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ABSTRACT 

In climate regions with large seasonal variations in solar radiation, such as the Pacific Northwest, a solar energy 

collector might not economically satisfy year-round domestic water heating demands, requiring an auxiliary unit, such 

as a natural gas-fired water heater. Previous studies have shown that the burner efficiency of a gas-fired water heater 

varies depending on the log-mean temperature difference between cold fluid (water) and hot fluid (combustion gases). 

In a solar/gas hybrid water heating system where a solar collector is used in conjunction with a gas-fired heater, the 

partial heating of water provided by the solar input reduces the log-mean temperature difference value for gas heater, 

reducing the efficiency of gas burner. Since this efficiency reduction varies depending on the amount of pre-heating 

provided by solar input, it is difficult to accurately predict the actual cost and energy savings offered by a solar/gas 

hybrid water heater. Hence, to predict the actual energy and cost savings under various design conditions, the 

performance of solar/gas hybrid systems must be better understood. The purpose of this work is to experimentally 

determine the thermal performance of a solar/gas water hybrid water heating system with a 6.44 m2 flat plate solar 

collector array and a 22.3 kW natural gas burner. Under different temperature lifts and solar insolation values, the 

system was operated at three different modes of heating: solar, gas, and combined solar/gas mode. Efficiency value 

for each mode is calculated. Based on the experimental efficiency results, a configuration that would provide higher 

efficiency for combined solar/gas heating is suggested.  

1. INTRODUCTION 

Solar water heating systems (SWHS) are a simple and cost-effective renewable technology for harnessing the sun’s 

energy to generate hot water. A SWHS typically consists of a solar collector, a hot water storage tank, and a control 

system. The operating principle is that the solar collector absorbs the incident solar radiation and transfers the energy 

to a working fluid flowing inside the collector tubes. The energy carried by the working fluid can be used either 

directly in the form of hot water, or to charge a thermal energy storage tank from where energy can be drawn for use 

later. A flat-plate collector (FPC) is the most common type of solar collector used for harvesting solar energy at 

relatively low fluid temperatures, and has seen commercial application around the world (Duffie & Beckman, 2013). 

It consists of a selective flat plate absorber covered by a transparent glass or plastic cover (glazing), tubes to circulate 

the heat transfer fluid within the body of the collector, and insulation to minimize heat loss from the sides and bottom 

of the absorber plate (Kalogirou, 2013).  The percentage of water heating energy required by a household that is 

provided by the solar collectors is quantified in terms of solar fraction (Kalogirou, 2013). Due to the diurnal and 

seasonal variation of available solar energy, an auxiliary heating source is generally necessary to provide backup 

heating whenever solar energy fails to meet the hot water demand (Duffie & Beckman, 2013). Electric resistance 

heaters are the most commonly used backup energy source.  

Numerous experimental studies have been carried out over the years to analyze the thermal performance of FPCs 

under real weather conditions. Rodriguez-Hidalgo et al. (2012) carried out an experimental study of a 50 m2 FPC in 

Madrid, Spain to quantify the sensitivity of instantaneous thermal performance of solar collectors to the following 

factors: wind thermal loss, collector aging, thermal capacitance, irradiance incidence angle, and radiation losses. 

Michaelides & Eleftheriou (2011) studied the thermal performance of a solar water heating system with a 3 m2 FPC 

and 68 L storage tank under real weather conditions in Cyprus for 2 years and found that the annual average daily 

performance of the system was relatively insensitive to solar radiation fluctuations ranging from 800 to 1100 W m-2. 

Ayompe & Duffy (2013) experimentally measured the thermal performance of a solar water heating system with 4 m2 
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FPCs located in Dublin, Ireland and reported annual average daily solar fraction of 32.2%, collector efficiency of 

45.6%, and overall system efficiency of 37.8%.  In all above-mentioned studies, an electric immersion heater is used 

as the auxiliary energy source. Electric resistance heaters are nearly 100% efficient, meaning all the input electric 

energy is converted into heat and supplied to the water. This conversion efficiency is not dependent on the temperature 

of the heated water. Since the efficiency of electric heating is constant, it is straight-forward to predict the cost and 

energy of the required auxiliary energy if the solar fraction is known. However, with natural gas-fired water heating 

systems, the efficiency varies depending on the amount of heat transferred in the heat exchanger, which is directly 

impacted by the temperature difference between cold fluid (water) and hot fluid (combustion gases).  

