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ABSTRACT 
 

In this paper, we present two practice-oriented strategies to overcome difficulties in conducting system identification 

of building thermal and HVAC dynamics. Specifically, the first part of the paper presents a saturation detection and 

removal algorithm for buildings HVAC systems. This work focuses on identifying linear time invariant (LTI) models 

of building thermal and HVAC dynamics, and such models are not able to capture the nonlinear dynamics associated 

with controller saturation. For simplicity, data collected during periods where the controller was saturated is referred 

to as saturation data. The purpose of this algorithm is to detect and remove saturation data that are not suitable for 

system identification, and thereby utilize only the reliable excited data that produce more accurate models of buildings 

HVAC systems. The second part of this paper presents a systematic procedure that eliminates poor initial guesses 

when solving the non-convex system identification problem to identify building thermal and HVAC model 

parameters. The procedure presents guidelines to tests the quality of initial guesses and yields guesses that ultimately 

lead to models that accurately fit the data and captures the system dynamics. Although these strategies can be 

implemented to both black-box and grey-box system identification, we will present them in the context of grey-box. 

The proposed strategies were implemented to on a real building in cooling mode and resulted in very accurate models.  

 

1. INTRODUCTION 

 

The increasingly competitive HVAC market has made it necessary to develop technologies that exploit the 

economic potential in such systems to reduce energy consumption. Smart HVAC operation through optimization-

based control strategies, such as model predictive control (MPC), serves as one method for achieving this goal. MPC 

has gained significant attention due to their ability to optimally operate HVAC system in order to minimize their 

energy consumption and/or energy cost while maintaining desired comfort temperatures (Mendoza-Serrano et al., 

2015, Arfam et al., 2014, Rawlings et al., 2017, in press). MPC requires the availability of a model of the process 

dynamics; therefore, several research work have studied the formulation and implementation of such control designs 

using empirical models (Alanqar et al., 2015). Furthermore, grey-box system identification in order to model 

building thermal and HVAC dynamics has been attempted (Ellis et al., 2016; Lin et al., 2012). Nonetheless, 

empirically modeling HVAC systems in a robust and scalable manner is very challenging due to the non-convexity 

of the system identification optimization problem and the existence of complex actuator saturation limits. Therefore, 

this work develops grey-box system identification strategies that attack these challenges to enable the development 

of suitable empirical models of HVAC systems in practice. 

With the building thermal and HVAC system we consider, saturation refers to periods whereby the HVAC system is 

operated at its minimum or maximum HVAC capacity for prolonged periods. The existence of significant saturation 

in the data collected is a common problem in industry that poses many challenges for identifying the dynamics of 

HVAC systems since they can affect the quality of the collected data and result in an inaccurate identified model. 

Classical approaches for dealing with saturation in system identification, such as using nonlinear functions to 

capture the saturation behavior (Wdanage et al., 2004; Wills et al., 2013), are not implementable due to the complex 

saturation behavior associated with HVAC systems. More specifically, saturation limits in commercial and 
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residential HVAC systems may be both unknown and time varying. In addition, another challenge faced in 

identifying HVAC and building thermal dynamics is the existence of many roots in such non-convex system 

identification problems. Therefore, it is desirable in industry to avoid using initial guesses that lead to local optima 

which result in inaccurate models. 

In the first part of this work, we develop an algorithm that is capable of detecting and removing saturation data from 

system identification experiment input-output data. This is done to extract the useful data sections that represent the 

excited HVAC system dynamics which are necessary to identify reliable models of the HVAC dynamics. Once the 

multiple useful data sections are extracted, system identification is conducted in order fit one model to all data 

sections. The second part of this work presents a strategy that avoids solving system identification problems all the 

way to local optimality using initial guesses that lead to local optima which result in poor models. The algorithm 

attempts to eliminate poor initial guesses and yield initial guesses that ultimately lead to great fits of the model to the 

data. The parameters of the grey-box models were identified via a two-step parameter estimation approach. In the 

first step, the model parameters were identified using simulation prediction error method (Ljung et al., 1999). In the 

second step, the model was augmented with a disturbance model and the estimation gain (i.e., Kalman gain) was 

identified using the standard 1-step prediction error method (Ljung et al., 1999). The proposed strategies were 

applied to data collected from real building HVAC systems and have shown to successfully work in practice.  

 

 

2. PRELIMINARIES  
 

2.1 Notation 
The set of integers is denoted by 𝕀 and the set of positive integers is denoted by 𝕀≥0. The notation 𝑥̂(𝑖|𝑘) is used to 

represent the estimated or predicted value of 𝑥 at time step 𝑖 given measurements up to time step 𝑘 where 𝑖 ≥ 𝑘. 

