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ABSTRACT 
 
The objective of this work is to develop and demonstrate an efficient Bayesian inference algorithm to learn 
individual occupants’ thermal preferences in office buildings. We present an experimental study to collect data 
representative of thermal comfort delivery conditions for which the algorithm would be implemented in actual 
buildings. Subsequently, we demonstrate the efficiency of our algorithm by showing the evolution of personalized 
thermal preference profiles as the training data size increases and by evaluating profiles inferred with limited data. 
The results show more reliable personal profiles with our approach when the training data are limited compared to 
typical learning approaches, training a model from scratch with maximum likelihood estimation.  
 

1. INTRODUCTION 
 
Thermal comfort delivery systems that incorporate building occupants in sensing and control frameworks, and 
tuning based on their preferences have the potential to increase occupant satisfaction and reduce energy use 
(Erickson & Cerpa 2012; Feldmeier & Paradiso 2010; Gao & Keshav 2013a, 2013b; Jazizadeh et al. 2014; Kim, 
Schiavon, et al. 2018; Murakami et al. 2007). In these systems, learning is associated with adapting (estimating) 
parameters in a model (or a control logic) using feedback from individual occupants and sensor data. This process 
requires data with sufficient quality and quantity. For example, personalized profiles developed in previous research 
required 50-90 data points (Daum et al. 2011; Kim, Zhou, et al. 2018; Li et al. 2017) from each individual occupant. 
However, it is difficult to collect enough data from individual occupants in real buildings (Daum et al. 2011; Rana et 
al. 2013; Sanguinetti et al. 2017). Therefore, efficiency of learning in terms of required quantity/quality of data 
should be considered. The goal of this study is to develop smart environmental control systems for office buildings 
that incorporate occupants’ thermal preferences. Towards this goal, we have developed an efficient Bayesian 
inference algorithm to learn individual occupants’ thermal preferences in office buildings (Lee et al. 2017, 2018). In 
this paper, we present an experimental study designed to collect data representative of thermal comfort delivery 
conditions in typical office buildings. With the data from real occupants, we demonstrate the efficiency of our 
revised algorithm for learning personalized thermal preferences. 
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2. LEARNING APPROACH 
 
Our approach combines two subproblems to solve the learning problem: classification of people and inference of 
new occupants’ class, instead of developing different thermal preference models for individual occupants from 
scratch. This approach is based on the following steps: (i) using a large dataset to represent the thermal preferences 
and conditions in typical office buildings; (ii) developing a generalized model to explain the thermal preferences of 
occupants and to classify occupants in a typical office building population based on their “hidden” thermal 
preference characteristic; (iii) using the generalized model to infer the personalized thermal preference profiles using 
data collected from individual occupants in office spaces. To develop the generalized model, we use a subset of the 
ASHRAE RP-884 database (de Dear et al. 1997) that includes 1712 observations collected in different air 
conditioned office buildings in North America from 259 occupants (Figure 1). 
 

 

Figure 1: Data distributions of input variables in the training dataset from ASHRAE RP-884 database 
 
Figure 2 (left) illustrates the connections between thermal preference and related factors i.e., environmental, human, 
and hidden features. It is also a graphical representation of the joint probability for the generalized model, which is 
based on conditional probabilistic relationships between variables in the model. Colored and white nodes in Figure 2 
correspond to observed and latent variables respectively. y is the occupant thermal preference (i.e., “want warmer”, 
“no change”, and “want cooler”) of each occupant, E is the overall thermal stress. We consider the six input 
variables (x) affecting thermal stress according to Fanger’s model (Fanger 1970): air temperature (Tair), mean 
radiant temperature (MRT), relative humidity (RH), air speed (Spd), metabolic rate (Met) and clothing insulation 
level (Clo). z is the thermal preference characteristic of each individual occupant and θ collects all the model 
parameters. To consider the measurement noise (Carroll et al. 2006; Muff 2016) for air speed, metabolic rate and 
clothing insulation level in the training dataset, we encode our hypothesis: “the true values for these three variables 
(Spd, Met, and Clo) are uncertain”, in the generalized model. In Figure 2 (left), the three colored nodes, Spdobs, 
Metobs, and Cloobs, indicate recorded values for the air speed, metabolic rate and clothing insulation level in the 
training data, and the three white nodes, Spd, Met, and Clo, represent the corresponding true values of which we are 
uncertain. With regards to prior knowledge, the model also encodes that the true hidden variables follow the three 
lognormal distributions of the observed variables to some extent (Figure 3). With this model, we identify the number 
of possible clusters of people K with similar preference characteristics z and we predict the probability of thermal 
preferences for a given set of environmental conditions using different sub-models for the clusters. The method was 
presented in Lee et al. (2017, 2018). 
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Figure 2: Graph representing our knowledge and beliefs regarding generalized thermal preferences and connection 
with environmental and human factors (left); Plate notation for inferring (learning) the thermal preference profile of 

a new occupant (right) 
 

