Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
8-1-1991

Blockwise Transform Image Coding Enhancement and Edge
Detection

Sabzali Aghagolzadeh
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Aghagolzadeh, Sabzali, "Blockwise Transform Image Coding Enhancement and Edge Detection" (1991).
Department of Electrical and Computer Engineering Technical Reports. Paper 747.
https://docs.lib.purdue.edu/ecetr/747

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages

BLOCKWISE TRANSFORM IMAGE CODING,

' ENHANCEMENT AND EDGE DETECTION

~

A Thesis =~
Submitted to the Faculty o S

of
| :Szlibza‘li Aghﬁgél’za de}j"  :

> S In Partial Fulfillment of the

Requirements for th'e'_]")gg"regv‘ : o
Cof
e : - Doctor of Philosophy .~

August 1991” ,



This is dedicated to my parents Abbas and Habibeh,
my wife, Saeedeh,
and my children Mehdi, Maryam and Mohammad.

i



i

ACKNOWLEDGEMENTS ~

I would like to thank my advisor, Professor Okan"Ersoy, ’fyox" his“geh‘ero'us_ '

guidance, encouragement and support during the course of this research. I N
would- also like to thank Professor Jan Allebach, Professor Charles Bouman 7
and Professor Vaughan Weston for their invaluable discussion and serving in

‘my committee. Other people have also played a majpr part in my success. Most

of all, I would like to express my special appreciation to my parents who have - o

pati_entl_y‘ supported me in reaching my goals. More important, I sincerely
thank my wife and children for their patience and encourageme‘nt, during my
studies in graduate school. Finally, I greatly appreciate many friends for their
help in preparing these manuscripts. | ‘



TABLE OF CONTENTS =~ e
Page
LIST OF TABLES t...coovsvstsmsierasessosnes SRR ECRR PO IR
LIST OF FIGURES....ccocccconevn S SO AU U 7
INTRODUGCTION ..ooccvrvesinsseorssisssssisssssesssssenssssssssssssssisssssssesssmsessssmssenss ]
CHAPTER 1 - A REVIEW OF BASIC PRINCIPLES ........cvonn.... SR |
1.1 Pfedictiv_e-C_odi‘ng sesiskvesenitaeerhacosiesnetrsrossentensansas ..... v——— 3 :
1.2 Transform Coding....ccceierecniuceimmecssoricenresesscssiveneecesssns resissasenes _‘..,._.,‘.,‘....;5.4.:‘ .
1.3 Adaptive Transform COGINE ..ccveevreeirerreesiveeresrresssessnesseennen FURRRUY
1.4 Scalar Quantization ......cceeeeerereieernnneeenrnnn revreteenseieeessisesessssssraraseessd
1.5 Visual Blockwise Processing......c.ccccoveiumuecisiviinisiccrnesnnne seersssusrissarsees8 -
1.6 Image Enhancement............. B PP TN R .
1.7 Edge Detection.................... iesssssessassssisssssreseraranstrsasetesaesiseses eseveses R ¢
1.8 Motivation for this ReSearch ......ccocerererrereererissesassessssesassosereessessnsssasensd
CHAPTER 2 - OPTIMAL ADAPTIVE MULTISTAGE IMAGE |
TRANSFORM CODING ..v.covvorescesssssssesessssesssesssssesssensss 14
2.1 Introduction ....cccecvreermeeeiieenreeennnneeeennnenens ceaeeeacans v ..... veere. 14
2.2 The MSE Function for the Proposed Method........cccueciveucuruevcucusiinnces 16
2.3 Error Models and Optimal Bit Allocation ........ vengesseisstesassnensaseneninans 18
2.4 Experimental Results ....ccccveveiriereinenreniinniersesseeseensessessssssensossessessessaae 24
2.5 DiISCUSSION.ciurerrereesrenrecrrrersssssessrensensaesssesssessesssennns vevennane reqesrasaperes ieernn 26

2.6 ConClUSIONS ccocevriirnnrannerinreriinntissessssssesiossssssesssssesess riereeaeniseniaenessnsnene 27



Page

' CHAPTER 3 - TRANSFORM IMAGE ENHANCEMENT .....vvoveveevesseeresnns 50

3.1 Introduction rrereree et 50 ‘
3.2 Fast Transforms...cceeveeeeeerneevieennnen .................. JORO ORI .3 |
3.3 Generalized Filtering in the Transform Domain....c.ccceccovivirinunnnns ...56
3.4 AIPha-ROOLINE...ccevueeitercieeieeioresreeireesueeeesaesstersessesssessseessesssassssesseses 60
3.5 Modified Unsharp Masking.....c.cceeeruvvvnnnnn. rseieiessersinsiesnesessreeranbesaanis 63
3.6 Filtering Based v'on the Human Visual System Response.........cccoveueens .65
3.7 Removal of Block Edge Effects By an Overlap—Save Method ............. 68
3.8 Similarity of Modified Unsharp Masking and HVS Filtering .............. 68
3.9 Conclusions ..c.cueiiiiuivieiiecinretenee i s veerrsoeerens 69
CHAPTER 4 - TRANSFORM EDGE DETECTION....iccoceieiirierconrrnvenenennis 105
4.1 Introduction’.f.,‘...‘ ................................................................................ 105
4.2 Bandpass Masking......co.ooiviinnniinincnnnniiin. ciererciesseinnessnsniinenenns 110
4.3 Interpolation.......ccooeevverreesererneenenenens reeeireessreessaesssaessenensssssnnassraassnes 116

4.4 CONCIUSIONS wuveirrerrverrreerorerineesreresaessstensresesasessnssosnssnns SCUURIURUS § I A

CHAPTER 5 - CONCLUSIONS AND | |

‘- " FUTURE RESEARCH DIRECTIONS........cccceoerivurcivrunuenee 164
5.1 Conclusions .....cveciiivmiedvnrioanensanins T T P YT ..164
5.2 Future Research Directions 165
** LIST OF REFERENCES......cevvnniinneciesivsiinsisssssessiasiaonn, iessusasesssaiosieteds 168



vl

- LIST OF TABLES

Table : : S Page
1.1 Some gray scaling fﬁnctibns for image enhancement [15]13

2.1 The error model for Gaussian and Laplacxan dlstnbutxon of the form

fk(bku) — A2” bku given in Ref [15.] ....... erseensesenasiosstitaensesssustioiaas _.'....'....~.,;30 7
2.2 Simulation results for multistage transform coding....ccevvvveeeee reetvriernersenes 3D
3.1 The number of additions and multlplxcatlons for dlﬂ'erent transforms ..... 71

4.1 Simulation results for transform edge detectlon with noisy
checkerboard image and 4 pixels overlapping......oceveeeeiiinnnniecisniicsnicinne. 133

4.2 Compares the performance of three edge operators using an 11x11
window on the noisy checkerboard image [59]...cccccvvvueruenriruriienivecnansennen. 142

4.3 The number of real additions and multiplications per pixel in
transform edge detection method with different transforms,
different block sizes and different number of overlapping pixels.............162



o LIST OF FIGURES -~~~

11Adaptivecosxnetra.nsformcodmgsystem[13]...11 o
| ;1._,2 A quanme,m “
, ,2 1 llock dlagram of meltlstage lmage transform codxng...:. ..... :.i.;.._,’.‘._..v..;...».v.,.29 '

2. 2 Approxxmatxon of the error model for the Gaussnan pdf glven in

Table 2.1 w1th Bk =1, 52 in the form of fk(bku) = 2—B“b“u ....... verens31 |
‘ 2 3 Approxxmatlon of the error model for the Laplaclan pdf glven m o R »
‘Table 2.1 w1th By =1.23 in. the form of fi(byij) =2 —,l,;-“.b'f" .................. 032
2.4 Orlglnal unages ............ tiessasianinenasessianesnannes eevisivedesne besevssesarsrreserssthrrneresiene 33
: >2.5j Reconstructed unage ........ JRRNERRRN SOk 1
-2, 6 The dlﬁ’erence lmages... ........ 41 .
X Expenmental results thh two stage codlng for all p0331ble values R T
fOl‘ Ro and Rl ....?.; ..... ,'..............,.; ...... esessssacecsersnesesssosesese ”"‘f”’?""""';';"'449‘ .
. 3 1 The energy dlstnbutlon of dlﬂ'erent transforms w1th dlﬂ'erent BRI
threshold levels (see text)....v ..... ssagorsassases sestssensssissnnns porngrisivensessisnsantornivest 72
- 3.2 Generahzed ﬁltermg with a fast transform...... .........,..,...Y.'.v.....,;......,.., ...... 73

33 Conventlonal alpha—rootmg for image enlm,ncement.......f ............. ORRTIRROIY 2 S



viii

" Figure S G S _ Page
Sy 3.4 Modified alpha-rooting for image‘enhancement ORIV PRSP SR
© 3.5 Oiﬁig’inal image "catbfain;" ............. : ....... LLT5

38 Enhanced image  with conventlonal alpha—rootxng w1th ST
~the DFT and a equal t0 0.85 ......... sbrresibartates SR srivasdisbysscinsidorsonrios 76

"3 7 Enhanced 1mage Wlth conventlonal alpha—rootlng w1thd' REEEERS . .
~ the DCT and o equal 80 085 wmiiiic s SRR &

3.8 Enhanced image with conventlonal alpha-rootlng thh} - S S
the SRDFT and a equal B0 085 ..vieeviveneieeeeetaniesienebesensasaeesee s aEenessasaese 78

3. 9 Enhanced 1mage with conventlonal alpha—rootlng with : :
the. DC3T and a equal t0 0.85 ..... .....';;'.-».v.;;:;5;.;;..;..;..;.;,.-.-..b.,......,.....,;;._.;........7_9 .

310 Enhanced i 1mage w1th the modified alpha—rootmg w1th,

 the RDFT and & equal 0 085 oo ..... .80

"3 11 Enhanced 1mage w1th the: modlﬁed alpha—rootmg thh D S
he DCT and a. equal to 0.85...... ............... diiensdansissiogssivensasinsBl

3.12 Enhanced image W1th the modlﬁed alpha—rootlng w1th RRRAEIRPY IR
- the DCT and o equal to 0. 782

3 13 Enhanced image: W1th the modlﬁed alpha—rootmg w1th : R
the DFT and o equal 0 0.85 w.ierenirinsisneiistenssieinnions SPRUREPONPRPRRNPOMN

_3 14 Enhanced 1mage mth the modlﬁed alpha—rootmg with - | g
‘ the DCST and e equal to 0.85 t84

v 3 15 Enhanced 1mage w1th the modlﬁed alpha—rootmg w1th o I
the DC3T and o equal to 0. 7 ....... verserneresneinssesneessns i85

3. 16 Enhanced 1mage w1th the modlﬁed alpha—rootlng Wlth s IR R
= the SRDFT and o equal to 0. 85..._.,._..._.,..;.,..-..-..-,.-........;.._,..,,-;.L_;;; ..... eiviennncne86




Cix

3.17 Unslia;tp masking fbr;-i'rnage'enhrancement ............ PO I IR 87 |
3 18 Modlﬁed unsharp masklng for image enhancement,...,.v._..'f'.,-..[.v-‘.'...‘..v..,'...,......'...88

3.19 Enhanced image thh the modlﬁed unsharp maskmg W1th.- : [
the RDFT and C equal to 7.0 ....7.'. .............. :.b*...........sa...,:.f...ﬂ..-.,..; ..... b.. .......... .89

320 Enhanced image w1th the modlﬁed unsharp masklng w1th o ,
~~  theDFT and C equal 0/ 70w uiiennennen. ST S VNS S ...... 90

3. 21 Enhanced image- w1th the modified unsharp masklng thh R
the DC3T and C equal to 4.0........ vt ons buiins o 63 ibatEsbae sho sronre sy sparivessse cenese91

322 Enhanced i'mage with the modified- unsharp. xnaskifng with o L
the DC3T and C equal to 7092

3.23 Enhanced 1mage Wlth the modlﬁed unsharp masklng w1th | ,
:the DCT and C equal 10 4.0..ccceuues oweiessvabassobingss SO PO NP ' :

3.24 En-h-anced; image with the modified unsharp ‘masking wirth_ ‘ o
the DCT and C equal to 7.0........ revereeerens enebesiecnsasinorasbsreseintorentreiens w94

3.25 The HVS spatial freqnency sensitivity models for the DFT.',

the DCT, and the modified HVS model for the DCT....ccoueueees sevsenrensense 9B
3 26 Image enhancement based on the human vxsnal system..... 95
- 3.27 Einhanced,image:— with HVS—ﬁl.teriing with f)he D»CT espsessessesreagiasersnishesseis 96
328 Enhanee& image with the rnodiﬁed I-IVS—ﬁ-»ltv;ering,‘v‘v’ith Zt',,h'ea DC3T ....... 97 ﬂ
3.20 Enhanced image with HVS-Bltering with theDFT ...... 98

3.30 Enhanced image with HVS-filtering with the RDFT ...o.cccccuserccsnrerierr.99



-l

PR 4.1 Input sngnal f( ) 1ts ﬁrst denvatwe f’ (x), and xts B
B second denvatlve f’ ’ (x) for a typrcal 1 D edge iud inen

4.2 Graph of —d X,

o 4,»7,, ~Zer0+fcr0$$1ng :'Iid';lts-vs'lope 11-D

L 4 9 Zero—crv ssings thh mask type II the DCT or the DCBT, block s1ze

» and 4 plxels overlappmg...:..-.,.v.;.;..t;.r'ﬂ..;.;g_.',.;.

_3 31 Enhanced |mage thh conventlonal alpha-rootmg by the overlap-save
‘» ( method W1th the SRDFT «a equal to 0. 7 and N equal to 32 ............ ivieses. 100

U "3 32 Enhanced 1mage w1th the modlﬁed unsharp masklng by the overlap -save

method wrth the DC3T C equal to 7, and N equal to 32....;».».‘..‘-L’..b.,.*...'....:1_()1

o 3 33 Enhanced lmage thh the modlﬁed HVS ﬁltenng by the overlap-save

method wrth the DC3T and N equal to 32.....‘.’.;..‘.,».‘....‘...'..,..,_.,.‘V..,..‘ ...... , 102

: 3 34 Enhanced 1mage wrth the modlﬁed HVS- ﬁlterlng by the overlap-save

method w1th the DCST and N equa] to 16103

- , 3 35 Companson of HV S ﬁlterlng w1th modlﬁed unsharp ma.skmg.....;.n.,,..’.;._;104‘-‘ N

Y:. -"—Vzh(x }’) and 1ts _Founer - RREE
transform, & — v R

4. 3 Graph of l-D cross-sectlon of d( ,y) and 1ts Fourler transform ..... 122

' “_'4'.4»Fr;equency distribdtionsfof diﬁ'erent tranf‘sforms-with' a typi'cal‘ image ..... 124

i 4 5 1 D graph of two types of bandpass masks ..... — 125

| ,4 6 2-D graph of bandpass masks of- dlﬂ'erent types and dxﬁerent transform§27_/ :

L 4 8 The perfect and norsy checkerboard 1mages ....... 32

o “16, parameter values from 0.05 to 0. 40 wnth mcrement of 0 05



oxto

4.10 Zero-crossings with the DCT or the DC3T; the first two rows:
mask type I, block size of 16, parameter values f_rofn 0.025 to 020
~ with increment of 0.025 and 4 pixels overlapping, the second two '

v ‘TOwS: mask type II, block size of 32, parameter values equal to
: ‘10012 0015 002 0028 004 00625 011 0.25: and4p1xel :
overlapplng ciiediranis eeeeisesiisniieiins roeoneseioeises bonduisenaiiiiy Siediietesidyriedede ivensine 135

| 4.11 Zero—crossmgs W1th mask type II, the RDFT block size - -
. of 18, parameter values from:0.05 to 0.40 with mcrement of 0,05 ,
and 4 plerS overlappmg..............;..'.....,.-.........,...~;....‘....,-.,;;;.-...‘.‘.‘-..";‘....‘ ........ 136

4. 12 Zero-crossmgs with the RDFT the ﬁrst two rows: -
mask type I, block size of 16, parameter values from 0. 025 to 0 20
w1th increment of 0.025 and 4 pixels overlapplng, the second two
rows: mask type II, block size of 32, parameter values equal to
0.012, 0.015,.0.02, 0.028, 0. 04 0. 0625 -0.11, 0 25 and 4 plxel :
overlappxng ........ Wivoqmnesgrieeeiennn YT S O OP PSSO VRPN & ¥ |

4.13 'Zero-cros'sing's with. mask type II, the SRDFT, block size -
- of 16, parameter values from 0.05 to 0.40 with increment of 0. 05 _
- and using 4 pixels overlapplng 138 o

4.14 Zero-crossings with the SRDFT; the first two rows: ‘
mask type I, block size of 18, parameter values from 0.025 to 0.20
with increment of 0.025 and 4 pixels overlappmg, the second two
rows: mask type II, block size of 32, parameter values equal to
0012 0.015, 0.02, 0.028, 0.04, 0.0625, 0.11, 025and4p1xel o
overlappmg ....... eeseeceestsesrtretstensareesstntetstessivactretesreisartessereienssenaresisssrsntes 139

4.15 Zero—crossing.s after thresholdiligi counting from left to.rigvh‘t
starting at the top, each image corresponds to the entries of the - -
first row to the 8th row of Table 4.1..ccciuveieioriirnsinsssissstisisinsesisesessnses 140

4.16 k'Zero'-crOSSings after thresholding: counting from left t'o’right
starting at the top, each image corresponds to the entnes of the ' ,
9th row to the 13th row Of Table 4.1 .cccvuevereeiiiennrieieeseionanetaessseesnansnns 141



i

‘ anure ) - e N Page RN

£ 4. 17 Illustrates the edges obtalned by the llxll

. implement

Marr—Hlldreth zero crossxng of Laplaclan operator set for three O
dlﬂerent zero crossln.g thresholds and three dlﬂerent standard
devlatlons for ‘the z

4, 18 Illustrates the dxrectlonal denvatlves edge operator for a wrndow SRR
Csize of 11x11 and decxdlng that the’ true ‘ S
, gradrent is’ nonzero when the estlmated gradlent lS hlgher than the L S
thresholds of 12 14, 16 or 18 [59] .............. FEEROPEUSRCRVER IR SRRt PN LT S

.4 19 Compares the drrectxonal derlvatxve edge operator wrth the ”
R Marr—Hlldreth edge operator and the Prewrtt edge operator S
The thresholds chosen were the best pos31ble ones [59] ...... ,.»v.»..'..1:45f o

4. 20 (a)' ‘he' zero—crossrngs obtarned from the Marr-Hlldreth
ion of the VzG operator w1th o=2 5

(b) Zero—crossmgs that rema1n after thresholdmg s0. as to

: >4 21 The results of transform edge detectron wrth orlglnal lmageof' R

grrl256" the DCT orDC3T, bandpass mask of type II block sxze :

N of 32, 0% = 0’ 012 and threshold value of 16: top-left o

o no overlappmg, top-rxght 2 plxels overlapprng, bottom—left SRS
: 4 plxels over]appmg.......' ....... eseesestesnesasensiessstentosiiens 147 :

o 4, 22 The results of transform edge detectlon w1th onglnal lmage of

catbraln ‘the DCT or DC3T bandpass hask of type II block slze P
of 32, 02 =0, 0625 threshold value of 7 wrthout :
OVerlappmg "

4. 23 The results of transform edge detectlon w1th orlgmal 1mage of R
' catbraln ‘the: DCT or DC3T bandpa.ss maskof type II block sxzej] i
of 32 02 = 0. 0625 threshold value of 7 and with S

oclated Mexxcan hat ﬁlter [59]143 o

l'prx overlappmg 149



- xiii

: .Figure o

..4 24 The results of transform edge detection Wlth orlgmal image of ,
' catbram the DCT or DC3T, bandpass mask of. type O, block size”
< of 32 02 =0; 0625 threshold value of 7 and w1th :
4 plxels overlapping ...c.icivienins

' 4 25 The results of transform edge detectlon Wlth orlgmal 1mage of »

"catbrain", the DCT or DC3T, ‘bandpass mask of type II block srze S

of 32; o'.'" =0.04, threshold value of 7 and. thh SO
4 plxels overlapplng eeonszessgriitinenyessesnasess ..................

