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ABSTRACT 
 
Model-based predictive control (MPC) offers significant opportunities for building operation. However, it must 
overcome several obstacles to facilitate its widespread adoption. One of these obstacles is the lack of user-friendly 
weather forecast tools tailored for the implementation of MPC in building operation. This paper discusses the 
development of a weather forecast tool targeting this issue and a preliminary assessment of its accuracy. This tool 
uses raw forecast data from the Canadian national meteorological service as an input to create tables of data with a 
prediction horizon of 48 hours. High spatial resolution data makes it possible to obtain forecasts for a very specific 
geographic location. A post-processing treatment is used to obtain estimates of solar radiation on different planes of 
interest, such as façades, roofs or building-integrated photovoltaic installations. The forecast data can be obtained 
automatically at 6-hour intervals. An overview of the tool and its features is presented. An estimation of the 
accuracy of the weather forecasts is carried out by comparing predicted weather data with actual measurements in 
Canadian sites. Finally, possible future upgrades for the tool are discussed. 
 

1. INTRODUCTION 
 
In recent years, model-based predictive control (MPC) has received significant attention from the research 
community due to its potential to improve the operation of buildings (Aswani et al., 2012; Corbin et al., 2013; 
Drgoňa et al., 2018; Hu and Karava, 2014; Killian and Kozek, 2016; Oldewurtel et al., 2012). MPC uses models of 
the building and its system, along with forecasts of weather and occupant behaviour, to run optimization algorithms 
targeting the selection of optimal control actions for a given objective. MPC applications include, among others: 
temperature setpoint adjustment in anticipation of weather changes; regulation of the charge or discharge of energy 
storage devices; control of the temperature of thermally-active building systems (TABS), control of motorized 
blinds according to expected solar gains; and regulation of the building-grid interaction.  
Despite numerous studies confirming its potential, MPC is still far from being a mainstream practice in building 
operation. One of the reasons why MPC has fallen short of expectations is the lack of tools for incorporating 
weather forecast data in building automation systems in a straightforward manner. With a few exceptions, such as 
the efforts carried out by MeteoSwiss (Stauch et al., 2010) there is a scarcity of tools designed for this purpose.  
In view of this, efforts have been conducted in our centre in this direction. An early attempt focused on the periodic 
creation of EnergyPlus weather files (EPW) (Candanedo et al., 2013). However, over the last few years a more 
general tool –suitable for any simulation environment or building automation system- has been targeted. The 
objective was to facilitate the periodic generation of tables containing weather forecast data that would be easy to 
access, would contain numerous variables, and would be available for any point in the Canadian territory. 
Furthermore, it was important to include the capability to obtain solar irradiance forecasts on planes with different 
azimuths and slopes, so that the tool could be used to estimate solar heat gains in buildings and the generation of 
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building-integrated photovoltaic systems. Finally, it was important to make this tool as user-friendly and practical as 
possible. CanMETEO was publicly released, free of charge, in August 2017 (CanMETEO, 2017).   
This paper describes the methodology used by CanMETEO to retrieve weather forecast information, as well as the 
main features of the software tool. It also presents a preliminary assessment of its performance by comparing its 
predictions with measured data at two Canadian locations. Plans for future improvements to the tool are discussed. 
 

2. METHODOLOGY 
 
Meteorological services around the world make use of numerical weather prediction (NWP) models. NWPs are 
simulations of the atmosphere carried out by discretizing a large 3D domain into hundreds of thousands of control 
volumes (Bauer et al., 2015). Continuity, momentum and energy balance equations are solved for each of these 
domains at discrete time steps. The boundary conditions are obtained from satellite imagery and measurements from 
terrestrial stations. The solution of these systems of millions of equations is among the most computationally 
demanding tasks carried out nowadays. National weather services perform these simulations by using Gridded 
Binary (GRIB) files, a compact binary format that facilitates the handling of large meteorological datasets. The 
Canadian Meteorological Centre runs NWP models periodically. The raw results (in GRIB format) are made freely 
available to the public. The GRIB file results are then used by commercial weather forecast companies to perform 
some post-processing to add additional information and make the results accessible to the public. These weather 
services tend to focus on populated areas, and target specific variables, such as temperature, humidity, precipitation 
or wind speed. While these forecasts usually indicate cloud cover conditions (e.g., sunny, overcast, etc.), quantitative 
solar irradiance variables are not available. Thus, the tool focuses on three goals:  

• Providing a graphical interface to facilitate the selection of a specific geographical location and variables of 
interest, including solar irradiance on different planes; 

• Converting the GRIB files into an accessible format (CSV files) and; 
• Providing solar irradiance estimates at hourly intervals that may be used for calculations of solar gains and 

the output of PV arrays. 
 