 

2.2 Dynamic System Model 
The class of system models considered in this work is given by the following discrete-time linear time-invariant 

system model: 

 
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑤(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) + 𝑣(𝑘)
 (1) 

where 𝑘 ∈ 𝕀≥0 is the time index, 𝑥(𝑘) ∈ ℝ𝑛 is the state vector, 𝑦(𝑘) ∈ ℝ𝑝 is the measured output vector, 𝑢(𝑘) ∈
ℝ𝑚 is the input vector, 𝑤(𝑘) is process noise, and 𝑣(𝑘) is measurement noise. The matrix 𝐴 is assumed to be stable; 

that is the real parts of the eigenvalues of 𝐴 lie within the unit circle. The pair (𝐴, 𝐵) is assumed to be controllable 

and the pair (𝐴, 𝐶) is assume to be observable. Given that the full state is usually not measured in practice, state 

estimation is performed using a state observer. In addition, a disturbance model is added in order to remove the 

effects of correlated non-stationary disturbance (Pannocchia et al., 2003). Therefore, closed-loop state estimation is 

described by the following estimator equations:  

[
𝑥̂(𝑘 + 1|𝑘)

𝑑̂(𝑘 + 1|𝑘)
] = [

𝐴 𝐵𝑑

0 𝐼
] [

𝑥̂(𝑘 + 1|𝑘)

𝑑̂(𝑘 + 1|𝑘)
] + [

𝐵
0
] 𝑢(𝑘) + [

𝐾𝑥

𝐾𝑑
] (𝑦(𝑘) − 𝑦̂(𝑘|𝑘 − 1))

𝑦̂(𝑘|𝑘 − 1) = [𝐶 𝐶𝑑] [
𝑥̂(𝑘|𝑘 − 1)

𝑑̂(𝑘|𝑘 − 1)
] + 𝐷𝑢(𝑘)

                       (2) 

where 𝑥̂(𝑗|𝑘),𝑑̂(𝑗|𝑘) and 𝑦̂(𝑗|𝑘) are the estimated/predicted states, disturbance states and outputs vectors at time step 

𝑗 given the measurement at time step 𝑘. The disturbance model is characterized by the choice of the matrices 𝐵𝑑 and 

𝐶𝑑. The matrix 𝐾 is the estimator gain. Under certain assumptions (i.e., system is linear, no plant-model mismatch, 

and the process and measurement noise is white with known covariance matrices), the Kalman filter is the optimal 

linear filter (Ljung et al., 1999).  

 

2.3 Grey-Box System Identification Background 
System identification is the process of constructing mathematical models of dynamic systems (Ljung et al., 1999). 

Grey box modeling is the class of system identification methods used in this work. It assumes that there is a known 

model structure 𝑀, often derived through simplified first-principals or semi-physical modeling. Subsequently, the 

model structure is parameterized with a parameter 𝜃 ∈ 𝐷ℳ ⊂ ℝ𝑑 where 𝐷ℳ is the set of admissible model parameter 

values. Then, parameter estimation techniques are used to estimate the parameters. The resulting possible models are 

given by the set: 
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𝑀 = {ℳ(𝜃)|𝜃 ∈ 𝐷ℳ}                                                              (3) 

To fit a proper parameter vector for a given system, input-output data points are collected, which are denoted by: 

𝑍𝑁 = [𝑦(1), 𝑢(1), 𝑦(2), 𝑢(2), … , 𝑦(𝑁), 𝑢(𝑁)]                                          (4) 

where 𝑁 > 0 is the number of samples collected. Parameter estimation is the problem of selecting the best value 𝜃̂𝑁 

of the parameter vector with respect to an objective function given the input-output data 𝑍𝑁 (i.e., mapping: 𝑍𝑁 →

𝜃̂𝑁 ∈ 𝐷ℳ). The resulting parameterized state space system to be identified is given by the following: 
𝑥̂(𝑘 + 1|𝑘) = 𝐴(𝜃)𝑥̂(𝑘|𝑘 − 1) + 𝐵(𝜃)𝑢(𝑘) + 𝐾(𝜃)(𝑦(𝑘) − 𝑦̂(𝑘|𝑘 − 1))

𝑦̂(𝑘|𝑘 − 1) = 𝐶(𝜃)𝑥̂(𝑘|𝑘 − 1) + 𝐷(𝜃)𝑢(𝑘)              𝑥̂(0|0) = 𝑥0(𝜃)
         (5) 

Prediction error methods (PEM) refers to a particular family of parameter estimation methods that are of interest in 

the context of this work. Prediction error methods fits the parameter vector by minimizing some function of the 

difference between the predicted output and observed output. In this work, two versions of the prediction error 

methods are utilized in order to identify the plant model and the estimator gain.  

 

2.3.1 One-step ahead PEM 

The first version of the prediction error methods is the 1-step prediction method. At each time step, this method 

utilizes past input-output data in order to predict the output 1-step ahead. Specifically, let 𝑦̂(𝑘|𝑘 − 1, 𝜃) be the 

predicted output at time step 𝑘 given the past input-output sequence 𝑍𝑘−1 and the model ℳ(𝜃) for 𝜃 ∈ 𝐷ℳ . 