4.26 .The results of transform edge detection with original image of
. "gir]256" the SRDFT, bandpass mask of type II, block size
- of 32, o =0.012. and threshold value of 16: top-left, - .
no. overlapplng, top-right, 2 pixels overlappmg, bottom—left ,
8 plxe]s (200 o o TS O S F TN O ST e

4.27 The results of transforrn edge detectlon w1th orlgmal image of » ;
"catbrain”, the SRDFT, bandpass mask of type 11, block size
of 32, a® =0. 0625 threshold value of 7 without - /

overlappmg civiisetaieresssidesdasuissesasans tesersaritesnseseneisesiensieresresorissssarsatnineses

4.28 The results of transform edge detection with origiria]' image of |
"catbrain”, the SRDFT, bandpass mask of type II, block size
- of 32, & =0, 0625, threshold value of 7 and w1th
1 pixel overlappmg ....... serossssreranns esesenestessssssssnssenani ,,;.,Q.r..;; ........

4.29_ The results of transform edge detection with original imavgeo‘f
“catbrain"”, the SRDFT, bandpass mask of type II, block size =
of 32, 0® = 0.0625, threshold value of 7 and with - K
4 plxels overlappmg ........ cerserens

4,30 The results of transform edge detection with original image‘of
' catbrann the SRDFT, bandpass mask of type i block snze
of 32, & =0.0625, thresho]d value of 7 and wnth

8 pixels overlappmg vieseenesnessersadnensaasasiasussatig astssnadasesstestsbasesisaiioesatsaoiy .

P‘age

154



oxiv o

‘Figure T B L | Pa}gev

e 4. 31 ‘The results of transform edge detectlon with ongmal image of
- "girl256", the RDFT, bandpass mask of type II, block size |
of 32, 0% =0. 012 and threshold value of 16: top-left,
- mo overlapplng, top-nght 2 plxels overlapplng, bottom—left L
c8 plxels overlapprng 157 ;

’4 32 The results of transform edge detectxon with original image of
‘ catbraln the RDFT, bandpass mask of type II, block sxze

. of 32, 0 = 0.0625, threshold value of 7 without | |
overlappmg ........... B A A I U S S seriesisessenioenns 158

o \4 33 The results of transform edge detectlon wnth orlglnal image of

_ catbraln the RDFT, bandpass mask of type I, block size
- of 32, 0 = 0.0625, threshold value of 7 and with -
1 pxxel overlapplng.....f.,....i....'.v.'..l.,...,,.-......-...:............;..1..’;-....-.;’..*_.,..’.:f\..‘.'.,.'...' ...... ...159

'}4 34 The results of transform edge detectlon wrth orlglnal lmage of
catbraln ‘the RDFT bandpass mask of type 1, block sxze B
of 32 o= - 0. 0625 threshold value of 7 and w1th R s
4 plxels overlappmg Sasbedusiieissiassssnrieinbist ..... 160

4. 35 The results of transform edge detectlon W1th orlglnal 1mage of i '

‘ catbraln , the: RDFT bandpass mask of type II, block size

o of 32, 02 =.0.0625, threshold value of 7 and w1th : TEER
e 8 plxels overlappmg ....... assesiedesessrarrion ssuse ..... : .'.v..k.'...,.:.,7..;.‘....»;_...161s'

4, 36 The results of mterpolatwn with transform edge detectxon method e
bandpa.ss mask type.: b1 and threshold value of 16 for dlﬁ'erent B

‘ parameters top-left 02 =0. 04 top-rlght 02 = 0 0625 -
bottom—left a’ﬁ =0. 11 ....... 163




_ABSTRACT

Aghagolzadeh Sabzall Ph D Purdue Unlvers1ty August 1991.. Blockwrse‘
: Transform Image Codmg, Enhancement and Edge Detectlon MaJor Professor -

The goal of thls thesns is hlgh quallty 1mage codmg, enhancement and‘

o edge detectlon A umﬁed approach uSmg novel fast transforms is developed to

‘achleve all three obJectxves Requlrements are low bit rate, low complexlty of

| - 1mplementatlon and parallel processmg The Tast" requlrement is achleved by.,.'

'processmg the 1mage in* small blocks such that all blocks can be processed 3

» slmultaneously This is snmllar to blologlcal vision. A maJor 1ssue is to mlmmlze

- the resultlng block eﬂ'ects ‘This is done by usnng proper transforms and posm- |
“bly an overlap-save technlque The blt rate in- 1ma.ge codlng is mlnlmlzed by, “
vdeveloplng new results in optlmal adaptrve multlstage transform codlng Newly "
| developed fast trlgonometrlc transforms are also utxllzed and compared for -
transform codlng, 1mage enhancement and edge detectxon Both unage
'enhancement and edge detectaon 1nvolve generahzed bandpass ﬁlterlng w1th, -

" | fast transforms The algorlthms have been developed w1th speclal attentron to‘

the propertxes of brologlcal v1sron systems



INTRODUCTION

- This thesxs is concerned with- blockw1se multlstage transform 1mage
codxng, transform image enhancement and -edge detection techniques. Special -
emphasis is given to develop algorlthms whxch perform similarly. to the human'
v1sualsystem P ‘ R AT S TV

Image coding is a‘process or a sequence. of processes in order to reduce’
the total ‘number -of bits in image representation, ‘and srmultaneousiy to
minimize the degradation of the decoded i image, Image coding has, apphcatwns
in efﬁclent image communications and storage. Many. dxﬁerent methods and
techniques ‘have been reported in literature, and some good surveys can.be
-found in Refs. [1 2,3]. In general, all techniques .can be grouped in two major
~categories: predictive  coding and - transform codlng Predictive - coding
techniques are carried out in. the spatral (1mage) domam, while transform
techmques, in contrast are applied in the transform- (frequency or sequency)
domain. In predictive coding, the correlation between adjacent pixels is used'_'
to ‘estimate .or to predict the incoming pixel value, given values of the past
pixels. In transform coding, the image is ﬁrst‘transformed,_then :quantization,
to be explained later, is applied; and finally in the decoding"pro(:e‘ss, the
quantized image is inverse transformed back to the image domain. It is also
'_possxble to combine these two categories in so called hybrid coding, whlch' '
explmts the advantages of both approaches to achieve better results. '

Image enhancement consists of methods to enhance some desxred
features in a given image, either to make the image more satisfactory to the
viewer or to help the machine or the human being to find and classify relevant
" image features easily and efficiently. A survey of digital image enhancementr :
methods can be found in Ref. [4]. One class of image enhancement methods
includes gray scale modification, deblurring and smoothmg Transform
- techniques form another class and are among the major topics in this resear_ch ,
Since both transform coding and transform enhancement require applying
transform to the image, it would be very efficient, in the '-s_en'se of
computational complexity, to perform both together with good match between -



i ‘flsuccessxve processes when both processrng are desrred to be applled

~Transform . edge detectlon is also -studied to understand its

compatlblhty with - blockw1se processrng and transform image coding and
jenhancement A ma_}or issue is whether edge detectlon is compatlble with
~ transform: image - enhancement and whether they can all be done blockwrser :
Jeﬂ'ectwely together with image codrng " .
“The outline of this thesis is as follows Chapter 1 dlscusses brleﬂy the :
vcodlng methods, partlcularly, transform codlng, and some basic concepts for .
_‘vcodlng, such as quantlzatlon and adaptive transform codlng, a survey of 1mage T

L 'enhancement methods in the spatial domain and edge detection.
In’ Chapter 2, an optimal method is developed for adaptlve multlstage o

~ image transform coding. It is shown that considerable xmprovement can be
achleved with little increase in'the complex1ty of codlng processes. - .
~Chapter - 3 - introduces some fast relevant transforms for 1mage :

: enhancement and ‘involves comparatrve experzmental results thh three- o

: ’transform enhancement techniques. SR , PN 7
Transform ‘edge detection is dxscussed in Chapter 4. It is shown that—- )

. dlﬁ‘erent fast transforms can be used for edge: detectxon with consrderably good _

: quallty results and’ low computational complexrty as well as - para]lelxsm' =
A through simultaneous processrng ‘of blocks. Experlmental results are compared
o 'vto other edge detectron ‘techniques based on bandpass ﬁ]terxng '

Fmally, in‘Chapter 5, the conclusmns and the future research toplcs as, '
an extensron of the present research results are dlscussed o S




SRS CHAPTERI L
A REVIEW OF BASIC PRINCIPLES L T

‘ ) Thlschapter discusses '-.e'od»i_n"-gl methods,b partlcularly,transformCOdlng
Some - basic concepts for. coding 'such -as adaptive tr‘ansform ‘coding. .and

quantlzatwn ‘are revrewed ‘The’ chapter also . 1ncludes ‘a_ brief discussion of

image enhancement . in -the spatlal domaln, the propert1es of the human v1sual
fsystem, and edge detect1on L SUIF HAB R P :

o 'Predirctive Cod_i:ngz =

v In predlctlve codlng the strong correlatlon between adjacent pixels,
"'elther in ‘the spatial domain or in the: temporal - doam, Jds “exploited. E
Predictive coding: attempts to estimate or to predict approximately the pixel |
* values to be coded from the avallable information about the prevxously coded
pixels. Then:the dlﬁ'erence or the error in predlctron is quantlzed and coded. In-

- the decoding procedure, the parameters of the prediction and the: decoded -
~ difference signal are used to reconstruct the pixel value, If the difference sngnal
is coded with 2 levels (1 bit per sample) the predlctlve codmg is called delta

) jmodulatxon (DM). Otherwise, , with higher number of levels, it is called .

dlﬁ'erentlal pulse code modulation (DPCM) In general performance of the DM
codmg depends on the quantizer step size. Large step size is good: for followmg -
- large transitions in the image suc‘hv as sharp edges, but high quantization noise )
-in flat areas results. On the other  hand, small step size results in' less
a"quantlzatlon noise in flat areas, but the 1mage is smoothed and sharp edges is
smeared off: In order to solve this problem, the step size can be made adaptive

~ . with respect to the local 51gnal values in a very small nelghborhood based on

the slope of the sngnal or some previously coded bits. For DPCM codlng, there o
"“4is no such problem since large number of bits (or levels) is used for quantizing
" the difference signal. In general, there are many drﬂ’erent,klnd of predlctors for -



- both DM and DPCM vcoding.:FSome*v of them are llnear 'predictOr,_ 'intra_ﬁeld"f .
_predictor, interframe predictor, motion estimator, block matching, etc. [5].

1.2 Transform ’Cod‘ing '

Transform codxng forms another class of codlng In transform coding
the srgnal is first transformed to another domain, usually called frequency or

spectral domain or transform: domaln, by a linear (not necessarily unitary)

’ transformatlon This transformation provides less correlated coefficients in the
~spectral domain that can be quantized 1ndependently Another characterlstlc._ .
of such a transformatron is ‘that it packs most srgnal energy in a few .

coefﬁclents in the spectral domam “Two measures “of eﬁiclency of a glven._ '

‘transform is the degree of decorrelation and the degree of energy packmg

" The optimal transform in this regard is the Karhunen—Loeve transform_ o
(KLT) [6]- Unfortunately, the basis for this: transform are signal dependent = -

" and it is difficult to compute them in- real time. However there are other.f
- transforms whlch are very close to the KLT and easier to be 1mplemented .
~ Some of these transforms are the drscrete Fourier transform (DFT), ‘the -

- Walsh-Hadamard transform (WHT) [7], the discrete cosine transform (DCT)
8], the ‘scrambled real discrete. Fourier - transform- (SRDFT) [9] and “the .

discrete cosxne-III transform {DC3T) [10] These transforms are. descrrbed in

the following’ chapters s ; , S E
Transform codlng glves better performance in the sense of compressmn
‘ and reconstructlon ‘error; - however ‘it does involve “meore. computational
fcomplexrty For reducmg the computatmnal complex1ty, fast transforms have

- been . developed for-:the -above transforms; In- general transform codmg is - o

preferred to predlctlve coding for bit- rates below 2 or 3 brts per plxel Like

o predlctWe coding; some: adaptlve methods have been developed for transform

; codmg m ‘order to ‘increase the eﬁclency, and they are d1scussed in. the_

E followrng section'i in thxs chapter. -

Almost any- natural i image has areas. wrth dlfferent amount of detarls,

ie., dlﬂ'erent dlstrlbutlons for its. pixel values Some have flat areas with little

. dlfference in plxel values -and: easrly can .be coded by a few blts, and others L
may have sharp edges in- different dlrectlons and’ more b1ts are. requlred to
eode them These regions are- called low.or hlgh act1v1ty reglons, respectlvely T S
For more efﬁclency, the characterlstrcs of these regrons are explorted Thls rs-.' _ o




~ one reason why transform image- codlng is usually ‘carried out in blocks For
“this purpose the i 1mage is' d1v1ded into square blocks of size usually equal toan -
integral power of 2 (4,8,16,..), and then each block is transformed

fmdependently The transform- coefﬁclents of each block fall in either low or .

‘~ high - actlwty classes. There are ‘some problems to be considered in this

procedure First, If the block size is too small, correlatlons among pixels: are

not properly used Correlatxons among pixels exxst, up to a dxstance around
10-20 plxels, depending on the degree of activity, the:kind of i 1mage, and the
kind of sampling. Secondly, with decreasing- block size, the number of blocks |
for a given:image is increased and this problem increases the number‘ of bits
for-overbead 1nformatlon which needs to be transmltted :On: the’ ‘other hand,
small block size reduces the complexity of unplementmg “Another problem is
that, at low bit rates, block effects become visible. These: conmderatxons lead to
block sizes such as: 8 16, or, 32. g ‘

1;3; Adaptiye Transf-orm Coding L L

- There are a number of adaptive schemes for transform image coding. |
Adaptive techmques increase the efficiency of coding but also increase the
-complexity of implementation. Adaptlvxty may: be applied to the selectlon of '
transform [11], the number of coefficients to be coded (zonal coding), the value
of coefficients to be coded (threshold coding), or the kind of quantizer and
- quantizer levels. Here, we discuss a well-known adaptive method developed by
Chen and Smith [13], which is also used in Chapter 2 for coding. This method
is very efficient in both monochrome and color image codmg A block diagram

of this method is shown in Fig. 1.1. In this method the image is divided into

~ blocks of the same sxze, and the transform is applied to each block. Then a
measure of "activity” for each class is calculated by adding squared values of
all coefficients- except the DC coefficient. After sorting the measured values for
their "activity”, blocks are classified into several groups; usually called classes,
~with equal number of blocks in:each group. The variance of coefficients is
- estimated within each class, and based on- the. variance matrix, the bit
.allocation map and the normalization coefficients are found for each class.
 Then, the normalized coefficients are quantized: and ‘coded. ‘At the receiver,
" after receiving the bit map, the class map, and the norm factor as overhead

information, the decoding procedure is applied and finally the image pixel



* values are reconstructed'»by'. ,lnverse transforming. ' This adaptive method
increases the overhead information very little, but decreases the reconstruction

. error, in the sense of mean square error, to be explalned later, as much as
25% : ‘ ' ‘

1.4 Scalar ‘Que,ntiizait'i()niv

‘  In scalar quantization, a continuous input random vsri'sble e is
o 'converted to a discrete’ output random variable € that can take. L levels,
T1,g;e. ST We deﬁne L+1 dec1s10n levels, ty,tyyee. tL+1, where usually
Ut = —00 and tj4y = oo. Referrmg to Fig. (1. 2), the output é takes the value
~of rk if the input e is between the decision levels ty and tk+1 The mean square
error (MSE) for the quantlzer is deﬁned as’ ' \ ‘

| MSE= ,El(e,‘— é)z] - ;{O(é.j_'_ é)2pt(g)ae ’ .

'k Lt S A ..
=3 f(e-“rk)zpe e)de LT (L)

k=l

where pe( ) is the probabllxty density function of e. cr :
~ In order to minimize the MSE, Eq. (1.1) is’ dlfferentxated Wlth respect to
T a.nd ty. After equatmg the results to zeroy, the followmg relatlons are found

x‘1 +1‘1 1o

_l"'l;.:-— 3 l‘orl b,,L—l-lﬂ - kl . - i (12)
. tm
| fepe(e)de e e R




' .follows

=E[ele€[tht1+1)] 1 i e

e Eqs (l 2) and: (1 3) are the necessary condltlons that should be satlsﬁed for; e

. _the optimum mean square quantizer. Eq (1. 2) states that the: 1nput threshold |
~level t;"lles halfway between two ‘adjacent . output levels r, and rl+1, and Eq.

- (1:3) states that the output Jevel rj lies at the center of mass of the probablhty SN

density between the input levels t andtl“ R E A - ;
- Egs. (1 2) and (1. 3) together form a nonlmear system of equatxons

v They can be solved by an itetative procedure that is due to 8. P. Lloyd and R

pubhshed by:J. Max and called Lloyd-Max quantlzer [12] The procedure is as

1. Choose aset of 1n1t1al values for the output levels rk, k=1,..,L.
2. Caleulate the input threshold values tk, k'=1,..,L+1 by Eq 1. 2)
3. Calculate the new values for i rk, k= 1,, ,L by Eq (1 3). - :
4 Goto the step 2 ' ’ B

The above algorlthm can be stopped when the change in new values for rk 1s ,
small enough to be neglected and its success depends on the initial chosen set.
When the probablllty density functlon, Pel- ), is umform, the optlmum' "

& _'_A‘mean square error quantlzer is called the ‘uniform optlmal quantlzer, or the

llnear quantlzer In this case Eq (1 3) has the followmg form

L trl'tm

‘ 15 ,Vlsual 'Blo‘cl{w'i.,se Pro'cessing? p e

The main advantages of block processmg are reduced complexlty of
v transforms, adapthty to image details and parallel processing of the blocks. It |
~ is interesting to compare this type of processing to the human visual system.
 Eyes can receive light from a large ‘angle, about 120 degrees, but can not focus
‘at two different ‘points sxmulta.neously ‘Thus, the angle of detailed vision is
: llmlted It has been reported in Ref. [14] that the: resolution of human visual
system decreases from the center of ﬁxatlon, and within a cone of 2°%2° there
is a “fairly” good detailed vision. It can be concluded that good detaxled vision



s llmlted to 2° for average observers Let us consxder an example Suppose an

,;fobserver is’ watchlng a- falrly detailed image ‘of size 512x512 plxels with a.. .

