
Purdue University
Purdue e-Pubs
International High Performance Buildings
Conference School of Mechanical Engineering

July 2018

Classification of European Climates for Building
Energy Simulation Analyses
Giovanni Pernigotto
Free University of Bozen-Bolzano, Italy, giovanni.pernigotto@unibz.it

Andrea Gasparella
Free University of Bozen-Bolzano, Italy, andrea.gasparella@unibz.it

Follow this and additional works at: https://docs.lib.purdue.edu/ihpbc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Pernigotto, Giovanni and Gasparella, Andrea, "Classification of European Climates for Building Energy Simulation Analyses" (2018).
International High Performance Buildings Conference. Paper 300.
https://docs.lib.purdue.edu/ihpbc/300

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fihpbc%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ihpbc?utm_source=docs.lib.purdue.edu%2Fihpbc%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ihpbc?utm_source=docs.lib.purdue.edu%2Fihpbc%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Fihpbc%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ihpbc?utm_source=docs.lib.purdue.edu%2Fihpbc%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 

3516, Page 1 
 

5th International High Performance Buildings Conference at Purdue, July 9-12, 2018 

      
 

 
Classification of European Climates for Building Energy Simulation Analyses 

 

Giovanni PERNIGOTTO1*, Andrea GASPARELLA2 

 
1Free University of Bozen-Bolzano, Faculty of Science and Technology, 

Bolzano, Italy 

Phone: +39 0471017632, Fax: +39 0471017009, E-mail: giovanni.pernigotto@unibz.it 

 
2 Free University of Bozen-Bolzano, Faculty of Science and Technology, 

Bolzano, Italy 

Phone: +39 0471017200, Fax: +39 0471017009, E-mail: andrea.gasparella@unibz.it 

 

* Corresponding Author 

 

 

 

ABSTRACT 
 

Several studies couple simulations of building systems and statistical techniques in order to draw conclusions easy 

to generalize under given constraints. To this extent, one of the most important input is dealing with climatic 

conditions: indeed, the weather data and the localities chosen for the analysis can seriously affect the 

representativeness of the simulation outcomes with respect to other regions. The first question to be answered 

regards the domain to which one or few reference climates should be representative, which can be related to thermal 

energy, ventilation, comfort analysis. As a common practice, national guidelines, heating and cooling degree-days 

scales and worldwide recognized climatic classifications are adopted. However, in some cases, these kinds of 

categorization are suitable only for specific applications. For example, the well-known and used Köppen-Geiger 

classification is based on annual or seasonal air temperatures and cumulative precipitation and highlights mainly the 

relationship between climate and vegetation. Consequently, while this classification can be very effective to 

distinguish ecological systems, it is expected to be not always suitable for building energy analysis. Similar 

considerations apply to ANSI/ASHRAE 90.1 and 90.2 classification. 

This work proposes a critical discussion of the main climate classification system adopted in Europe and presents a 

new classification of 66 European climates, based on clustering analysis. The aim is to identify a limited number of 

climatic zones and, for each one, a reference climate to be used for energy simulations. To this purpose, the hourly 

weather data of dry bulb temperature, relative humidity and global horizontal irradiation reported in typical and 

reference years have been considered. The clustering analysis has been performed according to a simplified 

approach based on the calculated monthly averages of the weather variables and the Kolmogorov-Smirnov non-

parametric test has been used to select the most representative city for each cluster. The obtained climatic classes 

have been compared to Köppen-Geiger traditional ones, underlining the main changes and the impact for building 

energy simulation analyses. 

 

1. INTRODUCTION 
 

One of the most interesting aspects of building energy simulation is the possibility to explore several scenarios to 

define energy strategies and energy policies to apply not only to a given case-study but to entire building categories 

or to the building stock of a given territory. If that is the purpose, the representativeness of the studied configurations 

and of the boundary conditions is essential in order to achieve meaningful and applicable findings. Among the 

aspects to consider, on one hand are the buildings’ features and, on the other hand, the boundary conditions, both 

internal, such as the occupancy and the typicality of the building use, and external ones like the climate. When it 

comes to assess the efficacy of a new potential energy policy for an administrative region, a country or a group of 

mailto:giovanni.pernigotto@unibz.it
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them, it is clearly unfeasible to simulate every climate and it is necessary to identify those, which can be picked as 

representative for some climatic zones. 

