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ABSTRACT 
 

Multi-objective optimization is considerably increasing its importance in building design since the design goals 

are moving from the solely energy saving target to the whole building performance, comprehensive of energy, 

cost and comfort targets. Optimization algorithms coupled with building simulation codes are frequently used in 

academic researches. However, they are limitedly adopted in real building design due to the high number of 

expensive simulation runs required by optimization algorithms such as direct search methods, evolutionary 

algorithm, particle swarm optimization and hybrid algorithms. For this reason, an efficient optimization scheme 

is essential for the diffusion of the optimization tools in building performance design outside the academic world. 

The research focuses on the development of an Efficient Global Optimization (EGO) scheme based on a radial 

basis function network (RBFN) model to emulate the expensive evaluations of the building performance 

simulation (BPS). The test bed of the method is the optimal building refurbishment of three simplified module 

representative of existing buildings, for which the optimal solutions have been also calculated by using the brute 

force approach, i.e. evaluating the performance of all the possible combinations of the retrofit measures. Finally, 

the EGO performances were also compared with those offered by the popular Non Sorting Genetic Algorithm 

(NSGA-II). 

The results show the extent to which the EGO algorithm is able to find optimal solutions with a reduced number 

of expensive simulation runs. This capability makes the EGO algorithm suitable for the optimization of expensive 

simulation codes such as lighting models, CFD codes or dynamic simulation of building and HVAC systems.  

 

1. INTRODUCTION 
 

The European Directive 2010/31/EU guides the building designer to pursue the reduction of the energy demand, 

and consequently of the carbon emissions, by considering the economic effectiveness (Brinks et al., 2016). 

Besides, when approaching the low energy target while maintaining economical convenience, buildings might be 

easily subject to overheating and poor comfort conditions (Penna et al., 2015). Hence, the building design is 

always a multi-objective optimization problem with two or more conflicting goals and the achievable benefits in 

the design quality and cost reductions are high. Therefore, architects and engineers become increasingly aware of 

the potential advantages in applying building performance optimization in the early stages of the design process.  

The gradient-based optimization and the linear programming methods are not suitable to building performance 

optimization (Wetter and Wright, 2004), consequently the evolutionary algorithms (EA) are frequently adopted. 

The EA popularity arises from the flexibility with which they can deal with high dimensional problems, integer 

or real parameters as well as continuous or discrete variables, non-differentiable cost functions and so on (Deb, 

2001). However, the large number of cost function evaluations before a satisfying result can be obtained (Jeong 

and Obayashi, 2005) is the main challenge in the use of EA coupled with building performance simulation (BPS). 

This drawback reduces the effectiveness of the multi-objective optimization and especially its diffusion in the 

professional practice (Attia et al., 2013). Additionally, the time required for the multi-objective optimization is 

not short enough to implement actions in the period of reliable weather forecasts for simulation predictive control. 
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For this reason, the efficient use of EA requires an approximation of the optimization problem. In this regard, an 

explicit expression in lieu of the BPS, i.e. a surrogate model, is constructed starting from the building simulation 

results and used together with EA to speed up the optimization process. The use of surrogate model in the 

optimization process is a possible strategy, as done in Eisenhower et al. (2012), Hopfe et al. (2012) and Chen and 

Yang (2017). However, the drawback of this approach is the low accuracy of surrogate models on the whole space 

of possible energy saving measures of the building refurbishment. For instance, Hopfe et al. (2012) points out the 

disadvantage of Kriging due to the limited number of design variables at which the meta-model still does accurate 

estimations. The second strategy is the "generation-based control" in which the surrogate model is firstly used in 

the EA code to find the optimal solutions. Following on from this point, the BPS is performed for the optimal 

points and the surrogate model is then updated. Xu et al. (2016) recently follow this approach.  

In this paper, we propose an efficient global optimization algorithm based on the Radial-basis function networks 

(RBFN) surrogate model following the "generation-based control” approach.  

The refurbishment of three simplified reference buildings are optimized following the cost-optimal approach by 

considering six types of energy saving measures (ESM). The integer optimization problem is solved by using the 

customized algorithm developed in Matlab. The same optimization problems are also solved by the popular non-

sorting genetic algorithm (NSGA-II) proposed by Deb et al. (2002). According to Hamdy (2016), the NSGA-II is 

to a considerable extent the most implemented algorithms in the literature dealing with building optimization. 

Finally, the optimal solutions are evaluated through a brute-force method that provides the exact solutions of the 

optimization problem due to the discrete nature of all the energy saving measures. Finally, the performance of the 

EGO and NSGA-II algorithms are compared through some metrics. 