L physrcal size of 4x4 mches in a distance of 12 inches. Then the observer Jooks

"'gat a block of size 28x28 plxels w1th1n a cone angle of 1°x1°. If the observer -

; "f‘f'_’-'"wants to lool( at another location mﬂthe 1mage, he or she has to change the

| '"t‘-'-;-':angle of vision, usually contlnuous'ly': It is° also known that-the | mammum" A
- spatial. bandwrdth of the’ human v1sual system is about 64 cycles/ degree All of -
S these. observatlons suggest that blockwrse 1mage prOcessmg is similar to what_

“the human eyes do In Chapter 3 more propertles of human eyes will be

L :.;mage enhancemen :
B i,“techmques can’ be-

, «conmdered

o 16 I,m,age' .Enhancement”

Image enhancement lnvolves processlng of an- 1mage to make the lmage o

_more satlsfactory to' the viewer. There are a number of - technlques for dlgltal -
‘and- a’ survey of them can’be found in Refs [4 15] “All

’ 'te‘chnlques A number of transform domaln techmques wrll be dlscussed mv"
( hapter 3. Here we brleﬁy revxew some techmques in the spatlal domaln
_vao kmds of operatlons may ‘be’ apphed for image. enhancement m the "-

tspatral domaln gray level scahng and ‘spatial ﬁlterrng In gray level scallng, )
" the: gray level value of each pxxel is. mapped into- another value accordlng to a
function (). The: form of the function 1(.) depends on the kind of desired

modxﬁcatron, and examples of this functlon and thexr apphcatlons are given in

- _-Table 1.1 Hlstogram equallzatlon is one specnal case of gray level scaling =

o U gtechmques where the functlon f(.). depends on the: dlstrlbutlon of the gray level -
L values of the lnput image,. and a unlform hlstogram for the output image is

:‘_’f} jﬁltermg are som‘ 'example of thxs technlque For any of_at es” ’methods,

desir In:_}spatlal ﬁltermg, the gray level value of each p1xel is? changed by -
cal operatlons ‘on'; nerghborhoods of 1nput pxxels Nonse smoothmg, ‘median -
---ﬁltermg, unsharp maskmg, low-pass ﬁltenng, bandpass ﬁltenng and hlgh-pass o

vped into- two categorxes : 'spatxal and’ transform domain -



S ;1,7:'Edge Detectio_n :

Edge detectxon is- very useful in many appllcatlons such as unagev_' ERa
‘segmentatlon, reglstratlon -and: object 1dent1ﬁcatron _Edge points are plxels at
_which abrupt gray level changes oceur whlch may reflect: the change in surface_,'
. _"orlentatlon,,bdepth ,or _hysrcal propertres of matenal Edge detectlon has also j: :

lltlon for e ges

There are: many dlﬂerent methods for edge detectlon The two most' S

o compared to other methods in. Chapter 4.

17MotxvatlonforThxs Research SRS

, There are many appllcatlons in’ 1mag‘, : processmg ‘in whxch lmage
transmlsslon or. storage is reqmred Satelllte communlcatxons, remote. sensmg,

] We wrll drscuss blockwxse transform edge detectlon methods as.

'blomedlcal lmagrng are some examples Regardlng high demand for fine’ |

quality 1mages, 3 large bandmdth ‘or ‘memory is Yqulred to transmlt or to

' store . images: ~Also - for ‘many of - the. aboire mentloned appllcatlonS,

enhancement of ongrnal images is necessary So it is desirable to improve the

fo efficiency 'of coding and enhancement of images srmultaneously, whlle reducmg ,

- the complexity of 1mplementatlon Transform. coding is consldered as a

- efficient approach to i image codlng Therefore, it is’ mterestmg to 1mprove the o
) performance of lmage coding and image enhancement based on transform o
- techniques and to xnvestlgate transform edge detectlon followmg ‘image
 enhancement. Blockwise processxng also. allows ‘real-time 1mplementatlon’

through parallel processmg and adaptivity. It is also sxmllar to the propertles
“of the human visual system. ‘Thus, it is desxrable to- unprove the performance
h of block transform codmg and to 1mplement image processing in blocks. -

Tn ‘transform 1mage codlng, ‘we ‘have: developed a techmque called

:optlmal multlstage 1mage transform codmg, whlch prov1des consrderable.

unprovement in performance of transform image codlng In pa.rallel with this

| research we: mvestlgated to i 1mprove blockwrse xmage enhancement techmques




wrth the same fast transforms Thls is followed by blockwrse transform edge,

' .detectlon In this way, we have had the goal of developing a umﬁed approach o

i ,,i,'to most tasks in lmage processmg through blockwxse fast transform processmg '
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Table 1.1.

Some gray scaling functions for image enhancement [15].

. Contrast stretching

. Noise CIibpi_ng and
thresholding

. Gray scale reversal -

. Gray-level window slicing
5. Bitextraction
. Bit removal

. Range compression

f(u) =2u module (L + 1),
gy =2m 4]

: ‘(‘!U,,-‘ g | 05u<a
fu)={Pu—-a)+v,, asu<b
y(u -b)+v,, b=u<lL

0, Osu<a -

f)={au, asusb
AL, uzb

fwy=L -

oy [l e=susb

Ju0 {U, ~ otherwise

:,.‘=.vln|[§3uT;]. n= 'l.‘i. e .B

2
v=clogw(l+u), u=z0
AL

OsusL -

- Least-significant-bit removal. -

The slopes a, B Y delermme thc relauvc "

- contrast strctch

Useful for binary or other images that
_have bimodal distribution of gray
“levels. The a and b define the valley
between the peaks of the histogram.
~Fora=b =1, this is callcd
thresholding.

: Crcalcs digital neganve of thc unagc

~Fully illuminates pixels lymg inthe

interval [a, b] and removes the
background. : ‘

- B= number of blts used to represcnt u

as an integer. This extracts the nlh
most- sngmfcam bit.

';'Most sugmhcanl -bit rcmoval

,.«lnlcnsi‘l‘yﬁtoéomrasl lr;ans’formation,

eT
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| _ CHAPTER 2 i
OPTIMAL ADAPTIVE MULTISTAGE -
IMAGE TRANSFORM CODING =~

2.1 Introduction .

Transform coding is Widely used in coding’-bf'-images'»sii;.ée. it gives a
very high compression ratio. The effectiveness of transform coding has a lot to -
do with the. properties of decorrelating the ‘pixel. values and packing the energy

of the signal in a few transform coefficients. Based on’ ‘these two- criteria, the -~

Karhunen-Loeve transform (KLT) is the: optlmal transform for image coding
[18]. However, the KLT is signal dependent and difficult to compute in real |
time. The discrete cosine transform (DCT) is- among’.,the’,best fast transforms
to approximate the KLT in image coding [8]. One technique for improving the
efficiency of image codin:g‘is to apply adaptivity fo the coding procedure by
~ classifying image blocks in a number of classes An efficient, adaptive
algorithm for image coding was proposed by Chen and Smith [13].

In this chapter, we discuss an optlmlzatlon. technique of - transform

image coding in the form of a multistage procedure in which the error signal |

resulting from the quantization of the previous stage is input to the following
stage. Multistage transform " coding thus involves transform domain

- quantization in a number of stages such that each stage attempts to correct -

the errors in the previous stage. The technique to be discussed is different from
progresslve image coding even though there is some degree of similarity. In

progressive image coding, first a low-grade version ‘of the image is sent, and '

then the image is refined by sending more mformatlon in the following stages.
In the technique discussed in this chapter, the bits are allocated to the pix_els;-_-'
of each stage when the number of stages and the total bit rate are given.
Consequently, the stages are coupled, unlike progressive' image coding.
However, the present technique can also be used in progressive image codmg if
each image sent is coded in multistages. . ‘

A number of dxﬂ'erent techniques for progressxve 1mage coding in both o



spatlal and transform domalns have been dlscussed by Tzou [17], Wang and’

"~ Goldberg [18 19]. In these technlques, the coefficients of each stage are

"]vquantlzed by a predetermmed average rate and the number of stages are

lncreased until satlsfactory 1mage reconstructlon is obtained at the receiver. So

- far, no adaptlve method has been reported in order to adjust the number of

B “bxts for each stage based on the statnstlcs of the coefficients of dlﬂ”erent stages,
~and for a total given bit rate. i I
The method to be discussed in this chapter 1nvolves optlmal adaptive

o vmultlstage transform codlng with a fixed total number of bits per pixel and a

fixed number of stages It is optlmal in the sense that it minimizes the total

. final reconstructlon error with the given total number of bits and stages The

‘statistics of the coefficients in different stages are used to optimize the division
~of the total number of bits among different stages. The adaptivity introduced

B does not significantly add to the complexity of the coding system since it

utllxzes the information that is: necessary for any klnd of multlstage transform
- coding. Simulation results have shown a considerable percentage decréase in
- reconstruction - error ina” large number of test images. In addltlon, the

‘remalmng “error- 1mage is more norse—lxke than the error image in one ‘stage -
' codmg, especlally with reduced -error around the edges.- Smooth- areas of the

B lmage look smoother with- multrstage codmg than one stage coding: as well.

These .are belleved to be the main reasons why multistage transform ‘coding
gives subjectlve:ly rnore pleasmg resul.ts than one stage codmg »at.the same bit.
'r,ate.a; L o PRI [ ARERNIPUI A RIS ‘
o There are’ ‘ar number of subjectwe and obJectlve error ‘measures to
B 'quantlfy the quallty of i image reconstructlon, but the mean square error (MSE)
s the most widely used. The MSE is also the measure in this chapter to be
- used -to' compare experimental ‘results. The. experlmental results w1ll also be
, dlscussed in terms. of subjective: performance o 2 :
' The chapter consists “of - 6 sections. In Sec. 2.2, the new proposed ‘

' imethod is introduced, and a mathematical expression is derlved for the total

final: reconstruction error which is to be minimized durlng bit allocation and
codlng Thls expressxon is based on the mean square error. The optlmal bit

[ allocatlon for different stages to minimize the: quantlzatlon error is. explaxned

in Sec 2 3 by using. the statlstxcs of the coefﬁclents in dlﬁerent stages.. In Sec .

2 4, the expenmental results with. the dlscrete cosine transform (DCT) are
~ discussed with a number of i 1mages and rates, as Well as with one class and

o 'multlclass ‘ adaptxve procedures. ‘Sec. 25 dlscussron ' concermng

15
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implementati'on of niultistag_e transform coding. Seci.-2.‘6 is ..c’on'c'li,Jsions.{ o

S '2.2 The MSE Function for the Proposed‘ Meth‘od -

The block diagram for adaptlve multlstage transform codmg is shown:: :

in Flg 2.1. The transform coefficients of the first stage are assumed to have

- little correlatlon so that they are quantized and coded mdependently with an
optlmal bit map for the. first stage to be considered.. The two dlmensmnal
“error signal resulting from the first stage. quantization is fed to the second
stage and subsequently quantized and coded with another optxmal bit map

~ This procedure is continued for the glven total number of stages.

Next we derive a mathematlcal expression . for the total ﬁnal- >

reconstructlon error. based on the mean square. error. (MSE) measure. We
assume  that unitary transforms are used for transform codmg Then, the

variance. of the reconstructlon error ‘is equal to that mtroduced during the S

quantlzatlon of coeﬁic1ents in the transform domain [20].
’ Referrlng to Fxg 2.1, the followmg notatlons are deﬁned

T The number of stages o - L
By o “The coefﬁcxent matrlx of 51ze NxN as mput to stage k+1
T k‘-01 .,n—1. | TR _.

_fﬁl’k . The matrix of size NxN for the quantlzed coefﬁclents as output
. ~ of stage k+1, k =0,1,...,n—1.
€kij ° The ijth coefficient of the matrrx Ey.
&yij.: The ijth coefficient of the matrix Ey.
byij : ‘The: number of bits used to quantlze eku _ SR
fy(by;) : The mean square distortion function of the bk,j-blt quantlzer
- for unity variance input (see Sec. 2. 3) '
- The variance of ey;;.
Fije The variance of ékij;

_ There are dxﬂ'erent kmds of quantxzers such as optlmum mean square
»'(Lloyd Max) and umform optxma] quantizer [12] The optimum mean square
quantlzer is used in this chapter. Suppose eyij. and & ek,J -are the mput and the
. output of the optimum mean square quantlzer They have the following
properties [15] ’ ’
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j'E(eku eku)— ‘( k{q)ij)=9 - (21)

Ng A

Efew;) = B(éxg

T

‘;‘E(ekueku) "“ (eku) - E[eku(eku—eku)] =0 : v (22) ’

i The fo]»lowinvg eqoation’c"an 'Be 'derived from E(js ' (2'1) (2 2) and (2 3) :
E (ekueku) =E (eku) = Uku [1 fk(bklj)]akxj for k = 1 2 ’n"'l (2'4)‘

, Referrmg to Fig. 2.1, the final reconstructed image is- formed by takmg
~ the inverse transform of (Eo + El R En_l) Therefore the mean square
error. (MSE) is gwen by AL S o

L UN- 1 N-1 - -7“‘ SR ,\ ERTE )
VMSE‘:T\IT E E E[eoij = (oij + &5 + - + e(n—])ij)] : (2-5)

'Usmg Eq. (2. 2) and the fact that the average value of the coeﬁiclents in each
stage, excludmg the DC coeﬁcxent of the first stage, is zero, the followmg is

o ',Iobtamed at. stage k:

[(eku eku) ] C’fkﬂ)u = _ Uk'iju P (2'6)‘
, Applymg Eq (2 6) to stage k+1 we have

. ' 2 o
[(e(k+l)u = e(k+1)1j) ] 0%k+1)u - U(k+1)u O'IZc Uku 0(k+1)lj (2'7)

- ‘.'By}.it’erati'ﬁg Eq,](2;7.,)fanq uSi‘ﬁg Eq. (2;4,);:'~¢thei’MsEf'for n stages becomes




‘ .E,'sequence to the quantlzer, the liumber of blts l(or the nurnber ‘of levels) used
-'..‘_ffor quantlzatlon, nd parameters that depend on the dlstnbutlon of the

;:*‘_.‘mput A closedif_ m expression for the MSE is’ very. difficult. to derive, and
o 'most reported resul' st been: obtamed elther by numerical or approximate
" means,’ In: the case of the optxmum mean square (Lloyd-Max) quantlzer, the
. 'MSE is usually expressed in . the form of aﬁu fk(bm) where fk(bk,,)'» isa
. function of by;; and the probablhty density function (pdf) of the input: signal -
PTENE to. the quantlzer One such expresslon for fk(bkij) for Gaussxan dxstrlbutlon is
,gwen by [12] e S




'2‘l 5"% Jor 'b_gi; 5232 T

_;_;,f, (22b ’ +08532)3 ij = T

jSome other error. functlons have been reported for both Gaussran and

i | Laplacian distributions in Ref. {15] and is given in Table 2.1.

All of the above models ‘are elther for the Gaussran or the Laplacran

k" ;_v'dlstrlbutlon In practlce, the mput to the. quantrzer usually has nelther{ »
. Gaussian nor Laplacran dlstrlbutlon exactly but some drstrlbutlon close to onef” o

r v of them N :
' Recently 1t was reported that most of AC coeﬁiclents for the ﬁrst stagef‘ R

. ol‘ the DetT transform have Laplaclan pdf [22]. It was also mentioned that the

Sl ._'.DC coefficients have a pdf close to Gaussian. We' performed the Kolmogorov-.

’."i:"iv;._vf,SmerOV(K-S) 23] test for the coefficients of the second stage. The results . - L

\‘ ﬁ:";-'.lndlcate that the 8-bit quantization error for the DC coefficients has a pdf
‘b close to the unlform distribution. All the AC coemclents which have been
" ~:”"“f.-allocated 2 or more bits have a pdf closest to Gaussian whereas most

g coefﬁclents which have been allocated 1 blt have a pdf closest to Gaussian. Of -

i :."jv ,course, those coemclents whlch have not been allocated any:bit at: the ﬁrstﬂ

[‘_stage have a: Laplaclan pdf- in most cases, Overall, a- large’ number of

) coeﬁiclents which will receive non-zero bits in- the second stage have a
Gaussran pdf Therefore in our srmulatlons, we assume Gaussxan pdf for the .
S ; second stage and use the error model givenin’ Table 2.1,

Havrng the error models for each stage, the total ﬁnal error: glven in Eq j

(2 8) ‘can “be  minimized through ‘an- optlmal bit allocatlon procedure,

Coefficients in each stage usually have dxﬂ'erent varrances, ‘and their variances

—are also different from stage to stage. Therefore, different number of bits:
R should be. assigned to each coefficient. The : major constralnt that ‘'should ‘be |
satisfied is that the total number of blts is-fixed. There are a number of
. methods for bit. allocatlon, and they are not necessarily optlmal in mlmmmng'

. the. MSE Some methods assume ‘the ‘number of bits to be a continuous

o 'varlable in order to get an optlmal and closed form expresslon, but the result -

e f*has to- be rounded to the nearest mteger ‘and' is no. longer. optxmal The'}

e procedure for obtalnmg optlmal non-mteger number of bits was drscussed m..‘ Lo

Ref.. [24] In this chapter, ‘we use marglnal analysis described in Ref. [25] L
' develop an optlmal method vnth 1nteger number of bits. The piecewise error
s s models glven m Table 2 1 are strlctly convex functlons and guarantee that thei’

2,698 22""~i S (2a0)
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‘global minimum is achleved Here, we glve the steps for blt allocatlon w1th 2 '
stages. The’ ‘generalization for ‘more stages is straightforward. The steps B
xnvolved in bit allocation according to marginal analySIs are as follows
ISetbku-—O fork = 0,1 and i,j = 0,1,...; N—1.' PR ORIt AL
2 Calculate the marglnal return; Ay, whlch is the reductlon in: the_-' i
“total final  error: given by Eq. (2. 8) if 1 b1t is: assxgned to. the_ LT
coefficient ek,J, for k=0,1, and 1,,]—1 W\ RS SR E R
3. Allocate one b1t to the: coeﬁicxent ek,J whlch has the largest margmal:r
,"returnAklJ S SRR TR an
~ 4. If the total number of a.sslgned blts is equal to or greater than the* ,
total number of bits,’ stop, otherw1se go to Step 2 to declde for the o
, nextblt ' v i SR : R
If ties happen in step 3, the same procedure is repeated among ‘the. coefﬁc1ents “ B
which have the same .value for Aku by . ass1gmng another blt ‘to: these £
, coeﬁicnents and lookmg for the wmner : :
, The above procedure for bit allocatlon can be applled to ﬁnd the blt
map  that minimize the total final reconstruction error for: the multlstage-
transform- ‘coding if the multlclass adaptive method is not used for each stage.
In denvmg the estimated total final error given in Eq. (2.8), we assume that
| the coefficient ek,J is the resultlng error of quantizing the coeflicient e ~1)ij» On
L the other hand, if the multlclass adaptlve method is used the class- ‘map of
~each stage i is possibly dlﬁ'erent 80 the above assumption does not hold. i
, - For multiclasses, we introduce another method of optlmlzatlon to R 3
mlnumze the total error. In this method, we first derive a relation between the
total average rate R, and the average rate for each stage Ry, k =0,...,n—1.
When the average rate of each stage is known, the bit allbcation’procedure for
“each stage can be done independently. It is also possible to use different -
number of classes for the following stages since the spectra in those stages are .
1 more flat than the first stage. : & R
© " First we will find the relation between R and Ry, k - 0,...,n— -1 for o
n=2 (two stages) Then, we will show that for n= 3;,_,the procedure is
| stralghtforward For n —2 the problem is B I




