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ABSTRACT 
 
This paper focuses on experimental evaluation and verification of model free extremum seeking control, a real-time 

gradient descent optimization tool. There have been several publications illustrating the effectiveness of extremum 
seeking control applied to a variety of heating, ventilation, and air conditioning plants in simulation and on mini -
split ductless air conditioning system test beds. However, possibly due to inaccessibility o f commercially 
operational chiller plants for experimentation, an evaluation of extremum seeking has not been documented for a 
large scale in-service building chiller plant. In this paper, a single input extremum seeking control approach is 
applied to a 2200RT commercial building chiller plant at Chinatown Point mall in Singapore. The extremum seeking 

control algorithm selects a set point for the condenser water pump flow rate in order to find the value that minimizes 
the chiller plant's energy consumption. Evaluation experiments took place over a testing period lasting 5 week days 
and cycling through morning, daytime, evening, and night modes of operation. Results show that extremum seeking 
achieves as much as a 1.5% efficiency increase in comparison to a constant-input approach tuned by an expert 
chiller plant automation engineer; performance improvement is greatest in the off nominal mode where 3 chillers are 
running than in the nominal mode where 4 chillers are running. 

 

1. INTRODUCTION 
 
It is widely cited that chiller plants constitute a significant fraction of operational cost for large commercial 
buildings due to electrical energy expenditure and maintenance (Wang and Ma 2007). Minimizing these costs is 
accomplished through a combination of selection of efficient and properly sized equipment, monitoring and fault 
detection, and supervisory control; this paper focuses on supervisory control independent from the other aspects of 
chiller plant design and operation. 

 
One of the challenges to improving the plant supervisory control is determining whether the scheme can account for 
changes to the optimal settings that happen over a chiller’s normal life span and during off nominal operation. 
Because the life cycles of large commercial buildings and their HVAC systems are multiple decades long, and there 
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are typically many different pieces of equipment that coordinate to produce the desired cooling, faults and 
maintenance may lead to suboptimal performance of set points chosen in the commissioning phase.  

 
In their review of optimal supervisory control methods, the issue of a changing plant motivated (Wang and Ma 
2007) to conclude that adaptive approaches were necessary to prevent performance degradation of the supervisory 
control strategy due to plant-model mismatch. Another conclusion from the review paper was that adaptive model-
free approaches were not suitable for supervisory control due to issues with stability guarantees. However, recent 
research into the effectiveness of adaptive model free extremum seeking control applied to building chiller plants 

has suggested that in some cases model free control might not only be an effective means of supervisory control, but 
also possess some unique advantages in comparison to other approaches. The authors in (Mu et al. 2015; Mu, Li, 
House, et al. 2016a; Mu, Li, Salsbury, et al. 2016; Sane, Haugstetter, and Bortoff 2006; Tyagi, Sane, and Darbha 
2006) have all shown that extremum seeking has the ability to perform real-time optimization as some combination 
of load, temperature, and fault conditions vary. 
 

Extremum seeking control performs set point optimization via real-time gradient estimation and descent under the 
following assumptions (Tan et al. 2010): 
 
1) The plant’s frequency response dynamics are much faster than the dominant frequencies of controllable and 
uncontrollable input signals. 
2) The plant’s performance metric has a local minimum or maximum. 

 
In many studies, a sinusoidal perturbation signal oscillating in the plant’s quasi-steady state frequency range is 
applied about a nominal set point (Burns and Laughman 2012; Dochain, Perrier, and Guay 2011; Killingsworth and 
Krstić 2006; Moase, Manzie, and Brear 2010). By correlating the excitation signal with the excited plant output, a 
gradient of cost with respect to set point can be found and integrated to achieve the set point that minimizes the 
instantaneous cost of running the plant. Because extremum seeking requires no explicit plant model to perform 

optimization, its performance is robust to off-nominal conditions and slowly varying uncontrollable inputs that 
gradually change the plant’s optimal settings. Once a change in the optimum is detected through sinusoidal 
perturbation, the controller’s adaptation speed is limited by the plant dynamics (Krstić 2000). By following design 
procedures mentioned in (Burns and Laughman 2012; Li et al. 2005; Mu, Li, House, et al. 2016b), extremum 
seeking also does not seem to require significant calibration efforts for successful controller implementation. 
However, although extremum seeking has had success in experimental tests on HVAC equipment, a critical 

disadvantage of extremum seeking appears in (Burns, Laughman, and Guay 2016) and (Wang and Ma 2007), where 
authors express concern with the ability of model free control to deliver fast enough adaptation in realistic 
operational scenarios. 
 