 

2. METHODS 

 
2.1 Genetic Algorithm (GA) 
A large number of evolutionary algorithms for solving multi-objective optimization problems have been 

developed over the last decades in several research fields. The NSGA-II uses elitism by maintaining the current 

and the previous population. Then, after the population mating, the populations are sorted according to the non-

domination concept and the best ranking solutions are selected as the next parent population.  

In this work, some customizations of the original algorithm are used on sampling, archive and convergence 

criterion. Firstly, the possible ESM combinations in the variable domain are selected by a Sobol sequence sampling 

in order to overcome the clustering that can occur with other sampling techniques. The Sobol sampling method is 

based on a low-discrepancy sequence and it aims to give a uniform distribution of values in higher dimensions. 

Secondly, an external dataset of the results of the simulation runs is saved with the purpose of avoiding, during 

the optimization process, repeated expensive simulation runs.  

Finally, the hypervolume measure (a.k.a. S-metric), proposed by Zitzler and Thiele (1999), is adopted as a 

stopping criterion. The maximization of this index is the necessary and sufficient condition for the Pareto optimal 

solutions of a discrete Multi-Objective Optimization problem, albeit with the drawback of the higher 

computational cost. The hypervolume is evaluated on the optimization objectives normalized with respect to the 

targets of the existing building. In this way, the different magnitude of the objectives does not affect the 

hypervolume index. A threshold of 10-4 in the variation of the normalized hypervolume between two consecutive 

generations has been adopted for the convergence criterion in the code. 

 

2.2 Efficient Global Optimization Algorithm (EGO) 
A customized algorithm was developed in Matlab, following the "generation-based control" approach (Figure 1). 

The algorithm firstly selects the initial population of the possible retrofit solutions through the Sobol sampling 

technique, as with the NSGA-II implementation in the previous section. The algorithm proceeds with the meta-

model fitting, after the cost functions have been evaluated for the initial population through the BPS. 

Among all the possible surrogate models, the code has been complemented with the radial basis function network 

(RBFN) proposed by Micchelli (1986). A linear combination of unknown coefficients 𝑤𝑗  multiplied by a radial-

basis function 𝜑 approximates each cost function (𝑓) as shown in Equation (1). 

𝑓(𝑥) =∑𝑤𝑗 ∙ 𝜑 ∙ ‖𝑥 − 𝜇(𝑗)‖ (1) 

where ‖𝑥 − 𝜇(𝑗)‖ is the Euclidean norm between the points in the variable domain (𝑥) and a specific point in the 

variable domain (𝜇(𝑗)) that is one of the model unknowns. Several radial-basis functions have been proposed in 

the literature. In this work, a linear basis was used and especially 𝜑 is equal to the pairwise distances between the 

variable points, already used in BPS, and the new points to be evaluated. The Matlab Neural Network Toolbox 

was used to approximate the BPS by means of the RBFN. 
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Figure 1: Flowchart of the EGO algorithm 

 

Once the RBFN model is fitted, the optimization problem is solved by using the NSGA-II coupled with the RBFN 

functions, and the Pareto front is defined. The EGO evaluates then the actual cost functions of the Pareto solutions 

highlighted by the NSGA-II and it saves the BPS results to an external dataset.  

If the Pareto front meets the stopping criterion, the algorithm finishes, otherwise it updates the meta-model, 

starting from all the solutions in the external dataset, and then it returns to the NSGA-II optimization. A threshold 

of 10-4 in the variation of the normalized hypervolume between two consecutive generations was adopted for the 

convergence criterion. 

 

2.3 Optimization Problem 

The refurbishment optimization of three simplified buildings, fully described in Penna et al (2015b), is the test 

bed for the two algorithms comparison. The investigated buildings are representative of a semi-detached house, a 

penthouse and an intermediate flat in an apartment building (Figure 2) in a typical configuration of Italian houses 

built prior to the first energy law and not renovated yet. Hence, a hydronic system with a standard gas boiler 

coupled with radiators and on-off control system is the initial configuration for all the test cases. 

 

Figure 2: Test building for the optimization problems 

 

Six conventional categories of energy saving measures (ESM) are considered: 

 external insulation of the non-adiabatic envelope with an expanded polystyrene layer. The insulation 

thickness was changed independently for vertical walls, roof and floor in the range 0 to 20 cm, in steps 

of 1 cm 

 windows replacement with double or triple pane with either high or low solar heat gain coefficient; 

 boiler replacement with either a modulating or condensing boiler with an outside temperature reset 

control; 

 mechanical ventilation system installation with a cross flow heat recovery system. 

 

The total ESM combinations are 277830 for semi-detached house while they decrease to 13230 and 630 

respectively for penthouse and intermediate flat due to the adjacency to other conditioned flats. 
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The optimal building refurbishment is evaluated by optimizing the energy and cost savings following the cost-

optimal approach. The first optimization objective is the reduction of the primary energy for heating (EPH). 