1 N—lNl

subject to

:ﬁrst assume “that - the varlances cof - the coefﬁcrents of both stages,’,;-'

RaRE :;mlnlmlze = 2 2 {Uflu fO(bOIJ) + alxl [fl (bl'l_)‘l_- 1]] -

The variances Ulu depend on- the bits bolJ allocated to the ﬁrst stage, ,. :
: »whlch is not known in advance In order to: get around thls problem, wewill 1

Oy and 021,1, for l,j = 1,...,N—1, are available. Based on this, we will denve’.:fj»‘f‘
. the optlmal bit tates for two stages 0nce the. rates-are known, the new values '~~~

‘ » """:'»of 0‘%,, will: ‘be computed The process is. 1terated W1th these new: values until U
. the’ optrmum point” is: reached In practlce, We found that two or’ threeg"fv

i ,:fxteratlons are sufficient.

o In the: analysrs, ‘we wrll assume that bou and blu are. contmuous Slnce.}' B
we. are looklng for an analytlcal expressxon for the rates Ro and R;, the error. N

A ;-vk‘functlons fo( ) and f1(:) must. be known The ‘plecew1se functrons given in-
.:‘_v.'-_.:"f]f'Table 2. 1 can be used for margmal analys i

iuse them‘ in the above mrnrmlzatlon problem
‘these  fune | wrth ' another functxon | the form ' i€ of

"--pleceW1se model in the least mean square sense.. Flgs 2 2 and 2 3 show ‘the |

allo : tion, but 1t is. not easy to B S
Instead, we try to. approxrmate' SR

approxrmatlon for partlcular Bk It is. observed that the ﬁt is very close The R
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1 001 }

B, | By '
beij = B—Ob}lij + B logy | ?‘%f +. logg B, (2.13)

By takmg the summatlon over i and } i of both sxdes of Eq. (2 13), and deﬁmng S

1 NlNl

N* i j -0 , ’ '
and ‘ ' ,
_ 1 N-1N-1 S to
CSi= ¥ Ylegol; o (215)
N l=0 j=0 R AN .
we obtain. L
Ro=—L R, S — 5, + loga | 22 | 2.16
0=g, + ]—3-0— 0 — 51 -+ l0g 73‘1” (2.16)
where _
1 N-1 N-1 o
Ro=r 3 % bOu e 2an)
| N* i=0 j-=0 R SRR T
and e » o
| 1 N-1 N-1 - | |
R’ Y ¥ by - e (2.18)'
N i=0 j=0 ’ ' ' :

Usmg the fact that Ro + R; =R, the average rate for the first stage
becomes

Ro= ot Rt+—L |58+l E°—
Q.‘B‘ov'*‘vBl' Bo + B, 0 i g? B, |

(2.19)

Then, R, is found as R — —Rg. :

! Extendmg the above procedure to the case n = 3 is easy. Suppose we
can approximate the error function model of the third stage by
fa(byij) = 2 “Bzbsi | for some B, (see Sec. 2.5.) Then, similar to Eq. (2. 16), the
followmg equatlon is derived: ;



A T
=g R I_BT

" where -
o N-1'N=1

S5 by

=0 j=0"

o
Ry =—
‘and'
' ‘1 NIN—

ey IR ‘°g2g211
N 1-0 J-=0

S =

S‘l - 82 + 10g2

(B, ]|

ey

e 222)

Solvmg Eqs (2. 16) and (2.20) with the constramt Ro + Rl + R2 = R results :

“in the fol]owmg relations for Ry and Ry:

_ BB
‘Rg ' -

'R'

Bl +B2

S '~B5B1 T BoB; ,+‘ B,B;

A
BoB, + B0B2 + BB,

BOBl + B0B2 + B B2

B,

BB, 1_+ BB, + B, B,
and |
BoBz

(229)

Bon + BoBz + Ble _'

By

BoB: +BoB; +B,B;

By

_ e S
+B0B1+B0B2+B1B2 1

BoB, + BoB; + BBy ©
B, |

vBlBOBI +BOB2 +B1B2. og2B2

Bl

By

| e T BqB; + BiE,
'Agam, R, is found asR — Ro R;.

The above procedure can be génerallzed to any number of stages Once o

g )

- (220) 7



the avefage bit rates for each stage are known, the bit allocation for eaeh .

stage can be done independently by using margxnal analysns or any other' ‘
: technxques for any desu'ed number of classes. : SR S

2.4 Experimental Results ~ * . - A

- The multistage transform coding technique discussed above "'was' apbhed
to a set of different images of sizes 128 x 128, 256 % 256 and 512 x 512, shown

in' Fig. 2.4. All images were quantized with 8 bits (256 levels) The number of :
stages used were either 2 or 3. The two-dimensional DCT was used as the

unitary transform. Coding was carried out with a block 'size of 16x16. We

compared multistage transform coding with one. stage codmg The adaptive

" coding technique of Chen and Smith [13] with 4. classes was used. for. each' R

stage. The total rates used were 1.0, 0.5 and 0.25 bits per pixel (bpp). -

For the first stage, the optimum mean square error quantizer was used
with the Laplacian distribution for the AC coefﬁclents and the Gauss:an
distribution for the DC coefficients. The optlmum mean square quantizer with
Gaussian - distribution for all the coefficients was used for ‘the second stage.
This choice was based on the statistical tests explalned in Sec. 2.3. -

For two stages with one class (without using Chen and Smith adaptive .
method) ‘the total number of bits were allocated according to the marginal
analysis method discussed in Sec. 2.3 to minimize the total final error function
given by Eq. (2.8). For this case, two schemes are possible. Either the"
variances of the second stage O’%j can be estimated 'by the known variances of
the first stage by azlu = U%ij fo(bgij), or we can start from initial rates for the
first and second stages and then iterate once the variances of the second stage
are known. Our experiments showed that the second scheme is not as efficient
as the first scheme. In addltlon, the first scheme is much better in terms of
, computatlonal cost. Therefore, we chose the first scheme ,

» | For the two stage multiclass adaptive method, we used Eq (2. 19) to
‘allocate the total bits between two stages. In this case, we started with the

. initial rates Ry =R and R; = 0. This choice was based on our observation

that, for optnmum rate division, Ry is usually greater than R;. In most cases
one or two iterations were sufficient to get the optimum rates Ry and Rl

o In all simulations, 8 bits were allocated to the DC coefficients of the
. ﬁrst stage. Thus, in computing Sy with Eq. (2._14), the v_anance of the DC
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'coefﬁclent was not mcluded in the sum. For the same reason 8/‘N2 which is '

“ 'the average b)t rate of the DC coeflicient at the ﬁrst stage was subtracted

from Ri in Eq: (2 19). For the second stage, the DC coeﬁiclents have an average, ‘: _.'. L

 close to zero, which is easaly justified by Eq. (2.1).

We' calculated the MSE and the Normallzed MSE (NMSE) [27] by the -
followmg equatlons ‘ e

*,;MSE - LN ((»J)"'X(,J)] )

N2
N_ =0 j-=0 :

N-1 N-1

DIEDY [X(l,J)-X( ’J)]

i=0 . j=0

NZrNE-: [X(I,J)] s

NMSE = (2.26)

=0 =0

‘rwhere x(',j)“‘v and )"((,J) are pixel ‘values of - the orig'inal" image and the
reconstructed image, respectlvely The 1mprovement was - also calculated in
- term of dB defined by ‘

One stage Mean Square Error
Multlstage Mean Square Error

‘101 0g10

Table 2.2 shows the numerlcal results In this table we 1ncluded the.

 optimum rates for each stage In the case of two stages, the multistage

transform coding resulted in as ‘much as 14.65% 1mprovement for one class
_and 11.54% xmprovement for 4 classes, - Fig. 2.5 shows some of the

'reconstructed images using. multxstage image transform coding with dlﬁerent '

i rates for both one and multlclasses The correspondmg one stage’ codlng »
- results are also shown for comparxson It is observed that the results of -
| multlstage codmg are more prel‘erable than the results of one stage coding.

~To. compare the reconstructed xmages thh the orxgmal images, the .
dlﬁ'erence 1mages were’ generated and ‘are’ shown 1n Fig. 2. 6. For better

presentatlon, we generated the difference i images in two dlﬁ'erent ways, which

are referred to as method I and method: II In method I the absolute values of

the differences are normalized’ by the maxxmum dlﬂ"erence value of each
difference image, and the results are integer. values from 0 to 255, with the

~ brighter grey value: representmg the larger difference. In method I, the larger =~ |

of the maxxmum dlﬁ'erence value of one stage codxng and the correspondmg.



~ two stage. codlng is used for normahzatxon It is clear from Flg‘ 4. 6 that the '.

difference - irhages with multlstage coding are more nmse—hke than the"- Ll
corresponding difference images ‘with one stage coding. In addltlon, thef'__'
differences on and around the edges are less dominant with multlstage codlng R

“The. smooth fegions are also smoother, as clearly observed in> the case of the
baboon image, especially around the fose. 3 e an :
In the two stage experiments; we tested all p0351ble combrnatlons of Ro

and R; for rates equal to 0.5 and 0.25 bits per. pixel, and some of the results
are shown in Flgs 2.7. 1t is clear that the optimuimn points are generally close _
to: what we found by either: mlmmlzmg Eq. (2.8) directly for the. one-class casel' :
or d1v1d1ng the total rate by Eq. (2. 19) for the: multlclass case, A
' ~We also tested three stages, it the total fate of 0.5 bpp w1th 1using 4 .
‘classes, the orlglnal image - g1r1256 ‘shoéwn in Flg 2.4, The results showed

13.88% ifprovement ovef oné stage - This is:- 533% more than the

3 '1mprovement with two stages, and the: same type of 1mprovement is- expected B
for other cases. ' "

12.5,D»iS¢ussio‘I.1: v

~ As mentloned in Sec 2. 4 a large number, but not all of coeﬁiclents m:
the second stage have a pdf close to Gaussian. Sinice one kind of pdf is usually
assumed during quantlzatlon, we chose the Gaussian pdf in Secs. 2.3 and 2.4. o
Even though, more than one choice of pdf is posslble, it increases the overhead '
information that should be known during decodmg Thus, for one klnd of pdf .
' 'assumptlon, we have thé érror of mismatch between the assumed pdf and the

el pdf for some coefficietits: This érror was expenmentally studled by
; _Mauersberger [28] The reported resilts show that the error resultlng from -

- using Gaussiafi quantizer for a random variable with Laplaclan pdf is more

| - thaii the érror resulting from using Laplacian. quantlzer for a random varlable S

~ with Gaussian pdf (assumlng the samé variance and number of. levels) In

practice, the total errof depends on the number of mismatch cases. For the

third stage in multlstage ifnage transform ¢oding, our statlstlcal tests showed
that the coeﬁiclents have & miixture of uniform; Gaussian and Laplaclan pdf.
Agam, since more than half of them have Gaussian pdf, we ‘used the Gaussian
quantlzer We are investigating further kow the mismatch error can be
= mlmmlzed for multlstage image transform codlng One possxble solutron is t0"



use a blt allocatron method that can- be adapted to any kmd of probabxhty"
S densrty functlon for coeﬁlcrents and where the error function can be calculated

l.»’f'-lteratlvely Specnﬁcally, we -afe studyrng the 1mplementatlon of the method L

g = gwen by Shoham and Gersho [29] for this problem RS -
It must be mentloned that the multlstage procedure dlscussed in. thrs,-
‘f"“-».,v'chapter w11| sllghtly 1ncrease the overhead mformatlon The main - part of =

_,;overhead mformatron s the bit map For the optlmal multlstage 1mage .

e transform codmg, we assume that the total number of blts (or the

- correspondlng total -average rate) is -fixed. When the total rate is divided -

; ‘between stages, more number of plxels per stage assume zero blts Thus, the v' L
Lo overhead mformatlon is not doubled Usually, about 0. 03 bpp is needed in one
stage codmg for overhead mformatlon, including error- protectxon bits, for the

0.5 bpp case with an 1rnage of size 256 x 256 [13] For ﬁndrng the net

o 1mprovement ‘we assumed 0.015 bpp for extra overhead in two stage codlng, ‘
whlch is‘an overestlmate ‘When we mcreased the brt rate by thls amount in -

one: stage codrng for-the - orlglnal image ™ g1r1256 we: found that the net »

o 1mprovement was' about 1.5% less than what is given in Table 2 2. In another'

: ,;test we consrdered 0.01 bpp additional overhead information for the 'baboon |
P 1mage wrth two stage and 4 classes codmg, whlch is deﬁmtely ‘more than the :

necessal'y In this® case, the net 1mprovement was Just 0. 63% less than what is

g glven in Table 2.2

the: coeﬁ'xcrents

: Wrth sequentral vrdeo 1mages, 1t may also be possrble to- usev the same

£ ’vanances in: correspondrng “blocks of successive ‘images to reduce the
: i"-computatlon in the. 1teratrve procedure of ﬁndmg the blt rates Ro, Rl, e in
p 'the multrclass problem ’ = o 7 L

2.6 Conclusions ~

» Both theoretlcal and experlmental results mdlcate that optlmal"
' : adaptrve multrstage 1mage transform codmg lS qurte eﬂ'ectlve in reducmg mean

_‘ ‘f_square reconstructron ‘error: over ‘what is- possrble with' one stage transform o
B ['codmg Optlmahty is achieved - by the. mrnrmrzatlon of the total ﬁnal error

- .using margmal ‘analysis. Thls mmrmlzatron determmes how to allocate bits to

& .1mage is: obtamed by addmg together the quantrzed transform coefﬁclents

s /in.each stage. After the first stage, the pdf of the. coefﬁcrents“v-" v :
‘appear. to be. erther Gaussian or umform The reconstruction of the quantlzedf e
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from all the stages and computmg a s1ngle inverse: transform of the results. o

Further 1mprovements in the techmques descnbed are expected to reduce
. reconstruction error more. S o L
In this chapter, we consrdered MSE as the performance criterion.
However, the dlﬂ'erence 1mages shown in Fi ig. 2.6 1nd1cate that the
rreconstructron errors are more noise-like 1n multlstage coding. than in one
stage codlng, w1th especlally reduced errors at the edges ‘The smooth reglons

are also smoother, as clearly observed in the case of the baboon image, -

—especrally around the nose. These are believed to. be the reasons why the

~ reconstructed images w1th the multrstage method are subjectlvely much more

preferable than the reconstructed images with the one stage method at the
~ same bit rate. ' S :
' Although the proposed method was tested: for DCT and monochrome _
: 'lrnages, it can be easrly apphed to other transforms and color lmages ‘ ’
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Tablé 2.1. The error model for Gaussxan and Laplac1an dlstnbutlon of the -
R - form fk(bku) A2 B¢ gwen in Ref [15]

- [ Diseribution 0<b,msz 32 | 232<by5.17 | 5.17<b<9
ok B | A B —A B
TS S NI 1A [ v S W 32573 1.9626
[ Coplacian 7] T 11771

>

{20851 17645 |3.6308 10572 |
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sohd curve: Tablc 2.1 .
0.6 - dotted curve: approx1matcd w1th B 1 52
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Flgure 2. 2 Approxlmatlon of the error model for the Gau551an pdf glven in

Table 2.1 with Bk = 1.52 i in the form of fk(bk,)) = 2_B“b“"
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e ~Table 2.1

’0.4-;. o el ou
~approximated with B=1.23

'110,4

o
N .
_#.
[+2]
[e+]

Flgure 2. 3 Apprommatwn of the error model for the Laplac1an pdf glven in |
Table 2.1 Wlth Bk 1 23 in the form of fk(bku)’ = 2_ Kby



Figute 2.4.  Original images: (a) "girl128", 128 x 128. (b) "girl256", 256 x 256. -

(¢) "lenna”, 256 x 256.






;T’ab'le'2.2'., _“Simulation results for milvlv't»vistagé‘ tAranéférr‘m"c'o:éiing..
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Fqgure 2 5

Rec‘dnstructed image of (a) g1r1256 for one stage codlng w1th
~ rate 0 5 bpp and 1 class. (b) "g1r1256 for two stage coding with
~ rate 0.5 bpp and 1 class (c)' g1rl256 for one stage coding with
- rate 05 bpp and 4 classes. (d) ' g1r1256 for two stage codlng

W1th rate 0 5 bpp and 4 classes.



Flgure 2.5 (contmued) (e) g1r1256 for one stage codlng with- rate 0.25 bpp
AT “and 4 classes.,(f) g1r1256 for two stage codmg with rate 0.25
o bpp and' 4 classes._( ) "lenna" for one stage. codlng with rate 0.5

aand54 cla,sses, o

_nd 4 classes.,,(_li;) lenna for two stage codmg w1th rate 05 :



Figure 2.5 (contimied)s (i) "baboon" for one stagé‘ ‘codihg with rate 1.0 bpp
' and 1 class. ' i SRR B
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Figure 2.5 (continued) (j) "baboon" for two stage coding
© andliclasses. e




Figureh2.6.j‘ The difference images for: (a) Fxg 2.5(a) by method I. (b) _.Fig-.'. j
2.5(b) by method I. (c) Fig. 2.5(2) by method II. (d) Fig. 2.5(b)
by method II. - SR L ' :
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S (continued) (e) Fig: 2.5(c) by method L. (f) Fig. 2.5(d) by method =
S ) Fig. 2.5(c) by method II. (h) Fig: 2. ) by method L.