There are many approaches to define climatic zones. The most popular worldwide is that developed by W. Köppen 

and R. Geiger. Köppen published his original climatic classification in 1884 (Köppen, 1884) and made several 

upgrades until the 40s (e.g., Köppen and Geiger, 1936). Later, Geiger modified furtherly the Köppen classification 

in the 50s and 60s (Geiger, 1954 and 1961), leading to the current Köppen-Geiger system (Peel et al., 2007). Other 

authors proposed some changes to the classification system, such as G.T. Trewartha in the 60s (Trewartha, 1968) 

and the 80s (Trewartha and Horn, 1980). The Köppen-Geiger system (level 1) divides the world into 5 main groups 

of climates - A (tropical), B (dry), C (temperate), D (continental), and E (polar), which are furtherly subdivided 

(level 2) according to seasonal precipitations and (level 3) average monthly or seasonal temperature (Table 1). As it 

can be noticed, the classification is based on: 

• the dry bulb temperatures (DBT) of the coldest month of the year (cold), the hottest month of the year (hot) 

or annual average (avg); 

• the precipitations (P) of the driest month of the year (dry), the driest month of the summer season (sdry), 

the driest month of the winter season (wdry), the wettest month of the summer season (swet), the wettest 

month of the winter season (wwet) or annual average (avg); 

• the number of months with average DBT larger than 10 °C (nDBT>10). 

 

Table 1: Criteria for the Köppen-Geiger system. In yellow, the main Köppen-Geiger zones found in Europe. 

 

Level 1 Level 2 Level 3 Criteria 

A (Tropical)   DBTcold ≥ 18 °C  

 f (rainforest)  Pdry ≥ 60 mm 

 m (monsoon)  Pdry ≥ 100 – Pavg/25 mm & Not (Af) 

 w (savannah)  Pdry < 100 – Pavg/25 mm & Not (Af) 

B (arid)   Pavg < 10∙Pthreshold
* 

 W (desert)  Pavg < 5∙Pthreshold
* 

 S (steppe)  Pavg ≥ 5∙Pthreshold
* 

  h (hot) DBTavg ≥ 18 °C 

  k (cold) DBTavg < 18 °C 

C (Temperate)   DBThot < 18 °C & 0 °C < DBTcold < 18 °C 

 s (dry summer)  Psdry < 40 mm & Psdry < Pwwet/3 

 w (dry winter)  Pwdry < Pswet/10 

 f (without dry season)  Not (Cs) or (Cw) 

  a (hot summer) DBThot ≥ 22 °C 

  b (warm summer) Not (a) & nDBT>10 ≥ 4 months 

  c (cold summer) Not (a or b) & 0 < nDBT>10 < 4 months 

D (Cold)   DBThot > 10 °C & DBTcold ≤ 0 °C 

 s (dry summer)  Psdry < 40 mm & Psdry < Pwwet/3 mm 

 w (dry winter)  Pwdry < Pswet/10 mm 

 f (without dry season)  Not (Ds) or (Dw) 

  a (hot summer) DBThot ≥ 22 °C 

  b (warm summer) Not (a) & nDBT>10 ≥ 4 months 

  c (cold summer) Not (a, b or d) & 0 < nDBT>10 < 4 months 

  d (very cold winter) Not (a or b) & DBTcold < –38 °C 

E (Polar)   DBThot < 10 °C 

 T (Tundra)  DBThot > 0 °C 

 F (Frost)  DBThot ≤ 0 °C 

*Pthreshold: 

• if 70 % Pavg occurs in winter  → Pthreshold = 2∙DBTavg; 

• if 70% Pavg occurs in summer → Pthreshold = 2∙DBTavg +28; 

• otherwise    → Pthreshold = 2∙DBTavg +14. 
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As it can be observed, besides the dry bulb temperature, there are no other weather variables commonly adopted in 

building energy simulation as inputs. For example, global solar irradiation on the horizontal plane is not accounted 

for, nor wind speed and direction. While the latter are strongly affected by local specific configurations and are 

sometimes neglected also in typical weather data (Pernigotto et al., 2014), the opposite is true of solar irradiation. As 

regards the air humidity, it is indirectly and partially accounted for by the precipitation, which corresponds to a 

saturation condition. Indeed, Köppen-Geiger classification focuses on ecological systems and gives no or limited 

relevance to those quantities which are important for building energy analysis. This aspect has been further stressed 

in later modifications to the Köppen-Geiger system, which paid more attention to vegetation and genetic 

characteristics of the different climatic zones, as seen for example in the Trewartha system. 