Moreover, the minimization of the total cost of the building is pursued. For this reason, the total cost of the building 

over a 30-year lifespan is quantified through the net present value (NPV) indicator. The initial cost derived from 

regional price lists (Penna et al. 2015b) is considered for all the ESM as well as the annual energy cost, the 

maintenance cost, the replacement cost and the residual value for the pieces of equipment with longer lifespan. 

The simulations are carried out in Trnsys simulation suite considering the weather data of Milan, a city having a 

4A climate according to Ashrae 90.1 classification.  

 

3. RESULTS AND DISCUSSION 
 

This study verifies the suitability of the EGO algorithm in speeding up the identification of the Pareto front in a 

multi-objective optimization problem adopted in the building refurbishment design. In the following sections, two 

aspects are investigated. Firstly, the research analyzes the EGO capability to filter out the variable domain regions 

with no eligible Pareto solutions (section 3.1). Secondly, we focuses on the EGO performance in identifying a 

good approximation of the true Pareto front (section 3.2).  

 

3.1 Expensive simulation runs  
The first comparison between EGO and GA evaluates the number of expensive simulations necessary to achieve 

the convergence criterion when the two algorithms use the same number of individuals in the initial population. 

For this reason, the optimizations of the different test cases were repeated using an initial population of 128 and 

256 individuals. The graphs in Figure 3 show the results for the semi-detached house. In particular, the analyzed 

solutions are represented simultaneously in the graph together with the non-dominated solutions (i.e. the red 

points). 

 
a) GA with an initial population of 128 individuals 

 
b) GA with an initial population of 256 individuals 

 
c) EGO with an initial population of 128 individuals 

 
d) EGO with an initial population of 256 individuals 

 

Figure 3: Results of expensive simulations runs for the semi-detached house 
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The number of expensive simulations required to achieve the convergence is the first result. There is a high number 

of BPS runs when GA is used for both the initial population sizes. The BPS run reduction with the EGO algorithm 

reaches about 22% and 57% respectively for the cases with a population size of 128 and 256 individuals. This 

shows the ability of the meta-model to guide the algorithm towards the more promising areas of the variable space 

from the point of view of the two-optimization goals. This is even more evident by looking at the simulated points 

in the graphs. Figures 3a and 3b show a greater concentration of points far from the Pareto front. These points 

therefore represent unnecessary BPS that slow down the optimization process. The EGO algorithm is however 

required to simulate a certain number of configurations throughout the variable domain in order to reduce the 

deviation between the surrogate model previsions and the BPS outcomes. 

The expensive simulation runs carried out after the BPS performed for the initial population are plotted in Figure 

4 for the semi-detached house. The graphs show the efficiency of the algorithm in filtering non-promising 

solutions, since after the initial populations, all the BPS provide solutions that are close to the Pareto Fronts. The 

BPS number is obviously reduced, but above all the simulated configurations are very close to the Pareto front. 

This therefore demonstrates the ability of the RBFN model to identify potentially optimal configurations. 

Another interesting result in Figure 3 concerns the identified Pareto fronts. The GA identifies solutions that are 

dominated by the EGO optimal solutions, despite the greater number of expensive simulations performed to 

achieve convergence. This is especially evident for both the population sizes in the region with EPH lower than 

25 kWh m-2 yr-1. This result seems to indicate therefore a better convergence of the solution obtained with EGO.  

However, some metrics were used in order to better quantify the performance of the two algorithms. 

 
a) EGO with an initial population of 128 individuals 

 
b) EGO with an initial population of 256 individuals 

 

Figure 4: BPS runs for the semi-detached house after the simulations of the initial population  

 

3.2 Performance comparison 

The algorithm performance are quantified by means of three metrics evaluating the efficiency, the efficacy and 

the solution quality. The efficiency index is meant to measure the resource level used by the algorithm whereas 

the efficacy is a measure of the distance between the predicted Pareto front and the true Pareto solution given by 

the brute force approach. Finally, a uniform Pareto front in the objective space is preferable since it provides 

decision maker with the maximum information about the possible alternative solutions, which is a measure of the 

quality. The efficiency is computed through the NE index, which is the ratio of expensive BPS runs over the brute 

force number of ESM combinations. This metric provides the same information of the CPU time but it is more 

objective since it is not affected by the quality of the Matlab codes, nor by the configuration of the hardware. The 

efficacy of the optimization algorithm is evaluated by means of the Generational Distance (GD) firstly proposed 

by Van Veldhuizen and Lamont (1998). This index quantifies the Euclidean distance between the algorithm front 

and the true Pareto, using the cost functions as space coordinates. Finally, the solution quality is quantified through 

the spacing index (Sp) introduced by Schott (1995). Sp assesses how evenly the members of the Pareto front are 

distributed and it approaches zero when the solutions are equidistant in the objective space. 

