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ABSTRACT

Aghagolzadeh, Sabzali. Ph.D., Purdue University, August 1991. Blockwise 
Transform Image Coding, Enhancement and Edge. Detection. Major Professor: 
Okan K. Ersoy.

The goal of this thesis is high quality image coding, enhancement and 

edge detection. A unified approach using novel fast transforms is developed to 

achieve all three objectives. Requirements are low bit rate, low complexity of 

implementation and parallel processing. The last requirement is achieved by 

processing the image in small blocks such that all blocks can be processed 

simultaneously. This is similar to biological vision. A major issue is to minimize 

the resulting block effects. This is done by using proper transforms and possi

bly an overlap-save technique. The bit rate in image coding is minimized by 

developing new results in optimal adaptive multistage transform coding. Newly 

developed fast trigonometric transforms are also utilized and compared for 

transform coding, image enhancement and edge detection. Both image 

enhancement and edge detection involve generalised bandpass filtering wit 

fast transforms. The algorithms have been developed with special attention to 

the properties of biological vision systems.



This thesis is concerned with blockwise multistage transform image 
coding, transform image enhancement and edge detection techniques. Special 
emphasis is given to develop algorithms which perform similarly to the human 

' v i s u a l ' s y s t e m . . V ;-a-a .,A-v
Image coding is a process or a sequence ©f processes in order Ito reduce 

the total: number pT bits in image representation, and simultaneously to 
minimize the degradation of the decoded image. Image coding has applications 
in efficient image communications and storage. Many different methods and 
techniques have been reported in literature, and some good surveys can be 
found in Refs. [1,2,3]. In general, all techniques can be grouped in two major 
categories: predictive coding and transform coding. Predictive coding 
techniques are carried out in the spatial (image) domain, while transform 
techniques, in contrast, are applied in the transform (frequency or sequency) 
domain. In predictive coding, the correlation between adjacent pixels is used 
to estimate or to predict the incoming pixel value, given values of the past 
pixels. In transform coding, the image is firsttransformed;thenquantization, 
to be explained later, is applied; and finally in the decoding process, the 
quantized image is inverse transformed back to the image domain. It is also 
possible to combine these two categories in so called hybrid coding, which 
exploits the advantages of both approaches to achieve better results.

Image enhancement consists of methods to enhance some desired 
features in a given image, either to make the image more satisfactory to the 
viewer or to help the machine or the human being to find and classify relevant 
image features easily and efficiently. A survey of digital image enhancement 
methods can be found in Ref. [4]. One class of image enhancement methods 
includes gray scale modification, deblurring and smoothing. Transform 
techniques form another class and are among the major topics in this research. 
Since both transform coding and transform enhancement require applying 
transform to the image, it would be very efficient, in the sense of 
computational complexity, to perform both together with good match between



successive processes when both processing are desired to be applied.
Transform edge detection is also studied to understand its 

compatibility With blbckwise processing and transform image coding and 
enhancement. A major issue is whether edge detection is compatible with 
transform image enhancement and whether they can all be done blockwise
effectively together with image coding.

The outline of this thesis is as follows: Chapter I discusses briefly the 
codihg methods, particularly, transform coding, and some basic concepts for 
cOdingj such as quantization and adaptive transforna coding, a survey Of linage 
enhancement inethOds in the spatial domain and edge detection.

In Chapter 2, an optimal method is developed for adaptive multistage 
image transform coding. It is shown that considerable ImprOyettient can be 
achieved with little increase in the complexity of coding processes.

Chapter 3 introduces some fast relevant transforms for image
enhancement and involves comparative experimental results with three 
transform enhancement techniques.

Transform edge detection is discussed in Chapter 4. It is shown that 
different fast transforms can be used for edge detection with considerably good
quality results and low computational Complexity as well as parallelism 
through simultaneous processing of blocks. Experimental results are compared 
to other edge detection techniques based on bandpass filtering.

Finally, in Chapter 5, the conclusions and the future research topics as 
an extension of the present research results are discussed.



CHAPTER I ;■ /■
A REVIEW OF BASIC PRINCIPLES

This chapter discusses coding methods, particularly, transform coding. 
Some basic concepts for coding such as adaptive transform coding and 
quantization are reviewed. The chapter also includes a brief discussion of 
image/enEancemant:'in '̂thq:^pntial''doinaih, the properties of the human visual 
system, and edge detection.

1.1 Predictive Codingv

In predictive coding the strong correlation between adjacent pixels, 
either in the spatiai domain P r  in the temporal domain, is exploited. 
Predictive coding attempts to estimate or to predict approximately the pixel 
values to be coded from the available information about the previously coded 
pixels. Then the difference or the error in prediction is quantized and coded. In
the decoding procedure, the parameters of the prediction and the decoded 
difference signal are used to reconstruct the pixel value. If the difference signal 
is coded with 2 levels (I bit per sample) the predictive coding is called delta 
modulation (DM). Otherwise, with higher number of levels, it is called 
differential pulse code modulation (DP CM). In general, performance of the DM 
coding depends on the quantizer step size. Large step size is good for following 
large transitions in the image such as sharp edges, but high quantization noise 
in flat areas results. On the other hand, small step size results In less 
quantization noise in flat areas, but the image is smoothed and sharp edges is
smeared off. In order to solve this problem, the step size can be made adaptive
with respect to the local signal values in a very small neighborhood based on
the slope of the signal or some previously coded bits. For DPCM coding, there
is no such problem since large number of bits (or levels) is used for quantizing
the difference signal. In general, there are many different kind of predictors for



both DM and DPCM coding. Some of them are linhar predictor; intrafield 
predictor, in ter frame predictor, motion estimator, block matching, etc. [5].

1.2 Transform Coding

Transfcrm coding forms anpther class of coding. In transform coding 
the signal is first transformed to another domain, usually Called frequency or 
spectral domain dr transform domain, by a linear (not necessarily unitary) 
transformation. This transformation provides'..less correlated coefficients in the 
specttal domain that can be quantized independently.Another characteristic 
of Such a transformation is that it packs most signal energy ip a few 
coefficients in the spectral domain. Two measures of efficiency of a given 
transform is the degree of decorrelation and the degree of energy packing.

The optimal transform in this regard is the Karhunen-Loeve transform 
(KLT) [ft].,-' Unfortunately, the basis for this? transform are signal dependent 
and it is difficult to compute them in real time. However there are other 
transforms which are very close tb the KLT and easier to be implemented. 
Some of these transforms are the discrete Fourier transform (DFT), the 
Walsh-Hadamard transform (WHT) [7], the discrete cosine transform (DCT)
[8], the scrambled real discrete Fourier transform (SRDFT) [9] and the 
discrete cosine-HI transform (DC3T) [10]. These transforms are described in 
the following chapters.

Transform coding gives better performance in the sense of compression 
and reconstruction error, however it does involve more computational 
complexity. For reducing the computational complexity, fast transforms haVe 
been developed for the above transforms. In general, transform coding is 
preferred to predictive coding for bit rates below 2 or 3 bits per pixel. Like 
predictive coding, some adaptive methods have been developed for transform 
coding in order to increase the efficiency, and they are discussed in the 
following section in this chapter.

Almost any natural image has areaa with different amount of details, 
i.eM different distributions for its pixel values. Some have flat areas with little
' ', 'V  V V fV .v''V; V‘ . . : ' V  ;;  ";V'- ' . - V - . . ; , ' ... -v, ’ - _ JV'/:‘V
difference in pixel values and easily can be coded by a few bits, and others 
may have sharp edges in different directions and more bits are required to 
code them. These regions are called low or high "activity" regions, respectively. 
For more efficiency, the characteristics of these regions are exploited. This is



one reason why transform image coding is usually carried outinblocks. For
this purpose the image is divided into square blocks of size usually equal to an 
integral power of 2 (4,8,16,...), and then each block is transformed 
independently. The transform coefficients of each block fall in either low or 
high 'activity'' classes. There are some problems to be considered in this 
procedure. First, If the block size is too small, correlations among pixels are 
Eoi^prpperIy usedCorrelations affioiig pixels exist up to a distance around 
10-20 pixels, depending on the degree of activity, the kind of image, and the 
kind of sampling. Secondly, with decreasing block size, the number of blocks 
for a given image is increased, and this problem increases the number of bits 
for overhead information which needs to be transmitted. On the other hand, 
small block size reduces thecomplexity of implementing .Another problem is 
that, at low bit rates, block effects become visible. These considerations lead to 
block sizes such as 8,16, or 32.

1.3 Adaptive Transform Coding

There are a number of adaptive schemes for transform image coding. 
Adaptive techniques increase the efficiency of coding but also increase the 
complexity of implementation. Adaptivity may be applied to the selection of 
transform [ll], the number of coefficients to be coded (zonal coding), the value 
of coefficients to be coded (threshold coding), or the kind of quantizer and 
quahtizer levels. Here, we discuss a well-known adaptive method developed by 
Chen and Smith [13], which is also used in Chapter 2 for coding. This method 
is very efficient in both monochrdme and color image coding. A block diagram 
of this method is shown in Fig. 1.1. In this method, the image is divided into 
blocks of the same size, and the transform is applied to each block. Then a 
measure of "activity" for each class is calculated by adding squared values of 
all coefficients except the DC coefficient. After sorting the measured values for 
their "activity", blocks are classified into several groups, usually called classes, 
with equal number of blocks in each group. The variance of coefficients is 
estimated within each class, and based on the variance matrix, the bit 
allocation map and the normalization coefficients are found for each class. 
Then, the normalized coefficients are quantized and coded. At the receiver, 
after receiving the bit map, the class map, and the norm factor as overhead 
information, the decoding procedure is applied and finally the image pixel



Values are reconstructed by inverse transforming. This adaptive method 
increases the overhead information very little, but decreases the reconstruction 
error, in the sense of mean square error, to be explained later, as much as 
25%. ■.

; ■> *; •

1.4 Scalar Quantization

In scalar quantization, a continuous input random variable e is 
converted to a discrete Output random variable e that can take L levels, 
ri,r 2 ,...,rL. v?e define L -f I decision levels, ti,tiy...,tL+1, where usually 
ti — —oo and tb+i- — oo. Referring to Fig. (1.2), the Output e takes the Value 
of rjf if the input e is between the decision levels tj, and . The mean square 
error (MSE) forThe Cpiantizer is defined as"

.‘I" "I • OO ' , '
MSE =  E |(e — e)2j — J (e — e)2pe(e)d«

k - L tlrtl
=  E  I  ( e ~"r k ) 2 P e ( e ) d e (El)

Where pe(.) is the probability density function of e.
In order to minimize the MSEj Bq. (1.1) is:differentiatedwith respect to 

Tjc and tJc. After equating the results to zero, the following relations are found:

and

■ ■ Fl “f* Fs_.i.
tj = ----- -  for I =  1,...,L+1 (1 .2)

tHl
/  epe(e)de 
h
tl+r
/  P e ( e ) d e

h

for I == I, ...,L (1.3)
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Eqs. (1.2) and (1.3) are the necessary conditions that should be satisfied for 
the optimum mean square quantizer. Eq. (1.2) states that the input threshold 
level tj lies halfway between two adjacent output levels rj and ri+1, and Eq. 
(1.3) states that the output level rj lies at the center of mass of the probability 
density between the input levels t| andtj+1.

Eqs. (1.2) and (1.3) together form a nonlinear system of equations. 
fThey can be solved by an iterative procedure that is due to S. P. Lloyd and 
published by J, Max and called Lloyd-Max quantizer [12]. The procedure is as 
follows:

I. Choose a set of initial values for the output levels rjc, k = l,...,L.
%, Calculate the input threshold values tk, k =  1,...,L+1 by Eq. (1.2).
3. Calculate the new values for rk, k =  I ,...,L by Eq. (1.3).

■ 4. Goto thestep2,

The above algorithm can be stopped when the change in new values for rk is 
small enough to be neglected, and its success depends on the initial; chosen set.

When the probabilitydensity function, Pe(-)> is uniform, the optimum 
mean square error quantizer is called the uniform optimal quantizer, or the 
linear quantizer. In this case Eq. (1.3) has the following form

ti+t)+i
for I ^  1,...,L. (L 4)

j 1.5 Visual Blockwise Processing

The main advantages of block processing are reduced complexity of 
transforms, adaptivity to image details and parallel processing Of the blocks. It 
is interesting to compare this type of processing to the human visual system. 
Eyes can receive light from a large angle, about 120 degrees, but can not focus 
at two different points simultaneously. Thus, the angle of detailed vision is 
limited. It has been reported in Ref. [14] that the resolution of human visual 
system decreases from the center of fixation, and within a cone of 2°x2° there 
is a "fairly" good detailed vision. It can be concluded that good detailed vision
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is limited to 2° for average observers; Let us consider an example. Suppose an 
observer is watching a fairly detailed image of size 512x512 pixels with a 
physical size of 4x4 inches in a distance of 12 inches. Then the observer looks 
at a block of size 28x28 pixels within a cone angle of l°x l°. If the observer 
wants to look at another location in the image, he or she has to change the 
angle of vision, usually continuously. It is also known that the maximum 
spatial bandwidth of the human visual system is about 64 cycles/degree. All of 
these observations suggest that blockwise image processing is similar to what 
the human eyes do. In Chapter 3, more properties of human eyes will be 
considered.

1.6 Image Enhancement

Image enhancement involves processing of an image to make the image 
more satisfactory to the viewer. There are a number of techniques for digital 
image enhancement, and a survey of them can be found in Refs. [4,15]. All 
techniques can be grouped into two categories: spatial and transform domain 
techniques. A number of transform domain techniques will be discussed in 
Chapter 3. Here we briefly review some techniques in the spatial domain.

Two kinds of operations may be applied for image enhancement in the 
spatial domain: gray level scaling and spatial filtering. In gray level scaling, 
the gray level value of each pixel is mapped into another value according to a 
function f(.). The form of ttie function f(.) depends on the kind of desired 
modification, and examples of this function and their applications are given in 
Table. 1.1. Histogram equalization is one special case of gray level scaling 
techniques where the function f(.) depends on the distribution of the gray level 
values of the input image, and a uniform histogram for the output image is 
desired. In spatial filtering, the gray level value of each pixel is changed by 
local operations on neighborhoods of input pixels. Noise smoothing, median 
filtering, unsharp masking, low-pass filtering, bandpass filtering and high-pass 
filtering are some examples of this technique. For any of these methods, an 
array of numbers is used as a mask to decide the value of a pixel from the 
values of other pixels in the neighborhood. The performance of these 
techniques depends on the size of array and design of numbers in the mask 
array, and this issue was discussed in Ref. [4].



9

• : 1.7 Edge Detection

Edge detection is very useful in many applications such as image 
segmentation, registration and object identification. Edge points are pixels at 
which abrupt gray level changes occur which may reflect the change in surface 
orientation, depth or physical properties of materials. Edge detection has also 
been used in image compression in which only edges are coded. There are 
different kinds of gray level changes in real images, and therefore there is no 
single definition for edges.

There are many different methods for edge detection. The two most 
known family of edge detection algorithms are gradient-based and Laplacian- 
based methods. A survey of edge detection methods can be found in 
[27,40,66,67]. We will discuss blockwise transform edge detection methods as 
compared to other methods in Chapter 4.