 

For this reason, when prescribing some constraints for enhancing building energy efficiency in buildings, 

government bodies and/or authorities use to follow slightly different classifications of climates. Analyzing the 

literature, climate classification and study is a topic of interest in countries since it represents the first step for the 

definition of national energy policies for buildings. Recent examples involve China (Lau et al., 2007; Wan et al., 

2010), Egypt (Mahmoud, 2011), Saudi Arabia (Alrashed and Asif, 2015), Thailand (Khedari et al., 2002).  

As reported by Walsh et al. (2017), around 70 % of the world land surface and world population are subject to 

climate zoning for building energy efficiency programs. Nevertheless, there is no general consensus about the 

approach to adopt. In Italy, for example, the Decree of President of the Italian Republic n. 412/1993 has defined 6 

climatic zones according to the heating degree days calculated considering a base temperature of 20 °C. In the U.S., 

a modified Köppen-Geiger system was adopted by ASHRAE (ANSI/ASHRAE 90.1 and 90.2; Briggs et al., 2003) 

identifying 8 classes using heating and cooling degree-days with base temperatures of 18 °C (HDD18) and 10 °C 

(CDD10) respectively, furtherly subdivided according 3 humidity classes defined in agreement with the Köppen-

Geiger system (A: humid, B: dry; C: marine). Details about this last classification are reported in Table 2. 

 

Table 2: ASHRAE climatic zones. 

 

Names Description Criteria 

Climatic Zones 1A and 1B  Very Hot – Humid*1 (1A) or Dry*2 (1B) CDD10 ≤ 5000 K d 

Climatic Zones 2A and 2B Hot – Humid (2A) or Dry (2B) 3500 K d < CDD10 ≤ 5000 K d 

Climatic Zones 3A and 3B Warm – Humid (3A) or Dry (3B) 2500 K d < CDD10 ≤ 3500 K d 

Climatic Zone 3C Warm – Marine*3 (3C) CDD10 ≤ 2500 K d &  

HDD18 ≤ 2000 K d 

Climatic Zones 4A and 4B Mixed – Humid (4A) or Dry (4B) CDD10 ≤ 2500 K d &  

HDD18 ≤ 3000 K d 

Climatic Zone 4C Mixed – Marine (4C) 2000 K d < HDD18 ≤ 3000 K d 

Climatic Zones 5A, 5B and 5C Cool – Humid (5A), Dry (5B) or Marine (5C) 3000 K d < HDD18 ≤ 4000 K d 

Climatic Zone 6A and 6B Cold – Humid (6A) or Dry (6B) 4000 K d < HDD18 ≤ 5000 K d 

Climatic Zone 7 Very Cold 5000 K d < HDD18 ≤ 7000 K d 

Climatic Zone 8 Subartic HDD18 > 7000 K d 

*1 Humid (A): not dry or marine. 

*2 Dry (B): not marine & Pavg < 20 ∙ (DBTavg + 7) mm. 

*3 Marine (C):  

• -3 °C < DBTcold < 18 °C; 

• DBThot < 22 °C; 

• nDBT>10 ≥ 4 months; 

• Psdry < Pwwet/3 mm 

 

In this work, a preliminary analysis is conducted for 66 European locations, already considered in a previous work 

about efficient control strategies for mechanical ventilation systems (Tafelmeier et al., 2017). Starting from the 

hourly weather data of dry bulb temperature, relative humidity and global horizontal irradiation reported in typical 

and reference years, monthly and annual statistics are calculated and used in clustering analysis to build a few 

homogeneous groups. Then, the monthly statistics of each group are tested with the Kolmogorov-Smirnov non-

parametric test to select the most representative city for each climatic zone. 
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2. METHODS 
 

In the following sections the considered dataset of European climates is described, followed by the approach 

adopted for the analysis of European Köppen-Geiger climate zones and by the methodology implemented to cluster 

the climates and select the representative ones. 