2.1 Geographical Location and Selection of Variables of Interest 
 
CanMETEO uses numerical weather prediction GRIB files that are posted every 6 hours by Environment Canada. 
High resolution GRIB files provide high spatial density (i.e. grids of 2.5 km x 2.5 km at the ground level, and even 
denser in urban areas), covering most of the Canadian territory and regions in the United States (Figure 1). 
 

 
Figure 1. Data Availability of CanMETEO. 

 
The graphical interface of the tool enables zooming in and out to select a particular location (latitude and longitude). 
The geographic coordinates can also be entered manually (Figure 2). The user can also select the forecast variables 
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to be included in the output CSV file. By default, temperature, specific humidity, wind speed and cloud cover will 
be reported. The user can also specify solar irradiance on different planes after providing the azimuth (0° for due 
South) and inclination of the plane (between 0° and 90°). Other available variables include: albedo, dew point, 
precipitation, global horizontal and diffuse horizontal radiation. 

 

 
Figure 2. CanMETEO opening screen. 

 
2.2 Estimation of Solar Irradiance on Different Planes 
The calculation of the direct irradiance on any given plane of interest (e.g., a roof or a façade) requires some basic 
astronomical calculations to determine the position of the Sun relative to the plane. A detailed explanation of these 
calculations can be found in Duffie and Beckman (Duffie and Beckman, 2006).  
In order to estimate the diffuse irradiance on any given plane, the diffuse horizontal (Gdh) and direct beam (Ib) 
radiation are required as inputs. However, these two values are not released by default in the output of a NWP file; 
typically, the “cloudiness” of the sky is given as “cloud cover”, a value between 0 and 100%. To circumvent this 
issue is thus necessary, an empirical correlation proposed by Samimi (2015) is applied to calculate the location 
turbidity (TL). 

 ( )0.01*   0.20.8L CloudT Cover += ⋅   (1) 
This value is used to calculate the atmosphere transmittance (τatm) and the beam radiation (Ib). With this information, 
the direct beam and the diffuse horizontal values can be obtained. The Perez model (Perez et al., 1990) is then 
applied to calculate the diffuse solar radiation on a given surface. With this information, the total radiation on a 
surface is the sum of the diffuse radiation, the beam radiation component (beam radiation times the cosine of the 
angle of incidence) and the reflected radiation from the ground. The albedo (ρ) from the NWP file is used. 
 
 surface dif_ Perez cos( ) 0.5b ghG G I Gθ ρ= + +   (2) 

 
where Gsurface is the total solar radiance received by the surface, Gdif_Perez, is the diffuse radiation on that surface as 
calculated by the Perez model, Ggh is the global horizontal radiation for the site, and θ is the incidence angle of the 
direct radiation on the surface. 
 
2.3 Output files and Charts 
The output of CanMETEO is created in a CSV file with 48 rows, corresponding to the 48-hour horizon of the GRIB 
file. The user has the possibility of indicating whether to include additional information in the header (such as 
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location, the time when the forecast was released). Figure 3 shows a fragment of a typical CSV output file. The 
“time stamps” for the hourly data include both the UTC time (used by convention in NWP) and the local time. 
 

 
Figure 3. Typical CSV output file. 

Apart from the CSV tables, the software shows charts that facilitate the interpretation by the building operator 
(Figure 4). The graphs contain a vertical line that displays the current moment (i.e., the moment when the graphs are 
being accessed). There is often a short delay between the initial time (to) in the output and the moment when the 
forecast is displayed. While the graphical information shown in the charts may be useful for the interpretation of 
data, the CSV tables remain the key output, since they can be easily accessed by a control algorithm. 
 