1.7 Motivation for This Research

There are many applications in image processing in which image 
transmission or storage is required. Satellite communications, remote sensing, 
biomedical imaging are some examples. Regarding high demand for fine 
quality images, a large bandwidth or memory Is required to transmit or to 
store images. Also for many of the above mentioned applications* 
enhancement of original images is necessary. So it is desirable to improve the 
efficiency of coding and enhancement of images simultaneously, while reducing 
the complexity of implementation. Transform coding is considered as I a 
efficient approach to image coding. Therefore, it is interesting to improve the 
performance of image coding and image enhancement based on transform 
techniques and to investigate transform edge detection following image 
enhancement. Blockwise processing also allows real-time implementation 
through parallel processing and adaptivity. It is also similar to the properties 
of the human visual system. Thus, it is desirable to improve the performance 
of block transform coding and to implement image processing in blocks.

In transform image coding, we have developed a technique called 
optimal multistage image transform coding, which provides considerable 
improvement in performance of transform image coding. In parallel with this 
research, we investigated to improve blockwise image enhancement techniques

J



with the same fast transforms. This is followed by bloekwise transform edge 
detection. In this way, we have had the goal of developing a unified approach 
to most tasks in image processing through bloekwise fast transform processing.



Figure 1.1. Adaptive cosine transform coding system [13]
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Table 1.1. Some gray scaling functions for image enhancement [15].

I . CTontrast stretching

2. Noise clipping and 
thresholding

3. Gray scale reversal

4. Gray-level window slicing

5. Bit extraction

6. Bit removal

7. Range compression

/{« )

/(«<)

Q tt f . O . u o
P(w -  a) + , a s  u < b
YCm “ t>) + >V. h s  u < L

O1 O s u < u 
au ,' OiS J  s  6 
L1 u a b

/ ( U )  = L -  U

CL, o s ir  s  t/(*0 O1 otherwise

/ (u ) -  (/„ -  2i„ - i)L

i„ = Int|— u = 1 ,2 , , . . , B 

f { t t ) = 2u modulo (L + I), 0 s  u s  L

/(«)■= 2 ln ([ |]

V = C Iogio(I + u), u 2=0
_ _ l_  _  :

C ~ log,n(l + L)

The slopes a , P, y determine the relative 
contrast stretch.

Useful for binary of Pther images that 
have bimodaf distribution of gray 
levels. Tlie a and b define the valley 
between the peaks of the histogram. 
For a = 6 = f ,  this is called 
thresholding.

Creates digital negative of the image.

Fully illuminates pixels lying in the 
interval \a, 6) and removes the 
background.

B -  number o f bits used to represen t u 
as an integer. This extracts the n th 
most-significant bit.

Most-significant-bit removal.

Least-significant-bit removal.

Intensity tocontrast transformation.



CHAPTER 2
OPTIMAL ADAPTIVE MULTISTAGE 

IMAGE TRANSFORM CODING

2.1 Introduction

Transform coding is widely used in coding of images since it gives a 
very highcompression ratio. The effectiveness of transform coding has a? lot to 
do with the properties of decorrelating the pixel values and packing the energy 
of the signal in a few transform coefficients. Based oh these two criteria;, the
Karhunen-Loeve transform (KLT) is the optimal transform for image coding 
[16]. However, the KLT is signal dependent and difficult to compute in real 
time. The discrete cosine transform (DCT) is among the best fast transforms 
to approximate the KLT in image coding [8]. One technique for improving the 
efficiency of image coding is to apply adaptivity to the coding procedure by 
classifying image blocks in a number of classes. An efficient adaptive 
algorithm for image coding was proposed by Chen and Smith [13]-

In this chapter, we discuss an optimization technique of transform 
image coding in the form of a multistage procedure in which the error signal 
resulting from the quantization of the previous stage is input to the following 
stage. Multistage: transform coding thus involves transform domain 
quantization in a number of stages such that each stage attempts to correct 
the errors in the previous stage. The technique to be discussed is different from 
progressive image coding even though there is some degree of similarity. In 
progressive image coding, first a low-grade version of the image is sent, and 
then the image is refined by sending more information in the following stages. 
In the technique discussed in this chapter, the bits arc allocated to the pixels 
of each stage when the number of stages and the total bit rate are given . 
Consequently, the stages are coupled, unlike progressive image coding. 
However, the present technique can also be used in progressive image coding if 
each image sent is coded in multistages.

A number of different techniques for progressive image coding in both



spatial and transform domains have been discussed by Tzou [17], Wang and 
Goldberg [18,19]. In these techniques, the coefficients of each stage are
quantized by a predetermined average rate and the number of stages are 
increased until satisfactory image reconstruction is Obtained at the receiver. So 
far, no adaptive method has been reported in order to adjust the number Of 
bits for each stage based on the statistics of the coefficients of different stages, 
and for a total given bit rate.

The method to be discussed in this chapter involves optimal adaptive 
multistage transform coding with a fixed total number of bits per pixel and a 
fixed number of stages. It is optimal in the sense that it minimizes the total 
final reconstruction error with the given total number of bits and stages. The 
statistics of the coefficients in different stages are used to optimize the division 
of the total number of bits among different stages. The adaptivity introduced 
does not significantly add to the complexity of the coding system since it 
utilizes the information that is necessary for any kind of multistage transform 
coding. Simulation results have shown a considerable percentage decrease in 
reconstruction error in a large number of test images. In addition, the 
remaining error image is more noise-like than the error image in one stage 
coding, especially with reduced error around the edges. Smooth areas of the 
image look smoother with multistage coding than one Stage Coding as well. 
These are believed to be the main reasons why multistage transform coding 
gives subjectively more pleasing results than one stage coding at the same bit 
rate.

There are a number of subjective and objective error measures to 
quantify the quality of image reconstruction, but the mehn Square error (MSE) 
is the most widely used. The MSE is also the measure in this chapter to be 
used to compare experimental results. The experimental results will also be 
discussed in terma of subjective performance.

The chapter consists of 6 sections. In Sec. 2.2, the new proposed 
method is introduced, and a mathematical expression is derived for the total 
final reconstruction error which is to be minimized during bit allocation and 
coding. This expression is based on the mean square error. The optimal bit 
allocation for different stages to minimize the quantization error is explained 
in Sec. 2.3 by using the statistics of the coefficients in different stages. In Sec. 
2.4, the experimental results with the discrete cosine transform (DCT) are 
discussed with a number of images and rates, as well as with one class and 
multiclass adaptive procedures. Sec. 2.5 is discussion concerning



implementation of multistage transform coding. Sec. 2.6 is conclusions.

2.2 The MSE Functioh for the Proposed Method

The block diagram for adapt multistage transform coding is shown 
in Fig. 2.1. The transform coefficients of the first stage are assumed to have 
little correlation so th a t  they are quantized and coded independently With an 
optimal bit map for the first stage to be considered. The two dimensional 
error signal resulting from the first stage quantization is fed to the second 
stage and subsequently quantized and coded with another optimal bit map. 
This procedure is continued for the given total number of stages.

Next, we derive a mathematical expression for the total final 
reconstruction error based on the mean square error (MSE) measure. We 
assume that unitary transforms are used for transform coding. Then, the 
variance of the reconstruction error is equal to that introduced during the 
quantization of coefficients in the transform domain [20].

Referring to Fig. 2,1, the following notations are defined:

n
Ek

The number of stages.
The coefilcient matrix of size NxN as input to stage k+1, 
k = 0 ,l , . . . ,n —I.

Ek The matrix of size NxN for the quantized coeffieiejats as output 
of stage k+1, k =  0,1,...,n--l. 

ekjj : The ijth coefficientofthematrixEk,
ekjj : The ijth coefficient of the matrix Ek.
bkjj : The number of bits used to quantize ekij .
fk(bkij) : The mean square distortion function of the b^j-bit quantizer

for unity variance input (see Sec. 2.3).
The variance of e^j.

OrJtSj: The variance of ejtij.

There are different kinds of quantizers such as optimum mean square 
(Lloyd-Max) and uniform optimal quantizer [12]. The optimum mean square 
quantizer is used in this chapter. Suppose ekij and ekjj are the input and the 
output of the optimum mean square quantizer. They have the following 
properties [15]:
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E (e kij) =  E(ekjj) —*• E(ekij — ekjj) =  E(e(k+1)jj) =  O

r" - -J :

(2 .1)

E(ekijekij) =  E(ekjj) ^  E[ekij(ekij —ekij)j =O (2.2)

 ̂2 
crWj | i - f k (b kij)j

The following equation can be derivedfrom Eqs. (2.1),(2.2) and (2.3):

Ei (eWjSkij) =  E (ekij) =  OrkJj =  | l - f k(bkij )j o fJj for k =  1,2, ...,n -1 . (2.4)

Referring to Fig. 2.1, the final reconstructed image is formed by taking 
the inverse transform of (Eq +  E1 +  • • • -f En_j). Therefore the mean square 
error (MSE) is given by

(2.3)

=•I ; N - I  N- I  7 \2
MSE =  Y  E  E^e0Jj — (e0jj +  Slij +  * * * +  e^.jjjjjj . (2.5)

i“ 0 j -0

Using Eq. (2.2) and the fact that the average Value of the coefficients in each 
stage, excluding the DG Coefficient of the first stage, is zero, the following is 
obtained at stage k:

E  [  (^kij ~  .©kij ) 2] “ ^fk+ljij =  °kij “  ^kij (2.6)

Applying Eq. (2.6) to stage k+1, we have

E  I (e (k+i)ij ~  e (k+i)ij)2] =  ° fik+l)ij -  ^(k-fl)ij ° k i }  ~  ^kij ~  % + l) ij  (2 .7 )

By iterating Eq. (2.7) and using Eq. (2.4), the MSE for n stages becomes

■ - Kr''.
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Eq. (2 .8 ) is the objective function that is to be minimized in order to 
achieve the minimum mean square error. The procedure of bit allocation in 
order to minimize this function is given in the next section.

In general, an analytic expression for the quantizer error is desirable. 
Usually, such an expression is given in terms of the variance of the input 
sequence to the quantizer, the number of bits (or the number of levels) used 
for quantization, and some parameters that depend on the distribution of the 
input. A closed form expression for the MSE is very difficult to derive, and 
most reported results have been obtained either by numerical or approximate 
means. In the case of the optimum mean square (Lloyd-Max) quantizer, the 
MSE is usually expressed in the form of Hdj fk (H ij )  where fk (H ij )  is a 
function of b^j and the probability density function (pdf) of the input signal 
to the quantizer. One such expression for fk (H ij )  for Gaussian distribution is 
given by [1 2 ]

2.3 Error Models and Optimal Bit Allocation

2.21 (2-1‘96bkii) ôr Hij around 5.17
(2.9)

Another approximate model in the case of Gaussian distribution is given by
[21]
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2-1.57bkij

fk(bkij) = 2.698 2 2bky
(2 2bkij -f-0.8532)3

for bjcij ^  2.32 

for bjcjj ^  2.32
(2.10)

Some other error functions have been reported for both Gaussian and 
Laplacian distributions in Ref. [15] and is given in Table 2.1.

All of the above models are either for the Gaussian or the Laplacian 
distribution. In practice, the input to the quantizer usually has neither 
Gaussian nor Laplacian distribution exactly but some distribution dose to one 
of them.

Recently it was reported that most of AC coefficients for the first stage 
of the DCT transform have Laplacian pdf [2 2 ]. It was also mentioned that the 
DC coefficients have a pdf close to Gaussian. We performed the Kolmogorov- 
Smirnov(K-S) [23] test for the coefficients of the second stage. The results 
indicate that the 8 -bit quantization error for the DC coefficients has a pdf 
close to the uniform distribution. All the AC coefficients which have been 
allocated 2  or more bits have a pdf closest to Gaussian whereas most 
coefficients which have been allocated I bit have a pdf closest to Gaussian. Of 
course, those coefficients which have not been allocated any bit at the first 
stage have a Laplacian pdf in most cases* Overall, a large number of 
coefficients which will receive non-zero bits in the second stage have a 
Gaussian pdf. Therefore in our simulations, we assume Gaussian pdf for the 
second stage and use the error model given in Table 2 .1 .

Having the error models for each stage, the total final error given in Eq. 
(2 .8 ) can be minimized through an optimal bit allocation procedure. 
Coefficients in each stage usually have different variances, and their variances 
are also different from stage to stage, Therefore, different number of bits 
should be assigned to each coefficient. The major constraint that should be 
satisfied is that the total number of bits is fixed. There are a number of
methods for bit allocation, and they are not necessarily optimal in minimizing
the MSE. Some methods assume the number of bits to be a continuous
variable in order to get an optimal and closed form expression, but the result
has to be rounded to the nearest integer and is no longer optimal. The 
procedure for obtaining optimal non-integer number of bits was discussed in 
Ref. [24]. In this chapter, we use marginal analysis described in Ref. [25] to 
develop an optimal method with integer number of bits. The piecewise error 
models given in Table 2 .1  are strictly convex functions and guarantee that the
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global minimum is achieved. Here, we give the steps for bit allocation with 2  

stages. The generalization for more stages is straightforward. The steps 
involved in bit allocation according to marginal analysis are as follows:

1. Set bkij =  0 , for k =  0,1 and i,j =  0 , 1 , . . . ,N - 1 .
2. Calculate the marginal return,Akjj, which is the reduction in the 

total final error given by Eq. (2 .8 ) if I bit is assigned to the 
coefficient ekn, for k=0 , l ,  and i,j= l,...,N .
Allocate one bit to the coefficient ekij which has the largest marginal 
return Akij.

4. If the total number of assigned bits is equal to or greater than the 
total number of bits, stop; otherwise go to Step 2 to decide for the 
next bit.

i f f  ties happen in $tep 3, the same procedure is repeated among the coefficients 
which have the same value for Ak;j by assigning another bit to these 
coefficients and looking for the winner.

The above procedure for bit allocation can be applied to find the bit 
map that minimize the total final reconstruction error for the multistage 
transform coding if the multiclass adaptive method is not used for each stage.

deriving the estimated total final error given in Eq, (2 .8 ), we assume that 
the coefficient ejcjj is the resulting error of quantizing the coefficient e^.jjjj. On 
the other hand, if the multiclass adaptive method Is used, the class map of ! 
each stage is possibly different, so the above assumption does not hold.

For multiclasses, we introduce another method of optimization to 
minimize the total error. In this method, we first derive a relation between the 
total average rate R, and the average rate for each stage Rk, k =  0 ,...,n—I. 
When the average rate of each stage is known, the bit allocation procedure for 
each stage can be done independently. It is also possible to use different 
number of classes for the following stages since the spectra in those stages are 
more flat than the first stage.

First we will find the relation between R and Rk, k — 0 ,...,n—I for 
n == 2  (two stages). Then, we will show that for n >  3 the procedure is 
straightforward. For n =  2 , the problem is



minimize
I N—I N -I
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IN i-o j-0

crOij f0 (̂ Oij ) +  CrUj ^lO5Iij ) — 1I

i N -I N -I (  \
subject to —  53 53 boij +  b̂ y =  R. 

N i=o j-o  ̂ '

(2.11)

The variances crfij depend on the bits b0jj allocated to the first stage, 
which is not known in advance. In order to gfet hi-ound this problein, we will 
first assume that the variances of the coefficients of both stages, 
<7oij and ofij, for i,j =  1 ,...,N —I, are available. Based on this, we will derive 
the optimal bit rates for two stages. Once the rates are known, the new values 
of crfij will be computed. The process is iterated with these new values until 
the optimum point is reached. In practice, we found that two or three 
iterations are sufficient.