Presently, the cost of natural gas in US is below the cost of electricity on a kWh-to-kWh basis (EIA, 2018), making 

natural gas backup an attractive option in terms of auxiliary energy cost. Furthermore, depending on the feedstock for 

generating electricity, there may be advantages from carbon emissions and primary energy consumption perspectives 

in obtaining auxiliary heating directly with gas (Fronk & Keinath, 2017). However, previous studies (ASHRAE, 2008; 

Maguire, 2012; Makaire & Ngendakumana, 2010) have shown that the efficiency of gas-fired water heaters decreases 

with increase in inlet water temperature. This is because with increase in inlet water temperature, the temperature 

driving force between the combustion gases and tank water decreases, reducing the heat transfer rate. In a solar/gas 

hybrid water heating system where a solar collector is used in conjunction with a gas-fired heater, the partial heating 

of process fluid provided by the solar input reduces the log-mean temperature difference (LMTD) value for the gas 

heater, reducing the efficiency of the gas burner. Therefore, lower overall system efficiency than expected may be 

observed while running a solar/gas hybrid water heating system in a combined solar/gas mode. Since this efficiency 

varies depending on the amount of pre-heating provided by solar input, it is more challenging to accurately predict the 

actual cost and energy savings offered by a solar/gas water heater.   

Hence, to predict the actual energy and cost savings under various design conditions, the performance of solar/gas 

hybrid systems must be better understood. The objective of this work is to experimentally determine the thermal 

performance of a commercial solar/gas water hybrid water heating system with a 6.44 m2 flat plate solar collector 

array and a 22.3 kW natural gas burner under representative operating conditions. The system was operated at three 

different modes of heating: solar only, gas only, and combined solar/gas mode for different temperature lifts and solar 

insolation values. Efficiency values for each mode were calculated. Based on the experimental efficiency results, a 

potential configuration that would provide optimal efficiency for the combined solar/gas mode of heating is suggested. 

2. EXPERIMENTAL SETUP AND DATA REDUCTION METHODS 

2.1 Experimental Setup 
An active closed loop hybrid solar thermal water heating system (STWHS) installed on a campus building at Oregon 

State University in Corvallis, Oregon (44.56° N, 123.27° W), provides the basis for this experimental study. The 

STWHS consists of a 6.44 m2 FPC array, a 265 L hot water storage tank, a solar pump, and a commercial control unit. 

The collector array consists of three Schüco Slim V plus FPCs, each with gross area of 2.32 m2, connected in series. 

The collectors are facing south and are inclined at 45 degrees. Each collector has zero loss efficiency rating of 76.7%. 

The collector heat loss coefficient values, k1 and k2, are defined to be 3.71 and 0.016 Wm-2 K-1, respectively. The 

absorber plate is made up of copper tubes covered with high selectivity coating that has short-wave absorptivity of 

95% and long wave emissivity of 5%. Each collector is covered by a 4-mm thick low iron glazing of 91% 

transmittance. The side and bottom of the collectors are insulated with a 20-mm mineral wool insulation. The 

maximum operating temperature and pressure of the collectors are 120°C and 10 bars, respectively. The storage tank 

is a Schüco S WW 70-1GPN model, made up of stainless steel. It is equipped with an auxiliary 22.27 kW natural gas 

burner, which has manufacture specified burner efficiency rating of 80% defined using lower heating value. The tank 

contains an immersed solar heating coil that allow heat transfer between the solar fluid and potable water. The solar 

coil has heat transfer surface area of 1.31 m2.  