The objectives normalized with respect to the initial case (i.e. the initial building configuration) allowed to avoid 

the different magnitude of the indices affects the metric calculations. The optimization runs were repeated with 

different population sizes in order to compare the performances and to broaden the results validity. Seven 

population levels were used in the GA, starting from an initial population of 128 individuals doubled each time 

up to 8192 individuals, or stopping earlier at the ESM combination number. On the other hand, seven levels were 

investigated for the EGO, starting from 32 and reaching 2048 individuals, always doubling the population for 

each optimization runs. The results are therefore a series of three-dimensional metrics, for each of the two 

investigated algorithms, which have been represented in two-dimensional planes for simplicity (Figure 5 and 6).  
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a) intermediate flat in an apartment building 

 
b) penthouse 

 
c) semi-detached house 

Figure 5: Efficiency vs efficacy metrics for the GA and EGO algorithms 

 

Figure 5 highlights the trend of the efficacy metric (GD) as a function of the efficiency (NE), for the three test 

cases. Note that in Figure 5a the metric pairs lie on the same curve both for the EGO and the GA algorithms. 

Hence, the EGO does not produce any benefit, but essentially leads to obtain the same performance of the GA. 

This result is strictly connected to the simplicity of the optimization problem (only 630 possible combinations). 

Indeed, the EGO points are always below the curve of the NSGA-II in the other test cases (Figure 5b and 5c). This 

therefore indicates the EGO algorithm has a smaller distance from the real front when the two algorithms have 

the same efficiency metric. At the same time, consequently, identical efficacy GD can be reached with a smaller 

number of expensive simulation runs with respect to the GA algorithm. 

Figure 6 shows, in a similar way, the trend of the metric inherent the diversity of the solutions (Sp) with respect 

to the number of expensive simulation runs. Again, there are no improvements in the use of the EGO algorithm 

for the case of the intermediate floor in an apartment building (Figure 6a). In this test case, the EGO procedure 

obtains solutions with a lower quality index if compared to the GA front, even if the EGO produces a considerable 

reduction in the number of simulations performed. For the other two buildings, we firstly note a less regular 

distribution of the points also for the GA algorithm. The Sp of the Pareto fronts have a dependence on the number 

of simulations performed even if it is not easily identifiable.  

The EGO algorithm is characterized by lower Sp with respect to the GA configurations with similar NE, in 

penthouse and semi-detached houses. Therefore, the Pareto fronts obtained by the EGO have solutions that are 

more equidistant in the optimization targets. For this reason, this algorithm provides a better information about 

the possible optimal solutions to the decision maker. 
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a) intermediate flat in an apartment building 

 
b) penthouse 

 
c) semi-detached house 

 

Figure 6: Efficiency vs quality metrics for the GA and EGO algorithms 

 

 

4. CONCLUSIONS 

 

In this work, a new efficient global optimization algorithm was developed for the optimization of the 

refurbishment of three existing buildings. The results confirm the capability of a RBFN surrogate model in guiding 

the optimization algorithm through variable space with eligible optimal solutions avoiding the simulation of non-

optimal configurations.  

The EGO algorithm is effective in guiding the optimization process to simulate the combinations of energy saving 

measures able to effectively produce optimal objectives. This clearly emerges when the optimization objectives, 

evaluated after the initial population, are investigated. The greater number of BES simulation in this region allows 

also to improve the convergence of the meta-model to the BES outcomes for solutions close to the Pareto front. 

Nonetheless, the initial population plays a key role in the EGO algorithm since it has to cover as much as possible 

the space of the optimization variables in order to guarantee a greater proximity of the meta-model to the BES 

outcomes for all the possible variable combinations.  

Additionally, the use of surrogate models can significantly speed up the optimization process leading to good 

results in terms of convergence to the true Pareto front with a limited number of evaluations of expensive cost 

functions. The analysis of the metrics shows how, for more complex optimization problems, the EGO algorithm 

is able to improve the effectiveness and the quality of the front obtained with respect to the NSGA-II optimization. 

This means that, having set the convergence and quality thresholds of the optimization solution that will depend 

on the application, they can be reached through fewer expensive simulations, and therefore with a reduced 

computational cost. 

For simple optimization problems, however, the EGO algorithm does not produce any advantage but substantially 

offers the same performance as the NSGA-II algorithm. Nonetheless, it should be emphasized that in simple 
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optimization problems the meta-model fitting procedure could lead to an increase in the computational cost of the 

whole process and, hence, it can produce an increase in computational time compared to the direct use of BPS in 

the NSGA−II. 
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