In the analysis, we will assume that b0ij and bjy are continuous. Since 
we are looking for an analytical expression for the rates R0 and R1, the error 
functions f0(.) and fi(.) must be known. The piecewise functions given in 
Table 2 .1  can be used for marginal analysis bit allocation, but it is not easy to 
use them in the above minimization problem. Instead, we try to approximate 
these functions with another function in the form of 
fk (bjcij) =  2 Bkbk,J , for k = 0 , 1 . We choose the single parameter Bjc such that 
the proposed function is the closest approximation to the corresponding 
piecewise model in the least mean square sense. Figs. 2 .2  and 2.3 show the 
approximation for particular Bjc. It is observed that the fit is very close. The 
problem can now be restated in the following form:

minimize —— Vj V  
N2 ^  ^

i N -I N -I
S  E
i- 0  j- 0

<  ^ 8obw +  «fu ( 2 - B‘b'» -  l)

I N -I  N -I f  V
subject to - J -  53 53 boij +  bjy — R. 

N i-o j-o v /

(2.12)

Using the Lagrange multiplier method [26] for this optimization 
problem, it it easy to show that
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I ^ l i j + ~B0

Ipg2
aOij
crIij

+  Iog2
Bn
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(2.13)

By taking the summation over i and j of both sides of Eq. (2.13), and defining
I  N -J N -I

5 T  S  S  IogacrOij
N j=0 j- 0

(2.14)

Si
i N - i  N - i

“ F S  i ]  Iog2Crfij 
JN |=o j - o

we obtain

B»i
B0 Rl + B0

Sq - Sj +  log2
Ba
Bj

where

and

v l N - 1 N—l  .
Bo =  —F  E  E  b Oij 

IN i-o  j -o

I N- I  N- I
Bi = - F  E  E  bIij

IN I=O j_o

(2,15)

' iV--‘ ■

(2.16)

(2.17)

(2.18)

Using the fact that R0 +  Rj =  R, the average rate for the first stage 
becomes

Bi
Bq +  B1 Bq +  B1

S0 — $1 +Iog2
B1

Bi (249)

Then, R1 is found as R -  R0.
Extending the above procedure to the case n — 3 is easy. Suppose we 

can approximate the error function model of the third stage by 
f2 (b2jj) — 2 -Bab2ij, for some B2 (see Sec. 2.5.) Then, similar to Eq. (2.16), the 
following equation is derived:
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where

and

B2 1

r ‘“ 7i7  Ri +  TT

j N -I  N -I
R2 =  ^  S  S  R2Ij

IN i=0 J=O

Si -  S2 +  Iog2
Bi
B2

V . J

: V1' .

I N -I N -I „
S2 =  W  E  E  iog24 j 

N i - O j - O

(2 .20)

(2.21)

(2.22)
' i - 0 j - 0

Solving Eqs. (2.18) and (2 .2 0 ) with the constraint R0 + R i + R 2 = R  results 
in the following relations for Rq and R1:

' B 1B2-''
BqB1 + BoB2 +B1B2 

B1 + B2
+

/
+

So +  Iog2
Ol

.. B i ;
lo62—  — SzB*2

and

R1 =

BqS1 + BoB2 + B1B2 

-Bi'
BqB1 + B0B2 + B1B2

■■ / ■ ■ . + , . + ■ B g v . ;
BoB1 + BqB2 + B1B2

BqB2 B2■* .' . ' ____* . .■ .... g '
BqB1 +-BoB2'+ B1Bjji . BqB1 + BqB2 + B1B2

B0 + B2 g y '+.- -y: ' V' : ■
BqB1 + BqB2 + B1B2 1 BqB1 + BqB2 + B1B2 2

(2.23)

B2
logs-

Br
B1BqB1 + B0B2 + B1B2 * B2 

Bi1 J i 1 B
+ B0B1 + B0B2 + B1B2 log2B (2.24)

AgainjR2 I s f d u n d a s R - R 0 - R 1.
The above procedure can be generalized to any number of stages. Once



the average bit rates for each stage are known, the bit allocation for each 
stage can be done independently by using marginal analysis or any other 
techniques for any desired number of classes.

2.4 Experimental Results

The multistage transform coding technique discussed above was applied 
to a set of different images of sizes 128 x 128, 256 x 256 and512x 512, shown 
in Fig. 2.4. All images were quantized with 8 bits (256 levels.) The number of 
stages used were either 2 or 3. The two-dimensional RGT was used as the 
Unitary transform. Coding was carried out with a block size of 16x16. We 
compared multistage transform coding with one stage coding. Tlie adaptive 
coding technique of Chen and Smith [13] with 4 classes was used for each 
stage. The total rates used were 1 .0 , 0.5 and 0.25 bits per pixel (bpp).

For the first stage, the optimum mean square error quantizer was used 
with the Laplacian distribution for the AC coej®cients and the Geussian 
distribution for the DC coefficients. The optimum mean square quantizer with 
Gaussian distribution fpr all the coefficients was used for the second stage. 
This choice was based on the statistical tests explained in Sec. 2.3.

For two stages with one class (without using Chen and Smith adaptive 
method), the total number of bits were allocated according to the marginal 
analysis method discussed in Sec. 2.3 to minimize the total final error function 
given by Eq. (2 -8 ). For this case, two schemes are possible. Either the 
variances of the second stage ofjj can be estimated by the known variances of 
the first stage by CrfiJ =  OoiJ fo(boij), or we can start from initial rates for the 
first and second stages and then iterate once the variances of the second stage 
are known. Our experiments showed that the second scheme is not as efficient 
as the first scheme. In addition, the first scheme is much better in terms of 
Computational cost. Therefore, we chose the first scheme. 
j! For the two stage multiclass adaptive method, we used Eq. (2.19) to 
allocate the total bits between two stages. In this case, we started with the 
initial rates R0 =  R and Ri = 0 . This choice was based on our observation 
that, for optimum rate division, R0 is usually greater than Ri . In most cases 
one or two iterations were sufficient to get the optimum rates R0 and Ri .

In all simulations, 8 bits were allocated to the DC coefficients of the 
first stage. Thus, in computing S0 with Eq. (2.14), the variance of the DC



coefficient was not included in the sum. For the same reason, 8 /N 2, which is 
the average bit rate of the DC coefficient at the first stage was subtracted 
from R in Eq. (2.19). For the second stage, the DC coefficients have an average 
close to zero, which is easily justified by Eq. (2 .1).

We calculated the MSE and the Normalized MSE (NMSE) [27] by the 
following equations:

MSE
N -I N -I

- E  E
jT0

[x(i,j) -  x(i,j)| (2.25)

NMSE

N -I N -I
E  E
i-0  j - 0

(x(i,j) -  x(i,j)]

N -I N -I (  V
E  E  m m
i -0  j - 0 V  '

(2.26)

where; x(i,j) and x(i,j) are pixel values of the original image and the 
reconstructed image; respectively. The improvement was also calculated in 
term of dB defined by

One stage Mean Square Error
10  Iog10

M u itis ta g e  M eah  Square E rror

Table 2 .2  shows the numerical results. In this table we included the 
optimum rates for each stage. In the case of two stages, the multistage 
transform coding resulted in as much as 14.65% improvement for one class 
and 11.54% improvement for 4 classes. Fig. 2.5 shows some of the 
reconstructed images using multistage image transform coding with different 
rates for both one and multiclasses. The corresponding one stage coding 
results are also shown for Comparison. It is observed that the results of 
multistage coding are more preferable than the results of one stage coding.

To compare the reconstructed images with the original images, the 
difference images were generated and are shown in Fig. 2 .6 . For better 
presentation, we generated the difference images in two different ways, which 
are referred to as method I and method II. In method I, the absolute values of 
the differences are normalized by the msaimum difference value of each 
difference image, and the results are integer Values from © to 255, with the 
brighter grey Value representing the .larger, difference, In method H, the larger 
of the maximum difference value of one stage coding and the corresponding
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two stage coding is used for normalization. It is clear from Fig. 4 .6  that the 
difference images with multistage coding are more noise-like than the 
corresponding difference images with one stage coding. In addition, the 
differences on and around the edges are less dominant with multistage coding. 
The smooth regions are also smoother, as clearly observed in the case of the 
"baboon" image, especially around the hose;

In the two stage experiments, we tested all possible combinations of R0 

and R1 for rates equal to 0.5 and 0.25 bits per pixel, and some of the results 
are shown in Figs. 2.7. It is clear that the optimum points are generally close 
to what we found by either minimizing Eq. (2 .8 ) directly for the one-class case 
or dividing the total rate by Eq. (2 .1 0 ) for the multiclass case.

We also tested three stages, at the total rate of 0.5 bpp with using 4 
classes, the Original image "girl256" shown in Fig. 2.4. The results showed 
13.88% improvement over one stage; This is 5.33% more than the 
improvement with twO stages* and the same type of improvement is expected 
for Other cases.

2.5 Discussion

As mentioned in Sec. 2.4, a large number, but not all, of coefficients in 
the second stage have a pdf close to Gaussian. Since one kind of pdf is usually 
assumed during, quantization, we chose the Gaussian pdf in Secs. 2.3 and 2.4. 
Even though, more then one choice of pdf is possible, it increases the Overhead 
information that should be known during decoding. Thus, for one kind of pdf 
assumption, we have the error of mismatch between the assumed pdf and the 
real pdf for some coefficients. This error was experimentally studied by 
Mauersberger [2 8 ]; The reported results show that the error resulting from 
using Gaussian quantizer for a random variable with Laplacian pdf is more 
than the error resulting from using Laplacian quantizer for a random variable 
With Gatiisiai pdf (assuming the same variance and number of levels.) In 
practice, the total error depends On the number of mismatch cases. For the 
third stage in multistage image transform coding, our statistical tests showed 
that the cciMciehts have a mixture of uniform* Gaussian and Laplacian pdf. 
Again, since more than half of them have Gaussian pdf, We used the Gaussian 
quantizer. We are investigating further how the mismatch error can be 
minimized for multistage image transform coding. One possible solution is to



use a bit allocation method that can be adapted to any kind of probability 
density function for coefficients and where the error function can be calculated 
iteratively. Specifically, we are studying the implementation of the method 
given by Shoham and Gersho [29] for this problem.

It must be mentioned that the multistage procedure discussed in this 
chapter will slightly increase the overhead information. The main part of 
overhead information is the bit map. For the optimal multistage image 
transform coding, we assume that the total number of bits (or the 
corresponding total average rate) is fixed. When the total rate is divided 
between stages, more number of pixels per stage assume zero bits. Thus, the 
overhead information is not doubled. Usually, about 0.03 bpp is needed in one 
stage coding for overhead information, including error protection bits, for the 
0.5 bpp case with an image of size 256 x 256 [13]. For finding the net 
improvement, we assumed 0.015 bpp for extra overhead in two stage coding, 
which is an overestimate. When we increased the bit rate by this amount in 
one stage coding for the original image "girl256", we found that the net 
improvenaent was about 1.5% less than what is given in Table 2 .2 . In another 
test, we considered 0 .0 1  bpp additional overhead information for the "baboon" 
image with two stage and 4 classes coding, which is definitely more than the 
necessary. In this case, the net improvement was just 0.63% less than what is 
given in Table 2 .2 .

With sequential video images, it may also be possible to use the same 
variances in corresponding blocks of successive dmages to reduce the 
computation in the iterative procedure of finding the bit rates R0, R i, ’ * * in 
the multiclass problem.

2 .6  Conclusions

Both theoretical and experimental results indicate that optimal 
adaptive multistage Imagetransform coding is quite effective in reducing mean 
square reconstruction error oyer what is possible with one itage transform 
coding. Optimality is achieved by the minimization of the total final error 
using marginal analysis. TIris minimization determines how to allocate bits to 
the coefficients in each stage. After the first stage, the pdf of the coefficients 
appear to be either Gaussian or uniform. The reconstruction of the quantized 
image is obtained by adding togetherthequantized transform coefficients



from all the stages and computing a single inverse transform of the results. 
Further improvements in the techniques described are expected to reduce 
reconstruction error more.

In this chapter, we considered MSE as the performance criterion. 
However, the difference images shown in Fig, 2 ,6  indicate that the 
reconstruction errors are more noise-like in multistage coding than in one 
stage coding, with especially reduced errors at the edges. The smooth regions 
are also smoother, as clearly observed in the case of the "baboon'' Image, 
especially around the nose. These are believed to be the reasons why the 
reconstructed images with the multistage method are subjectively much more 
preferable than the reconstructed images with the one stage method at the 
same bit rate.

Although the proposed method was tested for DCT and monochrome 
images, U can be easily applied to other transforms and color images.
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Figure 2 .1 . Block diagram of multistage image transform coding.
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Table 2 .1 . The error model for Gaussian and Laplacian distribution of the 
form fk(b)cij) = A 2~Bbkij given in Ref. [15}.

Distribution G$bkijS2.32 2.32<bkii<5.17 5.17<bki^9
A B A B A B

Gaussian I 1.5647 1.5253 1.8274 2.2573 1.9626
Laplacian I 1.1711 2.6851 1.7645 3.6308 1.9572



solid curve: Table Z l
dotted curve: approximated with B=1.52

Figure 2 .2 . Approximation of the error model for the Gaussian pdf given 
Table 2 .1  with Bjc =1.52 in the form of f^(b^j) =  2 Bkbk,J.



Table 2.1

approximated with B=1.23

Figure 2.3. Approximation of the error model for the Laplacian pdf given in 
Table 2 .1  with =  1.23 in the form of fk(bkjj) — 2 Bkbkii.



(a) 0 >)

Figure 2.4. Grigmaj images: (a) "girll28", 128 x 128. (b) "girl256’V256 x 256.
(c) 'le n n a '256 x 256.





Table 2.2. Simulation results for multistage transform coding.

I m a g e s

Rates 1 . DO 0.50 0.25
# pf classes I  1 -4i; : 1 4 1 4

: ' V , ...

"girl 128"

MSE for I stage 2LB3 W S f 6 1 7 6 W W 126.3 98.82
NMSE(%) for I 

stage
0.450 0.366 0.950 0.752 1.787 1.398

MSE for 2 stages 30.10 I O T 62.1$ 47.72 116.9 88.31
NMSE(%)for2

stages
0.426 0.342 0.800 0.676 1.654 1.250

Ixnprovementin 
MSE (%)

5.44 5.9$ T W 10.44 144 10.64

Improvement in dfi 0.243 THBtT 0.324 W W 0.336 0.488
RO 0.707 0.827 0.344 t o w 0.176 0.052

0.292 TTT7T o .i2 6 0.162 TdTT 0498

"girl256"

MSEforlstage 30.78 18.16 W W 2&04 116.9 70.29
NMSE(%) for I 

stage
0.426 0.251 0.868 TdW 1.616 0.972

MSE for 2 stages 27.66 18.12 55.25 32.96 99.77 63.60
NMSE(%) for 2 

stages
0.382 THST 0.762 0.456 I T W 0.879

Improvement in 
MSE (%)

10.14 0.22 11.83 8.55 14.66 T T T

Improvementmdfe 0.464 0.010 W W 0.388 0.688 0.434
RO 0.695 0.86 0.352 0.24 0.176 0.148
R l TOUT 0.14 0.142 0.16 0.074 T E W



Table 2 .2 . (continued)

"lenna"

MSE for I stage J7.0U zo.U2 62.57 T ttJ 118.2
MvlSE(%) for I 

stage
W tt 6.i36 W tt 0.355 0.689 0.671

MSE for 2 stages 35.48 W tt 80.50 55.35 150.7 105.5
NMSE(%) /or 2 

stages
0.201 0.B4 0.457 0.314 0.655 1.250

improvement in 
MSE (%)

10.40 3.14 12.77 11.54 13.49 10.74

Improvement in dB 0.477 0.130 0.394 0.532 0.629 0.494
RG 0.691 6.770 0.344 0.332 0.172 0.156

V-' TOTE- 0.230 0.156 0.168 0.078 0.094

"babon"

MSE for i stage 28 i .2 205.0 449.0 359.4 593.2 513.2
NMSE(%) for I 

...... . stage
10.02 7.06 17.43 13.95 23.03 19.92

MSE for 2 stages 247.3 185.0 410.4 J ttJ 562.8 483.8
NfMSE(%)for2

stages
9.60 7.22 13.93 12.69 21.83 18.78

Improvement in 
MSE (%)

12.6b 0.32 8.60 6.07 5.12 5.73

Improvement in dB 0.358 0.425 Mbo 0.413 0.228 0.256
ko 0.613 0.729 6,293 0.316 0.145 0.115

0.387 0.271 0.207 6.184 0,105 0,135



Figure 2.5. Reconstructed image of: (a) "girl256'* for one stage coding with 
rate 0.5 bpp and !  class, (b) "girl256" for two stage coding with 
rite 0.5 bpp and I class, (c) "girl256" for one stage coding with 
rate 0.5 bpp and 4 classes, (d) "girl256" for two stage coding 
with rate 0.5 bpp and 4 classes.