A schematic of the experimental setup is reported in Figure 1. A solution of propylene glycol (40% propylene glycol 

by mass) is used as the heat transfer fluid to provide freeze protection during colder months. The glycol water mixture 

is pumped through the FPC array, where it absorbs the incoming solar radiation. The hot glycol water mixture then 

passes through the solar heating coils inside the storage tank where it exchanges heat with the tank water. The natural 

gas burner is turned on to top up the tank temperature whenever the solar energy is insufficient to heat the tank to the 

required temperature of 60±0.5°C. The hot water draw-off system consists of four solenoid valves connected in 

parallel, each with a different flow restrictor. The array of valves can be actuated in different combinations to achieve 

15 distinct flowrates ranging from 0.94 to 16 liters per minute. This arrangement provides the capability to simulate 
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actual residential hot water draws. The operation and closing operation of the valves is controlled by a program written 

in LabVIEW software. 

 

Figure 1: Schematic diagram of the experimental setup 

2.2 Instrumentation 
The STWHS is equipped with a HOBO U30 station for monitoring and data logging sensors at a specific time interval. 

The HOBO station is configured with 14 data channels via a plug-in modular connector. The following system 

parameters are data logged: global solar radiation, collector outlet temperature, temperature of glycol water mixture 

at the inlet and outlet of the solar coil, water temperature at the top and bottom of the storage tank, cold water (city) 

inlet temperature, delivered hot water exit temperature, volumetric flow rate of glycol water mixture, and volumetric 

flow rate of natural gas.  

A summary of all instruments data logged is provided in Table 1. All sensors were sampled at a 10-second interval. 

Physical properties of the fluid, such as density and specific heat capacity, were calculated at the corresponding fluid 

temperature. Energy and system efficiency values were calculated using the instantaneous experimental data collected 

under the outdoor conditions. To smooth out the short-term fluctuations of the collected data, a 25-minute rolling 

average of the measured values was used in the data analysis.  

Table 1: Summary of measuring instruments.  

Parameter measured Sensor type Sensor make/model Measurement uncertainty 

Glycol supply temperature Thermistor METRIMA SVM TDA ±0.15% (±0.02°C)  

Glycol return temperature Thermistor METRIMA SVM TDA ±0.15% (±0.02°C) 

Tank water inlet temperature Thermistor ONSET S-TMB-M002 ±0.2°C for 0 to 50°C 

Hot water exit temperature Thermistor ONSET S-TMB-M002 ±0.2°C for 0 to 50°C 

Solar radiation Pyranometer S-LIB-M003 ±5% (±10 W m-2 ) 

Volumetric flow rate of glycol - METRIMA SVM F2 ±0.35% 

Natural gas flow rate Diaphragm meter AC-250 - 

3 PERFORMANCE METRICS 

System performance data were collected for three different modes of operation: solar energy mode, natural gas energy 

mode, and hybrid (solar and natural gas) mode. The following performance metrics were calculated: energy delivered 

to the water tank, solar fraction, collector system efficiency, gas burner efficiency, and hybrid system efficiency.  

3.1 Solar Mode of Operation 
In this mode of operation, water inside the storage tank is heated using solar energy only. The rate of useful energy 

delivered by the solar fluid to the storage tank is calculated as (Duffie & Beckman, 2013): 

  ��� = �� ��,	(�� − ���) (1) 
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The collector system efficiency is calculated as shown in Equation 2 (Duffie & Beckman, 2013). This efficiency 

includes not only the efficiency of the collector itself, but also heat losses between the collector and storage tank, 

and the effectiveness of the solar heat exchanger located inside the storage tank. 

 �� = �� ��,	���� − �������  
(2) 

3.2 Natural Gas Mode of Operation 
In this mode of operation, water inside the tank is heated using natural gas energy. As reported by (Aldrich, 2016), 

the efficiency of a gas burner is calculated as:  

  ������� = ���,�(�� − ���)�	 � ∗ "�  
(3) 

In this study, efficiency values are presented for both the higher and lower heating value of natural gas.  