This paper shows that despite limitations mentioned in previous works, extremum seeking control can outperform a 
manually calibrated baseline supervisory control approach on an in service large capacity chiller plant and show 

greater efficiency gains in off-nominal operation. The system under test is the 4 chiller, 2200 RT plant in operation 
at Singapore’s Chinatown Point shopping center. The chillers’ variable speed chilled water pumps, condenser water 
pumps, water chillers, and cooling tower fans allow for continuous nonlinear optimization of set points, while the 
number of chillers, pumps, and cooling towers in operation can be adjusted to find the minimum power point 
combination for a given cooling demand. To simplify the extremum seeking control problem, this paper focuses on 
applying extremum seeking control for the optimization of condenser water flow rate, while the number of pumps, 

fans, and chillers running is sequenced according to a fixed schedule; other continuous set points with greater 
savings potential could have been chosen for extremum seeking control, but the condenser water flow rate was 
determined to be less disruptive to operation than other candidate inputs. By verifying that extremum seeking 
performs well in a realistic operational scenario, this study supports prior conclusions that extremum seeking’s 
adaptability and ease of implementation can outweigh the drawbacks of its slow performance when the building 
chiller plant loads are slowly time varying. 

 
The rest of the paper is organized by the following sections: section 2 provides further details about the Chinatown 
Point chiller plant’s components, operational rules, building automation system, and operational environment; 
section 3 gives an overview of the design of experiments, the manually tuned baseline controller implementation, 
and the extremum seeking controller design and implementation; section 4 presents the results of the extremum 
seeking experiment applied to the chiller plant and uses performance regressions to show that the extremum seeking 
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controller slightly outperformed the baseline approach; finally, section 5 provides concluding remarks and 
opportunities for future work. 

 

2. BUILDING AND PLANT DESCRIPTION 
 
Singapore’s Chinatown Point is a 99,203 square feet (land area), 25-storey commercial development comprising an 
office block and a 6-storey retail podium with two basement levels. The shopping mall operates between 9AM to 
10PM daily, while the office hours are from 9AM to 6PM weekday and 9AM to 1PM on Saturdays. Figure 1 shows 
the components of Chinatown point’s chiller plant, which consists of 4 equally sized 550RT chillers, 4 chilled water 

pumps, 4 condenser water pumps, and 2 cooling towers. Figure 2 shows the weekday chiller sequencing schedule 
according to the number of chillers in operation based on the time of day due to repetitive load conditions. In 
configurations with fewer than 4 chillers in operation, the combination of chillers running is varied to prevent a 
subset of chillers from accumulating too much run time. 
 
Figure 2 shows that at around 8AM, all four chillers turn on in succession to handle an average load of almost 

1300RT produced by the office and shopping mall and stay on until 7 in the evening, an hour after the office hours 
have ended. One chiller shuts down, leaving the remaining three to handle the shopping mall average load of about 
850 RT until 9:30PM when 2 more chillers shut down in quick succession and a single chiller runs 2 hours before all 
of the chillers shut off. Table 1 gives the average run time percentage, load and ambient temperature conditions for 
each chiller calculated over the 5 day testing period considered in this paper. 
 

 
Figure 1. Illustration of Chinatown point chiller plant. 

 
Figure 2. Weekday sequencing schedule and load profile. 
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Table 1. Operating condition statistics over the testing week for the Chinatown point chiller plant. 

Chillers Running Run Time 

[%]   

Average Load 

[ ]RT   

Average 

Wetbulb [ ]C  

Standard Dev. 