 

2.1 European climates 
As it can be seen from the map of the European climates according to the Köppen-Geiger system (Figure 1) and is 

also highlighted in Table 1, the main European climatic zones are, from the coldest to the warmest one: 

• Dfc - Cold climate without dry season and with cold summer: in Iceland, in most of Scandinavia, along the 

coast of the White Sea, in some mountains regions; 

• Dfb - Cold climate without dry season and with warm summer: in Denmark and southern Sweden, in 

eastern Europe and in part of the Alpine region; 

• Cfb - Temperate climate without dry season and with warm summer: in western Europe, in particular in the 

British islands, in France, in the western German territory, in northern Spain; 

• Csa - Temperate climate with dry and hot summer: along the Mediterranean coast, in particular in southern 

Spain, in large part of Italy, Greece and Turkey; 

Moreover, in the four Mediterranean peninsulas (Iberia, Italy, Balkans and Anatolia), several sub-classes can be 

identified, such as: 

• BSk - Arid cold steppe climate: in centre and eastern Spain; 

• Csb - Temperate climate with dry and warm summer: in northwestern Spain and part of southern France; 

• Cfa - Temperate climate without dry season and with hot summer: in the Po Valley and in the coast of the 

Adriatic Sea in Italy; 

• Dsb – Cold climate with dry and warm summer: in some regions of Greece and Turkey. 

Finally, ET climate can be found in some mountain regions. 

66 climates have been selected from those available in the EnergyPlus website (https://energyplus.net/weather) and 

considered in this analysis. Their Köppen-Geiger classes are reported in Table 3. 

 

 
 

Figure 1: European climates according to the Köppen-Geiger system. Map prepared by the Authors with QGIS v. 

2.16.2 based on the Köppen-Geiger GIS climate map by NASA ORNL DAAC. 

https://energyplus.net/weather
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Table 3. Selected climates. 

N City Country 
Köppen-

Geiger Class 
N City Country 

Köppen-

Geiger Class 
1 Aberdeen U.K. Cfb 34 London U.K. Cfb 

2 Amsterdam The Netherlands Cfb 35 Madrid Spain BSk 

3 Andravida Greece Csa 36 Marseille France Csa 

4 Ankara Turkey Dsb 37 Messina Italy Csa 

5 Arkhangelsk Russia Dfc 38 Milan Italy Cfa 

6 Athens Greece Csa 39 Minsk Belarus Dfb 

7 Barcelona Spain Csa 40 Montpellier France Csa 

8 Bari Italy Csa 41 Moscow Russia Dfb 

9 Belgrade Serbia Dfa 42 Munich Germany Dfb 

10 Bergen Norway Cfb 43 Nantes France Cfb 

11 Berlin Germany Cfb 44 Odessa Ukraine Dfa 

12 Bilbao Spain Cfb 45 Oslo Norway Dfb 

13 Birmingham U.K. Cfb 46 Ostersund Sweden Dfc 

14 Bologna Italy Cfa 47 Ostrava Czech Rep. Dfb 

15 Bordeaux France Cfb 48 Paris France Cfb 

16 Bucharest Romania Dfa 49 Pescara Italy Cfa 

17 Clermont-Ferrand France Cfb 50 Porto Portugal Csb 

18 Copenhagen Denmark Cfb 51 Poznan Poland Dfb 

19 Faro Portugal Csa 52 Prague Czech Rep. Dfb 

20 Finningley U.K. Cfb 53 Reykjavik Iceland Dfc 

21 Frankfurt Germany Cfb 54 Rome Italy Csa 

22 Goteborg Sweden Dfb 55 Saint Petersburg Russia Dfb 

23 Granada Spain Csa 56 Sevilla Spain Csa 

24 Hamburg Germany Cfb 57 Sofia Bulgaria Dfb 

25 Helsinki Finland Dfb 58 Stockholm Sweden Dfb 

26 Istanbul Turkey Csa 59 Strasbourg France Cfb 

27 Kiev Ukraine Dfb 60 Tampere Finland Dfc 

28 Kiruna Sweden Dfc 61 Teruel Spain BSk 

29 Krakow Poland Dfb 62 Thessaloniki Greece Csa 

30 La Coruna Spain Csb 63 Venice Italy Cfa 

31 Larnaca Cyprus Csa 64 Vienna Austria Dfb 

32 Leon Spain Csb 65 Warsaw Poland Dfb 

33 Lisbon Portugal Csa 66 Zaragoza Spain BSk 

 

2.2 Analysis of the climate dataset 
The dataset of 66 climates has been divided according to the Köppen-Geiger Class. For each climate and class, the 

monthly average values of dry bulb temperature, DBT [°C], and water vapour partial pressure, WVP [Pa], and the 

monthly integrals of global solar irradiation on the horizontal plane, GHI [kWh m-2] have been used for representing 

the variation of the climatic conditions along the year. In Figure 2, an example of the representation is reported for 

the climates belonging to class Dfb. 