() R W

Pigure 2.6 (continued) (i) Fig. 2.5(e) by method 1. (J) F‘ig.v2’.5»(vf)- by method
L (k) Fig. 2.5(e) by method II. (1) Fig. 2.5(f) by method IL -




ethod L.
1I.{p ig. 2.5(1




Figure 2.6

(continued) (q) Fig. 2.5(i) by method I.
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' (normalized by MSE of 1 stage coding)

o ST '._,»-f‘;,-m‘/.n L

- Fxgure27 Experlmental results thh two stage codmg for all posslble values
' for Ry and Ry (R = Ry +R1) (2) with "g1r1256", rate 0.5 bpp

. and 1 class. (b) with "glrl256", rate 0. 25 bpp and 1 class (c) with
: g1r1128 rate 1 0 bpp and 4 classes .
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CHAPTER 3
TRANSFORM HVIAGE ENHANCEMENT

- 3.1 Introduction =~ - .o

- Image enhancement involves processing of an im’age to make the image

more satlsfactory to the viewer. Image enhancement may be followed by image -

segmentation, which is to partition the image space into meamngful regions.
The algor:thm used for image enhancement also affects the results of i 1mage
segmentatlon v R ST R
A survey of dlgltal image enhancement methods can be found in’ Ref i
‘ [4] One class of image enhancement methods includes gray scale modxﬁcatlon, ‘
'deblurrlng and smoothxng Transform techniques form another class.- Image

transforms prov1de a spectral decompos1t10n of  an .image into spectral -

coefficients which can be modlﬁed linearly or nonhnearly, for the purpose of
1mage enhancement. - ' : ' , L
Images are usually. dlgltlzed with 8 or 16 bxts, and large memory is
: needed to store_ them: Hence image codlng. is- necessary for storage and
transmission of images. Image transform coding techniques are among the
most powerful coding algorithms, [5,15,27 ,30]. Hence, fast transforms for
image coding have been more thoroughly studied than for other purposes, and

" the best transforms in the sense of performance and computatlonal complexity‘

have been determined. The discrete cosine transform (DCT) has often been

preferred for image coding because of its closeness to the optxmal Karhunen -

Loeve transform for Markov-I type sxgnals, which is a reasonable model for
images [8]. However, two other more recently studied transforms have

E ~ attractive properties for 1mage codlng ‘The scrambled real discrete Fourler ,

transform ~ (SRDFT) has much less “multiplicative complexity  of
“implementation with almost the same coding performance as the DCT [9]. As
‘& matter of fact, visually the SRDFT results may be preferable to the DCT
results. The discrete cosine-HI transform (DC3T) has computatxonal

- ,complexxty midway between the SRDFT and the DCT, and has the best -
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.‘ ';"'

s ,performance in terms of the mean-square reconstructlon error. as well as vxsual g

L ?‘crlterla [10]

-An addltronal advantage of transform 1mage enhancement techmques is

o "‘f_:"";”low complex1ty of computations if they are’ 1mplemented together with -
:‘transform 1mage coding. Previously, transform i image enhancement has usually »
- ‘been based on the discrete Fourier transform (DFT). There are two major
f;_drawbacks w1th the DFT. Flrst it has hlgh complexity of 1mplementatlon
;mvolvrng complex multlpllcatlons and addrtlons wrth 1ntermed1ate results
r:belng complex numbers Secondly, it creates severe - block effects if -
g llmplemented blockwxse as 'in image codmg In addltlon, the quality of

3 - :--enhancement is not as good as what is possible w1th some other transforms as
’»ldlscuSSed in thls chapter.. L ‘ i e
' A ma_]or motlvatlon for thls chapter is the determmatlon of the best

e transform for image enhancement with low computatlonal complexrty, coupled"
- with ‘the requlrement to perform image: enhancement blockwise ‘without

e creatlng obJectlonable ‘block eﬂ'ects, ‘with ‘all. blocks. posslbly computed 1n

| i,iﬁ;j“parallel Three ‘transform image enhancement technlques are utilized for a
' ‘comparative analysxs of transform image enhancement These are alpha-

”rootlng, ‘modified ‘unsharp masklng, ‘and ﬁlterlng based on the propertles of
‘the human visual system response (HVS). Tt will: ‘be observed that the best
' transforms for i image codrng are also the best i in image enhancement
‘ ‘The chapter consists of 9 sections. In Sec. 3.2, the fast transforms to be
; .comp.ared for blockwxse image enhancement are discussed. In_k Sec. 3.3; we
describe the generalized- filtering procedure in the transform domain to be
~used in the. enhancement techniques. Secs. 3.4, 3.5 and 3.6 involve a detailed
' jdescrrptron of “the three enhancement techniques - “and comparatrve ‘
- experlmental results. In Sec 3.7, an overlap-save method whlch completely
- removes edge—eﬂ'ects is - discussed.. The srmllarrty between the modlﬁed
L unsharp-maskmg and HVS- ﬁltenng technlques are descrlbed in Sec 3 8 Sec.
'ff“3 9 is conclusrons ; g

- 32 FastTransforms

In thrs sectxon, we wxll descnbe the 2-D fast transforms whlch are to be
'sed ona co_mparatxve basxs in the followxng sectxons The follow:ng notatlon
_wrll be used" o ‘ : : :




o The lnverse DFTlS

_' x(nl,nz) 1mage of size leNz,

X(nl,nz) ‘transformed i image of size leNg N LT
i The 2-D DFT of an xmage x(nl,ng) of sxze Nl xNz, denoted by X(nl,nz)
- 'xs deﬁnedas : S Ve

N;—lNz'l A—‘jz’r[_}_
(nl,nz)"‘ Yy Y x (kukz)e S

R k,-O kg‘O

R The DFT mvolves complex multlphcatlons and addltxons Many fast’ o .
valgonthms for the DFT ‘have been developed and a.re known as the fast g

o f--iFouner transform (FF T) [31]

: . "The 2-D. dlscret.e cosine - trdnsfdrm (DCT) of the sxgnal x(nl,ng) 1s‘“ o
-'-deﬁnedas[S] ' : e L

SRR | e ’ , ‘ 4c o c(n N‘ 1N2 . :
e .iX(nl',ng) = -—gﬁl)N_%l E Y X(kl,kz) cos

(2k1+l)n17r
2Ny

(21(2 +1)D27T

€os

Nl—lNg‘l

X(nuﬂz) oy kE kE °(k1) c(kz) X(knkz) cos
S : 1'0 2"' ,

(2n1+1)k17r
2N

(2112 +1 )kz 7T

cos N,




R

S where, with N‘,ef,i.ilaf‘io Ny or Ny,

ek ke
V2 FOEE N . ,
R

_ . The real dlscrete Fourier transform (RDFT) denéted by X(kl,kz), of
~ the i 1mage x(nl,nz) is: deﬁned as {32] L ClTET ‘

SR N,——INQ—I o
X(nl,nz) DD I X(kl,kz) cos.
k,-okgno

|2miky o]
™ om)

- cos.

O RTINS | Nn—mr* L  [emkny
o xmumg) = PIPY X<k1,kz)c(k1)c(k2)cos ~+6(k; )]
e e e N1N2 k,—0k2-0 . N1 o

kz Dy

- »» e(kz)} . '_(3-7‘),

€os

where, with N equal to Ny or N;,

© ©(n) =0 }‘ OSnS -—— L

ad
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= e =0’ — 3.
FRELE o).

‘ The RDFT is the dlscretlzed version of the real Fourner transform The .
,RDFT involves only real multiplications and additions i m contrast to the DFT |
The expllclt relation between the DFT and the RDFT ‘was discussed in Ref.
[33]. The fast algorithms for the RDFT are. known as the real fast Fourler L
transforms (RFFT). _ : : o

The scrambled real discrete Fourier transform (SRDFT), is: sumlar to

the RDFT. The SRDFT, denoted by X(kl,kz) of the i lmage x(nl,nz) is deﬁnedf R

[9]
' N,—:INQ;I‘ SRTTRR 27rnk' ] |
X(opm)= ¥ ¥ x(nl,nz) cos [ Nl = +6(1
R . 3_ kl=0k2=0 : l SRS R
cos ,mz 2+6(n2) o310y
"T‘he_inve»rs_e SRDFT is
| 4 Nl IN,-1 : | or klnl : v
’~xn,n = = Xk,k clk kcos O(k
( 1 2)  N, k?zoé-:o ‘( ! 2) ( 1) ( 2) »' ,Nl-,_, 1)

| bwhere e(k) and c(k) are deﬁned as in Eqs (3. 8) and (3 9), respectwe]y, IS -

‘ equal to k, or k2 in Eq. (3 10) and ny or ng in Eq (3. 11) is gwen by

.kl

= l(. ke-venvi i
2’ B |
D) ke @y

_Similar to the RDFT, the SRDFT involves real multiplications and
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additlons It consists of permutations of input data followed by the RDFT.
' The dlscrete cosine-III transform (DC3T) [10] consists of preprOcessmg

fol’lowed by the discrete. symmetrlc cosine ~transform (DSCT) [34] Let

i"_.',x(n) n = 0 1, N-—-l be. the 1nput sequence We deﬁne z(n ) n = 0 1 N as

(0) (0)
V2
~ 2(N) ~ x(N-—.l)

7 (3.13)
z(n),=’-’5§“—)+—§£’1—."—1l, ~n=1,2,...,N=1.
The DC3T of x( )s denoted by X(k), is deﬁned as

k=0,1,. N—,1s. (3.14)

) Eq. (3 14) deﬁnes the DSCT Sl e Sl S e
e The inverse’ DC3T i 1s FECTERIPTE _' S el -

FR= mk
z(n) = v(n) = 3 v(k) X(k) cos —— 1n=0,1,...,N—1(3.15)
¥V NG N St
o v(n) = -_V— 1 n="0
;——‘-"1, - otherw1se, = | G (316)

- and z(n) is converted to x(n) by the inverse of Eq (3 13)

The two-drmensronal DC3T is obtalned by applymg the ‘one-
dlmensxonal DC3T to the rows and then the columns of the i image. It is noted

_'that the: DCST mvolves real multxphcatrons and addltxons, and it can be

unages In thlS ﬁgure, we apphed the transformatnon ln 1 +

S where | iR mdlcates the magmtude of coeﬁicxents, and then normalized the

. computed by fast algorlthms for the DSCT [35].- :
Flg 3 1 shows the energ’y dlstrlbutlon of drﬁerent transforms for typlcal'

X(klakZ) l

i ‘results to be between 0 and 255 Fmally, we thresholded the resultmg image
: by mdxcated levels . » R , ,



The computational complexities in terms of n‘umber of additions'andv a
multiplications of the given transforms are given in Table. 3.1 as a function of
block size N. The number of additions and multiplications for the RDFT are
the same as those for the SRDFT: For the DFT, there are many fast Fourier
transform (FFT) methods with the computatlonal complexlty bemg generally
hlgher than that of RDFT [31] e S et

. Another- transform whlch -is needed in Sec 33 is - the dlscrete sine
transform (DST) The 1-D DST is given by :

/ 2‘ ‘N-1 mok . : v
3 x(k) sin - n=l,..,N—-L - = (3.17)

k==l

The DST is 1ts own mverse

” 3.»3 Generalized Filtering in the Transform Domain ‘ ‘) s

Al the image enhancement techmques to be dlscussed in the followmg

sectlons involve generahzed filtering concepts with fast transforms. By"

- generalized filtering, we mean processing of the image as shown in Fig. 3.2
- The image :is transformed, then multiplied. by a ‘matrix and inverse
transformed. - What this - means with dlﬂ"erent transforms in terms of
convolution is discussed below. ' : '

With the DFT, multiplication of the transform of the impulse response
by the transform of the signal is equivalent tocircular convolution in the
* signal domain. In order to prevent aliasing, the impulse response of the filter
~ and the signal can be appended by a number of zeros before taking the DFT.
The number of zeros is equal to or greater than N—1, where N is the length of
the signal or of the filter impulse response, whichever one is larger. Doing so
converts circular convolution to linear convolution. The 2-D case is similar
with zero-filling in both directions for achlevmg linear rather than circular
convolution. . ‘ :

The RDFT of the sxgnal x(. ) is equrvalent to separatlng x( ) mto x3(.),
" the even part of the signal, and xg(.), the odd part of the sxgnal followed by
the computation of the DSCT of x,(.) to give Xl( ) and the DST of xo() to

give Xo(.). x;(n ) and xg(n) are given by
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=)£v(n')‘,v_'x(}N __n) ‘ : », T E (3.19) :

-‘ The multlpllcatlon of Xl( ) and Xo( ) by a filter transfer function
corresponds to the circular convolutlon of xl( ) with an even 1mpulse function
hy (- 3 and the circular convolution of xg(.) with a odd 1mpulse function h(.).

S The two c1rcular convolutlons are combined in the end since the -iniverse

RDFT is utilized. Let Hl( ) and Hy(.) be the DSCT and the DST of hl() and
4‘,h0( ), respectlvely The process described above can be wrltten as-

Y1( ) X, (0 )H1(0)

N
Yi( 5

L ‘-.and for 0 < n < N/2 S

Yam )| Hx( ) oo | i) S

= KR o ,  (321)
[Yom] | 0 How)| [Xolw) S

where. [Yl’(n)' Yo(n)] ~is the RDFT of  the output signal. This can be

| compared to’ ‘the circular convolutlon of x(. ) with an xmpulse response function -

h('.’)' whose even ‘and’ odd parts are hl() and ho( ), respectlvely Then, Eq_
(3 18) is modified to : s i

‘?wa*mm m)mw'_, R
e o= R | S (3.22)
o) @) H@ | X S
O : In the 2-D case, .‘th'é\'pr"oblem"-is"m_'br""e‘ jébmp_licated. There are eﬂ‘ecti#’e.l\'y'
- fol%;?,"'signals X11(ny,m2); X 10-(n1,~n2-),_x01(n1,n2) and xog(nl,né),» For n; and np -

)= Xx(—)Hx(—-) lfNeven ; i :_(3f20).



not equal to 0 or Nl /2 and N2 /2 respectlvely, they are glven by

L l'fxl(nlsn'z)T 1 1 1 1 (nnnz)

‘x;o(ni,nz) 1 1 =1 2|} :'X(nlg.N‘z“;ﬁz) B
I ) R | A
'xm(nl,nz) [t 1 1140 x(N.l—-nl-,ng) ‘

xoo(nnnz) 1 1. (Nx—nnNz—nz) B

It nl or ng is equal to 0 or Nl /2 and N, /2 respectlvely, then the: 1 D
equations are valid with one of the indices fixed. , :
~ The signals xn(nl,nz), x10(n1,02), Xo1(n;,n,)  and xoo(nl,n2) are
transformed by 2-D DSCT, DSCT-DST, DST-DSCT and 2-D DST transforms
to yield Xj,(n;,n3), Xj0(n3,n2), Xo1(n1,n2) and Xgo(n;,nz), respectively. The |
same is = done . with : the 2-D impulse response h(n;,n;) to yield
Hii(n1,0,), Hio(ny,mp), Hoi(ny,nz) and Hoo(ny,n,). Then, X;; (n1,mg) is
multiplied by the H,J(nl,nz) to yleld Y(nl,nz) which is the 2-D RDFT of the ‘
output y(n;,nz)

" The end result is that x;; (nl,nz) is clrcularly convolved with hj; (nl,nz)
Then the four circular convolutlons are combxned together due to the i inverse
RDFT processmg ' . - T

" A similar clrcular convolution property was dlscussed w1th the DCT ;
[36). For this- purpose, the definition of c(k) in Eq. (3. 5) was extended as c(k):
equal to zero for N'< k < 2N—1, and the followmg was shown: . "

then . P ' -
ST W(ﬁ)=*(n)*rﬁ(n)*z(n) ()
"where " * " denotes circular convolutlon, x(n) and h( ) are symmef‘;vricv
sequences. defined as . o

. x(n) : ' forn = O,'l,..;,N-l e

={"" v , 3.26;

(=) {x(2N—1—n) - for n = N,N+1,...,,2N—1, (3:26)

. (m) ~ forn=0,1,.,N—-1 -

h(n) {h(2N—1—n) - for n = N_,'N+1,_,..‘,.2N-v-l, ( : )

where x(n ) and h( 1) are the inverse D,C'Iv‘b of X, (k) and H,(k), reepectively; z(n)
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+ cos —(2n—1)

o )= 4‘1[{\7‘ 2 .

— (3.28)‘ :

(2n ~1 )j

snn

, Another type of ﬁltermg wnth the DCT was dlscussed in Ref [37] In
«:?.-}.thls reference, ¢(k) in Eq. (3 5) was extended as “e(k) equal to- 1 for-:
k = ~=N; N+1 5---1 By this: extension, the DCT of a real signal is even, in

" other words X,(k) equal to Xc(—k) for k =0,1,..,N~1, and X;(~N) equal to . E

- ,_:lzero By deﬁmng the DCT 1n the range of —N+1 < k = N—-l 1t was. shown' R |

(k) = 2c(k) exp x,(k) fOr kf’e ;N?,.-:—Nm;.;.,jN;L‘(3;-29)”

N

»f : »i".'where Xf(k) is the DFT of x(n) Then, for real and even h(n), 1f e

W) = X, (k )Hf(k) for k'——N~-—N+1 N 2N——1 (330)

s "where Hf(k) is the DFT of h(n), 5

o _'as follows

(n) = x(n) * h(n), for n = 0 1 N—l | f (3 31)’ ’

Slnce h(n) is even, Hf(k) is also the same as Hl (k), the DSCT of h(n) e
From Egs: (3. 30), (8.:31), it can be concluded that for a ﬁlter which has

= 'real and even: frequency response, mult:phcatron in the transform domam 1s-f |

P eqmvalent to 2N-point circular convolution of the sequences. x(n) and h(n) _
' _ Egs. (3 30) and (3 31) are eas:ly modnﬁed for the two—dlmensxonal case

W(kl,kz)-Xc(kl,kz)H,(kl,kz), for k,,k,._' —-N N 1 (3 32) .

o ,',_f;..bwhere Hf (k1,k2) Hf(k],—k2) H;(—kl,kz) -Hf(—kl;"kz) and is real then
‘ R W(nl,nz)—x(nl,nz)* h(nl’nz): n1’n2—01 N 1y 6 33) -

[ : ‘_:where the two-dlmensxonal symmetnc sequence, x(nl,ng) is’ deﬁned snmllar to_ .
Sy Eq (3 26), and " #* " denotes two-dimensional circular convolution, ‘

The relatxon between the DCT and the DC3T was gwen exphcltly m",_

cti ely, thns relatlon lS

R . Denoting the DC3T and the DCT of x(nl,nz) by xw(k,,k,) and" S
;x,(kl,kz"), = | o



7Tk2
2N

7Tk1
2N

xc(kl’k2) f°l' kl)k2=’0 1. N" : l334) e

| » Xc3(k1,k2)= ¢9$

o Therefore, by multlplylng both 31des of Eq (3 32) by the same cosme
' factors as in Eq. (3.34), the same conclusxon can be reached for the DC3T In
,other words, if : C : ’

| ’ wcS(klakZ) _Xc3(k1’k2) Hf(kl,k2) (335)
- éf(nl,nz') = %(ny,nz) ** h(‘nl-,ﬁn’z)' 3

The SRDFT corresponds to mput permutatlons accordlng to Eq (3 12) -
followed by the RDFT. Thus, the discussion of generalized ﬁlterlng with the
RDFT “also applles to the SRDFT w1th respect ‘to.; the permuted 31gnal
sequence ’ :

- The relatlon between the DCT and the SRDFT ‘Was. given in- Ref [9]

Con51der1ng this relation, ‘there is some similarity between: the DCT and the

SRDFT but the energy distribution in the transform domaln shown in Fig.
3.1 reveals a major difference. The SRDFT components are more dommant.
. along. the upper right and lower left edges in the transform plane. This -

:.fi"property necesmtates a more careful design - of appropnate wmdow m the" v

transform domaln

3.4 Alpha-Rooting

- v Thls techmque is also known as coeﬁicxent rootmg or root ﬁltermg [38]
Flg 3.3 shows the block-diagram - of alpha-rooting. In thxs technlque, the

B magmtude of each transform coefficient is ralsed to a power a, 0<a<l1, and -

the sign or the phase of the coefficient is unchanged The modlﬁed transformr
coefficient X'(n;,n,) may be written as :
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o {.‘X(nl ,’bl"lzl)v :

=X [ X | e

FISE

Thus, -IX(DI’DZ) corresponds to the 31gnal dependent ﬁlter transferv :

functlon ‘When ‘o equal to zero, only the phase or the mgn of the coefﬁc1ents is

‘r'_‘retalned Wlth a < 1, the. amplxtude of the large transform coefficients are

reduced relatlve to the amplltude of the small transform coefﬁc1ents Slnce,', |

i ~ high' frequencles are often associated with the small transform coefﬁcrents, the -
" end result is- enhanced edges . and details of the image. In. ‘practice,