Load[ ]RT  

Standard 

Dev. Wetbulb

[ ]C  

0 32.5 2.4 24.7 26.1 0.5 

1 9.1 196.7 25.1 102.3 0.4 

2 5.1 742.8 25.1 140.7 0.6 

3 11.5 857.7 25.3 70.3 0.6 

4 41.8 1280.9 25.7 53.6 0.7 

 

 

 Figure 3. Control setup of the ESC in the chiller plant. 

Comparing the mean load and wet bulb temperature with their respective standard deviations shows that there is low 
variation in operating conditions. As stated in the introduction, several studies in extremum seeking have shown that 
it can perform well when subjected to nearly constant plant disturbances, which makes Chinatown Point a 

potentially favorable plant for application. 
 
Both the extremum seeking and baseline control algorithms were programmed using Python 3.6.2 programming 
language running on an industrial PC. This industrial PC consists of an Intel Core i5-4400E together with 4GB of 
RAM with Microsoft Windows 7 operating system. Figure 3 shows the control setup schematic. The PC 
communicates with the building management system (BMS) through BACnet/IP protocol; it sends commands to the 
BMS to control the pumps’ VSDs and queries flow rate data also through this BMS. To provide enough time for the 

Python programming language and BACnet/IP protocol to send commands and query data, a sampling time of 7 
seconds is chosen to ensure a consistent/reliable sampling rate. 
 

3. CONTROL LOGIC AND DESIGN OF EXPERIMENTS 

 
Due to the chiller plant under study being in service, experimentation on the plant was limited to comparing 
extremum seeking control (ESC) and a constant input baseline control (BLC) tuned by an expert chiller plant 
automation engineer. To analyze the performance of each approach, data was collected with each control law in the 

loop and then regressions were used to relate external conditions to the total power consumed by the system. 
 

3.1 Control Strategies 
This section compares the proposed extremum seeking control approach with its constant input baseline counterpart. 
Figure 4 (a) shows that the extremum seeking control approach chooses the condenser water flow rate set point 
during long steady periods of operation with 3 or 4 chillers; with fewer than 3 chillers or up to 25 minutes after a 
change in chiller status, the condenser water flow rate is modulated to maintain a constant ratio with the cooling 

load. It is necessary to wait before engaging extremum seeking control after the number of chillers changes to 
prevent transient power consumption data from corrupting the gradient estimate. 
 
Meanwhile, the baseline control shown in Figure 4 (b) modulates the condenser water flow rate indirectly by 
keeping the number of pumps on equal to the number of chillers on and keeps the variable speed drive set point 
constant at 35 Hz. Figure 5 shows the block diagram of the classical extremum seeking algorithm used in this paper. 

ESC parameters shown in the diagram and in Table 2 were found from a 2 hour and 40 minute identification 
experiment. The report from this experiment as well as the ESC code can be found on this paper’s GitHub repository 
(Vu 2018). 
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 (a) (b) 

Figure 4. (a) Chinatown Point ESC supervisory control state diagram. (b) Baseline control logic.  

 

 
Figure 5. Discrete time implementation of the classical extremum seeking control algorithm. 

 
Table 2. Extremum seeking controller parameters. 

Parameter Description Symbol Value 

Sinusoid perturbation frequency    0.015 /rad s   

Sinusoid perturbation amplitude a   115 gpm  

Sample time sT   7 s   

High and low pass filter cutoff frequencies l h    0.0075 /rad s  

Gradient descent gain gK   227.8 /gpm kW   

 
While the ESC and baseline controllers modulate the condenser water flow rate, the cooling tower fan speed is fixed 

at its maximum value, the chilled water supply temperature set point is fixed at 7.5oC , and the chilled water pump 

speed is adjusted to maintain a constant ratio between the cooling load and the chilled water flow rate. 

 
Because the BLC uses a constant input control strategy, there is no mechanism for retuning the variable speed drive 
set point as the plant changes. By contrast, ESC allows recursive calculation of control inputs according to 

information about the cost function that is found from excitation signals. The power measurement, W , is fed to a 

discrete time high pass filter to remove the constant offset and produce a signal oscillating at   that is proportional 

to the gradient. The high pass filtered signal is correlated with the input sine wave to produce a constant signal 
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proportional to the gradient, which goes through the low pass filter with negligible attenuation. This gradient 
estimate is then scaled and integrated to perform gradient descent. The updated flow command is the sum of the 

current value stored by the integrator and the current output of the dithering sinusoidal signal. 
 