  
 

Figure 4. Typical charts in CanMETEO: temperature and solar irradiance on a south-facing surface with a 45° 
inclination angle. The red line indicates the time when the charts were plotted. 

 
3. WEATHER FORECAST ACCURACY  

 
In this section, the accuracy of weather forecasts is assessed for two different locations: Varennes (Québec) and 
Okotoks (Alberta). Weather forecasts and measured data are first presented and discussed. Then, the accuracy of 
predicted ambient temperature and solar radiation is evaluated for a period of six months (Jul-Dec 2017). Since the 
solar radiation forecast appears overestimated, a post-processing procedure is finally presented.  
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3.1 Measured data and weather forecast database 
To assess the accuracy of weather forecasts, real measurements are necessary. Thus, forecasts were compared with 
measured data for two locations: the site of the research centre where CanMETEO was developed in the 
municipality of Varennes (near Montréal, Québec), and Okotoks (near Calgary, Alberta) the city that hosts the 
Drake Landing Solar Community (DLSC) (Sibbitt et al., 2012). The sites were chosen due to the availability of high 
resolution and reliable monitoring weather data.  

For these locations, ambient temperature and solar radiation measurements (on horizontal and 45°-tilted, with a due 
South azimuth) are available at 1-min intervals for Varennes and 10-min intervals for Okotoks. At Varennes, the 
measurements were obtained with recently calibrated instruments. In the case of the Drake Landing community, it is 
assumed that the pyranometers are well calibrated since the weather conditions are continuously monitored and used 
for operational purposes. The period analyzed in this study is July 1st - December 31st, 2017. 
 
3.2 Considerations in the evaluation of accuracy 
Evaluating forecast accuracy presents some challenges that are not evident at first glance. To start, as previously 
mentioned, forecasts are available on an hourly basis for 48-hr horizon, and released by Environment Canada every 
6 hours. Therefore, several predictions exist for the same moment in time, obtained from different forecasts (up to 9 
values). For comparison purposes, hourly averaged values have been calculated for the data when necessary by 
considering that the predicted value given at time to refers to the next hour, i.e., [to, to+1]. Moreover, forecast 
accuracy can be evaluated according to several mathematical criteria.  
The accuracy of ambient temperature forecasts can be satisfactorily evaluated by comparing instantaneous hourly 
values. In contrast, using instantaneous solar radiation values can yield significant differences (which may be due, 
for example, to the short-term effects of clouds). Thus, this criterion is not as important as the total energy received 
over a certain period (e.g., the next 6, 24 or 48 hours). These criteria are discussed in the next sections.  
Note that the graphs shown here represent typical results, not those that provide the best fit. Moreover, only 45°-
tilted solar radiation is analyzed but similar results have been obtained for the irradiance on a horizontal plane. 
 
3.3 Accuracy of ambient temperature forecasts 
In CanMETEO weather forecasts, predictions are given for the next hour and up to 48-hr ahead. It is reasonable to 
expect predictions for shorter prediction horizons to be more accurate. Figure 5 compares measured and predicted 
ambient temperatures at Okotoks for different prediction horizons. “Forecast 1-hr”, meant as a reference, 
corresponds to the hour immediately following the initial time of the forecast (to); the “Forecast 6-hr” corresponds to 
the six (6) values following the release of the forecast; finally, “Forecast 48-hr” corresponds to the 48 values 
following the release of the forecast. From this figure, it can be seen that the ambient temperature is predicted within 
reasonable accuracy over the 48-hr horizon, even though larger deviations are occasionally observed (e.g., Sep-28).  
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Figure 5. Forecast ambient temperature in Okotoks. 

 
These results are confirmed in a scatter plot of predicted vs measured temperatures (Figure 6) for Okotoks. Most of 
the 6-hr ahead predictions are within the range of +/-3°C; deviations can be larger for the 48-hr ahead forecast. A 
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histogram of the difference between the predicted and measured ambient temperature is also given and illustrates the 
accurate predictions (Figure 7). The mean value of the error is close to 0°C and the standard deviation is 2.2°C.  
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Figure 6. Comparison between forecasts and data for ambient temperature in Okotoks. 
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Figure 7. Histogram of ambient temperature errors (predicted – measured). 