3.3 Hybrid Mode of Operation 
In this mode of operation, water inside the storage tank is heated using both solar and natural gas energy. Solar fraction 

in a hybrid mode is calculated as (Kalogirou, 2013): 

 # = ���$ ����$ � + � �&$ �' 
(4) 

3.4 Uncertainty Analysis 
In many cases, the desired result of a physical experiment is not directly measured but is derived using one or more 

directly measured variables. If a physical quantity Y is a function of n variables, X1, X2…, Xn, that are measured 

separately, assuming the measured variables as uncorrelated and random, the combined uncertainty of the derived 

quantity Y can be calculated as (Taylor & Kuyatt, 1994): 

 () = *+ , -.-/01 (23   1   �
56  

(5) 

where 7 8'8&39 represents the partial derivative of the function #(:;, :1, … :�) with respect to the variable : and (23    

represents the standard deviation of the measured variable :. Using this uncertainty propagation method, the 

uncertainty of derived variables, efficiency of collector and gas-heater efficiency, is calculated using built in 

capabilities of the Engineering Equation Solver software and reported in the following sections.    

4 RESULTS AND DISCUSSIONS 

4.1 Solar only heating mode 
The efficiency of the solar collector heating system was measured at three initial tank temperatures of 20, 30, and 

51.5°C. The final temperature in all cases was 60°C. These three cases are intended to simulate system performance 

for a full tank discharge and reheat (∆T = 40°C), recovery from a larger draw (∆T = 30°C), and recovery from a small 

draw or standby losses (∆T = 8.5°C). A summary of the results of the solar tests is shown in Table 2. Using the 

uncertainty propagation discussed above, the maximum uncertainty in the calculated efficiency was ±0.09%. 

 

Figure 2 shows the solar radiation, mass flow rate of glycol, temperature difference between the glycol inlet and outlet 

temperature in the in-tank solar coil, tank water temperature, and collector heating system efficiency curve for a typical 

summer day (8/22/2017) with the storage tank initially at 20°C. Data is presented with a 25-minute rolling average 

applied. In this experimental run, it took approximately 6.32 hours to heat the tank water to required temperature of 

60°C. 

Table 2: Summary of solar tests 

Initial Tank 

Temperature (±0.2°C) 

Range of Incident Solar 

Flux (±10 W m-2) 

Number of 

Experiments Run 

Range of Time to 

Heat Tank (hrs.) 

Range of Overall 

Efficiency (%) 

20 780 to 860 4 5.07 to 6.45 41.8 to 43.2 

30 916 to 935 4 3.72 to 4.53 38.9 to 40.5 

51.5 862 to 926 4 1.15 to 2.45 34.9 to 35.2 

The measured average solar radiation for the period of the experiment was 780 W m-2. Depending on the intensity of 

solar radiation and the temperature of the water glycol fluid, the solar fluid mass flow rate varied between 42.5 and 
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63.7 g s-1, with an average mass flow rate of 58.7 g s-1. The average temperature difference between the glycol water 

mixture at the inlet and outlet of the tank solar coil was measured to be 10.15°C. The average efficiency of the collector 

heating system (defined by Equation 2) was found to be 41.83 %. The average efficiency is defined as the sum of all 

instantaneous (at every 10 seconds interval) efficiencies divided by the total number of data points during the solar 

heating time.   

During the first few minutes of the test, the pump circulated the stagnant glycol water mixture to the water storage 

tank that had been pre-heated in the collector loop to a high temperature. This resulted in a larger than expected solar 

fluid temperature difference �=>?@A @, ��� − ��� in the first few minutes of the test and the unusual spike at the 

beginning of the efficiency curve shown in Figure 2. Once the stagnant glycol water mixture was fully circulated, the 

solar fluid temperature difference value became stable and representative of the instantaneous solar radiation. 