Therefore, the prediction error at each time becomes: 

𝜀(𝑘, 𝜃) ≔ 𝑦(𝑘) − 𝑦̂(𝑘|𝑘 − 1, 𝜃)                                                                         (6)                                                

The 1-step prediction error method attempts to find the parameter estimates 𝜃̂𝑁 that minimize a specific measure of 

this error. The general objective function of such optimization problem is:   

𝜃̂𝑁(𝑍𝑁) = arg min𝜃∈𝐷ℳ
 
1

𝑁
∑ ℓ(𝜀𝐹(𝑘, 𝜃))𝑁

𝑘=1                                                      (7) 

where ℓ(⋅) is typically taken to be a positive definite function. In the context of the present work, we will use 

perhaps the most commonly encountered prediction error method, which we define as the standard PEM. The 

standard PEM uses a quadratic cost function that is the square of the prediction errors: 

(𝑦(𝑘) − 𝑦̂(𝑘|𝑘 − 1, 𝜃)) = ‖𝑦(𝑘) − 𝑦̂(𝑘|𝑘 − 1, 𝜃)‖2
2                                             (8)          

where 𝑦̂(𝑘|𝑘 − 1, 𝜃) denotes the one-step ahead prediction of the output using the model ℳ(𝜃). When the 

prediction errors are independently and identically distributed random variables from a normal distribution (i.e., the 

process and measurement noise is Gaussian white noise) and the model being identified is linear, the cost function of 

(9) is optimal from a statistical point-of-view (Ljung et al., 1999). Written in a compact way, the main objective is to 

find the optimal 𝜃 that minimizes the following cost function 

min
𝜃

1

𝑁
∑ ‖𝑦(𝑘) − 𝑦̂(𝑘|𝑘 − 1, 𝜃)‖2

2𝑁
𝑘=1                                                            (9) 

2.3.2 Simulation PEM 

The second version of prediction estimation method considered here is the simulation method. In this method, a 

simulation is conducted using the model ℳ(𝜃) and the input trajectory [𝑢(1), 𝑢(2), … , 𝑢(𝑁)] starting from an 

initial state 𝑥(0). This forward simulation produces all the predicted outputs in terms of 𝜃 (i.e. 

[ 𝑦̂(1|0, 𝜃) 𝑦̂(2|0, 𝜃)… 𝑦̂(𝑘|0, 𝜃) … 𝑦̂(𝑁|0, 𝜃)]).  The prediction error at time step 𝑘 is given by 

𝜀(𝑘, 𝜃) ≔ 𝑦(𝑘) − 𝑦̂(𝑘|0, 𝜃)                                                                   (10) 

In this problem, the main objective is to find the optimal 𝜃 that minimizes the following cost function 

min
𝜃

1

𝑁
∑ ‖𝑦(𝑘) − 𝑦̂(𝑘|0, 𝜃)‖2

2𝑁
𝑘=1                                                               (11) 

 

3. IDENTIFICATION OF BUILDING THERMAL AND HVAC DYNAMICS 
 

In this work, we consider the grey-box system identification of building thermal and HVAC dynamics. The model 

structures considered capture the crucial dynamics for MPC and control-oriented applications. The thermal 

dynamics of a space within a building are assumed to be modeled by the following differential equations: 

𝐶𝑚
𝑑𝑇𝑚

𝑑𝑡
=

1

𝑅𝑚𝑖
(𝑇𝑖𝑎 − 𝑇𝑚)                                                           (12) 

𝐶𝑖𝑎
𝑑𝑇𝑖𝑎

𝑑𝑡
=

1

𝑅𝑜𝑖
(𝑇𝑜𝑖 − 𝑇𝑖𝑎) +

1

𝑅𝑚𝑖
(𝑇𝑚 − 𝑇𝑖𝑎) + 𝑄̇𝐻𝑉𝐴𝐶 + 𝑄̇𝑜𝑡ℎ𝑒𝑟                                (13) 

where 𝑇𝑖𝑎 , 𝑇𝑜𝑎 , 𝑇𝑠𝑝, 𝑇𝑚 are the indoor air temperature, outdoor air temperature, indoor set-point temperature, and 

lumped thermal mass temperature, respectively. The indoor air thermal capacitance, lumped mass thermal 

capacitance, indoor air-outdoor air thermal resistance, and indoor air-thermal mass thermal resistance are denoted as 

𝐶𝑖𝑎 𝐶𝑚 𝑅𝑜𝑖  𝑅𝑚𝑖. Sensible heat provided to/removed from the building space by the HVAC system is denoted as 
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𝑄̇HVAC.  The internal disturbance heat load, 𝑄̇other, models the heat generated by the building occupants, the heat 

transmitted via solar irradiance, and the heat generated by electrical equipment (e.g., light and computers). We 

assume that the relationship between the indoor air temperature and the temperature set-point follows a proportional-

integral control law with saturation. Let 

𝑄̇HVAC = 𝐾𝑝𝜀𝑠𝑝 +
𝐾𝑝

τI 𝐼
∫ 𝜀𝑠𝑝(𝑠) 𝑑𝑠

𝑡

0

𝜀𝑠𝑝 = 𝑇𝑠𝑝 − 𝑇𝑖𝑎

                                            (14) 

𝑄̇HVAC will have a positive value when heat is supplied to the building space and a negative value when cooling is 

supplied to the building space. If 𝑄̇HVAC, is within the constraints on 𝑄̇HVAC, then 𝑄̇HVAC = 𝑄̇HVAC. Otherwise, 𝑄̇HVAC,, 

is set to its upper or lower bound. Incorporating the thermal and the HVAC load models together and writing the 

system of equations as a linear system of differential equations gives the following state space representation: 

[

𝑇̇𝑖𝑎

𝑇̇𝑚

𝐼̇

] =  

[
 
 
 

1

𝐶𝑖𝑎
(−𝐾𝑝 −

1

𝑅𝑚𝑖
−

1

𝑅𝑜𝑖
)