This type of representation has allowed us to describe first each climate and then each climatic class with two 

parameters calculated for the three quantities: an annual average value and an annual spread. While averages and 

spreads have been used to compare the different climatic classes and underline possible overlapping, their standard 

deviations have been used to comment their homogeneity. 
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Figure 2: Dfb climates. Graph A: monthly average dry bulb temperatures (DBT) against monthly average water 

vapour partial pressures (WVP); Graph B: monthly integrals of global horizontal irradiation (GHI) against WVP; 

Graph C: GHI against DBT. The red dotted line in graph A represents the saturation conditions. 
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2.3 Development of new climatic classes and selection of representative climates 
For the development of new climatic classes from the dataset of 66 European climates, clustering techniques have 

been adopted. In particular, since this is a preliminary analysis, the hierarchical clustering with Euclidean distances 

has been selected as approach. For further developments, encompassing much more climates, more statistically 

robust approaches will be adopted, such as k-means and k-medoids clustering methods. Considering the review by 

Walsh et al. (2017) about climatic classification systems, it has been chosen to give priority to the annual averages 

and, among them, larger attention has been paid to the dry bulb temperature. Moreover, Spearman correlation tests 

have been performed for all annual parameters considering the whole dataset and the results have been taken into 

account for the definition of the new classification. Even though major relevance has been given to annual averages, 

homogeneity of spreads has been evaluated and discussed as well. 

As concerns the selection of the representative climates for each climatic zone, Kolmogorov-Smirnov tests have 

been performed. For each new climatic class and each parameter, the monthly values have been used for the 

calculation of an annual mean profile, which has been taken as reference for Kolmogorov-Smirnov tests. Similarly 

to the approach used for the definition of a typical year according to EN ISO 15927-4 (CEN, 2005; Pernigotto et al. 

2014), representativeness of each city for DBT, WVP and GHI has been assessed separately and, for each, a partial 

ranking has been prepared. Finally, a global ranking has been developed for each climatic zone and a representative 

city identified. 

 

3. RESULTS AND DISCUSSION 
 

3.1 Analysis of the climate dataset 
As regards the annual averages (Table 4), it can be seen that the minimum values are registered in Dfc class and the 

maximum ones in Csa, as expected. Nevertheless, BSk, Cfa and Csb have very similar DBT averages, as well as Cfb 

and Dfa. The same can be observed for WVP (in BSk, Cfb and Dfa) and for GHI (respectively for BSk and Csa and 

for Cfb and Dfb). Analyzing the spread, a larger variability is found. Csb has the smallest spreads for DBT (11.7 °C) 

and for WVP (670 Pa), which are less than half of those observed for Dfa (23.3 °C) and Cfa (1398 Pa), respectively. 

The spread of GHI is quite homogeneous in all the different classes, ranging from 140 to 175 kWh m-2. 

Looking at Table 5, it can be noted that Dfa is the most homogenous class, while for the others high values of 

standard deviations can be observed. In particular, considering the annual averages, standard deviations are often 

larger than 1 °C for DBT and 10 % for WVP while better homogeneity is registered for GHI. Comparing the 

standard deviations of averages and spreads, the latter can be seen as affected by larger variability within classes. 

 

Table 4. Annual averages and spreads for the Köppen-Geiger Classes of the dataset of European climates. 

In red the maximum values and in blue the minimum ones. 