 

Figure 2: 25-minute rolling average of the collector system efficiency 

For a steady-state operating conditions, the useful energy collected by an FPC under near normal incidence angle of 

solar radiation is calculated using Hottel-Whillier-Bliss equation as reported by (Duffie & Beckman, 2013): 

 �� = BC��[��(EF) − (G(� − � )] (6) 

As per Equation 6, an FPC would collect the maximum possible energy if the temperature of fluid entering the collector 

(�) were always at a minimum possible temperature, or in other words, if the term (� − � ) in Equation 6 was closer 

to zero. However, the temperature of the fluid entering the collector is not a design variable and cannot be controlled 

(Klein & Beckman, 1979). If we assume negligible piping heat loss and efficient heat exchange between the solar 

fluid and water, the collector fluid inlet temperature will be nearly equal to the storage tank temperature (Klein & 

Beckman, 1979). As the collector fluid inlet temperature increases, the collector heat loss value increases, and hence 

less energy is collected. Moreover, in real life operating conditions, we cannot assume a constant heat transfer rate 

between solar fluid and water. With an increase in tank water temperature and an approximately constant collector 

outlet temperature, the LMTD between the solar fluid and tank water decreases, reducing the efficiency of solar heat 

exchangers. For these two reasons, the efficiency of the collector heating decreases with an increase in tank water 

temperature. This efficiency reduction was experimentally observed.   

Figure 3 shows the average daily efficiency of the solar collector heating system for all four tests at different initial 

tank water temperatures and a final tank temperature of 60°C. Taking into consideration that the average collector 

efficiency does not change significantly with change in solar radiation for a range of 800 to 1100 W m-2 (Michaelides 

& Eleftheriou, 2011), it is seen that the efficiency of the collector heating system decreased with an increase in tank 

water temperature. The efficiency of the collector heating system to completely heat water to 60°C was found to be 

42.01±0.09%, 39.82±0.08%, and 35.05±0.07% at initial water temperature of 20, 30, and 51.5 ±0.2°C, respectively. 

The reduction in efficiency with increasing inlet water temperature was expected and agrees with the trends cited in 

the previous literature reported by (You & Hu, 2002) and (Celuppi et al., 2014). 
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Figure 2: Collector system efficiency at different tank water temperatures 

4.2 Natural gas burner efficiency at different initial water temperatures 
Using natural gas only, the tank water was heated until a final temperature of 60 ± 0.2°C from three different inlet 

temperatures. Using Equation 3, the efficiency of the gas burner was calculated and reported in terms of higher heating 

value (HHV) and lower heating value (LHV) of natural gas. The higher and lower heating value of natural gas used 

in the calculation were 52.22 and 47.14 MJ kg-1, respectively (Boundy et al., 2011).  The efficiency of the gas burner 

was found to be 69.20±0.14%, 66.41±0.13%, and 65.51±0.12% using HHV and 76.15±0.15%, 73.59±0.14%, and 

72.60±0.14% using LHV for starting water temperatures of 20, 30, and 51.5±0.2°C, respectively.  

Figure 3 shows the relationship between the gas burner efficiency and starting tank water temperature. It is seen that 

the efficiency of the gas burner is highest at an initial temperature of 20°C and, as expected, decreases with increases 

in initial tank water temperature. As the tank water temperature increases, the driving temperature difference (LMTD) 

decreases, decreasing the rate of heat transfer between combustion gases and water, and hence, reducing the gas burner 

efficiency. This efficiency reduction trend was expected and agrees with the trends cited in the previous literatures 

reported by (Maguire, 2012) and (Makaire & Ngendakumana, 2010).  

 

Figure 3: Natural gas burner efficiency for three different tank water temperatures 

4.3 Combined Solar and natural gas 
In the combined mode of heating, tank water initially at 20±0.2°C was heated to 60±0.2°C using both solar and natural 

gas energy, simultaneously. Four different solar radiation values representative of typical summer weather conditions 

in Corvallis, Oregon were used to analyze the performance of hybrid solar/gas heating system. They consisted of 

heavily clouded sky (8/24/2017, 11:37 am to 12:34 pm), overcast sky (8/16/2017, 3:57 pm to 4:49 pm), clear sky 