EIa ) 50 < a< 0. 99 is used for 1mage enhancement The optlmum value of a 1s o

;"1mage dependent and should be ad_]usted 1nteract1Vely by the user. - }
Alpha-rootlng thh ‘the DFT and the RDFT 1ntroduces certaln

SR Zunde‘sxred artifacts related to sharp edges in the processed lmage Thls, o

‘problem was dlscussed usmg linear ﬁlterlng theory and a’ modlﬁcatlon of
- alpha—rootlng when- using’ the DFT was suggested 1n ‘Ref. [39] The block .

o 'ﬂ-equlva'” ntgransfer functlon IX(nl,né)

3 dxagram of the modlﬁed ‘method ‘is. Tlven 1n Fxg 3 4 In thls method the

is mverse transformed to the space.

| : .";domaln "where w1ndow1ng is applied in order to smooth ﬁlter coefficients before
i transfonmng back to. the frequency domam The modlﬁed alpha—rootmg is

' effective in. reducmg artlfacts due to sharp edges m the processed ‘image. We‘ ‘

"»observed experlmentally that thls is also true wnth the other transforms_‘-

- , _‘ vblockw1se

vbdrscussed in Sec.'3,3. Our expenments showed that modified alpha-rootlng is
also effectxve to 'reduce block eﬁ'ects when the technlque 1s 1mplemented S

One maJor rea.son for artlfacts in alpha-rootlng thh the DFT and the

o v‘RDFT is the underlymg property that ‘the ‘image is. perlodlc w1th
' discontinuities at the edges between the periodic ‘blocks. This is ‘also the reason

i..for cxrcular convolut!on mstead of hnear convolutlon when the DFT is used

: The ‘end result is ahasmg effects such “as folding of edges Thls problem is
L srgmﬁcantly reduced ‘with transforms such as the’ DCT SRDFT ‘and’ DC3T :
“since the drscontmultles at the: edges of the penodlc image are very small ‘The - B

A vf experlmental results dlscussed below also conﬁrm this property Consequently, »
= _'.*conventlonal alpha—rootmg can be used w1th the. DCT ‘the. SRDFT and the
DC3T- w1thout mgmﬁcant artlfacts and block eﬂ'ects, u 'lxke theDFT and the




‘RDFT | po
We experlmented with both methods with different transforms andj.'
using blockwise processmg w1th block sizes of 8, 186, and 32. The 512 x 512

.image used to be referred to as "catbrain" ', was a slice of a cat's bram shown o

in Fig. 3.5. The plxels were quantized with 8 bits from 0 to 255. With the
‘modified method we tried rad1a1 Gaussxan and Butterworth wmdows glven by
~ the following equatlons - ’ L ‘ ‘

Radial Gaussian '

n + n R T L
2 S (3.38)
. 'Radtal Butterworth 3 Lo
- Wz(nnnz) — y (3.39)
14— -
| Co.

_where 02 in Eq (3. 38) is the variance of the WlndOW, and n and Co in Eq
~-(3.39) are the order of the window and a constant which controls the cutoff Of:g; }
the window, re_spectlve]y The values of o and Co depend on the block sizes.
‘The Gaussian type window was experimentally found to perform better. The
vaf.iance of the Gaussian window used was 90.0 for the DCT, the DC3T, ém.d_
the SRDFT, 30.0 for the DFT and the RDFT with a block size of 32. These
values also depend on the energy distribution of different transforms given in
'Fig 3.1. The gray value of pixels in each block of the enhanced images was
multlphed by a constant in order to keep the energy of each block of the""

‘processed i image the same as that of the original image. Otherwxse the results'- o

would be fuzzy. .
v = A part of simulation results for different transforms and s<>me speclﬁed B
" values of o with both methods are given in Flgs 3.6-3.16. Figs. 3.6-3.9 are the
‘results of conventional alpha-rooting with the DFT, the DCT, the SRDFT and
the DC3T and o equal to 0.85. The block effects are obvious in all but are

more severe ‘in the DFT case. The results of the DCT ‘the SRDFT ‘and the )

'DC3T are almost the same. The RDFT results were similar to the DFT results |
- for conventional alpha-rooting. Figs. 3.10-3.16 show the results forr the
modified alpha-rooting with different transforms and « equal to 0.85 and 0.7..



63

For’ all transforms, ‘the . block eﬁects were reduced as a consequence of
| vw1ndowmg In this case, the SRDFT gave the best result. :

7 We also tested these methods for different transforms w1th hlgh quality
images in order to make sure that the image quallty is not degraded as a

o result of the enhancement process ‘The results ‘were. 1mages ‘with hlgh detalls‘
L and sharp edges w1thout any degradatlon

B 3.5 »Modi‘ﬁed Unsharp’ M:askbing ’

The block dxagram of unsharp masklng is shown in Fi 1g 3.17. The
orlglnal image x(nl,nz) is first divided into a low-pass image xL(nl,nz) and a
hlgh-pass image xy(n;,ng). The hlgh-pass image is multiplied by a scalar
C> 1 before being - recomblned with the ‘low-pass. image [40]. Since this
' process is srmllar to hlgh-pass ﬁltermg, the result is enhanced edges and detalls

: - of the image."

: The: optlmum value of Cis 1mage—dependent and should be adjusted
_ ' 1nteract1vely by the user. This method is somewhat similar but simpler than
‘what ‘was dlscussed as modlﬁcatlon of local contrast and local lumlnance in
»Ref [40] , : ; : L
"l Experlmentally, we observed that boostmg of very hlgh frequencnes by
unsharp masklng leads to salt-and-pepper type of noise. In order to remove
‘such noise, we modified unsharp masking by having two filters- with transfer
- functions Hy(n;,n;) and Hy(n;,n;) as shown in Fig. 3.18. All processing is
done in the transform domaln Then, the output i unage spectrum Y(nl,nz) is
,glvenby g : L e

Y()=X(nz)[HL(n,z)(1—0)+C]HN(1n2) . (340)

‘ where X(nl,nz) is the input image spectrum
' ~We: tried' the radial Gaussmn and Butterworth type ﬁlters whose
transfer functnons are gwen by AL R S ITIENE ST




A@=eel~2 0 Gy

for ,Ga-uSSl'aﬁ type, and

for - the ‘Butterworth type, - where f 1s"e'qual to \/n? +n2 is the radlal ,
frequency. In Eq. (3.41), 0% is the variance of the filter, and in Eq. (3 42), n
and f, are the order of the ﬁlter and the cutoﬂ' frequency of the ﬁlter, o
“respectively. SR . - SRR LRI A A )
Experlmentally, Gauss1an type ﬁlters gave better results So we Wlll
descrlbe the results with the Gaussian window.:In generatmg a low-pass unage ‘
with a low-pass filter Hy,(nj,n,) of the type given in Eq. (3.41), the variance
'used depends on the.block size and the applied transform. The low-pass image
was subtracted from the original image in the transform ‘domain to obtain the
high-pass image to be multiplied by C. We used ;theisameftYpe of filter for -
“HN(nj,nz) but with larger variance to separate noise at high frequencies.
* Subsequently, the energy of each block was adjusted as explained in Sec. 3.5.

~ We tried three different block sizes, namely, 8, 16, and 32. -

Simulation results for the block size of 32 with different transforms and
with C equal to 7.0 and 4.0 are shown in Figs. 3.19-3.24. For the DFT and the
RDFT, we used the variance of 20.0 to generate the low-pass image and the
variance of 30.0 to remove high frequency noise. The variance of 50.0 and 90.0
- were used for both the DCT and the DC3T. These values depend on the block
' slze and are designed to eliminate high frequency noise sufficiently. The results
show little block effects for the DCT and the DC3T,; but the block effects in
the case of the DFT or the RDFT are objectionable. The DCT and the DC3T
gave very similar results, so have the DFT and the RDFT. By comparing Figs.
3.21 and 3.22 to Figs. 3.23 and 3.24, respectively, it can be concluded that the
block effects will be increased slightly by more amplifying the high frequency.
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36 j‘I‘?iltef"ing B:‘ised‘ on the Human v isualy System *Respon'se'

_ - Since human belngs are most llkely the ultlmate Judges of processed_
o lmages, it_-is appropnate to process the images in -accordance with the
'propertles of the human visual system response- (HV ). ‘
Studies 1nd1cate that the HVS contains different channels tuned to
different - spatial frequenc1es [14 41,42,43,44 ,45]. Fig. 3.25 shows the
experimental spatial frequency response of the HVS [45] for the DFT. It is
: observed that human vision is most sensitive to midfrequencies, sensitivity
~ _tapering off ‘at- hlgher frequencxes Thus, the HVS is sxmllar to a bandpass_

o Let "(nl,n’z) be the input image Results of a number. of studies
1nd1cate that before linear filtering, x ’(ny,ny) is passed through a zero—memory’ ’
nonhnear transformatlon in the form [44] ' : ‘

xmam) = — e[x (nnnz)] SIS )
in whlch g(- )isa monotonlc increasing concave () function. )
' “The HVS model " 1n the form of pomthse nonhnearltles fol]owed by a

‘ rgenerahzed llnear ﬁlter 1mplemented by a fast transform is shown in Flg 3.26.
) In prev1ous studles, H(nl,nz) was assumed to be 1sotrop1c [44], ies

o Ham)=EG G
. ;w}'l:er‘e’ : v = e o

" ’(:é’ 45) |

In the contlnuous case thh the. complex Founer transform, H(fl,fg), }
was modeled as [41 44] : R :

CoEmm-EO 0 @ay
| f= | (347)

l;where f1, f2 are ‘the fréquencies,balong.‘ “the x— and the y—directions  in

cycles/ defgree;”a.ndb'zi',éb',if f, are constant parameters. A number of experimental o



studies were carned out for obtalnlng the best values for the parameters in
the above model [41, 44]. Another study by [46] gives a model that is close to‘
the models dxscussed above ThlS model can be wrltten as : .

f«Hn(n=(0-2,+,0-45f)ef°-‘;8’ L o (349)

Hp(f) has a peak value of 1.0 at f equal to 5.1 cycles/degree and a
~ gzero-frequency intercept of 0.2. It is shown in Flg 3.25. Hft(f) was further -
perfected in the experimental work discussed below, - C _
A number of studies concentrated on the choice of g(x) as x% or
log(d + x), where d is a small number such as 1.0 to avoid very large negative
numbers [43]. The choice of x°33 was found to be the best during ratmg
experiments [44]. The Hy(f) model was. studied in. detail [14] and applied in
image coding and image distortion measure [14,44].

- Exploiting the relation between the DFT and the RDFT [33], we
conclude that the HVS model discussed for the DF T is also appropriate for the

RDFT. However this model is not. necessarily optlmal for -other transforms
" Refs. [46,47] dlscussed the extension of this model to the cosine transform. It
was concluded in Ref. [47] that the HVS transfer function corresponding to
the DFT .can be applied to the DCT without much difference. .An explicit
model for ‘this case was given in Ref. [46], and Ref. [48] gave the followmg
equatlon that ﬁts the model suggested by [46] P ' C o

_gf;7.72)2

» ) - 0.97e 20.12

Ha=1 [ AN
. | -0 1og,'°(;%‘)l forf= 7.0
e : a0 B PRI

forf < 70

where £is glven in Eq (3. 47) ‘This model is shown in Flg 3.25.

Comparison of Hy(f) and Hct(f) shows that they are similar except for
the location of the peak and the intercept value. :

The H(f) model was used successfully with the DCT for ‘transform
'image coding [48,49] and image quality assessment [46 48,49,50]. In this
| chapter, it is desired to use the propertles of the HVS for 1mage enhancement
" using different transforms mtroduced in Sec. 3 2. Having the HVS model for

(as0) o
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: the DCT and exploxtlng the s1mllar1ty between the DCT and the DC3T [10],
" we conclude that the H(f) model should be appropriate for both transforms

= ‘as well The extension of this model for the SRDFT is under rnvestlgatron

 We experlmented wrth the HVS models with the DFT, the RDFT, the
' {”'DCT and the DC3T. Our s1mulat10n results showed that the nonlmearrty

}'}:"apphed to the orlgmal image does not contribute any v1s1ble changes in

enhancement so it was ignored. A similar conclusion was reported in Ref. [50].

. Inour expenments, we assumed that the viewer is watchlng an image

of s size 512 x 512 with a. physical size of 4 x 4 inches at a dlstance of 12 inches. -
We processed -the image in blocks of sizes 8, 18, and 32. ‘The image in the

1 'transform domain was multiplied by the HVS filter transfer functlon, and then

~inverse transformed The processed block was then multlphed by a constant
,:factor in' the lmage domaln in order to have the same énergy as the original

- , 1mage block

-+ 'The * initial- experlmental results wrth HVS- ﬁlterlng were ‘not
o satlsfactory An example is shown in Fig. 3. 27 1t is-observed that there is too

‘ vrmuch noise due to ‘excessive attenuation of . low frequencles ‘To remedy this

_problem, we ‘modified: the HVS filter transfer function for low frequencies

without. changlng it for” ‘high’ frequencies. Since the value of the transfer
* function given in Fig. 3.25 is less than 1.0 for: all frequencles, the transfer

' functron values for low. frequencles were modified- by taking the square-root-of

the values up* to ‘the frequency at ‘which . the transfer functron ‘has the

© maximum’ value of 1.0. In this way; the smoothness of the ﬁlter was preserved
- The modlﬁed HVS filter is: glven by prin e ' EAOR

s

= ) 10816(‘6)

i Dol _9[ r ] tob £ 8T S

» The modlﬁed HVS ﬁlter is shown in Frg 3. 25 We expenmented wrth
the modlﬁed HVS filter w1th the same condltlons as descrlbed .above, and the
_. result with- the DC3T is. shown in F1g 3.28. The noise’ eﬂects were removed ,

- and the enhancement results -were satrsfactory The DFT and the RDFT as.
S well as the DCT and the DCST results were: sxmxlar Some other results are
shown m Flgs 3 29 and 3 30 The appllcatlon of the HVS model for the



~ SRDFT case is under investigation.

3'.7 Remo'\ralof B‘lock Edge ‘Eﬂ"ects by an ‘Ove:r'lapfse\?e' Method_ g¢ RN N

" In the expenmental ‘work discussed above, - the enhancement results
with the SRDFT the DC3T, and the DCT were observed to'have: con51derably

reduced edge effects as compared to the DFT-and the RDFT results. However,-_._"- .
the edge-effects were still obJectlonable In this sectlon, we will discuss how to -~

remove these effects by using overlapped blocks and saving only the central
parts of the processed. blocks (the termlnology overlap-save :should not be
mixed with the overlap-save method of computing linear convolutlons) The
procedure which was used in the experiments is as follows: :
- The blocks are of size N x N and neighboring blocks overlap by N/2"
pixels. After the processing of each block, the N/2:x N/2. central portion of the
block is saved and the rest is discarded. Obviously, the amount of overlap and
how much’ of the block is saved can be modified. - RS
The experlmental results for the. overlap-save method for dlﬁ'erent'
enhancement  techniques, alpha-rooting, modified _unsha_,rp ‘masking ‘and
modified HVS-filtering, are shown in Figs. 3.31 thru 3.34 with th_e_SRD_FT:fand', :
the DC3T. It is observed that the edge effects are no longer visible. The results
with N equal to 16 were basically the same as the.results with N' equa"l-to 32.
The smaller block size has: the advantage of reduced number of operatlons,
small storage requirements and allowmg faster processing through parallel
1mplementatlon ’ :

3.8 Similarity of Modified Unsharp Masking and HVS Filtering

~ The HVS filter transfer function shown in Fig. 3.25 was obtained as a
result of experimental studies of the human visual system. On the other hand,
modified unsharp masking corresponds to two linear'ﬁlteringv'operations The
first filter is controlled by a parameter C which determines how much the high
frequencxes in the image are boosted. The second filter has the function of
~ removing high frequency noise to make the image smooth. The combination of
the two filters is a single filter whose transfer function is given by
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'H<£1.,i;2)=»»'[HL(n1,nz,)(lécwc]nx(n;,nz)"% )

ThlS transfer functlon is compared to the HVS transfer functlon for the_ '

S D case in Fig. 3.35 as a function of the parameter C. In this case, the HVS =
L _transfer function values were calculated based on Eq. (3. 50) for an image of

size 512 x 512 with- a physical size of 4 x 4 inches viewed at a distance of 30
inches, and the horizontal values are the index of coefficients. Hy(ny,n,) and
HN(nl,nz) are the same as used for modlﬁed unsharp masklng for a block size
of 32 It is. observed that the two transfer functions are very similar for C
greater than 1. 0 except for the very low frequency response, and the similarity

o increasing with i 1ncrea51ng ‘values of C. As discussed in Sec. 3.6, the given low

' frequency response of the HVS filter was experlmentally found unacceptable
for i image enhancement If this is corrected the HVS filter and the modified
~_unsharp masking filter become practlcally the same. In turn, we ‘can conclude
~ that the modlﬁed unsharp maskmg is'in good agreement thh the- human

visual system. By this analogy, it lS interesting to consider whether the

“human v1sual system is' adaptive in the sense of acontrol parameter or
parameters as”in the 1nteract1ve control of the parameter C in- modxﬁed
- unsharp masklng e B :

3.9 ‘Conclusion"s

: A number of -tr’ansforms_ ‘which have applications in image transform
- coding have been investigated ‘with respect to im;age'genhan'cement. We have
‘also discussed three different methods for image enhancement in the transform
- domain. These techniques have been. further developed for blockwise -
~'processing ‘of images. The simulation results 1nd1cate that those transforms,
,namely, the DCT; ‘the SRDFT and the: DCST which are best for transform

S 1mage codlng are also the best for 1mage enhancement They also provide

- reduced edge-effects due to blockw1se processmg even though such eﬂ’ects are

| ___Stlll v1sxble The ‘edge-effects due’ to blockwise processing can be completely

: removed by an overlap-save techmque The modified unsharp masklng and the
: HV S- ﬁltermg are practically equlvalent ' : 2
: “As a final concluswn, transform: image enhancement yields highly

Rt ..satrsfactory performance, ,1s bnologxcally sound, - prowdes parallel models for
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implementation, and can be performed simultaneously with transform image
coding. ‘
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The number of additions and multiplications for different

Table 3.1.
transforms.
, Additons ; v Muluplicatios

' “SRDFT | SRDET : . ‘
N - & DCT DC3T & DCT | DC3T
8 20 20 3% 1 2 1 7
16§ 60 81 .89 10 32 19
32 164 209 - 222 34 80 5T
64 420 513 535 98 192 131
128 1028’ 1217 1256 258 F 0 448 | 323 .
256 2436 2817 2889 642 1024 721
512 0k 5636 [ 6401 6538 1538 2304 | 1795




(b)

(e)

Figure 3.1. The energy distribution of different transforms with diﬁerent
~ threshold levels (see text): (a) the DFT (123). (b) the DCT (92).
(c) the RDFT (53). (d) the SRDFT (62). (e) the DC3T (64).
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Figure 3.2. ,Gé_nerali'zed filtering with'a fast transform.