1

𝐶𝑖𝑎𝑅𝑚𝑖

𝐾𝑝

τI𝐶𝑖𝑎

1

𝐶𝑚𝑅𝑚𝑖
−

1

𝐶𝑚𝑅𝑚𝑖
0

−1 0 0 ]
 
 
 

[
𝑇𝑖𝑎

𝑇𝑚

𝐼

] +  [

𝐾𝑝

𝐶𝑖𝑎

1

𝐶𝑖𝑎𝑅𝑜𝑖

0 0
1 0

] [
𝑇𝑠𝑝

𝑇𝑜𝑎
] + [

1

𝐶𝑖𝑎

0
0

] 𝑄̇other

[
𝑇𝑖𝑎

𝑄̇HVAC

] = [
1 0 0

−𝐾𝑝 0
𝐾𝑝

τI

] [
𝑇𝑖𝑎

𝑇𝑚

𝐼
] + [

0 0
𝐾𝑝 0] [

𝑇𝑠𝑝,𝑗

𝑇𝑜𝑎
]

                      (15) 

The combined building thermal and the HVAC model contains the following three inputs: 1) The zone temperature 

set-point 𝑇𝑠𝑝 is a controlled input 2) the outdoor air temperature 𝑇𝑜𝑎 which is a measured input and not under control 

3) the 𝑄̇other which is neither controlled nor measured.  The outputs are the measured zone temperature 𝑇𝑖𝑎 and sensible 

heat provided to/removed 𝑄̇HVAC. 

While the model above does not describe the detailed physical phenomena and dynamics of a building thermal mass 

and the HVAC load, it balances the trade-off between model accuracy and computational efficiency when used for 

online control computations. This balance is critical for practical implementation of model predictive control (MPC) 

since that MPC requires continuous online computation that incorporate feedback. This feedback coupled with 

online computation are necessary for the prediction accuracy and robustness of the MPC. The system identification 

procedure followed in this work consists of the following three steps: 

1. An excitation signal is applied to the system and the corresponding outputs are recorded.     

2. The thermal and HVAC load model parameters are identified first using simulation PEM.  

3. The resulting state-space model is augmented with an integrating disturbance model and the Kalman filter 

gain is estimated using the one-step ahead PEM. 

3.1 Step 1: Excitation Signal 
Typically, to fit a dynamic model to input-output data, the inputs to a system are manipulated in an open-loop 

fashion as to sufficiently and persistently excite the system (Ljung et al., 1999). Formally, a signal 
{𝑠(𝑘): 𝑘 = 0,1,2,… } with spectrum 𝜙𝑠(𝜔) is persistently excitated (PE) if 𝜙𝑠(𝜔) > 0 for almost all 𝜔 where: 

𝜙𝑠(𝜔) = ∑ ( lim
𝑁→∞

1

𝑁
∑ 𝑠(𝑘)𝑠(𝑘 − 𝑚)𝑁

𝑘=1 )∞
𝑚=−∞                                        (16) 

The approach selected for generating the excitation signals is to generate one from a pseudorandom binary sequence 

(PRBS). Thus, a PRBS temperature set-point 𝑇𝑠𝑝 signal is generated for system identification. 

3.2 Step 2: Building Thermal Model Identification 
In order to perform system identification, we first have to parameterize our model. The state space equations for the 

building thermal model can be represented compactly as follows: 

 
𝑥̇ = 𝐴𝑐(𝜃)𝑥 + 𝐵𝑐(𝜃)𝑢
𝑦 = 𝐶𝑐(𝜃)𝑥 + 𝐷𝑐(𝜃)𝑢

 (17) 

where 𝑥𝑇 = [𝑇𝑖𝑎 , 𝑇𝑚 , 𝐼], 𝑢𝑇 = [𝑇𝑠𝑝 , 𝑇𝑜𝑎], 𝑦𝑇 = [𝑇𝑖𝑎 , 𝑄̇HVAC], 𝜃 is the parameter vector to be identified. The 

parameterization followed in this work is presented in the following matrices: 

𝐴𝑐(𝜃) = [
−(𝜃1 + 𝜃2 + 𝜃3𝜃4) 𝜃2 𝜃3𝜃4𝜃5

𝜃6 −𝜃6 0
−1 0 0

] , 𝐵𝑐(𝜃) = [
𝜃3𝜃4 𝜃1

0 0
1 0

]

𝐶𝑐(𝜃) = [
1 0 0

−𝜃4 0 𝜃5𝜃4
] , 𝐷𝑐(𝜃) = [

0 0
𝜃4 0

]

                     (18) 
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Where: 𝜃1 = 
1

𝐶𝑖𝑎𝑅𝑜𝑖
   𝜃2 = 

1

𝐶𝑖𝑎𝑅𝑚𝑖
      𝜃3 = 

1

𝐶𝑖𝑎
       𝜃4 = 𝐾𝑝         𝜃5 = 

1

τ
       𝜃6 = 

1

𝐶𝑚𝑅𝑚𝑖
 

Estimation of the model parameters will be conducted using simulation PEM.  