(8/17/2017, 12:04 pm to 12:54 pm), and intermittent cloud covered sky (8/14/2017, 1:30 pm to 2:05 pm). The average 

solar radiation measured during the tests were: 489±10 W/m2 on the heavily clouded day, 616±10 W/m2 on the 
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overcast day, 973±10 W/m2 on the clear sky day, and 787±10 w/m2 on the intermittent cloud covered day. Figure 5 

shows the solar fraction and natural gas contribution at above-mentioned four solar radiation values. It is seen that 

with an increase in average solar radiation value, a larger solar fraction is achieved, and hence less natural gas energy 

is required. However, as the solar fraction increases, and the energy contributed by natural gas decreases, the efficiency 

of the gas burner also decreases due to the reduction in LMTD, as discussed above. Based on the higher heating value 

of natural gas, the gas burner efficiency was found to be 69.08, 66.80, 66.17, and 65.18% at solar fractions of 4.93, 

9.40, 11.39, and 14.27%, respectively.   

 

Figure 4: Solar fraction at different solar radiation values 

This set of experiments was conducted using the baseline control strategy where both natural gas and solar energy 

were used together to minimize tank heating time. In a real application, one may institute more sophisticated controls 

to use solar energy to heat the tank to as high a temperature as possible, and then use gas to finish heating, thus 

increasing the solar fraction. However, even using this control strategy would result in lower burner efficiency due to 

the decreased LMTD.  

5 POTENTIAL IMPROVEMENTS OF HYBRID SYSTEM 

According to ASHRAE (ASHRAE, 2011), the annual domestic hot water (60°C) demand of a typical US family is 

86,140 liters. Using the experimental burner efficiency values, the volume of natural gas consumed by the solar/gas 

hybrid system to satisfy this hot water demand for varying initial tank temperatures and solar fractions was 

approximated. Three inlet tank water temperature (20, 30, and 51.5°C) scenarios were considered. The final water 

temperature was assumed to be 60°C. For each inlet temperature, five different solar fractions (0, 25, 50, 75, and 

100%) were assumed and the volume of natural gas consumed at corresponding solar fraction was calculated as: 

 �	 � = (1 − #) ���,�(�� − ���)������� ∗ "�  
      

(7) 

The average volume of natural gas consumed by the hybrid system per degree temperature rise is shown in Table 3 

below. It is seen that for a higher initial tank water temperature, a larger amount of natural gas is required per degree 

temperature rise. Hence, it is clear that lower inlet water temperature is desired to maximize gas burner efficiency and 

overall hybrid system efficiency.  

Based on the experimental study of the performance of the solar/gas hybrid system, there is clearly an opportunity to 

explore new system configurations that maximize solar fraction while also maximizing the efficiency of the gas 

auxiliary unit. Under the current operation configuration of the hybrid system, the solar fraction can be maximized by 

using solar energy to heat the storage tank water to the required temperature, and when the solar input is not sufficient, 

auxiliary gas burner turns on to top up the tank water temperature. However, as observed experimentally, the efficiency 

of the gas burner decreases at higher starting water temperature, resulting in higher gas consumption. So, to avoid this 

inefficiency, it is suggested that instead of heating pre-heated tank water, the incoming cold water should be heated 

separately by the gas burner and mixed with the hot water exiting the solar storage tank. This can be achieved by using 

a tankless gas-fired water heater and a thermostatic mixing valve as shown in Figure 6. A storage gas heater can be 
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used as an alternative to instantaneous burner. However, tankless water heaters have higher combustion efficiencies 

and eliminate standby losses that are common to storage type water heaters (Hoeschele & Springer, 2008).  

The operation of the thermostatic mixing valve can be controlled by using temperature sensors. A thermal-sensitive 

mechanism within the valve’s body automatically proportions the amount of hot water coming out of the solar heater 

and gas burner. The valve can be programmed in a way that when the temperature of water exiting the solar tank falls 

below a minimum required temperature, the gas burner turns on to produce the required temperature blend. As 

observed experimentally, solar energy is usually enough to completely heat the tank to the required temperature during 

summer months. In summer, a hot water draw usually can be made from solar storage tank alone. In contrast to this, 

solar fraction is typically low during winter months. So, a major proportion of hot water demand would be provided 

by gas heater during winter.  