Qutput

73



X(13,02)

Transform |

X® - HoIE

D<o«

74

Transform

XK1,k | erce |X@n)

Figure 3.3. Conventional alpha-rooting for image enhancement. |
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' F‘igure 3.4. Modiﬁed alpha-rooting for image enhancement. .
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}i‘igure 3.6. ‘Enhanced image with-
and o equal to 0.85.
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conventional alpha-rooting -with the DFT



77

Enhanced image with conventional alpha-rooting with the DCT
and aequal t00.85. - |




ire >3.*8“'. Enha.nced unage w1th conventxonal alpha—rootmg w1th the
SRDFT and a equal to 0 85 '
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Figurej3‘.9.f' Enhanced 1mage w1th conventlonal alpha—rootlng w1th the DCST
' ‘ and a equa o 0 85




F lgure 3, 10 Enhanced 1mage ‘with the modxﬁed alpha—rootmg thh the RDFT
Cand o €qual to 0.85.
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Figure 3.12. Enhanced image with the i,nbdiﬁed alpha-rooting with the DCT
and «equal to 0.7. ' | '
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Fxgure 3. 13 Enhanced f"mage: with. the modlﬁed alpha-rootmg thh the DFT
- and o equal to 0 85 ‘ :
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- Figure 3.14. Enhanced image with the modified valpha'-i'rdoting with the DC3T
and o equal to 0.85. o
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2 il o i

Flgure 3 15. Enhanced 1mage w1th the modlﬁed‘ alpha—rootlng Wlth the DCBT
o and aiequal to 07.
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Flgure 3.16. Enhanced una.ge with the modlﬁed alpha.—rootlng w1th the
P - SRDFT and o equal to 0.85. :
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Figure 3.17. Unsharp masking for ‘imag.e enhancement.
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Fi:gure,3.18. Mod"i_ﬁed unsharp masking for image énihancéihentv.
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Flgure 3.19. Enhanced'_'"xmage w1th thev modlﬁed unsharp maskmg with the
- RDFT and C equal to 7.0. .
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Flgure 3 20 Enhanced 1mage thh the modlﬁed unsharp maskxng thh the
DFT and C equal to 7. 0 : : :




91

Flgure 3. 21 Enhanced mage thh thej"fmodlﬁed unsharp maskmg Wlth the
' DC3T and C equal to 4 0. '




02

Fxgure 3. 22 Enhanced 1mage with ‘the modified unsharp maskmg wnth the
DC3T and C equal to 7.0.
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Flgure 3. 23 Enhanced" age thh the modlﬁed unsharp maskmg with the .

DCT and.




94

Figure 3.24. Enhanced image with the modified unsharp masking with the
; DCT and C equal to 7.0. '
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© Figure 3.26. Image enhancement based on the human visual system. . -




96

ith the DCT.

ing w

Figure 3.27. ‘Eﬁhahced‘image with -HVS—ﬁltér
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Figure 3.30. Enhanced image with HVS-filtering with the ROFT.




Fxgure 3. 31 Enhanced 1mage thh conventxonal alpha-rootmg by the
overlap-save ‘method w1th the SRDFT ‘a equal to 07 and N

equal to 32
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Flgure 3 32 Enhanced




ST

Enhanced 1mage w:th the ” modlﬁed " HVS-ﬁltermg by the
overlap—save method Wlth the DCST and N equal to 32.
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Figure 3.35. Comparison of HV. S-filtering with modified unsharp maski’ng.
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CHAPTER 4
TRANSFORM EDGE DETECTION

41 I_lyltroduetio'n e

Edge detection is of major importance ‘in-c’orhpixte'r'viéidm‘Ed'ge-vpoints__
are pixels at which abrupt gray level changes occur which may reflect the
- change in surface orientation, depth or physical properties of materials. Edges
" may - indicate the. object boundarnes, and can be used for segmentatlon,
reglstratlon and object identification. it

“What is considered an edge depends on the apphcatlon For example, in
obJect recogmtlon, it .may be only the object boundaries whlch -are the
necessary edges to be detected. ‘ S S
‘ There are several criteria which are consrdered most 1mportant in edge!_ 1
detector performance as follows: : '

1) The error rate which can be defined elther as the probablhty of missing
a true edge or as the probablllty of detectlng a false edge due to

o exlstence of noise. : : :

2) The edge points should be "localized” well. ThlS means that the

- distance between points marked by the detector and the center of

true edge is minimized. :
~3) The elimination of multlp]e responses near the true edge _
4) Computational complexlty Low computational cost enables the
effective use of edge detection in real time applications.
Consnder the 1-D functlon f(x) in Fig. 4.1. The point x, can be consndered an
edge. At this point, the first derivative f'(x) has a local extremum (maximum
or minimum)‘, and the second derivative has a zero- crossing. The steepnese of
the edge is indicated by the size of the extremum in the case of the first
derivative and the slope of f//(x) at the zero-crossing pomt in the case of the. o
second denvatxve ' ’ ~
The generahzatlons of f’ (x) and f”(x) to the 2-D.case wnth the functlon»

o f(x,y) are. the gradnent Vf(x,y) and the Laplacnan sz ,y) respectnvely, ngen_
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s Vf(y)=.8L<a_xy_>e,+_«?f_g_y_ae, o
vz (x, ) 82f(x y) azf(x y) ;

B ot : (4'.'2). e

"where ex and ey are. the umt vectors in the x and the y-dxrectxons,

o N respectlvely

Vf( ,y) can be approxrmated ina number of ways in the dlscrete case,,

f‘_'-resultmg 1n partlcular edge—detector operators For example, Sobel edge-.

_detector [51] and Roberts operator [52] are such detectors. LT
' Methods based on the gradlent are usually sensmve to noise. Smce the |

i.magmtude of the gradlent is compared to a threshold to decxde the exxstence ’

!_of an -edge, the edges obtalned are usually ‘thick, and an edge—thlnnlng'

qalgorlthm may be necessary to 1mprove the results. Gradient-based ‘edge
- "»Vdetectlon algorlthms may also cause . dlscontmultles in the detected ‘edge s
E,"Tcontours | o R |
: In Laplaclan-based methods, choosmg all zero—crossmg pornts as edges
'tends to generate too many edge pomts, and many false edge contours may be

3 generated. One advantage of Laplacxan—based methods is that edges are thxn,

- ~and edge—thmmng algorrthms are not needed. -

The dlsadvantages of the methods dlscussed above can be reduced by a
low-pass ﬁlter prlor to edge detectlon operatlon For example, a commonly

: used ﬁlter for smoothlng 1s the Gaussnan ﬁlter glven by

-—gx +y° )

o h( ,y) 202 (e G (4 3)'_»

b- »where 02 1s mversely related to the cutoﬂ frequency Dlﬁ'erent a’s corresponds” "
i to dlﬁ'erent degrees of smoothlng of the unage, and can be used to obtam edge: .
'lmaps of dlﬁerent scales [53] L ‘

The complex Founer transform (CFT) of h(x,y) is gwen by



. \ ’r (f2+f2)
H (fx,f)-—27r02e o 2

w07

(4 4)

 Ttis observed that both f(x y) and H (fx,f ) are Gaussran and thereby smooth

”and localized. Such a ﬁlter is desxrable so that the locatrons of the edges are

- ,not altered and false edges are not created Yurlle and Poglo [54] showed that

the Gaussran ﬁlter 1s the only ﬁlter whlch does not create false edges wrth

‘ dlfferent scales

The Gaussxan ﬁlter is commonly followed by the Laplaclan We observe

: the followmg

V’[f(x y)** h(" Y)] Vz f f fx »y (x—x ,y—y )dx dy T

: —00—00

"'hV?h(x,y) is grven by

'(,y) Wh(x,y)

R The CFT of d( ,y) is ,
e (f2+f2)

D (r,,f ) = .-21r02 [r2 +f2]

| . (46) |

(4 7)

- ,d(x,y) and Dc(f,,fy) are shown in F1g 4.2 for a2 equal to 1 A one-dxmensxonal

/ cross-sectxon of d(x,y) is shown 1n Fxg 4.3. It is clearly observed that d(x,y) 1s S

a bandpass ﬁlter

- The edges are detected by ﬁndmg the zero-crossmgs of the bandpass- -
' _ﬁltered lmage Which edges are found depends hlghly on the value of . Thrs L

faet is made use of to generate edge maps of dxﬂ'erent scales correspondxng to

. dxﬁ'erent values of a2 i in lmage understandxng [53]

d(x,y) can- be approxlmated by d(x,y) equal to the dlﬁ'erence of two

Gausmans D
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._ (xQ+y2) —(x2+y9)

(x,)')—e i —e i Sl o (48)
"‘[":TheCFTofd xy)ls R DL
R N (f2+f’~’) LLween
H Dc(rx)fy)=27r E 2 ,’4‘"04 g a 02 e 4#?0‘2 -—-——-’ | 7 y ‘, (4.9) }

gy e

" Shanmugam et al [55] looked for a lmear space—rnvanant bandllmlted

B ﬁlter to. minimize the error in locahzatlon They further assumed that the

":'ﬁlter is rotatlonal]y 1nvar1ant and has a zero response to the s]owly varying- e

1nput Exploxtlng the: propertles of prolate spheroxdal wave functxons and
g representing them by a closed form asymptotxc approxrmatlon, and also
ancorporatmg a correctlon by Lunscher [56], the Fourler transform of the

,vcorresp_ondlng ‘de‘slred filter for,one—dlmens,lonal _step edge_ls-gl,ven_by ’

"CW

e o‘therwiseﬂf o

.‘whxch is vahd 1f lwl < ﬂc In Eq 4. 10 © —_—%I- where Tis the desrred‘ !

resolutlon 1nterval for detectxng the edges In thls method edges can be found
,by markxng the zero—crossrng pomts Clearly, Eq 4 10 13 also ra band—pass
filter. Lunscher compared the above ﬁlterlng method to that of Marr and
‘Hlldreth and concluded that they are 1dent1cal [57] ‘
v Canny apphed optlmzatlon theory to edge detectlon [58]
‘ 'consxdered three ma1n crlterla for the edge operator
| a) Low error rate whlch is 1nversely proportlonal to sxgnal to noise ratlo
- b) Well-localxzed edge ’ ‘

o c) Removmg multlple responses | » :

Cons:derlng the above constraints i in ma.thematlcal form, Canny looked for an

% edge detector for a specxﬁc kxnd of edge functxon, the step edge, and found
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‘that "yfth'e optlmal '6§‘eré'to"r" is clOse to the "‘ﬁrst 'derivatlt'e of 'a iGau’sSian
vfunctron In his method, edges are marked at maxima in gradlent magnltude
after convolvmg ‘the given image w1th the ‘optimal flter. Slnce the ﬁrst
derxvatwe of a Gaussmn function has a’ Fourler transform which has bandpass
~ behavior, the optlmal edge detectlon can be coarsely approx1mated as
" bandpass filtering followed by local maximum detection.

In concluslon, most ﬁlters for edge detection discussed in the lxterature

are band-pass ﬁlters, ‘with dlﬂ'erent models ‘and parameters Such’ ﬁlters have_' ,

often been denved for a specxﬁc kind of edge such as step edge In practlce,
there are qulte a few kinds of edges in a real i 1mage, e.g. hne edges, roof edges "
and ramp edges.: Consequently a specific kind of filter can not be optlmal for
all types of edges. Therefore, any derlved filter by any optlmal -method for-a
speciﬁc type of edge would be sub-optirnalin real app'l'icat'ions.’:" B

© " The comput-ational complexity for real-time. prdceSs’ingfcan*'be reduced
if the ﬁltering i done in some transform domain, using the advantages of fast
| algorit,hms.' The ‘processing time may be ‘reduced further usin'g ‘parallel’
: prOcessing if the filtering is doneblockwis‘e In the past, the complex discrete i'
h Fourler transform (DFT) has been the leading transform for ﬁlterlng in ‘the
7 transform domain. The convolution of the filter 1mpulse response “with the
: srgnal in the: srgnal domain. corresponds to the multlplxcatlon of the DFT
coefficients . of the filter and signal in the transform doxnaxn if the two |

sequences of length N and M, respectively, are eXtenjded by zerp padding to

' length greater than or equal to N4+M-1. The DFT has two major dr_awbacks. -

First, it needs complex additions and multxplxcatlons which

computatxonally expensxve, and represents data as complex in the transform,‘ :

domain. In addition, it creates severe "block effects" when applied blockwise.
“In this chapter, we investigate transform edge detection with Fourier-

' f.elate_d transforms introduced in Chapter's; in Which'the' image is processed in

smallbloclcs. In the sense o:f generalised"_ bandpass ﬁltei'ing, edge-detection is

. earried out by multiplying the : coefficients of ’the»,vsignal» in the tr«ansfor'm
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*domain.' b’y'a mask. We also”show that these. transforms create ‘less"' "block

- effects"” than the DFT when applled blockwxse An overlappxng method is

':"proposed to ellmxnate the - block eﬁ”ects W1th a llttle 1ncrease ‘in the_

‘computatlonal complexrty We also show that 1nterpolat10n ‘can be

llmplemented thh these transforms 1n order to increase the resolution ‘of edge

_“locatxon and to decrease the eﬁ”ects of lnherent noise in the real 1mages

S :Slmulatlon results are’ dlscussed for each transform and method

v14.2_B:andpas_s'Masking o

Dlﬁ'erent transforms map the glven signal in the space: (or tlme) domaln o e

e ‘;to another domaln, usually called. transform domaxn, in a form that is speclﬁcf SRR

| to 2 partlcular transform Flg 4 4 ShOWs frequency dlstrlbutxons of different

‘ ftransforms w1th typlcal 1mages whose energy can be consxdered to. be

e xconcentrated at low frequencles

The DFT and the: RDFT have sxmllar frequency dlstrlbutlons in a sense 3

lthat the low frequency components of the slgnal can be consxdered to be in the

o 'four corners of the two dlmensmnal transform wmdow The high frequency e

i _components can be consrdered to be in the mlddle of the wmdow One can

. ‘,’cha.nge the locatlon of drﬁerent frequency components buy - the signal by

» . (—1)n+m and thereby centerlng the low frequency components in the mlddle,' -_
- but we are uslng them w1thout centermg For the DCT and DCBT the low

i frequency components are in one corner and the hlgh frequency components in

o the opposrte corner The SRDFT WhICh results from a specrﬁc permutatlon of _

' fthe lnput srgnal followed by the RDFT has a frequency d1str1butlon very

sumlar to the DCT and the DC3T In fact the mput permutatlons move most =

e fof the low frequency energy from three corners 1n the RDFT domam to that '

i:“l corner, thh the DC coefﬁclent In thls chapter, we assume that the SRDFT‘ .



has the same frequency d;stnbutlon as the DCT or the DC3T
As we discussed before, most edge detectlon methods result in bandpass
ﬁlte‘rmg-. Now, havm_g the location of different frequencies for each transform, |
we want -to desvign 'handpaSS masks vt'hich attenuate the low' and high
‘ frequencles but. keep the mlddle frequencles unchanged The two ma_]or issues
are the shape, ‘the low and the high frequency cutoffs for the desired masks.
'Certalnly, the deslred masks can not have very sharp cutoffs since thrs vwould ;
lead tof_bscillations similar to Gibbs ph‘enomenon ‘tvhichflead to. multiple edges.
There fare many diﬁ,‘erenti possibilities. for the shape of masks. In this chapter,

we used two types of 'bandp‘ass masks for edge deteetion,-r and they are given as
H(j) = K u "-_"l"j""“"’v ifor i,j =0,1,..,N-1, - l | o (a11)

| H‘(i{j)}' =Ku2 F_’ﬁ?’f ;gr i,j_,-'—fvo’lz","fN»_‘:l’ & | (.4,.12) B
b VT

[k fork=0,1,..,N1, for the DCT, the DC3T and the SRDFT

=l PrESOLem gy

it - N for the RDFT
N—k for k = ?-I-I’,...,N—l; '

K is some constant value parameter that can be adjusted to make the mask
'coefﬁclent values mteger-valued whlch makes 1mplementatlon easxer in a-
-ﬁxed-pomt envu'onment In Eqs 4 11 and 4. 12 the smgle parameter 0‘2 is used .
" to adJust the peak locatlon and’ the cutoﬁ' frequencles. We Wlll refer to the' |

..masks given in Egs. 4, 11 and 4. 12 as tYPe I and type II, respectlvely Flg 4 5

Vl shows the 1-D graph of these masks for some arbltrary value of the parameter Ll
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B 02 Mask type I has its J'pealc,value at u = —-f\/i_—, 'and mask type_i‘ll'\has" _its'

'.peak vyalue'at' u= — " The 2-D graphv of these masl;s tfor._'diﬂ'e;_rent',;_ o

} '»'transforms are given in Flg 4.6. The smgle parameter o2 in - each case ls'.‘ .

o ‘ad_]usted for: each particular transform to glve the best results

As pomted out earller, computatlon complexxty of an edge detectlon
‘ algorlthm is an unportant des1gn crlterlon, specially in real time processmg In

‘general 31gnal processmg ‘with different fast transforms mvolves less"

computatlon, but that may not be enough for real time appllcatlons To .

'lremedy th1s problem, blockwxse processmg has been 1ntroduced and has been

o v_apphed to lmage transform codmg and unage transform enhancement In thls Ty

-chapter, we lntroduce blockwrse processmg for edge detectxon ,
“ The blockwrse transform edge detectron method compnses of the -
: 'followxng S e ‘
S 1) The given gray scale 1mage is. segmented 1nto a number of small blocks
o 2) Each block is. transformed by the chosen transform o o
3 ) The. transform coeﬁicxents of each block are modlﬁed by multlplymg
. with the mask coefﬁcrents ' SR T
4) The modified coefﬁclents of each block are inverse transformed
i . 5) Zero-crossmg pomts 1n the whole processed 1mage are. found and the

slope of zero-crossxng for each pomt is calculated by the followmg

- y equation

- (:4;14)

i’._‘where 51 and 8y ”""re the slope of ‘the’ zero—crossmg m the x and y

-dxrectrons, respectwely The slope of- zero—crossmg for each dlrectlon, -
- 1s deﬁned to be the difference value of two pomts on each side of o

L : zero—crossmg and is 1llustrated in Flg 4 7.
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36) The slopes are normahzed to mteger values between 0 and 255 _
7) Smce all zero—crossmg pomts are not assocrated with edge locatlons, a
| thresholdmg procedure is ‘applied to remove the false edges due to
“gotse, , N , -
Removmg the false edges results in deleting some true edges whlch are
“weaker" than others, and detecting all true edges results_ in creatlng some
fselse v-,edges?'. Tt is desirable to have a scheme to determine ‘"(f){p;_timal""_'vthreSho‘l_d '
which has been "used to compare different edge detection ﬁiethods'ﬁlieu the
true edge {l-ocatlons are known. 'v?-éne T;su.chf‘:fseherue -.jis to choose: the: threshold
* wvalue such that the number of .miSSed‘-edg.es po'ints“are-~ close to the 'ﬁumb‘er’of
~created false 'ed}ges- {.59]'.,;.1111" other var.d's,""thei‘t‘hreShol.d yélue- is::’cho_,sen such that
the conditional probability P(AE | TE) of the assigned edge given' true‘edge‘,
and the conditional probability P(TE | AE) of the true edge given the assigned
edge are as close as possible. P(AE ITE) indicates what‘*percentage of true
edge points has been assigned to be edge, and P(TE|AE) indicates what
percentage of a'ssigned ‘edge ‘points. are true edges If the nUmbe'r of missed
edge points is close to the: number of created false edge pornts, these two
condltlonal probablhtles will be close S L _
The transform- edge detection method was sxmulated wnth the DCT the
DC3T, the RDFT and the SRDFT transforms. These transforms are described
" in Chapter 3. The b‘lock sizes of 16 arld 32 were'used for ‘bylockwise processing.
'.‘We tested both type I and type I masks grven in Eqs 4.11 and 4.12, In order
to compare the results of edge detectron method given in this chapter to the
results of some other methods given in [59] and [53], we used an original
ﬁdheckerboard:image. Each square has a size of 20x20. The dark squares and
the bright squares have gray values of 75 and 175, respectively. Independent
.Gaussizan noise with zero mean and a standard deviation of* 50 ‘was added to
“the perfect checkerboard image. Defining the signal to _ndi_se ratio as 10 times |
the log;arithin of the range of the signal divided by the rms. of the noise, the -

‘noisy checkerboard image has a signal to noise ratio of about 3 dB. ,T,h.e:
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R perfect and n01sy checkerboard images are shown in Flg 4.8.