 

Figure 3: Data distributions of three variables (histograms) and probability density functions used to represent the 
data distributions (blue curves) for clothing insulation, metabolic rate and air speed 

 
Personalized profiles for new occupants are subsequently inferred using a mixture of sub-models. In learning 
thermal preference profiles of new occupants in real buildings, there are three variables difficult to measure: local air 
speed, metabolic rate, and clothing insulation level. Although such data may not be available for a new occupant, we 
can use the generalized model to learn new occupants by considering the local air speed, metabolic rate, and 
clothing insulation level as hidden variables and assigning a probability distribution for the unobserved variables 
(Figure 2 (right)). Since the probability distribution affects the inference of latent variables and predictions, it should 
be carefully chosen based on knowledge of the variables. We assume the following for the three variables: (i) one’s 
metabolic rate follows a truncated Gaussian distribution of which mean and variance are hidden; (ii) there is a linear 
relationship between air temperature and clothing level reflecting occupants’ behavioral adaptation; (iii) air velocity 
follows the distribution in Figure 3. 
Training the generalized model and inferring personalized profiles refer to inferring the posterior probability of the 
latent variables (model parameters and hidden variables) in Figure 2. However, since the posterior distribution is 
intractable analytically, an approximation method is needed. Sampling methods, such as Markov Chain Monte Carlo 
(MCMC), are widely used since they are flexible; however, they are computationally expensive, especially for high-
dimensional problems. To overcome these issues we use Automatic Differentiation Variational Inference (ADVI, 
Kucukelbir et al. 2017). The PyMC3 Python package (Salvatier et al. 2016) was used for ADVI with Adam (Kingma 
& Ba 2014) as the stochastic gradient descent algorithm. We have also implemented random initialization with 100 
initial points in the model training to get closer to the global solution of the variational inference problem (Sadeghi 
et al. 2018). 
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3. EXPERIMENTAL STUDY 
 
To demonstrate the validity of our learning method, we designed and conducted an experimental study using three 
identical perimeter south-facing private offices (3.3m × 3.7m × 3.2m high) in the first floor of Herrick Building at 
Purdue University on October and November 2017. The offices (Figure 4) have one exterior curtain wall façade 
with 54% window-to-wall ratio, and a high-performance glazing unit with a selective low-emissivity coating (visible 
transmittance: 70%, solar transmittance: 33%). The offices are equipped with VAV systems, motorized roller shades 
and dimmable electric lights. A commercial BMS is available in the building that allows us to monitor, control and 
automate all building systems. In this study, we fixed the dimming level of the electric lights at 100 % and the shade 
position at 25 % to eliminate the potential impact of changing the visual environment on the thermal preference of 
test-subjects. 
Each office was occupied by one participant every day between 9:00 am and 4:00 pm. For this study, we recruited 
three participants who were students and staff (between 20 and 40 years old) not familiar with this research. Each 
occupant participated for eight days and experienced all the schedules in the Table 1. All the subjects reported their 
thermal preference at 09:55 AM, 10:55 AM, 11:55 PM, 1:55 PM, 2:55 PM, and 3:55 PM each day. To ensure 
thermal adaptation with each condition, they were not allowed to leave the rooms for 30 minutes before each survey. 
They could leave the room shortly except this time and they had a 1-hour lunch break at 12:00 - 1:00 PM. The study 
was approved by the Institutional Review Board (IRB Protocol #: 1503015873). 
 

 

Figure 4: Exterior view of the four offices used for data collection and monitoring instrumentation 
 

Table 1: Air temperature setpoint schedules (unit: °C) 
 

Schedule # 
9:00 AM 

~ 10:00 AM 
10:00 AM 

~ 11:00 AM 
11:00 AM 

~ 12:00 PM 
01:00 PM 

~ 02:00 PM 
02:00 PM 

~ 03:00 PM 
03:00 PM 

~ 04:00 PM 
1 25 23.5 22 22 23.5 25 
2 22 23.5 25 25 23.5 22 
3 21 22 23 24 25 26 
4 26 25 24 23 22 21 
5 23 21.5 20 20 21.5 23 
6 20 21.5 23 23 21.5 20 
7 19 20 21 22 23 24 
8 24 23 22 21 20 19 

 
 
Air temperature, globe temperature and relative humidity were measured each minute. The air temperature was 
measured with two shielded T-type thermocouples on the left and right side of the sitting location and the average 
value was used. The globe temperature and the relative humidity were measured with a black globe temperature 
sensor (µSMART TB1) and a relative humidity sensor (BA/H205-B4X-Z-CG-WMW) respectively using 5-minute 
average values. Local air speed and clothing were also recorded but were not used in this study according to our 
model structure shown in Figure 2 (right). 
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4. RESULTS 
 
4.1 Generalized Thermal Preference Model 
Figure 5 shows the probability of an occupant belonging to each cluster, inferred by the generalized model. The 
uncertainty for the probabilities is visualized with box plots based on 1,000 samples from the variational distribution 
(approximate posterior distribution). Orange bars are the median value of the probabilities, and the upper and lower 
whiskers are the associated 95% credible intervals. Four clusters have meaningful probabilities and so the 
generalized model discovered four clusters (two with high probabilities and the other two with low probabilities) of 
people with similar thermal preference characteristics. 
 