Figure 2.5 (continued) (e) "girl256" for one stage coding with rate 0.25 bpp 
and 4 classes, (f) "girl256" for two stage coding with rate 0.25 
bpp and 4 classes, (g) "lenna" for one stage coding with rate 0.5 
bpp and 4 classes, (h) "lenna" for two stage coding with rate 0.5 
bpp and 4 classes.



Figure 2 5 (continued) (i) "baboon'' for one stage coding with rate 1.0 bpp
and I class.



Figure 2.5 (continued) (j) "baboon" for two stage coding with rate 1 .0  bpp 
and I classes.



(c)

Figure 2.6. The difference images for: (a) Fig. 2.5(a) by method I. (b) Fig.
2.5(b) by method I. (cj Fig. 2.5(a) by method II. (d) Fig. 2.5(b)
by method II.



(h )

Figure 2 ^  ^ ^  by method I. (f) Fig. 2.5(d) by method
I. (g) Fig. 2.5(e) by method II. (h) Figv 2.5(d) by method II.



CO (i)

Figure 2.6 (continued) (i) Fig. 2.5(e) by method I. (j) Fig. 2.5(f) by method 
I. (k) Fig. 2 .5 (e) by method II. (I) Fig. 2.5(f) by method II.



Figure 2 .6  (continued) (m) Fig. 2.5(g) by method I. (n) Fig. 2.5(h) by 
method I. (o) Fig. 2.5(g) by method II. (p) Fig. 2.5(h) by method 
II.



45

(q)

Figure 2 .6  (continued) (q) Fig. 2.5(1) by method I.





Figure 2 .6 (continued) (s) Fig. 2.5(i) by method II





Figure 2.7. Experimental results with two stage coding for all possible values 
for R0 and R1 (R == Rd +  Ri): (a) with "girl256", rate 0.5 bpp 
and I class, (b) with "girl256", rate 0.25 bpp and I class, (c) with 
"girll28", rate 1.0 bpp and 4 classes.



50

CHAPTER 3
TRANSFORM IMAGE ENHANCEMENT

3.1 Introduction

Image enhancement involves processing of an image to make the image 
more satisfactory to the viewer. Image enhancement may be followed by image 
segmentation, which is to partition the image space into meaningful regions. 
The algorithm used for image enhancement also affects the results of image 
segmentation.

A survey of digital image enhancement methods can be found in Ref.
[4]. One class of image enhancement methods includes gray scale modification, 
deblurring and smoothing. Transform techniques form another class. Image 
transforms provide a spectral decomposition of an image into spectral 
coefficients which can be modified, linearly or nonlinearly, for the purpose of 
image enhancement.

Images are usually digitized with 8 or 16 bits, and large memory is 
needed to store them. Hence image coding is necessary for storage and 
transmission of images. Image transform coding techniques are among the 
most powerful coding algorithms, [5,15,27,30]. Hence, fast transforms for 
image coding have been more thoroughly studied than for other purposes, and 
the best transforms in the sense of performance and computational complexity 
have been determined. The discrete cosine transform (DCT) has often been 
preferred for image coding because of its closeness to the optimal Karhunen - 
Loeve transform for Markov-I type signals, which is a reasonable model for 
images [8 ]. However, two other more recently studied transforms have 
attractive properties for image coding. The scrambled real discrete Fourier 
transform (SRDFT) has much less multiplicative complexity of 
implementation with almost the same coding performance as the DCT [9], As 
a matter of fact, visually the SRDFT results may be preferable to the DCT 
results. The discrete cosine-III transform (DC3T) has computational 
complexity midway between the SRDFT and the DCT, and has the best



performance in terms of the mean-square reconstruction error as well as visual 
criteria [1 0 ].

An additional advantage of transform image enhancement techniques is 
low complexity of computations if they are implemented together with 
transform image coding. Previously, transform image enhancement has usually 
been based on the discrete Fourier transform (DFT). There are two major 
drawbacks with the DFT. First, it has high complexity of implementation 
involving complex multiplications and additions With intermediate results 
being complex numbers. Secondly, it creates severe block effects if 
implemented blockwise as in image coding. In addition, the quality of 
enhancement is not as good as what is possible with some other transforms as 
discussed in this chapter.

A major motivation for this chapter is the determination of the best 
transform for image enhancement with low computational complexity, coupled 
with the requirement to perform image enhancement blockwise without 
creating objectionable block effects, with all blocks, possibly computed in 
parallel. Three transform image enhancement techniques are utilized for a 
comparative analysis of transform image enhancement. These are alpha
rooting, modified unsharp masking, and filtering based on the properties of 
the human visual system response (HVS). It will be observed that the best 
transforms for image coding are also the best in image enhancement.

The chapter consists of 9 sections. In Sec. 3.2, the fast transforms to be 
compared for blockwise image enhancement are discussed. In Sec. 3.3, we 
describe the generalized filtering procedure in the transform domain to be 
used in the enhancement techniques. Secs. 3.4, 3.5 and 3.6 involve a detailed 
description of the three enhancement techniques and comparative 
experimental results. In Sec. 3.7, an overlap-save method which completely 
removes edge-effects is discussed. The similarity between the modified 
unsharp-masking and HVS-filtering techniques are described in Sec. 3.8. Sec. 
3.9 is conclusions.

3.2 Fast Transforms

In this section, we will describe the 2*D fast transforms which are to be 
used on a comparative basis in the following sections. The following notation 
will be used:
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x(n!,n2) : image of size N1XN2,
X(n1;n2) : transformed image of size N1XN2.

The 2 -D DFT 6 f an image X(Xi1Jn2) of size N1XN2, denoted by X(nj,n2)> 
is defined as

N1-IN 2- I  : —} 2 n
Xln1Jn2) =  S  E  x(ki,k2)e 

W-Qk2-O"

Wki + n2k2
N1 N2

(3.1)

The inverse DFT is

X ( n I j n 2 )  .-T
, N1-IN 2- I  j2r

E  S  X (ki,k2)e

Wk1 , n2k2 "“f"N1 N2

N1N2 kl-Ok2-O
(3.2)

The Df t  involves complex multiplications and additions. Many fast 
algorithms for the DFT have been developed, and are known as the fast 
Fourier transform (FFT) [31].

The 2-D discrete cosine transform (DCT) of the signal X̂ 1 ,n2) is 
defined as [8 ]

X(U1Jn2) —
4c(n1)c(n2) N>“1N2~

N1N2 k,-ok2-o
E  E  x(ki>k2) cos

(2k1-hl)n17T
2Ni

cos
(2 k2 +Ijn2TT

2N2
(3.3)

The 2-D inverse DCT is

■ ' N1-XN2- I  ' ■
x(n!,n2) =  S  E  c(kj) c(k2) XjJclIfe) cos

Ic1-Dk2-Q/ '

(2n1+ l)k 17r
2N,

cos
(2n2+ l)k 27T

W2
(3.4)



where, with N equal to N1 or N2,

I
W

c(k) =  -  y-  fork  =  0

for k =  1 ,...,N —I. (3.5)

The real discrete Fourier transform (RDFT), denoted by X(k1,k2), of 
the image x(n1}n2) is defined as [32]

N 1- I N 2- I
XCn^n2) =  XI E  X(^jk2)Cos

k J-Ok2-O

27m1lcj
4-e(n i)

cos
27m2k2

fS(n j) (3.6)

The inverse RDFT is

4 N i-IN2- 1
x(ni.n 2) “  -£Tia ' E  E  X(ki>k2M kI)c(k2 )cos

N 1N 2 Ic1-O k2-O 

27rk2n2
cos f©(k2)

27rk1ni
+ e(k i)

(3.7)

where, with N equal to N1 or N2 ,

@(n) = 0  0  < n <  —
; ' “  2

_  * N
- J  n > T - (3.8)

c(n) =  1 n ^ 0 , —
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1
2

n 0 ,
N_ 
2 ’

(3.9)

The RDFT is the discretized version of the real Fourier transform. The 
RDFT involves only real multiplications and additions in contrast to the DFT. 
The explicit relation between the DFT and the RDFT was discussed in Ref. 
[33]. The fast algorithms for the RDFT are known as the real fast Fourier
transforms (RFFT).

The scrambled real discrete Fourier transform (SRDFT), is similar to 
the RDFT. The SRDFT, denoted by X(ki,k2), of the image X^1 ,n2) is defined 
as [9]

N1-IN 2- I
X(ni,n2) =  £  £  x(nlvn2) cos 

k,-=0k2-=0

27rai k i
+•0 (ni)

COS
27m2k2

b0 (n2) (3.10)

The inverse SRDFT is

x(ni,n2)
4  N1- IN a- I

£  £  X(k1 ,k2 )c(k1)c(k2)cos
N 1N 2 k ,-O k2-O

27rkini
fe tk .)

(3.11)

where 0(k) and c(k) are defined as in Eqs.- (3 .8 ) and (3.9), respectively; k 
equal to ki or k2 in Eq. (3.10) and U1 or n2 in Eq. (3,11) is given by

cos
27rk2n2

F0 (k2)

k' k 
2 ’

k even

Qi + 1 )
ft J k odd. (3.12)

Similar to the RDFT, the SRDFT involves real multiplications and
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additions. It consists of permutations of input data followed by the RDFT.
The discrete cosine-III transform (DC3T) [1 0 ] consists of preprocessing 

followed by the discrete symmetric cosine transform (DSCT) [34]. Let 
x(n ),n =  0 , 1 ,...,N —I be the input sequence. We define z(n),n =  0 ,1 ,...,N , as

x(0 )z(0 ) =  

z(N) =  

z(n) =

W

x (N -l)
V 2

x(n)+x(n—I)

(3.13)

n= l,2 ,...,N —I.

The DC3T of x(n), denoted by X(k); is defined as V

X(n) =  v ( n ) ^ / j p £  v(k) z(k) cos 3 ^ -  k=0 , l , . . . ,N - l .  (3.14)
k*=0

Eq. (3.14) defines the DSCT. 
The inverse DC3T is

z(n) =  v ( n ) ^ ^  N  ^  COS T T  n= < M >-,N -l (3.15)
k-0

where

v(n) n=  0

....;: =  1.-. . otherwise,:

and z(n) is converted to x(n) by the inverse of Eq. (3.13).

(3.16)

The two-dimensional DC3T is Obtained by applying the one- 
dimensional DC3T to the rows and then the columns of the image. It is noted 
that the DC3T involves real multiplications and additions, and it can be 
computed by fast algorithms for the DSCT [35].

Fig. 3. 1 shows the energy distribution of different transforms for typical

images. In this figure, we applied the transformation ln | I +  |x(k1,k2)
where | . j indicates the magnitude of coefficients, and then normalized the 
results to be between 0  and 255. Finally, we thresholded the resulting image 
by indicated levels.



The computational complexities in terms of number of additions and 
multiplications of the given transforms are given in Table. 3.1 as a function of 
block size N. The number of additions and multiplications for the RDFT are 
the same as those for the SRDFT: For the DFT, there are many fast Fourier 
transform (FFT) methods with the computational complexity being generally 
higher than that of RDFT [31].

Another transform which is needed in Sec. 3.3 is the discrete sine 
transform (DST). The I-D DST is given by

X(n) =  ^  x(k) s in - ^  n = l,...,N —I. (3.17)
■ .

The DST is its own inverse. r- '3. •

3.3 Generalized Filtering in the Transform Domain

All the image enhancement techniques to be discussed in the following 
sections involve "generalized" filtering concepts with fast transforms. By 
generalized filtering, we mean processing of the image as shown in Fig. 3.2 
The image is transformed, then multiplied by a matrix and inverse 
transformed. What this means with different transforms in terms of 
convolution is discussed below.

With the DFT, multiplication of the transform of the impulse response 
by the transform of the signal is equivalent to circular convolution in the 
signal domain. In order to prevent aliasing, the impulse response of the filter 
and the signal can be appended by a number of zeros before taking the DFT. 
The number of zeros is equal to or greater than N—I, where N is the length of 
the signal or of the filter impulse response, whichever one is larger. Doing so 
converts circular convolution to linear convolution. The 2-D case is similar 
with zero-filling in both directions for achieving linear rather than circular 
convolution.

The RDFT of tfie signal x(.) is equivalent to separating x(.) into X1Q, 
the even part of the signal, and X0 Q ,  the odd part of the signal, followed by 
the computation of the DSCT of X 1 Q  to give X1Q, and the DST of X0Q  to 
give X0(.). X1(P) and X0 (n) are given by
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Xi (O )= X (O )

xi ( y )  = x ( y )  ifN even, (3.18)

and for 0  <  n <  — , 
2

X1 (n) =  x(n) +  x(N — n) 

X0 (n) =  x(n) -  x(N — n) (3.19)

The multiplication of TX1 (.) and Xq(.) by a filter transfer function 
corresponds to tfie circular convolution of x^.) with an even impulse function 
L1^), and the circular convolution of Xq(.) with a odd impulse function h0(.). 
The two circular convolutions are combined in the end since the inverse 
Rd f T is utilized. Let Hi(.) and Ho(.) be the DSCT and the DST of Ii1 (.) and 
ho(i), respectively. The process described above can be written as

Y1(O)=-X1(O)H1 (O)

Y1 C p  =  X1 (I-JH 1 ( | - )  if N even (3.20)

and for 0  <  n <  N/ 2 ,

Vi (n)

Y0 (B)

Hi (n) o

0 H0(B)

X1(B) 

-X0 (b )
(3.21)

where Jy 1 (n) Y0(n)j is the RDFT of the output signal. This can be
compared to the circular convolution of x(.) with an impulse response function 
h(.) whbse even and odd parts are hi(.) and h0(. ̂ respectively. Thenj Eq. 
(3.18) is modified to

(3.22)

In the 2 -D case, the problem is more complicated. There are effectively 
four signals X1Hn1Jn2), x10(ni,n2), X0Hn1Jn2) and X00(U1Jn2). For Q1 and n2

■ ... . *, /
Y1CnjT Hi (n) -H 0(B) X1(B)

Y0(O)J “ H0(B) H.(n) X0(B)



not equal to 0  or Nj/ 2  an<i N2 / 2 , respectively, they are given by

xnfoirDi)
'. ■.