3.2 Experiment 
The baseline approach was run from Monday-Wednesday, March 5-7, 2018, while ESC was run from Thursday-
Friday, March 8-9, 2018. Data from each experiment was labeled with the following attributes: 1) number of chillers 
in operation 2) whether the plant’s steady state delay timer had expired since the last change in the status of one or 
more chillers 3) whether ESC or BLC was running at the time. The following data was discarded: “transient” data, 

which was either collected within 25 minutes of a chiller status change or during after-hours operation with fewer 

than 3 chillers in operation. Regressions between total power, the cooling load Q  , wet bulb temperature 
wbT  , 

relative humidity RH , and total system power W  were performed to estimate the power consumption of each 

approach over a range of operating conditions. The condenser water flow rate was excluded from the regression due 
to dependence on the three independent environmental conditions; in the baseline control approach, the condenser 
water flow rate is adjusted according to the number of chillers running, which is a function of time, while in ESC the 
condenser water flow rate is changed to track the optimal input. In each regression, the data was randomly shuffled 
with identical seeding and 80% of the data was used for training while the remaining 20% was used for testing. 
Mean absolute percentage error (MAPE) was used to evaluate regression fits, where a perfect fit score is 0. 

Equation (1.1) gives the linear model used to estimate total power, where 
ˆ

lawW  represents the power predicted by 

the supervisory control law in operation, the subscript i  in 
,i lawa  represents the index number, and the subscript 

law  represents the control law used, which can be BLC , ESC , or diff , the difference in power consumption 

between the control strategies. 

 

 
1, 2, 3, 4,

ˆ
( , , )law wb law law law wb lawW Q T RH a a Q a T a RH      (1.1) 

 

Using (1.1), the power savings or losses over different operating conditions is  
ˆ ˆ ˆ

diff BLC ESCW W W  , where 

, , ,i diff i BLC i ESCa a a  . Because the baseline control has been carefully tuned and there is uncertainty in the 

measurements of the operating environment, it is important to use several metrics to increase robustness of evidence 

for or against the effectiveness of extremum seeking and ensure that there is statistical significance to the findings. 
Four metrics are used to classify the performance of the ESC versus the baseline, where each metric is applied to the 
cases of 4 chillers running and 3 chillers running: 
 
1. The average savings over minimum and maximum recorded operating conditions, given by equation  (1.2), where 

max minx x x   . This metric indicates potential savings over all expected operating conditions. 

 

 

,maxmax max

min ,min min

ˆ
( , , )100

%SV
ˆ( )( )( ) ( , , )

wb

wb

TQ RH

diff wb

avg wb

wb Q T RH BLC wb

W Q T RH
dQdT dRH

Q T RH W Q T RH


        (1.2) 

 
2. Average savings calculated over a range of real environment data inputs, given by equation (1.3). This metric 
indicates potential savings over observed weather patterns. 

 
1

ˆ
1

% 100
ˆ

N
diff

data

i
BLC

W
SV

N W

    (1.3) 
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3. The predicted power loss from using the baseline control, as determined by the difference between the power 

predicted by the ESC regression 
ˆ

ESCW  and the power 
BLCW  measured on days when the baseline control was 

running. The number of data points collected on baseline days is represented by 
BLCN . 

 , ,

1 ,

ˆ
( )

% 100
BLCN

ESC i BLC i

BLC

i BLC i

W W
LS

W


    (1.4) 

  
4. The predicted power saving from using extremum seeking control instead of the baseline control, as determined 

by the sum of 
ESCN  percent differences between actual power measured during the ESC test, 

ESCW , and the power 

predicted by 
ˆ

BLCW . 