3.3 Step 3: Estimation Gain Identification 

The model in step 2 only tries to accounts for the main thermal dynamics of the system. In Step 3, the model from 

step 2 is converted into a discrete time system and it is augmented with another integrating disturbance model of the 

form described in Eq.2 where the disturbance is selected as follows 𝐵𝑑 =
1

𝐶𝑖𝑎
 and 𝐶𝑑 = 0. Then, a parameterized 

estimator gain matrix 𝐾(𝜙) is parameterized with the parameter vector 𝜙 as follows: 

𝐾𝑥(𝜙) = [

𝜙1 𝜙2

0 0
𝜙3 𝜙4

𝜙5 𝜙6

]                                                                           (19) 

The identification of the estimator gain 𝐾(𝜙) will be performed using the one-step ahead PEM. 

 

4. SATURATION DETECTION AND REMOVAL ALGORITHM 
 

The first algorithm proposed is the saturation detection and removal algorithm. The purpose of this algorithm is to 

detect and remove data that are not useful for system identification purposes. This saturation detection algorithm can 

handle unknown and potentially, time varying saturation limits. The favorable remaining multiple data sections are 

extracted and system identification is performed in order fit one model to all data sections. 

4.1 Algorithm 
We consider a system identification experiment that contains a series of set-point changes. For an experiment that 

has 𝑁 set-point changes, the indoor temperature absolute error for a given set-point 𝑖 at a given time step 𝑘 is: 

𝑒𝑇𝑖
(𝑘) = 𝑎𝑏𝑠(𝑇𝑠𝑝𝑖

− 𝑇𝑖𝑎(𝑘)) , 𝑖 = 1,2, …𝑁, 𝑘 = 0,1,2, …                          (20) 

Each set-pint starts at sampling period 𝑆𝑖 and lasts for a certain period of time 𝐿𝑖 . For each set-point change, the 

average absolute error is: 

𝐴𝑣𝑟𝑔𝐸𝑖 =
∑ 𝑒𝑇𝑖

(𝑘) 
𝑘=𝑆𝑖+𝐿𝑖
𝑘=𝑆𝑖

𝐿𝑖
                                                         (21) 

 
Figure 1. Illustration of temperature error accumulated during a set-point period. 

 

Figure 1 illustrates an example of the temperature error during a set-point (in this case 𝑇𝑠𝑝2) that lasts for the period 

of time 𝐿𝑖 .When 𝐴𝑣𝑟𝑔𝐸𝑖  exceeds a predefined threshold, we check if the majority of the 𝑄̇HVAC data in that set are 

in the transient region of 𝑄̇HVAC. If they are, we do not consider that set to contain significant saturation, and 

therefore we do not remove that set of data. If the majority of the 𝑄̇HVAC data in that set are not in the transient region 

of 𝑄̇HVAC, we remove that set of data. While calculating the temperature absolute error may result in exceeding the 

threshold when the system has higher order responses (i.e. overshoot or oscillations), checking if the 𝑄̇HVAC  is within 

the transient region will counter the removal of these data in the case that they are good data.  

Due to the fact that in many HVAC systems, the upper and lower 𝑄̇HVAC saturation limits may not be known a priori, 

we base the maximum and minimum saturation limits on the 𝑄̇HVAC measured. In addition, these upper and lower 

saturation limits can be time varying as illustrated in the figure below:  
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Figure 2. Illustration of time varying 𝑸̇
𝑯𝑽𝑨𝑪

 saturation limits of HVAC systems. 

Thus, we take a conservative region of the 𝑄̇HVAC range to be our transient region of 𝑄̇HVAC. Ideally, we would like to 

truncate the region to include only the 𝑄̇HVAC data between the two dashed lines in the figure above. However, since 

these values are also not known, we will truncate this region by a conservative percentage to avoid including any 

saturated 𝑄̇HVAC data.  We take the entire set of 𝑄̇HVAC data for the entire system identification experiment. Then, we 

find the minimum and maximum values of 𝑄̇HVAC. After that, we truncate the region by a total of 30 %. This 

truncation is done as follows: 

𝑄̇ 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒
= 0.15(max(𝑄̇HVAC) − min (𝑄̇HVAC))                                       (22) 

Then we define: 𝑄̇ 𝑚𝑎𝑥
= max(𝑄̇HVAC) − 𝑄̇ 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒

 and 𝑄̇𝑚𝑖𝑛 = min(𝑄̇HVAC) + 𝑄̇ 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒
 

The range of  𝑄𝐻𝑉𝐴𝐶  that lies between 𝑄̇𝑚𝑖𝑛 and 𝑄̇𝑚𝑎𝑥 is what we call the transient region of 𝑄̇HVAC. When 𝐴𝑣𝑟𝑔𝐸𝑖 

exceeds a predefined threshold, we check if more than 50% of the 𝑄̇HVAC data in that set are in the transient region 

of 𝑄̇𝐻𝑉𝐴𝐶. If they are, we do not remove that set, otherwise, we remove that set and we consider it to have significant 

saturation.  The motivation behind choosing this as a threshold comes from the respond of linear systems under a PI 

controller to a set point change. Consider a linear system under PI control operating exactly at 𝑇𝑠𝑝1. When this 

system is subject a set-point changes from 𝑇𝑠𝑝1to 𝑇𝑠𝑝2, the system under the PI controller will exponential go 

towards the desired 𝑇𝑠𝑝2. The speed of going to  𝑇𝑠𝑝2 depends on the linear system time constant as well as the PI 

controller. These responses will look like the curved lines in the following figure: 

 

Figure 3. Illustration of linear system response behavior to a step-input (over-damped systems). 