 Quantity BSk Cfa Cfb Csa Csb Dfa Dfb Dfc 

Annual 

Average 

DBT [°C] 13.5 13 10.2 16.4 13.1 10.7 7.4 2.4 

WVP [Pa] 941 1229 1005 1337 1130 1053 863 638 

GHI [kWh m-2] 131 100 86 133 122 110 84 69 

Annual 

Spread 

DBT [°C] 18.5 21.4 14.8 16.3 11.7 23.3 21.1 21.6 

WVP [Pa] 730 1398 866 1141 670 1278 1057 889 

GHI [kWh m-2] 173 162 143 170 162 164 150 157 

 

Table 5. Standard deviations of annual averages and spreads for the Köppen-Geiger Classes of the dataset 

of European climates. In red the maximum values and in blue the minimum ones. 

 Quantity BSk Cfa Cfb Csa Csb Dfa Dfb Dfc 

Annual 

Average 

DBT [°C] 1.7 1 1.8 1.6 2 0.7 1.5 2.3 

WVP [%] 11.9 6.9 10.3 13.1 23.9 4.9 7.7 13.8 

GHI [%] 2.7 5.7 12.7 10.6 9.1 6.8 8.8 8.7 

Annual 

Spread 

DBT [°C] 1.3 2.8 2.5 2.2 4.2 1.4 2.2 6.3 

WVP [%] 10.9 10 17.9 28.8 24.8 7.5 9.9 23.3 

GHI [%] 6.3 8.7 7.4  4.9 7.4 3.2 6.7 7.1 
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3.2 Definition of the new climatic classification 
The hierarchical clustering for DBT, WVP and GHI identified about 5 major groups of climates. The only exception 

is the clustering according to DBT, in which the boreal climate of Kiruna (city 28, in Sweden) has been isolated 

from the rest of the climates. The dendrogram for DBT is showed in Figure 3 as an example. In order to represent in 

a more straightforward way the climatic zones, they are highlighted in Figures 4-6 on a map. As observed in the 

dendrograms and in the maps, there is quite an overlapping between the zones obtained with the three hierarchical 

clusterings. Considering the DBT classification, we can distinguish, besides (1) Kiruna climate, (2) the cold 

Scandinavian, Russian and Icelandic climates, (3) the eastern European climates and those of the countries wetted 

by the North and the Baltic Seas, (4) the western European climates and the continental Balkans, (5) the warm 

Mediterranean and Atlantic climates and (6) the hot Mediterranean climates. WVP classification is very similar to 

the DBT one. However, some dry Iberic and Anatolian climates are isolated from the surrounding regions. 

Eventually, the last classification according to GHI is generally correlated with the latitude, with some exceptions 

due to specific meteorological phenomena (e.g., Sofia and Bilbao). 

The closeness among the classifications generated with the three annual average quantities has been detected also by 

means of Spearman correlation tests. Spearman ρ resulted equal to 0.91 between DBT and WVP, 0.89 between DBT 

and GHI and 0.73 between GHI and WVP. Since ρ is larger than 0.7 for all pairs, the correlations are considered 

strong: as a consequence, if the annual averages are employed for clustering only one out of those three is sufficient. 

On the contrary, the same test applied to the spread highlights a certain level of independence of GHI with respect to 

the other quantities (ρ equal to 0.43 between DBT and WVP; 0.23 between GHI and DBT; and 0.16 between GHI 

and WVP). 

  
Figure 3: Dendrogram for DBT hierarchical clustering. The meaning of the city numbers is indicated in Table 3. 

 

Figure 4: Climatic classification according to DBT (Class 1: black; Class 2: dark blue; Class 3: light blue; Class 4: 

green; Class 5: yellow; Class 6: red). 
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Figure 5: Climatic classification according to WVP (Class 1: black; Class 2: dark blue; Class 3: light blue; Class 4: 

green; Class 5: yellow). 

 
Figure 6: Climatic classification according to GHI (Class 1: black; Class 2: dark blue; Class 3: light blue; Class 4: 

green; Class 5: yellow). 

 

If compared to the Köppen-Geiger system, the maps present several similitudes, especially the one in Figure 4. 

Nevertheless, they are simpler and with a lower number of sub-classes for southern Europe. Considering all above, 

the clustering according to DBT is selected for further investigations. 