 , ,

1 ,

ˆ
( )

% 100
ESCN

BLC i ESC i

ESC

i BLC i

W W
SV

W


    (1.5) 

 

4. RESULTS AND DISCUSSION 

 
Table 3 gives model fit statistics for the ESC and BLC regressions, which were performed using the Scikit Learn 
Python Machine Learning Toolbox (Pedregosa et al. 2012). The ESC and BLC predictions had strong prediction 
accuracy, with mean absolute percentage error scores of no more than 0.92%. Table 4 reports the 4 performance 
evaluation metrics from the previous section for the cases of 3 and 4 chillers running. Each metric was augmented 

by a margin calculation over the worst case MAPE, which assumes that the prediction error is in the direction of 
least savings.  
 
Comparing the MAPE from Table 3 to the savings in each metric indicates that the ESC slightly outperformed the 
baseline strategy by statistically discernable margins that are consistent across all four performance metrics. Savings 
with 3 chillers in operation are higher than savings with 4 chillers in operation, which was expected because the 

baseline control pump VSD frequency was hand-tuned for operation with 4 chillers, but not 3; during 3 chiller 
operation, ESC automatically improves the guess of the optimal condenser water flow rate in a region where there is 
less knowledge about optimal plant settings. 
 
Figures 6 and 7 compare the ESC condenser water flow input to the scheduled baseline control input, which follows 
the same pattern each day. During 4 chiller operation, the ESC oscillates about a condenser water flow rate 

approximately 300 gpm lower than the baseline flow; during 3 chiller operation, the ESC chooses a condenser water 
flow rate that is approximately 700 gpm lower than the baseline control, which could account for the increase in 
savings observed in Tables 3 and 4. These results suggest that the ESC can automatically retune the optimal set 
point following a change in plant configuration such as a pump or chiller going in or out of service.  
 
Figure 7’s close up views of steady state operation periods show that the trend of measured power during ESC 

operation is noticeably lower than the power consumption predicted by the baseline regression during periods [2], 
[3], and [4]. Consistent with the trend of greater savings during 3 chiller operation, periods [2] and [4] show that the 
power consumption of the extremum seeking controller rarely exceeds the power consumption predicted by the 
baseline regression. 

Table 3. Model fit scores for the baseline and ESC regressions. 

Regression 
Training Data 

MAPE [%] 

Testing Data 

MAPE [%] 

ˆ
BLCW  0.88 0.91 

ˆ
ESCW  0.92 0.92 
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Table 4. Performance of ESC against baseline according to 4 metrics from Section 3.2.  

Metric 3 Chillers ON 

3 Chillers ON 

[% Margin over 

Worst MAPE] 

4 Chillers ON 

4 Chillers ON 

[% Margin over 

Worst MAPE] 

% avgSV  2.41 1.49 1.16 0.24 

% dataSV  2.10 1.18 1.16 0.24 

% BLCLS  2.27 1.35 1.15 0.22 

% ESCSV  1.96 1.04 1.15 0.22 

 
Figure 6. (Top): Comparison of ESC condenser water flow rate to BLC condenser water flow rate. (Bottom): 

Comparison of ESC power data to power predicted by BLC regression. 

 

 
Figure 7. Close up views of the comparison between BLC power total power prediction (scatter) and measured total 

power under ESC. BLC predictions are rarely lower than measured ESC power in segments [2], [3], and [4]. 

 

[1] 

[2] 

[3] 

[4] 

[1] [2] 

[3] [4] 
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6. CONCLUSIONS 
 
This paper examined the effectiveness of using an extremum seeking supervisory controller to choose a condenser 

water flow set point for a 4 chiller, 2200RT chiller plant in operation at Chinatown Point mall in Singapore. The 
plant sees long periods of slow variations in load, wet bulb temperature, and humidity throughout its day to day 
operation. A five day test showed that extremum seeking slightly outperforms a hand-tuned, open-loop constant 
input baseline supervisory control strategy and demonstrates that savings during extremum seeking operation were 
greatest for off-nominal 3 chiller operation. While a baseline control strategy is effective for a plant like Chinatown 
point that operates under constant conditions, the results indicate that extremum seeking is effective for re -

optimizing inputs after unexpected plant reconfiguration or maintenance that may render the baseline control inputs 
suboptimal. Future work includes adding inputs such as the cooling tower fan speed to the extremum seeking 
supervisory control and using second order derivative estimates to improve reliability of ESC input convergence. 
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