 
The accuracy of ambient temperature forecasts was evaluated by using two indicators:  

• the root-mean-square deviation (RMSD): 
 

 ( )
, 2fore meas

amb, , ,
1 1

,
1

RMSD [°C]
1 T iT

T

nN

i j amb iN
i j

T T i
i

T T
N n = =

=

= −∑∑
∑

  (3) 

• the forecast spread fore
amb,max,iT∆  between the maximum and minimum values predicted for the same time ti : 

 ( ) ( )fore fore fore
amb,max, amb, , amb, ,[°C] max mini i j i jT T T∆ = −   (4) 

where: 
o meas

amb,iT  is the hourly measured ambient temperature at a given time it    

o fore

amb, ,i jT  is the hourly predicted ambient temperature for the time ti for the j forecast horizons (each 
time ti may have up to 9 values).  
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o NT is the total number of measured values over the entire period of interest 
o nT,i is the total number of predictions available for each time ti (varying between 1 and 9)  

Table 1 shows the results for Okotoks and Varennes. It is worth mentioning that similar results were obtained for 
both Okotoks and Varennes. The deviation of all forecasts was evaluated at about 2°C (2.2°C for Okotoks, 2.3°C for 
Varennes), which is consistent with the results shown in Figure 7. Moreover, the forecast spread obtained from the 
different forecasts for the same time is <3°C on average, although but it can reach up to more >10°C (12.6°C for 
Okotoks, 11.1°C for Varennes). On the other hand, such a large difference was reached only a few times during the 
studied period; deviations larger than 8°C were obtained for less than 3% of the measurements (3% for Okotoks, 
0.5% for Varennes) and is mainly due to preliminary underestimation or overestimations. For instance, the ambient 
temperature measured in Okotoks was 31.6 °C on July 23rd at 17:00. The temperature predicted 16-hours ahead was 
17.4 °C, quite far from the real value; however, the forecast four hours ahead was 30.0 °C, a much better estimation. 
In general, temperature forecasts are quite reliable and accurate. 
 

Table 1: Accuracy of ambient temperature forecasts (July 1st – December 31st) 
 

Indicator Okotoks (AB) Varennes (QC) 
RMSD  2.2°C 2.3°C 

Forecast spread 
Mean value 2.8°C 2.4°C 
Max value 12.6°C 11.1°C 

 
3.4 Accuracy of solar radiation forecasts 
A similar approach was applied to solar radiation forecasts (i.e., 1-hr, 6-hr and 48-hr ahead), which are shown in 
Figure 8 for Okotoks.  
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Figure 8. Raw forecasts, due South, 45°-tilted solar radiation in Okotoks. 

Solar radiation is more intermittent than outdoor temperature, which makes accurate hourly predictions harder to 
achieve. This point is illustrated by these examples:  

• September 26th: the forecasts failed to predict significant solar irradiance fluctuations.  
• September 30th: solar irradiance was overestimated significantly by the earlier forecasts (48-hr ahead). 

These values were corrected to some extent by the 6-hr forecasts, but there was still some overestimation.  
On the other hand, on sunny days (e.g., September 27th to September 29th), solar radiation forecasts are quite 
accurate although an overestimation is clearly noticeable. Since cloud coverage and albedo are obtained from 
Environment Canada, CanMETEO perform calculations to evaluate the solar radiation by using the Perez sky 
modelling algorithms (Perez et al., 1990), which might cause the observed difference during sunny days. Such 
overestimation has been discussed in the DLSC Annual Reports (Leidos Canada, 2014) where measured data is 
compared on an annual basis (i.e., including sunny and cloudy days) with CWEC files, based on the same 
calculation approach. The authors of the report evaluated the annual deviation for the first seven years of operation 
and obtained CWEC values 10% higher than measured ones on average. It is clear that the overestimation of 
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forecasted solar radiation might also be caused by other effects, including improper calibration or even physical 
aspects that have not been considered (e.g., air quality, accumulation of dust on the pyranometer, etc.).  
To rectify solar radiation forecasts, a post-processing procedure can be applied by introducing a correction factor 
(CF) that automatically adjusts the predicted values, as follows:   

 
meas

period

fore,raw

period

[%] 100
SR

CF
SR

= ×   (5) 

meas

periodSR  and fore,raw

periodSR  are the measured and raw forecast solar irradiance for a given period. The post-processing 
simply consists of multiplying the raw forecasts by the CF calculated over a carefully selected evaluation period.  