I I 1 1
r • - 

x(nj,n2)

xIo(U1Jh2) 1 1 - 1  - I ■ x(ni,N2 - n 2)

Xoi(ni,n 2) I - I  I - I X(N1-U n n 2)

xOo(nIin2) . I - I  - I  I
• • ,:W vy ;
x(Ni —U1 , N2 —n2)

(3.23)

If ni or n2 is equal to O or Ni / 2  and N2 / 2 , respectively, then the 1-I> 
equations are vs.lid with one of the indices fixed.

The signals xn (ni,n2), x10(ni,n2), Xoifn1Jn2) and x00(nnn2) are 
transformed by 2-D DSCT, DSCT-DSTr DST-DSGT and 2 -D DST transforms 
to yield X11 (ni,n2), X10(nnn2), X01(H1Jn2) and X0Qfn1 ,n2), respectively. The 
same is done with the 2 -D impulse response Iifn1, n2) to yield 
H il(*»1 ,%), H1Ofn1 ,n2), H01 (nL,n2) and Hoofn1 • Then, _ X̂jj(H1 ,Ii2)' is 
multiplied by the Hjj (UljU2) to yield Yfn1Jn2), which is the 2-D RDFT of the 
output y(n!,n2).

The end result is that Xy(U1Jn2) is circularly convolved with hij (hi, U2). 
Then the four circular convolutions are c6thbi&e4 '-tpge^hef^n^ .to 'the' inyorse 
RDFTproceSsing.'.

A similar circular convolution property was discussed with the DCT
[36]. For this purpose, the definition of c(k) in Eq. (3.5) was extended as c(k) 
equal to zero for N ^  k <  2 N—I, and the following “was shown:
if . ■ ■■ V  ^

then

Wc(k) — Xc(k) Hcfk) 

w(n) =  x(n) * h(n) * zfn)

(3.24)

(3.25)

where " * " denotes circular convolution; x(n) and h(n) are symmetric 
sequences defined as

x(n) for n =  0 , 1 ,...,N —I
x(2 N—1—n)

x(n) for n == N ,N +1 ,...,2 N—I, ^  ^

h(n) (3.27)h(n) for n *= 0 , 1 ,...,N —I
h(2 N—1—n) for n =  N ,N +1 ,...,2 N - 1 ,

where x(n) and h(n) are the inverse DCT of Xc(Ic) and Hcfk), respectively; z(n)



is given by

z(n)
* v F

+  cos 4N
(2 n—1)(N—I)

f ( 2 n - l )4

sin
4 N

(2 n—I)
(3.28)

Another type of filtering 'Svith the DGT was discussed in Ref. [37]. In 
this reference, c(k) in Eq. (3.5) was extended as c(k) equal to I for 
k =  —N ,- N + l,...,—I. By this extension, the DCT of a real signal is even; in 
other words Xc(H) bqual to Xc(—k) for k =  0 ,1 ,.,.,N--1 , and Xc (-N ) equal to 
zero. By defining the DCT in the range of —N +l <  k <  N—I, it was shown 
that :

Xc(k) =  2c(k) exp —jTfk
2 N Xf(k), for k =  —N ,- N + 1 ,...,N —I. (3.29)

where Xf(k )is the DFT of x(n). Then, for real and even h(fi), if

^  =  —N ,- N-H,...,N—2 ,N—I, I (3.30)
■■■■■ " . ' - - v • ' . : '■ ■ .• ■■ - "• ■ --'.V-Vv ' > •

where Hf(k) is the DFT of h(n),

w(n) =  x(n) * h(n), for n =  0 , 1 , . . . ,N - 1 . (3.31)

Since h(n) is even, Hf(k) is also the same as Hi(k), the DSCT of h(n). 
From Eqs. (3.30), (3.31), it can be concluded that for a filter which has 

real and even frequency response, multiplication in the transform ,domain is 
equivalent to 2 N-point circular convolution of the sequences x(n) and h(n).

Eqs. (3.30) and (3.31) are easily modified for the two-dimensional case 
as follows:
if v; : ,■ ./V:-;:;''

WcCkLk2) =  Xc(^ jk 2) Ihr(ki,k2), for k! ,k2 == -N ,.,.,N -1 , (3.32)

^here Hf(k!,k2) =  Hf (^ ,-H 2) ** HfC-k^kj) =  ^ ( - ^ , - * 2 ) and is real, then

W(^yn2) =  x(ni,h2} ^ h f e ^  0,1,.,.,N -Ij (3.33)

where the two-dimensional symmetric sequence, x(n1#n2) is defined similar to
Eq; (3.26), andj" denotes two-dimensional circular convolution.

The relation between the DCT and the DC3T was given explicitly in
Ref. [10]. Denoting the DC3T and the DGT OfxCn1Jn2) by XC3 (k1,k2) and
Xc(kx,k2), respectively, this relation is
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Xc3Ikivk2) =  cos

. . "“I Trk2

2 N / 2 N.V >
Xc(ki,k 2) for kj,k2=4),I ,...,N I. (3.34)

Therefore, by multiplying both sides of Eq. (3,32) by the same cosine 
factors as in Eq. (3.34), the same conclusion can be reached for the RC3T. In 
other words, if.

then

Wc3 (k1 ,k2) = X c3 (k1 ,k2) Hf(k,,k2) 

W(nIm2) =X tnim 2) ** h(ui,n2)

(3.35)

(3.36)

The SRDFT corresponds to input permutations according to Eq. (3.12) 
followed by the RDFT. Thus, the discussion of generalized filtering with the 
RDFT also applies to the SRDFT with respect to the permuted signal 
sequence. 4:

The relation between the DCT and the SRDFT was given in Ref. [9]. 
Considering this relation, there is some similarity between the DCT and the 
SRDFT, but the energy distribution in the transform domain shown in Fig. 
3.1 reveals a major difference. The SRDFT components are more dominant 
along the upper right and lower left edges in the transform plane. This 
property necessitates a more careful design of appropriate window in the 
transform domain.

3.4 Alpha-Rooting

This technique is also known as coefficient rooting or root filtering [38]. 
Fig. 3.3 shows the block-diagram of alpha-rooting. In this technique, the 
magnitude of each transform coefficient is raised to a power Q i 0 < a < l, and 
the sign or the phase of the coefficient is unchanged. The modified transform 
coefficient X^n1, n2) may be written as



; X ' ( D „ n j )  =  ,
X(ni,n2)

X(ni,n2)
X(ui,n2)

: X(hj >0 2 '}. X(ni,n2) o-l (3.37)

V/ ■' a± i:
Thus, X(ni,n2) corresponds to the signal-dependent filter transfer

function. When a  equal to zero, only the phase or the sign of the coefficients is 
retained. With a  <  I, the amplitude of the large transform coefficients are 
reduced relative to the amplitude of the small transform coefficients. Since 
high frequencies are often associated with the small transform coefficients, the 
end result is enhanced edges and details of the image. In practice, 
0.50 <  d <  0.99 is used for image enhancement. The optimum value of a  is 
image dependent and should be adjusted interactively by the user.

Alpha-rooting with the DFT and the RDFT introduces certain 
undesired artifacts related to sharp edges in the processed image. This 
problem was discussed using linear filtering theory and a modification of 
alpha-rooting when using the DFT was suggested in Ref. [39]. The block 
diagram of the modified method is given in Fig. 3.4 In this method, the
equivalent transfer function X(m ,n2)

a —I
is inverse transformed to the space

domain where windowing is applied in order to smooth filter coefficients before1 ‘ .
transforming back to the frequency domain. The modified alpha-rooting is 
effective in reducing artifacts due to sharp edges in the processed image. We 
observed experimentally that this is also true with the other transforms 
discussed in Sec. 3.3. Our experiments showed that modified alpha-rooting is 
also effective to reduce block effects when the technique is implemented 
bloCkwise. ' " " ; :  ̂■ '

One major reason for artifacts in alpha-rooting with the DFT and the 
RDFT is the underlying property that the image is periodic with 
discontinuities at the edges between the periodic blocks  ̂This is also the reasoit 
for circular convolution instead of linear convolution when the DFT is used. 
The end result is aliasing effects such as folding of edges. This problem is 
significantly reduced with transforms such as the DOT, SRDFT, and DC3 T 
since the discontinuities at the edges of the periodic image are very small. The 
experimental results discussed below also confirm thisproperty. Consequently, 
conventional alpha-rooting can be used with the DCT, the SRDFT, and the 
DC3T without significant artifacts and block effects, unlike the DFT and the
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HDFT.' 7
We experimented with both methods with different transforms and 

using blockwise processing with block sizes of 8 , 16, and 32. The 512 x 512 
image used, to be referred to as "catbrain", was a slice of a cat’s brain shown 
in Fig. 3.5. The pixels were quantized with 8 bits from 0  to 255. With the 
modified method, we tried radial Gaussian and Buttefworth windows given by 
the following equations:
RadidlGaussian

WiXn1,^ )  =  exp

Radial Butitrworth

w2 (ni»n2 )

T l + » !
2 P2

I +
-J

nf -f n |

■ 7\ '7 -V- ..'V.,/:- ■■ ' 7.
(3.38)

-i'7- ' > v;:;7 ';7  ' V ,7 ■■

n > (3.39)
■7 7 7 - v. '7 ' ;7 .7 ';7 ' v; /-:.7̂- '.1V-
:'v -7.i7v:/'^777\7;''7-%; ; ■" :i": ■" --0,7

where o2 in Eq. (3.38) is the variance of the window, and n and C0 in Eq. 
(3.39) are the order of the window and a constant WHich Controls the cutoff of 
the window, respectively. The values of a2 and C0 depend on the block sizes. 
The Gaussian type window was experimentally found to perform better. The 
variance of the Gaussian window used was 90.0 for the DCT, the DC3T, and
the SRDFT, 30.0 for the DFT and the RDFT with a block size of 32. These 
values also depend on the energy distribution of different transforms given in 
Fig. 3.1. The gray value of pixels in each block of the enhanced images was 
multiplied by a constant in order to keep the energy of each block of the 
processed image the same as that of the original image. Otherwise the results 
Would be fuzzy.

A part of simulation results for different transforms and some specified 
values of c* with both methods are given in Figs. 3.6-3.16. Figs. 3.6-S.9 are the 
results of conventional alpha-rooting with the DFT, the DCT, the SRDFT and 
the DC3T and a  equal to 0.85. The block effects are obvious in all but are 
more severe in the DFT case. The results of the DCT, the SRDFT and the 
DC3T are almost the same. The RDFT results were similar to the DFT results 
for conventional alpha-rooting. Figs. 3.10-3.16 show the results for the 
modified alpha-rooting with different transforms and a  equal to 0.85 and 0.7.



For all transforms, the block effects were reduced as a consequence of 
windowing. In this case, the SRDFT gave the best result.

We also tested these methods for different transforms with high quality 
images in order to make sure that the image quality is not degraded as a 
result of the enhancement process. The results “were images with high details 
and sharp edges without any degradation.

3.5 Modified Unsharp Masking

The block-diagram of unsharp masking is shown in Fig. 3.17. The 
original image x(nlfn2) is first divided into a low-pass image Xi^n1 ,n2) and a 
high-pass image Xh(P1 jU2). The high-pass image is multiplied by a Scalar 
C >  I before being recombined with the low-pass image [40]. Since this 
process is similar to high-pass filtering, the result is enhanced edges and details 
of the image.

The optimum value of Ct is image-dependent and should be adjusted 
interactively by the user. This method is somewhat similar but simpler than 
what was discussed as modification of local contrast and local luminance in 
Ref. [40].

Experimentally, we observed that boosting of very high frequencies by 
unsharp masking leads to salt-and-pepper type of noise. In order to remove 
such noise, we modified unsharp masking by !having two filters with transfer 
functions ,h2) and Hn (U1jH2) as shown in Fig. 3.18. All processing is
done in the transform domain. Theny the output image spectrum Y(U1Jn2 ) is

... given! b y ! . / !■/ :;-w. x ;V'V

Y(n1 ,n2) =  Xfn1Jn2) [HL(n1 ,n2 )(l-C )+ cjH N(n1,n2) (3.40)

where Xfn1 ,n2) is the input image spectrum.
We tried the radial Gaussian and Butterworth type filters whose

transfer functions are given by



for Qaussiaa type, and

i'j(f)
I +

fS

(3.42)

for the Butterworth type, where f is equal to \ / n i  +  n | is the radial 
frequency. In Eq. (3.41), the variance of the filter, and in Eq. (3.42), n 
and f0 are the order of the filter and the cutoff frequency of the filter, 
respectively.

Experimentally, Gaussian type filters gave better results. So we will 
describe the results with the Gaussian window. In generating a low-pass image 
with a low-pass filter Hl(n i ,^ )  of the type given in Eq. (3.41), the variance 
used depends on the block size and the applied transform. The low-pass image
was subtracted from the original image in the transform domain to obtain the 
high-pass image to be multiplied by C. We used the same type of filter for 
Hn O11,^ )  but with larger variance to separate noise at high frequencies. 
Subsequently, the energy of each block was adjusted as explained in Sec. 3.5. 
We tried three different block sizes, namely, 8 , 16, and 32.

Simulation results for the block size of 32 with different transforms and 
with C equal to 7.0 and 4.0 are shown in Figs. 3.19-3.24. For the DFT and the
RDFT, we used the variance of 2 0 .0  to generate the low-pass image and the 
variance of 30.0 to remove high frequency noise. The variance of 50.0 and 90.0 
were used for both the DCT and the DC3T. These values depend on the block 
size and are designed to eliminate high frequency noise sufficiently. The results 
show little block effects for the DCT and the DC3T, but the block effects in 
the case of the DFT or the RDFT are objectionable. The DCT and the DC3T 
gave very similar results, so have the DFT and the RDFT. By comparing Figs.
3.21 and 3.22 to Figs. 3.23 and 3.24, respectively, it can be concluded that the 
block effects will be increased slightly by more amplifying the high frequency.
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3.6 Filtering Based on the Human Visual System Response
X x z " -  -.rZ.;'- :z - - -XX X 1. XX. X'X-X ■ X-XX'X '5X - z; z - X v ^X..-'X'X X

Since human beings are most likely the ultimate judges of processed 
images, it is appropriate to process the images in accordance with the 
properties of the human visual system response (HVS). :

Studies indicate that the HVS Contains different channels tuned to 
different spatial frequencies [14,41,42*43,44,45]. Fig. 3.25 shows the 
experimental spatial frequency response of the HVS [45] for the DFT. It is 
observed that human vision is most sensitive to midfrequencies, sensitivity 
tapering off at higher frequencies. Thus, the HVS is similar to a bandpass
filter ^..xx; X .z

Let x/ (ni,n2 ) be the input image. Results of a number of studies 
indicate that before linear filtering, x'(ni ,n2) is passed through a zero-memory 
nonlinear transformation in the form [44]

x(n!,n2) =  g|x'(m»n2)j (3.43)

in which' j^ '̂lszi&.fiaohotonic increasing concave' O function.
The HVS model in the form Of pointwise nbhlinearities followed by a 

generalized linear filter implemented by a fast transform is shown in Fig. 3.26. 
In previous studies, Hfc1, n2) was assumed to be isotropic [44], i.e.,

HfclsU2) =H(n) (3.44)

.■ where z-z- ■ ':z— . zXz.zz Xv-; ;.;,z:..zzzX

n =  \ / n i  +  n2 (3.45)

In the continuous case with the complex Fourier transform, H^ 1 ,f2) 
was modeled as [41,44]

H(fi,f2) =H (f)

where

f =  + f | ,

(3.46) 

XX:X

(3.47)

and

Htl(I) -  a b +
f *
O

(3.48)

where f j , f2 are the frequencies; along the x— and the y—directions in 
cycles/degree, and a, b, f6 are constant parameters. A number of experimental
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studies were carried but for obtaining the "best" values for the parameters in 
the above model [41,44]. Another study by [46] gives a model that is close to 
the models discussed above. This model can be written as

=  (0.2 -I 0..15f)i' 0 lsf (3-40)

Hft(f) has a peak value of 1 ,0  at f equal to 5.1 cycles/degree and a 
zero-frequency intercept of 0 .2 . It is shown in Fig. 3.25. Hft(f) was further 
perfected in the experimental work discussed below.