3.2.1 Homogeneity of the new classes: Analyzing the annual averages and spreads for the new classes (Figure 7, 

top), it can be concluded that the differences among the new classes are stronger while the spread is more 

homogeneous also for DBT and WVP. As shown in Figure 7 (bottom), standard deviations for averages are reduced 

for DBT and WVP while they have been worsened for GHI. As regards standard deviations for spreads, they 

improved for DBT, stayed almost the same as for the Köppen-Geiger system for GHI but they worsened for WVP. 
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Figure 7: Annual values (top) and standard deviations (bottom) for DBT, WVP and GHI. In blue the Köppen-Geiger 

classes and in orange the new ones. 

 

3.2.2 Sub-clustering: Due to the worsening of homogeneity in terms of GHI parameters for classes 3, 4 and 5, 

considering their sizes, it has been decided to operate a sub-clustering according to GHI in the perspective of 

generating more homogeneous groups for the selection of representative cities. For class 3, the cities of Kiev, 

Ukraine, and Munich, Germany, have been identified as outliers and, consequently, discarded from Kolmogorov-

Smirnov tests. In class 4, the northernmost localities have been separated from the southernmost ones (e.g., Ankara 

in Turkey, Belgrade in Serbia, Bucharest in Romania, Leon and Teruel in Spain, Milan in Italy). Because of its 

lower solar irradiation, as highlighted also in Figure 6, Sofia has been aggregated to the northernmost localities. 

Finally, in class 5 the sub-clustering brought to separate the Atlantic cities on the Bay of Biscay and the Adriatic 

regions from the rest of the group. Furthermore, Grenada, Spain, has been highlighted as outlier with respect to class 

5, having a GHI closer to that typical of class 6. 

The updated map with the new climatic sub-classes has been depicted in Figure 8. As a whole, after GHI sub-

clustering, standard deviations have generally been reduced, even if for some classes with a limited number of cities, 

the standard deviation of WVP is still large. 

 

3.3 Selection of representative cities 
None of the Kolmogorov-Smirnov tests resulted statistically significant, confirming that the classification has been 

able to generate groups with homogeneous annual profiles of DBT, WVP and GHI. The most representative cities 

are: 

• Class 2: Ostersund (Sweden, Dfc); 

• Class 3: Prague, Ostrava (Czech Republic) or Poznan (Poland), all of them geographically close and 

characterized by very similar climates (Dfb); 

• Class 4a: Strasbourg (France, Cfb); 

• Class 4b: Belgrade (Serbia) or Bucharest (Romania), both belonging to class Dfa and representative of Balkans 

climates. Nevertheless, the number of localities in class 4b is very low and those are quite different each other. 

For analyses in the Italian and Spanish zones in class 4b (Cfa and Cfb according to Köppen-Geiger), the use of 

these cities is not recommended; 

• Class 5a: Marseille (France, Csa); 

• Class 5b: Pescara (Italy, Cfa). The same consideration drawn for class 4b applies also to class 5b: for specific 

analyses on the Bay of Biscay, the adoption of this city as reference is discouraged; 

• Class 6: Sevilla (Spain), Messina (Italy) or Larnaca (Cyprus), all of them in Köppen-Geiger class Csa. 
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Figure 8: Climatic classification with sub-classes and with representative cities (Class 1: black; Class 2: dark blue; 

Class 3: light blue; Class 4: green; Class 5: yellow). 

 

6. CONCLUSIONS 
 

In this preliminary work, we analyzed the European climates with the aim of identifying those cities which can be 

taken as representative in order to allow for robust generalization of building energy simulation findings. To achieve 

this goal, we discussed the applicability of the most popular climate classification worldwide, the Köppen-Geiger 

system, which was developed starting from dry bulb temperature and precipitation data and has mainly an ecological 

perspective. To discuss the topic, a set of 66 European climates were considered and analyzed, both in terms of 

annual averages and spread among the monthly mean or integral values of dry bulb temperature, water vapour 

partial pressure and global horizontal irradiation. By means of hierarchical clustering and considered the cross-

correlation among climatic parameters, a new classification has been developed based on dry bulb temperature as 

primary variable and global horizontal irradiation as secondary one. The proposed climatic classes resulted similar 

to those by Köppen-Geiger but simpler, lower in number, and more homogeneous, facilitating the selection of 

representative cities through Kolmogorov-Smirnov tests on monthly values. 

Further developments are expected to include more climates as inputs, in order to assess more in details the critical 

aspects identified for sub-classes 4 and 5. Moreover, weekly instead of monthly values, will be considered for the 

selection of representative months. 
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