As mentioned in Section 3.1, solar radiation forecasts should be assessed by comparing the total energy received 
over a certain period. Since the solar radiation overestimation is more noticeable (and more important) on sunny 
days, the post-processing correction should be applied based on these conditions (for example, two sunny days). 
Seasonal variation of correction factors might also be considered. In this paper, July 3-4 was used to calculate the 
correction factor. Predictions 6-hr ahead (the most accurate forecast available) were used. Results for corrected solar 
radiation forecasts are shown in Figure 9; a scatter plot is shown in Figure 10. In comparison with Figure 8, there is 
a clear improvement for sunny days, while larger deviations are still noticeable on cloudy days.  
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Figure 9. Post-processed forecasts: due South, 45°-tilted solar irradiance in Okotoks.  
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Figure 10. Comparison between post-processed forecasts and data for 45°-tilted solar radiation in Okotoks. 

Further insight can be gained with a histogram of the difference between the post-processed predicted and measured 
radiation (Figure 11). The mean value of the error is 17 W/m2, and the standard deviation is 167 W/m2. About 78% 
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of the error values are within ±167 W/m2 (better than a normal distribution with the same mean and standard 
deviation). Although in terms of percentage the difference seems larger on cloudy days (when the irradiance values 
are lower), the solar radiation is predicted reasonably well when it matters the most (i.e. on sunny days).  
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Figure 11. Histogram of solar radiation errors (post-processing predicted – measured). 

 
As for the post-processing procedure, the accuracy of solar radiation was estimated by evaluating the total energy 
received over a certain period. Horizons of 6, 24 and 48 hours were selected and, normalized root-mean-square 
deviation (NRMSDj) and overall deviation have been calculated. They are defined as follows: 
 

 ( )
2

fore meas

, ,data
1

100 1
[%]

SRN

i j i j
iSRj

j SR SR
NSR

NRMSD
=

= −∑   (6) 
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[%] 100
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j N
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SR SR

SR
ε =

=

−
= ×

∑

∑
  (7) 

where meas

,i jSR  and fore

,i jSR  are the measured and predicted solar radiation received over the horizon j (e.g., 6-hr, 24-hr 

or 48-hr) when starting at time ti. The variable 
meas

jSR  represents the average value of the solar radiation received 
over the horizon j for the entire period (July 1st to December 31st). NSR refers to the number of times when 
measurements and forecasts were compared. Table 2 shows the results for raw and corrected forecasts for both sites. 
Low irradiance values were removed to avoid the effects of significant relative errors at low irradiance.   
 

Table 2: Accuracy of 45°-tilted solar radiation forecasts (July 1st to December 31st). 
 

Indicator* Horizon 
Okotoks (AB) Varennes (QC) 