A number of studies concentrated on the choice of g(x) as xc or 
log(d -J- x), where d is a small number such as 1.0 to avoid very large negative 
numbers [43]. The choice of x033  was found to be the best during rating 
experiments [44]. The Hft(f) model was studied in detail [14] and applied in 
image coding and image distortion measure [14,44].

Exploiting the relation between the DFT and the RDFT [33], we 
conclude that the HVS model discussed for the DFT is also appropriate for the 
RDFT. However this model is not necessarily optimal for other transforms. 
Refs. [46,47] discussed the extension of this model to the cosine transform. It 
was concluded in Ref. [47] that the HVS transfer function corresponding to 
the DFT can be applied to the DCT without much difference. An explicit 
model for this case was given in Ref. [46], and Ref. [48] gave the following 
equation that fits the model suggested by [46]:

• w o == '
0.97e 

-9

(f-7.72)2
20.12

,oglo(T o)

2.3
for f <  7.0 

for f >  7.0
(3.50)

where f is given in Eq. (3.47). This model is shown in Fig. 3.25.
Comparison of Hft.(f) and Hct(f) shows that they are similar except for 

the location of the peak and the intercept value.
The Hct (f) model was used successfully with the DCT for transform 

image coding [48,49] and image quality assessment [46,48,49,50]. In this
chapter, it is desired to use the properties of the HVS for image enhancement 
using different transforms introduced in Sec. 3.2. Having the HVS model for
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the DCT and exploiting the similarity between the DOT and the DC3T [1 0 ], 
we conclude that the Hct(f) model should be appropriate for both transforms 
as well. The extension of this model for the SRDFT is under investigation.

We experimented with the HVS models with the DFT, the RDFT, the 
DCT, and the DC3T. Our simulation results showed that the nonlinearity 
applied to the original image does not contribute any visible changes in 
enhancement, so it was ignored. A similar conclusion was reported in Ref. [50].

In our experiments, we assumed that the viewer is watching an image 
of size 512 x 512 with a physical size of 4 x 4 inches at a distance of 12 inches. 
We processed the image in blocks of sizes 8 , 16, and 32. The image in the 
transform domain was multiplied by the HVS filter transfer function, and then 
inverse transformed. The processed block was then multiplied by a constant 
factor in the image domain in order to have the same energy as the original 
image block.

The initial experimental results with HVS-filtering were not 
satisfactory. An example is shown in Fig. 3.27. It is observed that there is too 
much noise due to excessive attenuation of low frequencies. To remedy this 
problem, we modified the HVS filter transfer function for low frequencies 
without changing it for high frequencies. Since the value of the transfer 
function given * in Figv 3.25 is less than 1 .0  for all frequencies, the transfer 
function values for low frequencies were modified by taking the square-root of 
the values up to the frequency at which the transfer function has the 
maximum value of 1.0. In this way, the smoothness of the filter was preserved. 
ThemodifiedHVSfilterisgivenby

Hmodct(f) '

(f-7.72)
0.98e

-9 log10(—)

40.24 for f <  7.0

for f  & 7 .0
(3.51)

The modified HVS filter is shown in Fig. 3.25. We experimented with 
the modified HVS filter with the same conditions as described above, and the 
result with the DC3T is shown in Fig. 3.28. The noise effects were removed, 
and the enhancement results were satisfactory. The DFT and the RDFT as 
well as the I)CT and the DC3T results were similar. Some other results are 
shown in Figs. 3.29 and 3.30. The application of the HVS model for the
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SRDFT case is under investigation,

3.7 Removal of Block Edge Effects by an Overlap-Save Method

In the experimental work discussed above, the enhancement results 
with the SRDFT, the DC3T, and the DCT were observed to have considerably 
reduced edge effects as compared to the DFT and the RDFTResults. However,
the edge-effects were still objectionable. In this section, we will discuss how to 
remove these effects by using overlapped blocks and saving only the central 
parts of the processed blocks (the terminology "overlap-save" should not be 
mixed with the overlap-save method of computing linear convolutions). The 
procedure which was used in the experiments is as follows:

The blocks are of size N x N and neighboring blocks overlap by N/ 2  

pixels. After the processing of each block, the N/ 2  x N/ 2  central portion of the 
block is saved and the rest is discarded. Obviously, the amount of overlap and 
how much of the block is saved can be modified. /  ^

The experimental results for the overlap-save method for different 
enhancement techniques, alpha-rooting, modified unsharp masking and 
modified HVS-filtering, are shown in Figs. 3.31 thru 3.34 with the SRDFT and 
the DC3T. It is observed that the edge effects are no longer visible. The results 
with N equal to 16 were basically the same as the results with N equal to 32. 
The smaller block size has the advantage of reduced number of operations, 
small storage requirements and allowing faster processing through parallel 
implementation.

3.8 Similarity of Modified Unsharp Masking and HVS Filtering

The HVS filter transfer function shown in Fig. 3.25 was obtained as a 
result of experimental studies of the human visual system. On the other hand, 
modified unsharp masking corresponds to two linear filtering operations. The 
first filter is controlled by a parameter C which determines how much the high 
frequencies in the image are boosted. The second filter has the function of 
removing high frequency noise to make the image smooth. The combination of 
the two filters is a single filter whose transfer function is given by



H(Uijhj) =  |Hl (ni, n2 )(1—G)+GjHN (H1 >%) (3.52)

This transfer function is compared to the HVS transfer function for the 
I-D case in Fig. 3.35 as a function of the parameter G. In this case, the HVS 
transfer function values were calculated based on Eq. (3.50) for an image of 
size 512 x 512 with a physical size of 4 x 4 inches viewed at a distance of 30 
inches, and the horizontal values are the index of coefficients. Hj^n^nj) .and 
HN(ni,n2) are the same as used for modified unsharp masking for a block size 
of 32. It is observed that the two transfer functions are very similar for C 
greater than 1 .0 , except for the very low frequency response, and the similarity 
increasing 1With increasing values of C. As discussed in Sec. 3.6, the given low 
frequency response of the HVS filter was experimentalIy found unacceptable 
for image enhancement. If this is corrected, the HVS filter and the modified 
unsharp masking filter become practically the saine. In turn, we can conclude 
that the modified unsharp masking is in good agreement with the human 
visual system. By this analogy, it is interesting to consider whether the 
human visual system is adaptive in the sense of a control parameter or 
parameters as in the interactive control of the parameter C in modified 
unsharp masking.

3.9 Conclusions

A number of transforms which have applications in image transform 
coding have been investigated with respect to image enhancement. We have 
also discussed three different methods for image enhancement in the transform 
domain. These techniques have been further developed for blockwise 
processing of images. The simulation results indicate that those transforms, 
namely, the DCT, the SRDFT and the DCST, which are best for transform 
image coding are also thereat for image enhancement. They also provide 
reduced edge-effects due to blockwise processing even though such effects are 
still visible. The edge-effects due to Mockwise processing can be completely 
removed by an overlap-save technique. The modified unsharp masking and the 
HVS-filterint are practically equivalent.

As a final conclusion, transform image enhancement yields highly 
satisfactory performance, is biologically sound, provides parallel models for
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implementation, and can be performed simultaneously with transform image 
coding.
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Table 3.1. The number of additions and multiplications for different 
transforms.

Additions Multiplicatios

N
SRpFT

&
RDFT

DCT DC3T
SkbiRr".

&
RDFT

DCT DC3T

8 16 19 84 I ' ■. l l 7
16 66 tfl 89 10 . 81 19
32 164 166 22I 84 80 51
64 420 513 535 98 192 131
12i 1028 1217 1256 158 448 828
256 2436 Itfl I 1889 642 lol4 721
512 5636 6401 6538 I 1538 2304 1795

J



Figure 3.1. The energy distribution of different transforms with different 
threshold levels (see text): (a) the DFT (123). (b) the DCT (92). 
(c) the RDFT (53). (d) the SRDFT (62). (e) the DC3T (64).



Figure 3,2- Generalized filtering with a fast transform.
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Figure 3.3. Conventional alphs-rooting for image enhancement.
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Figure 3.4. Modified alpha-rooting for image enhancement.



Figure 3.5. Original image "catbrain



Figure 3 .6 . Enhanced image with conventional alpha-rooting with the DFT 
! and a  equal to 0.85.



Figure 3.7. Enhanced image with conventional alpha-rooting with the DCT 
and a  equal to 0.85.



Figure 3.8. Enhanced image with conventional alpha-rooting with the 
SRDFT and a  equal to 0.85.





Figure 3.10. EnHanced image with the modified alpha-rooting with the RDFT 
and a  equal to 6.85.
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Figure 3.11. Enhanced image with the modified alpha-rooting with the DCT 
and a  equal to 0.85.



Figure 3.12. Enhanced image with the modified alpha-rooting with the DCT
and a  equal to 0.7.



Figure 3.13. Enhanced image with the modified alpha-rooting with the DFT 
and a  equal to 0.85.



Figure 3.14. Enhanced image with the modified alpha-rooting with the DC3T
and ex equal to 0.85.



Figure 3.15. Enhanced image with the modified alpha-rooting with the DC3T 
and o; equal to 0.7.



Figure 3.16. Enhanced image with the modified alpha-rooting with the 
I SRDFT and ot equal to 0.85.
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Figure 3.17. Unsharp masking for image enhancement.
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Figure 3.18. Modified unsharp masking for image enhancement.



Figure 3.19. Enhanced image with the modified unsharp masking with the 
REJFT and C aquai to 7.0w;



Figure 3.20. Enhanced image with the modified unsharp masking with the
DFT and C equal to 7.0.





Figure 3.22. Enhanced image with the modified unsharp masking with the 
DC3T and C equal to 7.0.



Kigufe 3.23- Enhanced image with the modified unsharp masking with the 
DCT and C equal to 4.0.
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Figure 3.24. Enhanced image with the modified unsharp masking with the 
DCT and C equal to 7.0.



f  (cycle/degree)

Figure 3.25. The HVS spatial frequency sensitivity models for the DFT, the 
DCT, and the modified HVS model for the D C f.

Inverse
Transformtransform

Figure 3,26. Image enhancement based on the human visual system,









Figure 3.31. Enhanced image with conventional alpha-rooting by the 
overlap-save method with the SRDFT, a  equal to 0.7 and N 
equal to 32.



Enhanced image with the modified unsharp masking by the 
overlap-save method with the DC3Tj C equal to 7, and N equal 
to 32.



Figure 3.33. Enhanced image with the modified HVS-filtering by the 
overlap-save method with the DC3T and N equal to 32.



Figure 3.34. Enhanced image with the modified HVS-filtering by the 
overlap-save method with the DG3T, and N equal to 16.
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figure 3.35. Comparison of HVS-fiitering with modified unsjtarp masking.
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. . .. .

CMaPTER4
TRANSFORM EDGE DETECTION

4 T introduction

Edge detectionis of major importance in computer vision. Edge points 
are pixels at which abrupt gray level changes occur which may reflect the 
change in surface orientation, depth or physical properties of materials. Edges 
may indicate the object boundaries, and can be used for segmentation, 
registration and object identification.

What is considered an edge depends on the application; For example, in 
object recognition, it may be only the object boundaries which are the 
necessary edges to be detected.

There are several criteria which are considered most important in edgei 
detector performance as follows:

1) The error rate which can be defined either as the probability of missing
a true edge or as the probability of detecting a false edge due to 
existence of noise. ■

2) The edge points should be "localized" well. This means that the
distance between points marked by the detector and the center of 
true edge is minimized.

3) The elimination of multiple responses near the true edge.
4) Computational complexity. Low computational cost enables the 

effective use of edge detection in real time applications.
Consider the I-D function f(x) in Fig. 4.1. The point X0  can be considered an 
edge. At this point, the first derivative f'(x) has a local extremum (maximum 
or minimum), and the second derivative has a zero- crossing. The steepness of 
the edge is indicated by the size of the extremum in the case of the first 
derivative and the slope of f"(x) at the zero-crossing point in the case of the 
second derivative.

The generalizations of f' (x) and f"(x) to the 2-D case with the function 
f(x,y) are the gradient Vf(x,y) and the Laplacian V ^ x .y ), respectively, given
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V f t x . y )  =  ^ e , + (4.1)

V’f(x,y) = (4.2)

where Gx and Cy are the unit vectors in the x and the y-directions, 
respectively,

Vf(x,y) can be approximated in a number of ways in the discrete case, 

resulting in particular edge-detector operators, Fdik example, ̂ SobeI edge- 
detector [51] and Roberts operator [52] are such detectors.

Methods based on the gradient are Usually sensitive to noise. Since the 

magnitude of the gradient is compared to a threshold to decide the existence 

of an edge, the edges obtained are usually thick, and an edge-thinning 

algorithm may be necessary to improve the results. Gradient-based edge 

detection algorithms may also cause discontinuities in the detected edge 
contours.

In Laplacian-based methods, choosing all zero-crossing points as edges 

tends to generate too many edge points* and many false edge contours may be 
generated. One advantage of Laplacian-based methods is that edges are thin, 
and edge-thinning algorithms are not needed.

The disadvantages of the methods discussed above can be reduced by a 
low-pass filter prior to edge detection operation. For example, a commonly 

used filter for smoothing is the Gaussian filter given by
-  ( X3-Hyg)

h(x,y) =  e 2ffS (4.3)

where o2 is inversely related to the cutoff frequency. Different <f a corresponds

to different degrees of smoothing of the image, and can be used to obtain edge
maps of different scales [53].

The complex Fourier transform (CFT) of h(x,y) is given by
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_ 4 j r V  (f» + f>}
Hc (fx,fy)=27ro2 e 2 (4.4)

It is observed that both f(x,y) and Hc (IxjIy) are Gaussian and thereby smooth 

and localized. Such a filter is desirable so that the locations of the edges are 

not altered and false edges are not created. Yuille and Pogio [54] showed that 

the Gaussian filter is the only filter which does not create false edges with 
different scales.

The Gaussian filter is commonly followed by the Laplacian. We observe 

the following:

^ f e y )  ** h(x,y)| =  V 2 f  /  f(x,y')h(xW,y-y')dx'dy'
• ■ — 0 0 —0 0

■ OO OO
v . h r r * '/  f  Hx > y )V2h(x—x ,y-y  )dx dy

- 0 0 - 0 0

= f(x,y) ** V2h(x,y)

V2Ii(Xjy) is given by

d(x,y) =  V2Ii(Xjy) =  

The CFT of d(x,y) is

x2 H- y2 — 2a2

1»C “  - I r *  (f| +  f’ ) e
-47T2(T2

*>y) (4-5)

) - (  X2 + y2 ) ; V : : . h

* e 2' 2 ■; (4-6)
v - ^  \

ff̂  + fy2)
■0 Oo.‘o.:o

(4.7)

d(x,y) and Dc(fx,fy) are shown in Fig. 4.2 for O2 equal to I. A one-dimensional 
cross-section of d(x,y) is shown in Fig. 4.3. It is clearly observed that d(x,y) is 
a bandpass filter.