 

Figure 5: The probability of each cluster being active 
 
The resulting predictive probability distributions (calculated with sub-models for the four clusters) of occupant 
thermal preferences (i.e., “want warmer”, “no change”, “want cooler”) are plotted in Figure 6. In order to visualize 
results in 2-D figures as a function of Tair, the other variables were set as follows: MRT = Tair, Spd = 0.05 m/s, RH 
= 50 %, Met = 1.2, and Clo = 0.6. Solid lines represent the median values of the probabilities (i.e., median model), 
and shaded areas represent the associated 95% credible intervals (i.e., 2.5- and 97.5-quantiles of the predictive 
probability). Note that the variational distribution we used ignores the correlation between model parameters and it 
can underestimate the model uncertainty. 
 

 

Figure 6: Predictive probability distributions calculated with sub-models for the four clusters (left column). The 
displayed probability distributions were calculated with the following settings: MRT = air temperature, air velocity 

= 0.05 m/s, relative humidity = 50 %, met = 1.2, and clo = 0.6 
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4.2 Personalized Thermal Preference Profiles 
Personalized profiles of the three test-subjects were inferred using the experimental data (Figure 7). We drew 1,000 
samples from the approximate posterior for each test-subject and used them to illustrate results. To plot the profiles 
with respect to air temperature, we set globe temperature = air temperature and relative humidity = 50 %. The 
personalized models show different profiles by having different sets of cluster values and personal parameters. In 
Figure 7, solid lines are the average values of the probabilities; darkly shaded areas represent the uncertainty caused 
by the uncertain parameters; and lightly shaded areas represent the uncertainty caused by the uncertain input 
variables (i.e., metabolic rate, clothing insulation level, and air speed). 
 

 

Figure 7: Personalized thermal preference profiles of the three test-subjects 
 
To further elaborate on the results, Figure 8 shows the profiles of subject 3 based on 6, 12, 18, 24, 30, 36, 42 and 48 
data points (i.e., data for 1 to 8 days). Using just the first 6 data points, the model classified the subject into the first 
cluster with a low uncertainty. However, the uncertainty for personal parameters was high (wider darkly shaded 
areas) and it decreases as more data are fed into the model. 
 

 

Figure 8: Thermal preference profile of subject 3 as a function of used data points (6-48) 
 
When available data are limited, it is important to understand the differences in prediction performance between our 
approach and typical approaches used in previous studies. Thus, we compare our model predictions with those 
obtained using a univariate multinomial logistic regression model, which has the air temperature as the input 
variable, and it is trained with the maximum likelihood estimation (MLE) method. We take as an example the 
preference profile of Figure 8 which is now plotted in Figure 9 using 6 data points from 4 different days, using the 
air temperature logistic regression model (top row) and with our model (bottom row). Actual data points collected 



 
 3677, Page 7 

 

5th International High Performance Buildings Conference at Purdue, July 9-12, 2018 

are shown with dots, while red, green and blue colors represent “prefer warmer”, “no change”, and “prefer cooler”, 
respectively. Green dots are displayed on the top of each plot (and the rest on the bottom) to clearly identify this 
data.  
The profiles of the logistic regression model are totally different from each other if only 6 data points are used each 
time. These results show that the air temperature logistic regression MLE model cannot train reliable models with 
limited number of data. Our model predictions with limited data (6 data points) show there are significant 
similarities with the profiles shown in Figure 8 with 48 data points, thanks to information from the generalized 
model and our prior for the personal parameters: (i) the air temperature that maximizes the probability of “no 
change” is around 23-24 °C; and (ii) the probability of “prefer cooler” increases as air temperature increases and 
vice versa. 
 

 

Figure 9: Personalized profiles developed based on MLE method (top row) and current model (bottom row) using 
four different sets of 6 data points 

 
5. SUMMARY AND CONCLUSIONS 

 
Towards realization of preference-based control systems, this study contributes to understanding the importance of 
data efficiency using a Bayesian approach. In this paper, we developed learning algorithms that are transferable to 
engineering practice and require as inputs data that can be collected in real buildings considering practicality issues 
and cost. We presented an experimental study to demonstrate the efficiency of our Bayesian inference algorithm for 
developing personalized thermal preference profiles. The results show our approach is able to estimate reliable 
preference profiles and cluster values using limited data points while the simpler air temperature logistic regression 
MLE model cannot train reliable models with the same data. 
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