However, these lines (in theory and under very ideal circumstances), will never cross the straight line going from 

𝑇𝑠𝑝1to 𝑇𝑠𝑝2. Therefore, the average absolute error for the entire period will never be greater than  0.5(𝑇𝑠𝑝𝑚𝑎𝑥
−

 𝑇𝑠𝑝𝑚𝑖𝑛
). The reason we check for significant errors in temperatures before checking the 𝑄̇HVAC is that, in general, the 

system may be under control even when 𝑄̇HVAC is near saturation limits.  

4.2 Dealing with long set-point periods   
The threshold above does not work perfectly for temperature set-points that last for a long time (here long time is a 

relative term that has to take into account the time constant of the system and the aggressiveness of the PI controller 

that supplies the 𝑄̇HVAC). For example, if a 𝑇𝑠𝑝 lasts for a very long time and the system, under ideal condition, 

reaches the desired set-point very early on, then having the threshold as 0.5(𝑇𝑠𝑝𝑚𝑎𝑥
− 𝑇𝑠𝑝𝑚𝑖𝑛

) is very loose. In 

system identification, before delivering the input excitation signal, we specify a minimum time duration (denoted 

as  𝑀𝑖𝑛𝐿𝑇𝑠𝑝) that a set-point should stay at a specific value before it changes to another value.  This minimum time 

is based on the response of the HVAC equipment and control to step inputs; which could be approximated from 

experiments prior to system identification. We assume that this minimum time is relatively equal to the time it takes 

for the system to go from one 𝑇𝑠𝑝 to the other under ideal condition. Thus, the threshold needs to be scaled 

accordingly for 𝑇𝑠𝑝 that last longer than 𝑀𝑖𝑛𝐿𝑇𝑠𝑝. If we call the time that the system stays at a given set-point 𝑖 

as 𝐿𝑇𝑠𝑝𝑖
. Then, the threshold for each set-point should be scaled by a factor equal to 

𝑀𝑖𝑛𝐿𝑇𝑠𝑝 

𝐿𝑇𝑠𝑝𝑖

. This makes the 
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threshold more sensitive for 𝑇𝑠𝑝 that last a longer duration than 𝑀𝑖𝑛𝐿𝑇𝑠𝑝 and accounts for the resulting effects of 

that on the average temperature error threshold. Therefore, the new threshold becomes:    

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 =  
𝑀𝑖𝑛𝐿𝑇𝑠𝑝 

𝐿𝑇𝑠𝑝𝑖

(𝑇𝑠𝑝𝑚𝑎𝑥− 𝑇𝑠𝑝𝑚𝑖𝑛
) 

2
                                         (23) 

4.3 Dealing with Dead-Band 
In the case that the HVAC system has a dead-band in tracking temperature set-points, two changes will occur in the 

algorithm. The first change is how we compute the average temperature error. Since any temperature within the 

dead-band is considered tracking, only temperatures outside the dead-band should be considered for the average 

absolute error computation. Therefore, the computation of the average absolute error becomes:  

1) If measured temperatures are within the dead-band , the temperature error (𝑒𝑇𝑖
(𝑘)) equals zero 

2) If not, compute the error (or absolute error). The error here is computed as the difference between the 

temperature and the bounds of the dead-band (Not the actual 𝑇𝑠𝑝 ) as follows:    

𝑒𝑇𝑖
(𝑘) = min (𝑎𝑏𝑠 (𝑇𝑠𝑝𝑖

+ 𝐷𝑒𝑎𝑑𝐵𝑎𝑛𝑑 − 𝑇𝑖𝑎(𝑘) ;  𝑇𝑠𝑝𝑖
− 𝐷𝑒𝑎𝑑𝐵𝑎𝑛𝑑 − 𝑇𝑖𝑎(𝑘)))                (28) 

After that, we compute the average absolute error in the same fashion. The error region that is accounted for in this 

algorithm can be illustrated by the grey area in the figure below: 

 

Figure 4. Illustration of temperature error accumulated when HVAC systems have a dead-band. 

The second change that has to be accounted for when having a dead-band is the threshold. Since the region of non-

zero error has shrunk, the threshold has to be modified in order to account for this change. While it may seem from 

the first glance that the region should shrink by a factor that is equal to the dead-band, we will shrink the region by 

twice the dead-band. In order to understand why this is the case, we refer to the figure above. Before doing a set-

point change, the temperature could be floating anywhere within the dead-band region of  𝑇𝑠𝑝. Therefore, there is a 

possibility to be at the top or at the bottom of 𝑇𝑠𝑝1 dead-band before requesting the change to 𝑇𝑠𝑝2. Therefore, we 

take a more conservative threshold that can account for this fact too. The threshold now becomes: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 =  
𝑀𝑖𝑛𝐿𝑇𝑠𝑝 

𝐿𝑇𝑠𝑝𝑖

(𝑇𝑠𝑝𝑚𝑎𝑥− 𝑇𝑠𝑝𝑚𝑖𝑛 −2∗𝐷𝑒𝑎𝑑𝐵𝑎𝑛𝑑) 