The edges are detected by finding the zero-crossings of the bandpass- 

filtered image. Which edges are found depends highly on the value of a2. This 

fact is made use of to generate edge maps of different scales corresponding to 

different values of o2 in image understanding [53].

d(x,y) can be approximated by d(x,y) equal to the difference of two 

Gaussians:



The CFT of d (x,y) is

Dc(f„fy) =  2tr - A n W m + n )
— a\  e

(f? + L2)
(4.9)

Shanmugam et al. [55] looked for a linear space-invariant bandlimited 

filter to minimize the error in localization. They further assumed that the 

filter is rotationally invariant and has a zero response to the slowly varying 

input* Exploiting the properties of prolate spheroidal wave functions and 
representing them by a closed form asymptotic approximation, and also 

incorporating a correction by Lunscher [56], the Fourier transform of the 

corresponding desired filter for one-dimensional step edge is given by

H(w)

-CW g

Kw2 e I w I <si

otherwise

4 . In Eq. 4.10, c
■V ■ y . -y ' . . -

■■■■
r a

:; | T ;

(4.10)

resolution interval for detecting the edges. In this method, edges can be found 

by marking the zero-crossing points. Clearly, Eq. 4.10 is also a band-pass 
filter. Lunscher compared the above filtering method to that of Marr and 
Hildreth and concluded that they are identical [57].

Canny applied optimization theory to edge detection [58]. He 

considered three main criteria for the edge operator:

a) Low error rate which is inversely proportional to signal to noise ratio.
b) Well-localized edge.
c) Removing multiple responses.

Considering the above constraints in mathematical form, Canny looked for an 
edge detector for a specific kind of edge function, the step edge, and found
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that the optimal operator is close to the first derivative of a Gaussian 

function. In his method, edges are marked at maxima in gradient magnitude 

after convolvingthegiven imagewith the optimal filter: Since the first 
derivative of a Gaussian function has a Fourier transform which has bandpass 

behavior, the optimal edge detection can be coarsely approximated as 

bandpass filtering followed by local maximum detection.

In conclusion, most filters for edge detection discussed in the literature 

are band-pass filters, with different models and parameters. Such filters have 

often been derived for a specific kind of edge such as step edge. In practice, 

there are quite a few kinds of edges in a real image, e.g. line edges, roof edges 

and ramp edges. Consequently a specific kind of filter can not be optimal for 

all types of edges. Therefore, any derived filter by any optimal method for a 

specific type of edge would be sub-optimal in real applications.

The computational complexity for real-time processing can be reduced 

if the filtering is done in some transform domain, using the advantages of fast 

algorithms. The processing time may be reduced further using parallel 

processing if the filtering is done blockwise. In the past, the complex discrete 

Fourier transform (DFT) has been the leading transform for filtering in the 

transform domain. The convolution of the filter impulse response with the 

signal in the signal domain corresponds to the multiplication of the DFT 

coefficients of the filter and signal in the transform domain if the two 

sequences of length N and M, respectively, are extended by zero padding to 
length greater than or equal to N+M-l. The DFT has two major drawbacks. 
First, it needs complex additions and multiplications which are 

computationally expensive, and represents data as complex in the transform 

domain. In addition, it creates severe "block effects" when applied blockwise.

In this chapter, we investigate transform edge detection with Fourier- 

related transforms introduced in Chapter 3, in which the image is processed in 

small blocks. In the sense of generalized bandpass filtering, edge-detection is 

carried out by multiplying the coefficients of the signal in the transform



no

domain by a mask. We also show that these transforms create less "block 

effects" than the DFT when applied blockwise. An overlapping method is 
proposed to eliminate the "block effects" with a little increase in the 

computational complexity. We also show that interpolation can be 

implemented with these transforms in orderto increase the resolutionof edge 

location and to decrease the effects of inherent noise in the real images. 

Simulation results are discussed for each transform and method.

4,2 Bandpass Masking

Different transforms map the given signal in the space (or time) domain 

to another domain, usually called transform domain, in a form that is specific 

to a particular transform. Fig. 4.4 shows frequency distributions of different 
transforms with typical images whose energy can be considered to be 

concentrated at low frequencies.

The DFT and the RDFT have similar frequency distributions in a sense 

that the low frequency components of the signal can be considered to be in the 
four corners of the two dimensional transform window. The high frequency 

Components can be considered to be in the middle of the window. Ohe can 

change the location of different frequency components bUy the signal by 
(—l)n+m and thereby centering the low frequency components in the middle, 
but we are using them without centering. For the DCT and DC3T, the low 

frequency components are in one corner and the high frequency components in 

the opposite corner. The SRDFT, which results from a specific permutation of 

the input signal followed by the RDFT, has a frequency distribution very 

similar to the DCT and the DC3T. In fact, the input permutations move most 

of the low frequency energy from three corners in the RDFT domain to that 

corner with the DC coefficient. In this chapter, we assume that the SRDFT



has the same frequency distribution as the DCT or the DC3T.
As we discussed before, most edge detection methods result in bandpass

filtering. Now, having the location of different frequencies for each transform, 

we want to design bandpass masks which attenuate the low and high 

frequencies but keep the middle frequencies unchanged. The two major issues 

are the shape, the low and the high frequency cutoffs for the desired masks.

Certainly, the desired masks can not have very sharp cutoffs since this would 

lead to oscillations similar to Gibbs phenomenon which lead to multiple edges. 

There are many different possibilities for the shape of masks. In this chapter,

we used two types of bandpass masks for edge detection, and they are given as

H(i,j) =  K u  e -ff2“2 for i,j =  0 ,1 ,...,N -1, (4.11)

H(i,j) =  K u2 e-*2"2 for i,j -  0 ,1,...,N -1, (4.12)

Where u == \ / u 2 +  u2 , and

uk =

/ ;
for k =  0,1,...,N—I, for the DCT, the DC3T and the SRDFT

for k =  0 ,1 ,...,— ,

N -k  for k =  - £ + l , . . . ,N - l ,  
2

for the RDFT
1443)

K is some constant value parameter that can be adjusted to make the mask 

coefficient values integer-valued, which makes implementation easier in a 

fixed-point environment. In Eqs. 4.11 and 4.12, the single parameter Qt is used 

to adjust the peak location and the cutoff frequencies. We will refer to the 

masks given in Eqs. 4,11 and 4.12 as type I and type IIV respectively. Fig. 4.5 

shows the I-D graph of these masks for some arbitrary value of the parameter
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-, and mask type II has itsa2. Mask type I has its peak value at u =  — T . ,
W

peak value at u =  —-L==-. The 2-D graph of these masks for different
W  ...............

transforms are given in Fig. 4.6. The single parameter a2 in each case is 

adjusted for each particular transform to give the best results.

As pointed Out earlier, computation complexity of an edge detection 

algorithm is an important design criterion, specially in real time processing. In 

general, signal processing with different fast transforms involves less 
computation, but that may not be enough for real time applications. Tb 

remedy this problem, blockwise processing has been introduced and has been 
applied to image transform coding and image transform enhancement. In this 

chapter, we introduce blockwise processing for edge detection.

The blockwise transform edge detection method comprises of the 

following:

1) The given gray scale image is segmented into a number of small blocks.

2) Each block is transformed by the chosen transform.

3) The transform coefficients of each block are modified by multiplying
with the mask coefficients.

4) The modified coefficients of each block are inverse transformed.
5) Zero-crossing points in the whole processed image are found, and the

"slope" of zero-crossing for each point is calculated by the following 
equation:

S =  \ /  sf +  s | (4.14}

where S1 and S2 are the slope of the zero-crossing in the x and y 

directions, respectively. The slope of zero-crossing for each direction 

is defined to be the difference value of two points on each side of 

zero-crossing and is illustrated in Fig. 4.7.



6) Xbe slopes are normalized to integer values between 0 and 255.

7) Bince all zero-crossing points are not associated with edge locations, a
thresholding procedure is applied to remove the! false edges due to 

' 'noise.’
Removing the false edges results in deleting some true edges which are 

"weaker" than others, and detecting all true edges results in creating some

false edges. It is desirable to have a scheme to determine "optimal" threshold 

which has been used to compare different edge detection methods when the 

true edge locations are known. One such scheme is to choose the threshold 

value such that the number of missed edges points are close to the number of 

created false edges [59]. In other words, the threshold value is chosen such that 

the conditional probability P(AE | TE) of the assigned edge given true edge, 

and the conditional probability P(TE | AE) of the true edge given the assigned 

edge are as close as possible. P(AE | TE) indicates what percentage of true 

edge points has been assigned to be edge, and P (TE j AE) indicates what 

percentage of assigned edge points are true edges. If the number of missed 

edge points is close to the number of created false edge points, these two 

conditional probabilities will be close.

The transform edge detection method was simulated with the DCT, the 

DC3T, the RDFT and the SRDFT transforms. These transforms are described 

in Chapter 3. The block sizes of 16 and 32 were used for blockwise processing. 
We tested both type I and type II masks given in Eqs. 4.11 and 4.12. In order 
to compare the results of edge detection method given in this chapter to the 
results of some other methods given in [59] and [53], we used an original 
checkerboard image. Each square has a size of 20x20. The dark squares and
the bright squares have gray values of 75 and 175, respectively. Independent

Gaussian noise with zero mean and a standard deviation of 50 was added to

the perfect checkerboard image. Defining the signal to noise ratio as 10 times

the logarithm of the range of the signal divided by the rms of the noise, the

noisy checkerboard image has a signal to noise ratio of about 3 dB. The



perfect and noisy checkerboard images are shown in Fig. 4.8.

In transform edge detection method, we tried coarsely to find the best 

parameter a2 with both types of masks with different transforms and different 

sizes of blocks. Defining the true edge position the two pixel wide range region 

in which each pixel has some neighboring pixel with different gray value [59}, 

we counted the number of false and missed edge points to calculate the two 

conditional probabilities defined above. We also calculated the error distance 

defined as the average distance to closest true edge pixels of pixels which are 

assigned nonedge but which are true edge [59]. Simulation results with two 

type of masks and different transforms with block sizes of 16 and 32 are given 

in Table 4,1. 'The parameters are the values o f o2 in Eqs. 4.11 and 4.12. In 

these simulationSj We used an overlap-savemethod discussed in Chapter 3 to 

eliminate block effects due to the use of small blocks. We also discuss the case 

without overlapping later.

The results show that the DCT and the, DC3T give completely similar 
results for both type of masks and different block sizes. This was expected 

from the relation between the DCT and the DC3T given in Chapter 3. The 

SRDFT gives results close tp the DCT or DC3T, but overall the DCT or DC3t 

give a little better results. The RDFT gives the best results for a block size of 
32, but for a block size of 16, the results are a little Worse than other 

transforms. The two type of masks give very similar results; The result  ̂with a 
block size of 32 are much better than those for a block size of 16. Of course, 
this has the disadvantage of more computational cost. Images of edge 

detection results with transform edge detection method are shown in Figs. 

4.9-4.16. Similar conclusions in comparing the results of different transforms 

Can be seen in Figs. 4.15 and 4.16.

For avoiding any difference in the implementation of other edge 

detection algorithms, we used the results published in [59] and [60] with the 

same original image, but different sizes. The numerical results for Prewitt [61], 

zero-crossing of Laplacian [53] and second directional derivatives [59] methods



are given in Table 4.2. Comparing the results given in Table 4.1 to those given 

in Table 4.2 reveals that the results of transform edge detection method for a 

block size of 16 are much better in terms of conditional probabilities and very- 

close to the results of the other techniques in terms of error distances. For a 

block size of 32, the results of transform edge detection method are better in 

terms of both conditional probabilities and error distances. Some different 

results was given in [60] for zero-crossing of Laplacian method for the same 

window size but different parameter. Comparing those results to the results 

given in Table 4.1 show that the results of transform edge detection are still 

comparable for block size of 16 and much better for block size of 32. For 

comparison, images of the results of the above edge operators are given in 

Figs. 4.17 - 4.20.

We also simulated transform edge detection method for the real images, 

"girl256" and "catbrain" given in Figs. 2.4 and 3.6, respectively. In this 

simulation, we used different number of overlapping pixels, including the non- 

overlapping case. The results for different number of overlapping pixels and 

with different transforms, including the results for the noisy checkerboard 

image, are given in Figs. 4.21-4.35. These results indicate that two pixel 
overlapping is basically enough for the DOT, the DC3T and the SRDFT for 

avoiding visible block edge effects. For the RDFT, the block edge effects are 

visible for 4 or less number of overlapping pixels, but for 8 pixel overlapping, 

the block edge effects are not visible.
Regarding the computational complexity of the transform edge

detection method, we calculated the number of real additions and 

multiplications per pixel for different transforms and for different number of

overlapping pixels. We have used tffe data given in Table 3.1, and we have 

included one real multiplication per pixel for applying the bandpass mask. 

The results are given in Table 4.3. The convolution with a filter of size I lx l l  

as used by Refs. [53] and [59] can also be done using fast convolution. In this

case, a window size of either 6x6 or 22x22 of the input signal is expanded to a



window size of 16x16 or 32x32, respectively, by zero padding. Using the fast
methods given by Ersoy and Hu [64] for 2-D real circular convolution, the 

number of real additions and multiplications per pixel for the case of 16x16 

are 128.06 and 28.39, respectively. The number of real additions and 

multiplications per pixel for the case of 32x32 are 50.25 and 12.16, 

respectively. Comparing these numbers with those in Table 4.3 reveals that 

the number of additions and multiplications per pixel for transform edge 

detection method are on the average lower for 4 or less number of overlapping 
pixels than the correspondingnumbers in linear filtering.

4.3 Interpolation

Interpolation is the generation of new signal sample values between 

known signal sample values. There is evidence that the human visual system 

does interpolation in both time and space [62]. Image interpolation has many 

applications in image processing such as edge detection, coding and signal 

representation.There are many different methods for interpolation such as use 
of Splines pf, di^rejit orders. Another typeofinterpolation involves using 
transform methods. For example, the discrete Fourier transform (DFT) has 

been used for interpolation. In this method, first, the DFT of the N-point 
Signal i$ computed. Then, the signal is padded with zeros in the transform

..dd£ns&V.1 ;̂4^e. desired number, say M, points. Finally, one M-point inverse 

DFT is applied. However, the DFT is a complex transform and involves 

complex additions and multiplications which have high computational cost. In
. . ' ■ ...... ...... - ■ • ■ ■ ■ ■'.....' .- .  ■ ■ ..... . ...... . - . ..... r-: ..... •
this section, we propose interpolation with the 2-D real discrete Fourier 

transform (RDFT) which needs just real additions and multiplications and,
V - J j . v, V v jV- V-V- - V'.' V-Vv'V V VV V ' Vv V-V V ; "''--V:'- - VV V-V- .V v v -VV V v V - V V ;  VV

therefore, reduces the computational cost. The underlying procedure of 

interpolation by the RDFT is the same as that by the DFT, except generalized
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RDFT’s are involved after the first transformation of the input signal. Ersoy 

[63j h ^  shown tHat the computational cost of interpolation by RDFT can be 

reduced by applying generalized inverse RDFT’s of the same size as the 

original image instead Of taking a large inverse RDFT after zero padding of 

twice the size.