Raw Corrected Raw Corrected 

Normalized RMSD 
6-hr 58.3% 31.8% 40.2% 35.4% 

24-hr 46.9% 24.6% 34.0% 28.8% 
48-hr 43.7% 20.7% 30.2% 24.9% 

Overall deviation 
6-hr 36.9% 4.7% 24.0% 14.8% 

24-hr 34.0% 2.3% 18.8% 10.0% 
48-hr 32.7% 1.2% 16.1% 7.5% 

* Values lower than 150 Wh/m2 estimated over the next horizon have been neglected 
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Table 2 shows that the post-processing with CF improves the accuracy for all horizons and both locations. For 
Okotoks, the correction factor was estimated to 76.3%; for Varennes, it was 92.6%. As previously mentioned, this 
difference can be explained by several reasons (e.g., improper pyranometer calibration, effects of air quality, or 
differences in weather variability in the two locations). Even if the normalized RMSD seems quite high, the overall 
deviation is always positive (i.e., overestimation); after the post-processing procedure, the error is relatively low for 
predictions. Overall, the CF helps reduce deviations, especially in Okotoks. Finally, it is worth mentioning that 
higher NRMSD values were obtained with the 6-hr period; smaller cumulative values yield higher relative errors.  
Histograms of the difference between the predictions and measurements for the solar energy received over a certain 
period of time is also given in Figure 12 for periods of 6, 24 and 48 hours. This information is of great interest, as it 
provides an estimation of the uncertainty associated to the solar energy received for the next few hours.  
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Figure 12. Histogram of the error (post-processed forecast – measured) of solar energy received for the next 6-hr 
(top), 24-hr (middle) and 48-hr (bottom). 

In summary, in comparison with the accuracy and reliability of temperature forecasts, solar radiation is rather 
challenging, but it can still be reasonably estimated within a certain confidence interval. The application of this 
information for decision-making in building operation (i.e., weather forecasts and accuracy) is discussed below.   
 

4. ROLE OF FORECASTS IN BUILDING OPERATION 
 
The application of model-based predictive control for the operation of HVAC systems in buildings requires a model 
of the building and its systems, along with a reasonable prediction input data. The input information usually involves 
two distinct data sets: (a) information about weather, such as outdoor temperature, weather and solar radiation; (b) 
direct or indirect information about internal heat gains (e.g., occupancy, plug load profiles, etc.). The relative 
influence of weather is particularly important in homes, small and medium commercial buildings, and large 
buildings with a large ratio of outdoor surfaces to volume (i.e., high rise office buildings). The impact of weather is 
also clearly noticeable in perimeter zones, e.g. in offices with large windows.  
Each of the steps of predictive control –modeling (Maasoumy et al., 2014), weather forecast (Petersen and 
Bundgaard, 2014), occupancy profiles and internal loads (Yan et al., 2015)– introduces uncertainty in the expected 
response of the building. One must remember that, while an accurate prediction is highly desirable, these pieces of 
information are meant to assist in the numerous decisions made by the building automation system (BAS). 
Therefore, an “imperfect” forecast can still yield useful results, as long as the level of uncertainty involved is taken 
into account in the control strategies. For instance, the predictions obtained for hourly values of solar radiation are 
within ±167 W/m2 of the actual value. This information can be used in the planning of control strategies. For 
example, if the total radiation predicted for the next day is 5 kWh/m2, a conservative approach could consist of using 
a value of 4 kWh/m2 in the calculation of the output of building-integrated photovoltaic panels, or in the estimation 
of solar gains. The effect of solar irradiance on buildings depends on many factors (e.g., window-to-wall ratio). At 
the time of writing, the development team was working on improvements of this tool, and on its application in 
predictive control studies. Methods based on total sky imagery, satellite cloud motion or stochastic analysis could be 
used to improve short-term forecasts (Pelland et al., 2013), and better assess the impact of forecasts uncertainties.  
 

5. CONCLUSION 
This paper has presented a preliminary assessment of CanMETEO, a free-of-charge weather forecast tool focusing 
on the incorporation of predictive control in buildings. A brief discussion of the features of this tool –which 
currently produces data for the Canadian territory–, has been presented. The solar radiation calculations are obtained 
from calculations using the raw output of numerical weather predictions. An assessment of the accuracy of 
temperature and solar irradiance forecasts was made for two sites: Okotoks (Alberta) and Varennes (Québec). 
Future work on this tool could potentially include the introduction of a user-defined correction factor for solar 
radiation. This correction factor could be changed seasonally. If a given site has readily available measurements, an 
upgrade in the tool could use this data to correct its predictions. Ensemble weather forecasts (i.e., the results of 
models with slightly different initial conditions) may provide an indication of the  
Other potential upgrades of this tool include the development of predictive control strategies based on expected 
weather conditions. These strategies include the control of the thermal energy storage device of a district heating 
network in the town of Okotoks and the development of optimal temperature setpoints for the building located at 
Varennes. Giving the user the possibility to include installed PV capacity, fenestration size and other parameters 
would allow the tool to provide estimates of PV power output and solar thermal gains in building.  
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