2
                              (24) 

4.4 Adapting to non-PRBS Input Signals  
In many cases, the input signal in the system identification experiment has more than two set-point values (non-

PRBS signals such as Gaussian signal or PRBS that changes values with time). To make the algorithm account to 

such changes, the threshold should also adapt to non-PRBS input signals. Therefore, instead of taking 𝑇𝑠𝑝𝑚𝑎𝑥
−

 𝑇𝑠𝑝𝑚𝑖𝑛  as a base for the error, we take 𝑇𝑠𝑝𝑖
− 𝑇𝑠𝑝𝑖−1 at a given 𝑖𝑡ℎ 𝑇𝑠𝑝.  This makes the threshold become: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 =  
𝑀𝑖𝑛𝐿𝑇𝑠𝑝 

𝐿𝑇𝑠𝑝𝑖

𝑎𝑏𝑠( 𝑇𝑠𝑝𝑖
− 𝑇𝑠𝑝𝑖−1 )−2∗𝐷𝑒𝑎𝑑𝐵𝑎𝑛𝑑 

2
                               (25) 

4.5 Complete Algorithm Summary  

The saturation detection and removal algorithm is: 

1) If the zone temperature is within the dead-band, the temperature error (𝑒𝑇𝑖
(𝑘)) equals zero.  

2) If the zone temperature is not within the dead-band, compute the error (or absolute error). The error here is 

computed as the difference between the temperature and the bounds of the dead-band (Not the actual 𝑇𝑠𝑝) 

as follows:    

𝑒𝑇𝑖
(𝑘) = min (𝑎𝑏𝑠 (𝑇𝑠𝑝𝑖

+ 𝐷𝑒𝑎𝑑𝐵𝑎𝑛𝑑 − 𝑇𝑖𝑎(𝑘) ;  𝑇𝑠𝑝𝑖
− 𝐷𝑒𝑎𝑑𝐵𝑎𝑛𝑑 − 𝑇𝑖𝑎(𝑘))) 

3) For each set-point change, the average absolute error is: 

𝐴𝑣𝑟𝑔𝐸𝑖 =
∑ 𝑒𝑇𝑖

(𝑘) 
𝑘=𝑆𝑖+𝐿𝑖
𝑘=𝑆𝑖

𝐿𝑖

 

4) We check which set-points have an 𝐴𝑣𝑟𝑔𝐸𝑖  that exceeds the following threshold: 
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𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 =  
𝑀𝑖𝑛𝐿𝑇𝑠𝑝 

𝐿𝑇𝑠𝑝𝑖

𝑎𝑏𝑠( 𝑇𝑠𝑝𝑖
− 𝑇𝑠𝑝𝑖−1 ) − 2 ∗ 𝐷𝑒𝑎𝑑𝐵𝑎𝑛𝑑 

2
 

5) For the 𝑇𝑠𝑝 periods that exceeded this threshold, if more than half of the 𝑄̇HVAC data during that period are not 

in the transient region of 𝑄𝐻𝑉𝐴𝐶 , then that data set contains significant saturation and it is removed. Otherwise, 

the data are not kept as useful data for system identification. 

 

6) The transient region of 𝑄̇HVAC is computed as follows: 

𝑄̇ 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒
= 0.15(max(𝑄̇HVAC) − min (𝑄̇HVAC)) 

𝑄̇ 𝑚𝑎𝑥
= max(𝑄̇HVAC) − 𝑄̇ 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒

 and 𝑄̇𝑚𝑖𝑛 = min(𝑄̇HVAC) + 𝑄̇ 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒
 

 The range of 𝑄̇HVAC that lies between 𝑄̇𝑚𝑖𝑛  and 𝑄̇𝑚𝑎𝑥  is what we call the transient region of 𝑄̇HVAC.  

 

7) The remaining multiple data sections are extracted and system identification is performed in order fit one 

model to all data sections. 

 

5. Efficient Model Generation Algorithm 

 
Due to the non-convexity and complexity of the system identification optimization problem, it is always desired to 

avoid initial guesses which lead to local optima that result in poor models. It is difficult to know a priori whether a 

given random initial guess would lead to an accurate or in-accurate model. Therefore, we employ the following 

algorithm that tries to eliminate bad initial guesses and yield suitable starting guesses that ultimately may lead to 

acceptable fits of the model to the data. 

5.1 Algorithm: 
1) Generate N initial guesses of the system parameters where each of these initial guesses construct a stable  𝐴 

matrix and a stable 𝐴 − 𝐾𝐶 matrix. 

2) Run each system identification problem for a small number of iterations M.  

3) Record the cost function for each for the N runs along with the parameters values acquired. 

4) Remove initial guesses that led to an unstable 𝐴 matrix or unstable 𝐴 − 𝐾𝐶 matrix after M iterations 

5) Remove initial guesses that led to a very high condition number of the 𝐴 matrix or 𝐴 − 𝐾𝐶 matrix  

6) Remove initial guesses going towards the same local optimal solution as another initial guess. This can be 

done by comparing the cost function along with the parameters values after the M iterations. Then, 

removing initial guesses that have similar cost function value as well as similar parameter values with a 

small tolerance of variation. 

7) Rank the cost function values in an ascending order from lowest to highest.  