We simulated interpolation with the RDFT in transform edge detection 

method. We first subsampled the original "girl256" image given in Fig. 2.4 by 

a factor of 2. Taking blocks of size 16 with 4 pixels overlapping, we first 

applied the edge detection mask after forward RDFT- Then the blocks were 

padded to size 32 with zeros (the zeros are padded in the middle of the 

transform block). Finally an inverse RDFT of size 32 with 8 pixels overlapping 

was applied foreachblock, The zero^crossing detection and calculating the 

slope at zero-crossing points was the last step which is done for the whole

image. The interpolation results are given in Fig. 4.36 for different parameters 

of the bandpass mask type II. Comparing Fig. 4 3̂6 with Fig. 4.31 shows that 
the results of transform edge detection with interpolation are very close to the 

the results of transform edge detection with the original image.

4.4 Conclusions

Blockwise transform edge detection method in the form of generalized

bandpass masking with a number of different fast real transforms was 

proposed. The transform edge detection method consists of modifying the 
transform coefficients of small blocks of input image by pre-designed bandpass 

masks, followed by loeatihg the zero-crossing points and calculating their 

slopes. The final step of edge detection method is thresholding. An overlap-

save method was applied for removing the block edge effects. Simulation

results show that the proposed transform edge detection method is, on the
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average, better in terms of simulation results than previous edge detection 

methods based on bandpass filtering. In addition, it has the advantage of less 

computational complexity, even with high number of overlapping pixels, 
which is essential in real time applications. The simulation results also show 

that overlapping with about 2 pixels (-4 pixels with the RDFT) is sufficient for 

removing visible block edge effects in most cases.



Figure 4.1. Input signal f(x), its first derivative f'(x), and its second 
derivative f"(x) for a typical I-D edge.



•V2h(x,y) and its Fburier transform.Figure 4.2. Graph of —d(x,



Figure 4.2. (continued)



1 2 2

I-D cross- section of d(x,y)

Figure 4.3. Graph of I-D cross-section of d(x,y) and its Fourier transform,





TheRDFTandtheDFT

The DCT, the DC3T and the SRDFT

Figure 4.4. Frequency distributions of different transforms with a typical 
' ■ image.



Figure 4.5.

Mask type I

I-D graph of tovo types of bandpass masks.



MasktypeH

Figure 4.5. (continued)



Figure 4.6. 2-D graph of bandpass masks of different types and different
transforms.



Figure 4.6. (continued)



Figure 4.6. (continued)



Figure 4.6. (continued)



Figure 4.7. Zero-crossing and its slope in 1-D.





133

Table 4.1. Simulation results for transform edge detection with noisy 
checkerboard image and 4 pixels overlapping.
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Figure 4.8. Zero-crossings with mask type II, the DCT or the DC3TY block 
size of 16, parameter values from 0.05 to 0.40 with increment of 
0.05 and 4 pixels overlapping.
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Figure 4.10. Zero-crossings with the DCT or the DC3T; the first two rows;
mask type I, block size of 16, parameter values from 0.025 to 
0.20 with increment of 0.025 and 4 pixels overlapping, the 
second two rows: mask type II, block size of 32, parameter 
values equal to 0.012, 0.015, 0.02, 0.028, 0.04, 0.0625, 0.11, 0.25 
and 4 pixel overlapping.
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Figure 4.11. Zero-crossings with mask type II, the RDFT, block size of 16, 
parameter values from 0.05 to 0.40 with increment of 0.05 and 4 
pixels overlapping.
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Figure 4.12. Zero-crossings with the RDFT; the first two rpWs; mask type I, 
block size of 16, parameter values from 0.025 to 0.20 with 
increment of 0.025 and 4 pixels overlapping, the second two 
rows: mask type II, block size of 32, parameter values equal to 
0.012, 0.015, 0.02, 0.028, 0 04, 0.0625, 0.11, 0.25 and 4 pixel 
overlapping.
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Figure 4.13. Zero-crossings with mask type II, the SRDFT, block size of 16, 
parameter values from 0.05 to 0.40 with increment of 0.05 and 
using 4 pixels overlapping.



Figure 4.14. Zero-crossings with the SRDFT; the first two rows: mask type I, 
block size of 16, parameter values from 0.02$ to 0.20 with 
increment of 0.025 and 4 pixels overlapping, the second two 
rows: mask type II, block size of 32, parameter values equal to 
0.012, 0.015, 0.02, 0.028, 0.04, 0.0625, 0.11, 0.25 and 4 pixel 
overlapping.
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Figure 4.15. Zero-crossings after thresholding: counting from left to right 
starting at the top, each image corresponds to the entries of the 
first row to the 8th row of Table 4.1.
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Figure 4.16. Zero-crossings after thresholding: counting from left to right 
starting at the top, each image corresponds to the entries of the 
Oth row to the 13th row of Table 4; I.



Table 4.2. Compares the performance of three edge operators using an 
l l x l l  window on the noisy checkerboard image [59].{Copyright 
IEEEj Withpermission)

Directional
Prewitt Marr-Hildreth Derivative

ZeroC rossing Gradient
• . ' • Gradient Strength « 4 .0 Threshold = 14 .0

Parameters Threshold = 1 8 .5 a =  5 .0 P - 0 . 5

P(AE\TE) 0 .6 7 3 8 0 .3 9 7 7 0 .7 2 0 7
P(TE\AE) 0 .6 8 7 2 0 .4 1 5 9 0 .7 1 9 7
Error D istance 1.79 1.76 1 .16
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Figure 4.17. Illustrates the edges obtained by the; I l x l l  Marr-Hildreth zero 
crossing of Laplacian operator set for three different zero 
crossing thresholds and three different standard deviations for 
the associated Mexican hat filter [59]. (Copyright IEEE, with 
permission)

*:)
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Figure d. 18. Illustrates the directional derivatives edge operator for a window 
size of I l x l l  and deciding that the true gradient is nonzero 
when the estimated gradient is higher than the thresholds of 12, 
14, 16, or 18 [59].(Copyright IEEE, with permission)



Figure 4.19. Compares the directional derivative edge operator with the 
Marr-Hildreth edge operator and the Prewitt edge operator. The 
thresholds chosen were the best possible ones [59].(Copyright 
IEEE, with permission)



Figure 4.20. (a) The zero-crossings obtained from the Marr-Hildreth 
implementation of the Vr2G operator with <r ^  2.5. (b) Zero- 
crossings that remain after thresholding so as to equalize the 
conditional probabilities [60].(Copyright IEEE, with permission)



Figure 4.21. The results of transform edge detection with original image of 
"girl256", the DCT or DC3T, bandpass mask of type II, block 
size of 32, o2 =0.012 and threshold value of 16: top-left, no 
overlapping; top-right, 2 pixels oyerlapping; bottom-left, 4 pixels 
overlapping.
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Figure 4.22. The results of transform edge detection with original image of 
"catbrain", the DCT or DC3T, bandpass mask of type II, block 
size of 32, o2, — 0.0625, threshold value of 7 without overlapping.



Figure 4.23. The results of transform edge detection with original image of 
"catbrain", the DCT or DC3T, bandpass mask of type n, block 
size of 32, a2 — 0.0625, threshold value of 7 and with I pixel 
overlapping.



Figure 4.24. The results of transform edge detection with original image of
"catbrain", the DCT or 
size of 32, O2 =  0.0625,

DC3T, bandpass mask of type II, block 
threshold value of 7 and with 4 pixels

overlapping. j j : :  , y ;  v v: ■■ ;
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Figure 4.26. The results of transform edge detection with original image of 
**girl256", the SRDFT, bandpass mask of type II, block size of 
32, a2 =  0.012 and threshold value of 16: top-left, no 
overlapping; top-right, 2 pixels overlapping; bottom-left, 8 pixels 
overlapping.
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Figure 4.27. The results of transform edge detection with original image of 
"catbrain", the SRDFT, bandpass mask of type H, block size of 
32, o2 =  0.0625, threshold value of 7 without overlapping.
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Figure 4.28. The results of transform edge detection with original image of
"catbrain", the SEDFT, bandpass mask of type H, block size of
32, O2 == 0.0625, threshold value of 7 and with I pixel
overlapping.



Figure 4.29. The results of transform edge detection with original image of 
"catbrain", the SRDFT, bandpass mask of type II, block size of 
32, a2 =0.0625, threshold value of 7 and with 4 pixels 
overlapping.



Figure 4.30. The results of transform edge detection with original image of
"catbrain", the SRDFT, bandpass mask of type II, block size of
32, o2 — 0.0625, threshold value of 7 and with 8 pixels
overlapping.



Figure 4.31. The results of transform edge detection with original image of 
"girl256", the EDFT, bandpass mask of type II, block size of 32, 
a2 =  0.012 and threshold value of 16: top-left, no overlapping; 
top-right, 2 pixels overlapping; bottom-left, 8 pixels overlapping.



Figure 4.32. The results of transform edge detection with original image of 
"catbrain", the RDFT, bandpass mask of type H, block size of 
32, a2 — 0.0625, threshold value of 7 without overlapping.



Figure 4.33. The results of transform edge detection with original image of 
’catbrain", the RDFT, bandpass mask of type II, block size of 
32, O2 =  0.0625, threshold value of 7 and with I pixel
overlapping.



Figure 4.34. The results of transform edge detection with original image of 
"catbrain", the RDF'T, bandpass mask of type H, block size of 
32, cr2 =0.0625, threshold value of 7 and with 4 pixels 
overlapping.
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Figure 4.35. The results of transform edge detection with original image of 
"catbrain", the RDFT, bandpass mask of type H, block size of 
32, a1 =0.0625, threshold value of 7 and with 8 pixels 
overlapping.
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Table 4.3. Tbe number of real additions and multiplications per pixel in 
transform edge detection method with different transforms, 
different block sizes and different number of overlapping pixels.

Additions Mimplications

Block
size

# of 
verla- 
pping 
pixels

SRDFT
&

RDFT

DCT DC3T SRDFT
&

RDFT

DCT DC3T

16

32

0 : 15 I 0 .I5 22.25 3.5 9 - 5.75
I . 10.59 16.45 29.06 4.57 11.75 7.51

". 2 26.61 36.19 39.76 6.25 16.08 10.28
v:.-4- 60 81 8k

2 7 . 7 5

14 36 23
0 20.5 5 * 2 5 11 7.375

A -:: 23.33 19.73 31.58 5.97 12.52 8.39
2 26.77 34.12 36.24 6.66 14.37 9.63
4 30.45 46.67 40.34 0.33 10.56 13.11
8 82 104.5 111 21 44 29.5
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Figure 4.36. The results of interpolation with transform edge detection 
method, bandpass mask type II and threshold value of 16 for 
different parameters: top-left, a2 =  0.04; top-right, a2 =  0.0625; 
bottom-left, O2 =  0.11.
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CHAPTER S "/V
CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

5. !Conclusions

In this thesis, We have developed a unified approach to use novel 
transforms for transform image coding, enhancement and edge detection. 
Requirements for transform image coding are low bit rate and low complexity 
of implementation while keeping the quality of decoded image high. For these 
purposes, the optimal adaptive multistage transform coding has been 
introduced in Chapter 2. In this method, the optimality is achieved by 
minimization of the total final reconstruction error using marginal analysis. 
Both theoretical and experimental results indicate that optimal adaptive 
multistage image transform coding is certainly effective in reducing mean 
square reconstruction error over what is possible with one stage transform 
coding. This has been shown by generating the difference images in two 
different ways. The reconstructed images with multistage coding method are 
also subjectively much more preferable that the reconstructed images with the 
one stsge coding method at the same bit rate.

In Chapter 3, transform image enhancement with a number of newly 
developed fast transforms has been investigated v We have discussed three 
different methods for image enhancement in the transform domain. In order to 
reduce the computational complexity of enhancement, all these techniques are 
implemented blockwise. The simulation results indicate that the DCT, the 
SRDFT and the DC3T are the best for image enhancement. For reducing the 
block edge effects due to blockwise processing, an overlap-save technique has 
been introduced. This technique is completely effective with a little increase in 
computational complexity,

In Chapter 4, we have discussed the transform edge detection. An 
investigation of many edge detection methods indicate that they are very 
similar to bandpass filtering. Exploiting the frequency characteristics of a 
number of real fast transforms, generalized bandpass filtering with two type of
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bandpass masks has been proposed for edge detection. iThe transform edge 
detection method consists of modifying the transform coefficients of small 
blocks of input image by pre-designed bandpass masks, followed by locating 
the zero-crossing points and calculating their slopes. The final step of edge 
detection method is thresholding. Transform edge detection has been done 
blockwise and the overlap-save method discussed in Chapter 3 has been used 
for reducing the block edge effects. Simulation results show that transform 
edge detection is quite comparable with and generally better than other 
bandpass filtering methods despite its lower computational complexity.

5.2 Future Research Directions

The following issues will be considered as future research directions in 
the extension of previous chapter results:

I. We have discussed the problem involving the implementation of 
multistage transform coding for 3 or more number of stages in Sec. 
2.5. The most obvious problem is the error due to mismatch 
between the assumed pdf and the real pdf for some coefficients in 
the course of bit allocation and quantization. It is suggested to 
study the implementation of the bit allocation method given by 
Shoham and Gersho [29] which may get closer to the optimum case 
by an iterative procedure.

The optimum mean square error quantization has been used for 
multistage coding in Chapter 2. It would be interesting to study the 
multistage coding method with uniform quantization which is the 
quantization base for newly adopted image coding standard [65].

It is suggested to study the implementation of the complete 
multistage transform coding procedure in the frame of the above 
mentioned standard for image coding with possible different 
number of stages for luminance and color components, Y, I and Q.
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It is possible to investigate how to make optimal multistage 
transform coding totally adaptive in the sense of the system 
deciding itself how many stages it needs.

It is interesting to investigate optimal multistage transform coding 
with the inclusion of source coding in overall design. We observed 
that the number of bits in the second stage are mainly 0 or I. It is 
possible that source coding such as Huffman coding may lead to 
further gains due to reduced overhead information in the second 

' stage.

6. For image enhancement, the results of some applied transforms are 
promising. Therefore it is appropriate to improve these techniques 
with these transforms further. For instance, in modified alpha'" 
rooting, it is interesting to investigate whether we can replace the 
windowing in the image domain by some proper filtering in the 
frequency domain to prevent more complexity with respect to 
conventional alpha-rooting.

7, One possible research direction could be using different alpha 
values with alpha-rooting enhancement method inside a processing 
block or different alpha values for different blocks based on the 
amplitude of coefficients or the energy of each block, respectively.

8. It has been observed in simulation results of transform edge 
detection that real pictures with different signal to noise ratio need 
different threshold values in the last step of edge detection. It is 
suggested to study the possibility of developing some adaptive 
technique to determine the best threshold for each picture based on 
some energy measure in the transform domain. It would not 
increase the complexity of implementation much since the 
transformed coefficients are already calculated during the course of 
applying bandpass masking.

9. Another direction in transform edge detection can be the study of 
designing some optimal masks for different transform which



probably give better results than the masks used in Chapter 4.

10. Another quantitative measure called Pratt figure of merit [27] can 
be used for comparing the performance of transform edge detection 
method with other methods.

■'? "
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