU and FIT: 

 The 3-kWh battery, HEMS, and their combinations are the most cost-effective solutions for backfeed 
reduction. 

 Increasing the battery size from 3 kWh to 6 kWh provides modest incremental contribution to backfeed 
reduction, whereas batteries larger than 6 kWh has little or no incremental contribution to backfeed reduction. 

 Backfeed reduction depends more on location than other metrics. The Phoenix home has more backfeed 
reduction because Phoenix has better solar resources, and thus, higher probabilities of backfeed. 

 
Utility tariffs dominate the backfeed reduction. Feed-in tariffs reduce power backfeed whereas net metering 
encourages backfeed. Under TOU and net-metering rate structure, all solutions perform energy arbitrage for the 
economic gain, thus losing backfeed reduction benefits.  
 

 
Figure 6: Annual backfeed reduction under TOU and FIT for different combinations of HBS and HEMS. 

 
5. CONCLUSIONS  

 
This paper presents a novel methodology for economic sizing of home batteries and performs a parametric analysis 
on five types of parameters that have a potential impact on the optimal battery size for a home. Techno-economic 
analysis of the simulation results from 132 scenarios suggests that four variables have the largest direct impact on the 
battery sizing: application scenario (retrofit or new construction), utility rate structure, existence of a HEMS, and 
desired payback time. It is revealed that without incentives for batteries, HEMS and HEMS + 3-kWh battery are the 
only cost-effective solutions for new construction and the payback times are about 3 years and 13 years, respectively. 
Retrofit solutions are not economical in the absence of incentives due to higher hardware and installation cost. In 
general, the cases of smaller battery or no battery (i.e., HEMS only) have shorter payback times whereas larger 
batteries provide slightly better backfeed reduction under certain circumstances.  
 
In future studies, we plan to 1) expand the parametric study to a larger parameter space while using design of 
experiments and/or a design-day approach to reduce the runtime; 2) study how to optimize the battery inverter size as 
an independent variable to match the battery size; 3) explore how the ratio between the energy export credit and energy 
import cost for the FIT case may influence the battery sizing results; and 4) incorporate a battery-life model to quantify 
the battery degradation in terms of capacity loss. 
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