 

Figure 6: Proposed operation configuration 

The volumes of natural gas consumed by the solar/gas hybrid system under the current and proposed configurations 

to satisfy annual hot water demand for a typical US family were calculated using Equation 7 and shown in Figure 7. 

Two gas burner types, a tankless instantaneous gas burner and the existing storage type gas burner, were considered 

under the proposed configuration. The tank inlet water temperature and final water temperature were assumed to be 

20 and 60°C, respectively. Five different solar fractions (0, 25, 50, 75, and 100%) were assumed. It is seen that less 

natural gas is consumed under the proposed configuration for both instantaneous and existing burner compared to 

current configuration, particularly in low and midrange (0 to 25%) of solar fraction, which is typical of winter or 

spring season operation. Under the proposed configuration, the gas burner is always heating incoming cold water, thus 

operating at maximum possible efficiency. Savings offered by the proposed configuration with an instantaneous gas 

burner are higher than with the existing gas burner because of the higher thermal efficiency (Healy, 2015). The initial 

installation cost of the instantaneous gas-fired water heater is usually higher than traditional storage water heater. But, 

instantaneous water heaters typically last longer and have lower energy costs, which could justify its higher installation 

cost.  

Table 3: Natural gas consumption in cubic meters per degree Celsius temperature rise 

Solar fraction 

(%) 

At 20 °C At 30 °C At 51.5 °C 

Burner efficiency = 69.23% Burner efficiency = 66.43% Burner efficiency = 65.50% 

0 12.82 13.36 13.55 

0.25 9.61 10.02 10.16 

0.5 6.41 6.68 6.77 

0.75 3.20 3.34 3.39 

1 0.00 0.00 0.00 
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Figure 7: Approximate annual volume of natural gas consumed by the hybrid system under current and proposed 

configuration 

6 CONCLUSION 

Performance of a solar/gas hybrid water heating system installed in Corvallis, Oregon was monitored for typical 

summer weather conditions. The hybrid system was operated using three different modes of heating: solar, gas, and 

combined solar/gas mode, using different temperature lifts and solar insolation values. In the solar heating mode, the 

efficiency of the collector heating system was found to be 41.97%, 39.82%, and 35.05% at starting water temperatures 

of 20, 30, and 51.5°C, respectively. For the natural gas heating mode, the starting tank water temperature was found 

to have a significant impact on the efficiency of the gas burner. For starting tank water temperatures of 20, 30, and 

51.5°C, the efficiency of the gas burner was found to be 69.2%, 66.4%, and 65.5% at the HHV and 76.7%, 73.6%, 

and 72.6%, respectively, at the LHV of natural gas.  In the combined solar/gas heating mode, the gas burner efficiency 

decreased with increases in solar fraction. For solar fractions of 4.93, 9.40, 11.39, and 14.27%, the gas burner 

efficiency was found to be 69.08, 66.8, 66.17, and 65.18 %, respectively, in terms of the HHV of natural gas. Based 

on experimental observations of the hybrid system, a configuration with better thermal performance is suggested 

where incoming cold water is heated separately and mixed with the solar tank water using a thermostatic mixer.  

NOMENCLATURE AC Collector aperture area  (m2) CP Specific heat  (J kg-1 K-1) FR  Collector heat removal factor  - Gt Solar irradiance  (W m-2) UL Collector overall heat transfer coefficient  (W m-2 C-1) T Temperature  (°C) ��  Mass flow rate  (kg s-1) ��  Rate of energy  (J s-1) V Volume  (m3) HV Heating value  (kJ m-3) Q Energy  (J) F Solar fraction  (%) A Area of heat exchanger  (m2) U Heat exchanger overall heat transfer coefficient (W m-2 C-1) LMTD Logarithmic mean temperature difference  (°C) 
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Greek � Efficiency E Transmittance α Absorptance  

 

Subscripts U Useful D Delivered I Inlet S System A Ambient Burner Natural gas burner G Glycol W Water Co Collector outlet Ini Initial Ci Collector inlet Fin Final Fi Fluid inlet Gas Natural gas Fo Fluid outlet Solar Solar heating system C Collected auxiliary Auxiliary heating system 
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