8) Start from the initial guess that gave the lowest cost function value and run it all the way to local optimality. 

9) Evaluate the stability, controllability, observability, and condition numbers of the  𝐴 matrix and the 𝐴 − 𝐾𝐶 

matrix. The condition number of these matrices is desired to be smaller than a large number L. 

10) If conditions in step 9 are satisfied, terminate the algorithm and the identified model is obtained. If 

conditions in step are not satisfied, re-run system identification using the remaining initial guesses going 

from the guesses that gave the lowest cost function to the guesses that gave the highest cost function until 

conditions in step 9 are satisfied.  

Implementing this algorithm avoids running poor initial guess all the way to local optimality. In addition, this 

algorithm also avoids running different initial guesses that go towards the same local optimal solution. This 

algorithm turns out to be much more computationally beneficial than simply generating many initial guesses, 

running each to optimality, checking the quality of the obtained model, then repeating the entire process if the model 

obtained is not satisfactory. 

6. RESULTS 
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In this section, we analyze the proposed saturation detection and removal algorithm, and evaluate the improvement 

obtained when conducting system identification. In addition, we also evaluate the computational benefit obtained 

from implementing the efficient model generation algorithm. A system identification experiment is conducted on an 

area of a building located in Milwaukee, Wisconsin. Thus, a PRBS temperature set-point 𝑇𝑠𝑝 signal is generated 

varying between the values of 73º F and 75º F. The PRBS signal is designed to stay at each set-point value a 

minimum duration of 1 hour (i.e. 𝑀𝑖𝑛𝐿𝑇𝑠𝑝 = 1). The system identification experiment took place over the course of 

two days where inputs (𝑇𝑠𝑝 and 𝑇𝑜𝑎) and outputs (𝑇𝑖𝑎 , 𝑄̇HVAC) were collected at a sampling frequency of 10 minutes. 

The HVAC system considered has a dead-band of 0.5º F. The data collected are processed through the proposed 

saturation detection and removal algorithm and the resulting data are utilized for parameter estimation. The state-

space equations (Eq. 17 and Eq.20) are used to model the building thermal and HVAC dynamics and the parameters 

of this model are identified first using simulation PEM. Then, the resulting state-space model is augmented with an 

integrating disturbance model and the Kalman filter gain in the form of equation (Eq. 22) is estimated using the one-

step ahead PEM. In order to efficiently obtain initial guesses that lead to accurate model parameters, the proposed 

efficient model generation algorithm is implemented in both parameter estimation steps where both M and N are 

equal to 50.   

After that, the model was validated over the same two days’ worth of input-output data used for system 

identification by plotting the actual outputs versus the 1-step prediction of the outputs which are demonstrated in the 

following figures: 

 

Figure 5. Measured outputs trajectories (in grey) and the 1-step prediction of the outputs (in black).  

The identified model demonstrates accurate 1-step prediction. The saturation detection algorithm was successful in 

detecting and removing the saturation periods which span the periods from hour 18 to 28 and from hour 42 to 48.  

The 2-norm of the 1-step prediction error in the outputs for the two days is 1.6175 for the zone temperature and 

16.6594 for 𝑄̇HVAC.When implementing the efficient model generation algorithm over the excited data sections, the 

total computational time it took for the system identification algorithm to yield this model is 307 CPU seconds.  

For comparison, a second system identification procedure was conducted over the same collected input-output data 

where the input-output data were not passed through the saturation detection and removal algorithm. In addition, the 

efficient model generation algorithm was not used and instead, each initial guess was run to local optimality and the 

identified model’s stability, controllability, observability, and condition numbers of the identified 𝐴 matrix and the 

𝐴 − 𝐾𝐶 matrix were evaluated. If identified model is not satisfactory, another random guess is generated and the 

system identification is solved again to local optimality. Eventually, when an acceptable model is identified, it was 

validated over the same two days’ worth data by plotting the actual outputs versus the 1-step prediction of the 

outputs which are demonstrated in the following figures: 

 

Figure 6. Measured outputs trajectories (in grey) and the 1-step prediction of the outputs (in black).  
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The 2-norm of the 1-step prediction error in the outputs for the two days is 7.8597 for the zone temperature and 

94.4387 for 𝑄̇HVAC.The total computational time for this method to result in an acceptable model is 1923 CPU 

seconds. As we can see from the figures above, the predictions have a low degree of accuracy.  

 

7. CONCLUSIONS 
 

This paper presented two strategies to overcome some of the difficulties faced in conducting system identification of 

building thermal and HVAC dynamics. The first strategy is an algorithm that is designed to detect and remove 

saturation data caused by buildings HVAC systems. The goal of this algorithm is to extract the useful excited data 

for system identification in order to produce models that accurately capture the crucial buildings HVAC dynamics. 

The second strategy presents a systematic procedure that eliminates poor initial guesses when solving the non-

convex system identification problem to identify building thermal and HVAC dynamics. The procedure presents 

guidelines to tests the quality of initial guesses and yields guesses that ultimately lead to models that accurately fit 

the data and captures the system dynamics. The proposed strategies were implemented to identify a grey-box model 

parameters of building thermal and HVAC model as well as a Kalman gain. The system identification was applied to 

data collected from real building HVAC systems and have shown to successfully work in practice.  
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