“In transform edge detectlon method, we trled coarsely to ﬁnd the best
parameter 02 with: both types of masks thh different transforms and dlﬁerent
" sizes of blocks Deﬁnxng the true edge posmon the two plxel wide range reglon'

in whlch each pixel has some’ nelghbormg pixel w1th dlﬂ'erent gray value [59),

| jwe counted the number of false and mlssed edge points to calculate the two

o .condltxonal probabllltles deﬁned above We also calculated . the error distance

. adeﬁned a8 the average dxstance to closest true ‘edge plxels of plxels whlch are
assrgned nonedge but which are true edge [59] Slmulatlon results w1th two .v
. type of masks and dlﬂ'erent transforms with block smes of 16 and 32 are glven v
L .1n Table 4.1. The parameters are the values of 02 in Eqs 4.11 and 4.12. In
these sxmulatlons, we used an overlap-save method dnscussed in Chapter 3 to
i ellmmate block: eﬁ'ectsduertoi; the;use_of .small blocks. We also dxscuss the case E
~‘w1thout overlapplng later.. SR o R 'v.,
. The results show that the DCT and the DC3T nge completely similar

results: for both type of masks and dlﬂ'erent block  sizes. ‘This was expected

“’;;.ﬁfrom the relatlon between the DCT and the DC3T glven in. Chapter 3 The

‘v ) SRDFT glves results close to the DCT or DCST but overall the DCT or DC3t
glve a httle better results ‘The RDFT glves the. best results for a block size of
'32 but for a. block: sxze of 16, _the results are a llttle ‘worse ‘than other
transforms The two type of masks glve very 31m11ar results The, results with a
B block size of 32 are much better than those for a block size of 16. Of course,
“ ,thls has the dxsadvantage of more computatxonal cost I.mages of edge :
xdetectlon results w1th transform edge detectlon method -are shown m ‘Figs.
4. 9 4 16 Sxmllar conclusmns 1n comparmg the results of dlﬁ'erent transforms
Gy can be seen in Flgs 4 15 and 4. 16 SRR - _ |
: : For av01d1ng any dlﬂ'erence in the 1mplementatlon of other edge
.‘ jdetectlon algonthms, we used the results publlshed in [59] and [60] w1th the

o same. ongmal 1mage, but dlﬂ'erent slzes The numencal results for Prewitt [61],

Ce zero—crossmg of Laplaclan [53] and second dlrectlonal derlvatlves [59] methods[



115

~are glven in Table 4.2. Comparlng the. results glven in Table 4.1 to those glven

in Table 4. 2 reveals that the results of transform edge detectlon method fora :

block size of 16 are much better in terms of condltlonal probablhtxes and very'
“close to the results of the other technnques in terms of ‘error’ dlstances For a :
block s:ze of 32, the' results of transform edge detectlon method are better in
" terms of both condltlonal probabilities and error d1stances Some dlﬂ'erent
results was glven in [60] for zero—crossmg of Laplaclan method for the same
w1ndow size “but dlﬂ'erent parameter Comparmg those results to the results
glven in Table 4. 1 show that the results of transform edge detectlon are still
'comparable for block ‘size of 16 and much better for block size of 32 For
companson, 1mages of the results of the above edge operators are glven in -
Flgs 4.17 - 4.20. ; SRS ' '

: " We also simulated transform edge detectlon method for the real i 1mages,
g1r1256 'and “catbrain” -given in Figs. 24 and 3.6, respectwel}r In- thlsy)’

' simulation, we used different number of overlappmg pixels; including the non-

S overlapplng case. The results for dlﬂ'erent number of overlapping pixels and

with' dlﬂ'erent transforms, 1nclud1ng the results for the noxsy checkerboard“ '
image, are given in Figs. 4.21-4.35. These results mdncate ‘that " two - plxel '

' overlapprng is ‘basically enough for the DCT the DC3T and the SRDFT for
~avoiding visible block edge effects. For the RDFT, the block edge eﬂ'ects are
v »vrslble for 4 or less number of overlapplng plxels, but for 8 pxxel overlapping,

the block edge effects are not visible. ' N ‘
Regardmg the computatxonal complexity of the transform edge
. detection method, we calculated the number of real addrtlons and |
‘multiplicat-ions per pixel for different transforms and for different number of
overlapping pixels. We have _used the data given in Table 3.1, and: we have
included ‘one real multiplication per pixel for applying the bandpass mask.
The results are given in Table 4.3. The convolution: with a filter of size 11x11
- as used by Refs,'[53] and [59] can also be done using fast conrfolutionQ In this -

case, a window size of either 6x6 or 22x22 of the input signal is expanded to a
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:f'f,._.wrndow srze of 16x16 or 32x32 respectlvely, by zero paddlng Usrng the fastf '.

o ‘methods glven by Ersoy and Hu [64] for 2-D real clrcular convolutlon, the o

. g‘ .._‘number of real addxtlons and multlpllcatxons per plxel for the case of 16x16f

S "r"'ﬁl'are 128 06 and 28 39, respectlvely The number of real addltxons and”b |

. ._multlphcatlons per plxel for the case of 32x32 are 50 25 and 12.16,

L ‘respectlvely Comparlng these numbers wlth those m Table 4. 3 reveals thatv

‘Pv,..'.':_:rthe number of addltlons and multlplxcatxons per plxel for transform edgen '

- detectlon method are on. the average lower for 4 or less number of overlappmg

L pxxels than the correspondmg numbers m lmear ﬁltermg

d

A3 Mterpolation

terpolatlon is: the generatlon of. new slgnal sample values between_'_‘ -

}'j'known s1gnal sample values There is evrdence that the human vxsual system '

mterpolatlon in- both txme and space [62] Image mterpolatlon has many

o 'apphcatlons ln 1mage processrng such as edge detectxon, codlng and srgnal

; representatxon There are many dxﬂ‘erent methods for, 1nterpolatxon such as: use‘

_( of. splmes ‘of. dlﬁ'erent orders Another type of mterpolatxon 1nvolves usrng
N transform methods For example, the drscrete Fourier transform (DFT) has
‘_v_“been used for mterpolatxon In thrs method ﬁrst the DFT of the N-pornt

'. ?‘:‘*"srgnal is computed Then, the sxgnal is padded w1th zeros m the transform

domam to- the dwlred number say M, pomts Flnally, one M—pornt mverse '

_':DFT is- apphed However, the DFT is a complex transform and mvolves

L "' complerg;‘a 'tlons and multrplrcatlons whlch have hxgh computatronal cost In '

s :’mterpola.tron by the RDFT 1s thevsame as tha ,y the DFT except generahzed._'




17

RDFT s are 1nvolved after the ﬁrst transformatlon of the mput slgnal Ersoy

. [63] has shown that the’ computatxonal cost of- mterpolatmn by RDFT can be

reduced by applymg generahzed inverse RDFTs ‘of the same size as the'
: /onglnal 1mage 1nstead of taklng a large mverse RDFT after zero paddrng of
| tw1ce the size.” ' ' o R
We simulated 1nterpolat10n w1th the RDFT in transform edge detectlon
method We first subsampled the orlglnal 'girl256" 1mage given in Fig. 2.4 by
a factor of 2. Takxng blocks of size 16 with 4 plxels overlapplng, we. ﬁrst;~
' applled the edge detection mask after forward RDFT Then the blocks were;
) padded to size 32 with zeros (the zeros ‘are padded in- the middle of the :
transform block). Flnally an inverse RDF T of size 32 with 8 p;xels overlapplng
wa_s applied for each block. The»-zero-crossxng_detectlon and- -calculatlng ‘the
“slope-at zeréé-ro‘ssing ‘points 'wfas,the:'la’st' step ‘which is done for'the ‘whole
» inifa"gefThe’interpolation results are given in Fig."‘vf4.361fOr"diﬁ’ereﬁt parameters
" of the ’bandpass mask type II. Comparing Fig: 4.36 w1th F‘igl;‘d,31"shows that
the‘resultszfof ‘transform edﬂge"detection*-with »int_erpolation_.are‘ very cloSeto tkhe

 the results of transform edge detection with the original image. -

4.4 Conclusions

- Blockwise trans'form edge"’de:tec_tionﬂrnethod ivnv»the fOrm 'of'general,ized
_-bandpass: masking with a nnmber of different fast ‘real “transforms was
proposed; ‘The transform ‘edge detection method consists of modifying the
transform.coefﬁcients of small blocks of input image by pre-designed bandpass |
" masks, followed by rlog.at‘ing the zero-crossing"poin_ts ran/d' calculating their :
slo;res; ‘The final step of edge fdetection‘method is thresholding. An’ov‘erlap-
save method was applied for removing the block' edge effects. Simulation

" results show that the proposed transform edge detection ‘method is, on the
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| ;I:average, better m terms of sxmulatlon results than prev1ous edge detectlon"_,"'”k

,, methods based on bandpass ﬁlterlng In addltlon, it has the adva" age of less S

:‘]:g‘,'ﬂ'computatlonal complexlty, even thh hlgh number of overlappmg plxels,':r:_-r-

- _:whlch is. essentlal in real tlme appllcatlons The 31mulatlon results also show

, that overlappmg with' about 2 plxels (4 plxels w1th the RDFT) is. sufﬁclent for"-

. removmg v151ble block edge eﬁects in most cases..




: ~ Figure 4.1. Input signal f(x), its ﬁrst denvatwe f’(x), and its. second o

denvatxve f’ ’(x) for a typlcal 1-D edge.
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. TheRDFTandthe DFT =~

TheDCT,theDC3T and theSRDFT |

SR anure 44 Freqﬁenc’j ’i;distriﬁutioﬁSr; pf 'idiﬁer’entj‘tfahsforms"w.ith\a typical !
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mask. type for the DCT
the DC3T or the SRDFI‘ -

Flgure 4.8, 2-D graph of bandpass masks of dlﬂ'erent types and dlﬂerent
' © transforms. -
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5D mask type H for theDCT R
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2D mask type I for the RDFT
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Figure 4.6.  (continued)
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| 2-D mask type 1I for the ‘RDFT'




131

zero level

N

it L

- ‘slope of zerb—c’rossing=tan(8)'

Figure 4.7, Z‘e'ro-c}ossing and its slope‘in 1-D.






' Sunulatlon results for transform edge detectlon w1th n01sy

T’avb,le‘ 4,1'

"' checkerboard 1rnage and 4 plxels overlapplng . S

| E < E 5

= m N SR A A~ 3|
DCT 16 T__| 0075 | 0863 | 0861 | 1326
& I | 020 | 0852 0.855 | 1.354
1 _DC3T 1] 0.04 0.924 0923 | 1.169
T "1 835 | 0.834 | 1.427
- il 0.30 0.822 0.820 1.421
RDFT Jil 0.35 0.817 | U.gy 1.416
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Joro-crossings with mask type I, the DCT or the DCST, block
' “size of 16, parameter values from 0.05-to 0.40 with increment of -
005 sd 4 pixelsoverlapping,
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0.0625, 0.11, 0.25 and 4 pixel

rows: mask type II, block size of 32, parameter values equal to
0.04

block size of 18, parameter values from 0.025 to 0.20 with
. 0.012, 0.015, 0.02, 0.028,

increment of 0.025 and 4 pixels overlapping, the second two

‘ ‘_F'i-gu:ve 4.14. Zero-crossings with ﬂie SRDFT; the first two rows: mask type I,
‘overlapping.
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. starting at the top, each image corresponds to the entries of the - e

Figure 4.15. Zero-crossings after thresholding: counting from left to right
. first row to the 8th row of Table 4.1:



Flgure416 g Zg‘fo»groé.é.ings aft'el_": 'th,.i"'e_Shol‘ding:' counting ‘f;oﬁi'_:lv'ef't{ to right

. starting at the top, each image corresponds to the entries of the

" 9th row to the 13th row of Table 4.1, .
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-,Tabl'ev 4.2. 'Cbmpares the performance of three edge 6perators using ‘an
| ' " 11x11 window on the noisy checkerboard xmage [59]. (Copynghtv_
- IEEE, w1th permlssxon)

' ' _ Directional
© Prewitt Marr-Hildreth - Dérivative
' : Zero Crossing Gradient
o : Gradient Strength=4.0 Threshold = 14. 0
Parameters = Threshoid = 18.5 ¢=50 =05
P(AE|TE) 06738 03977 07207
P(TEIAE) 0.6872 - 0.4159 0.7197 -

- Error Distance’ 1.79 ) 1.76 ~ Li6



Fi 1gure 4 17 Illustrates the edges obtamed by the 11x11 Marr-Hlldreth zero -
- crossing ‘of Laplacian operator set for three different zero
crossing thresholds and three different standard dev1atlons for

_the assocxated Mexican hat filter [59] (Copynght IEEE, with
permlsslon)

N e S e e
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' :‘Fxgure 4 18, Illustrates the dxrectlonal derlvat. es edge opera r for a wxndow
- size of llxll and decldxng that the true grad.lént is nonzero

P when the estlmated gradlent 1s hwher than the thresholds of 12

14, 16 or ,18*..'[59] (Copyrlght IEEE w1th permlsswn) :
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‘ Flgure 4 19. Compares the directlonal derivative edge operator with the

Marr—Hlldreth edge operator and the Prewitt edge operator. The

- thresholds chosen were the best possnble ones [59] (Copynght
. IEEE, wnth permlsswn) § :
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Flgure 4 20 (a) The zero—crossxngs obté.ined from the Marr-Hildreth
1mplementatlon of the VG operator thh 0 =25. (b) Zero-

... crossings that remaln after thresholdmg so as to equalize the

o condmona.l proba.bxhtles [60] (Copynght IEEE w1th permxssxon)
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 Figure 4.21. The results of transform edge detection with original »image.'df :
. '"girl256", the DCT or DC3T, bandpass mask of type II, block
- . size of 32,02 =0.012 and threshold value of 16: top-left, no
~ overlapping; top-right, 2 pixels overlapping; bottom-left, 4 pixels
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Figure 4.22. The resu]ts of transformedge detectxonmthongmallmage of
. .size of 32, 0* =0.0625, threshold value of 7 without overlapping.
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; Fi.gure"4.23.: “The results of transform edgé‘-détét:'tion;‘?with original image of |

~ “catbrain", the DCT or DC3T, bandpass mask of type II, block

size of 32, 0° =0.0625, threshold value of 7 and with 1 pixel

overlapping.
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' Figure 4.24. The results of transform edge detection with original image of
© . catbrain", the DCT or DC3T, bandpass mask of type II, block
. sige of 32, 0® =0.0625, threshold value of 7 and with 4 pixels -
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Figure 4.25. The results of transform edge detection with original image of

- “catbrain", ‘the DCT or DC3T, bandpass mask of type II, block

f'iﬁ"z.,"‘.bz_'=10,04,'v_'thr’evsh‘old‘,Ya_li;é" of "7 and with 4 pixels

- ‘overlapping.

" size 0
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Figure;4.26‘ .Thgr.‘rﬂe'sultsbvbf- transform edge detection with original image of
. "girl258", the SRDFT, bandpass mask of type II, block size of
182, 0% =0.012 and “threshold value of 16: top-left, no
f' bﬁeﬂip;—in-g; top-right, 2 pixels overlapping; bottom-left, 8 pixels

_overlapping.
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Figﬁré 4’,’2’7,‘. The results of transform edge detection with origin'alv imagé of -

~ “catbrain", the SRDFT, bandpass mask of type II, block size of N

32, 0% = 0.0625, threshold value of 7 without overlapping.



The results of transform- edge: detection with original image of -
‘catbrain”, the SRDFT, bandpass mask of type II, block site of -

, o =0.0625, threshold value of 7 and with 1 pix
Werlapping, | i oL onaF ULl Lva
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The v"rfeys/ulltsi of transfor,m.' edge detectlon "_ thh (_)_';ig'iha_l: ‘ix‘nage of
"catbrain", the SRDFT, bandpass mask of type II, block size of
32, o0° =0.0625, threshold value of 7 and with 4 pixels

" Figure 4.29.

overlapping.
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:‘The results of ra,nsform edge detec ion w1th orlgmal 1ma.ge of S L
’.’éatbraxn ‘the SRDFT bandpass mask of type II, block size of‘ R
32, . . 1 alue of 7 and wnth 8 pmels
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Figure 4.31. The results of transform edge detection with original image of

L _ "girl256", the RDFT, bandpass mask of type II, block size of 32,
0% =0.012 and threshold value of 18: top-left, no overlapping;
top-right, 2 pixels overlapping; bottom-left, 8 pik_els overlapping. |
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" Figure 432. The results of transform edge detection with original image of
~ . Vcatbrain, the RDFT, bandpass mask of type II, block size of
32, 0% =0.0625, threshold value of 7 without overlapping.
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Figure 4.33. The results of transform edge detection'with original image of
~ ‘catbrain”, the RDFT, bandpass mask of type II, block size of
32, o =0.0625, threshold Hvalue of 7 and with 1 pixel

. oveﬂapping.
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Figure 4.35. The results of transform edge detection with original image of
"~ catbrain", the RDFT, bandpass. mask- of type II, block size of
32, o =0,0625, threshold value of 7 and with 8 pixels.

L v”'];i'1'61“" :



Table 4.3.
REEN '. “transform “edge detectlon ‘method with dlfferent transforms,
' dlfferent block sizes and dlﬁerent number of overlapping pixels.
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The number of real addltlons and multlphcatxons per plxel in-

Addmons '

TriuIUpIicatxons _

size

. Block'

o1
v'egla- |
pping
_Ppixels

SRDPT
&
RDFT

DC3T

3.5

157

16 [

6.25

686

9.33
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Figure 4.36. The results of interpolation with transform edge detection
method, bandpass mask type Il and threshold value of 16 for
different parameters: top-left, o® = 0.04; top-right, 0% = 0.0625;
bottom-left, o? = 0.11. |



CONCLUSIONS AND FUTURE RESEARCH D]ERECTIONS

"51’14-Conclusiol‘lg-'r-

In thls thesrs, we have developed a unlﬁed approach o use novel
_transforms for transforrn image codlng, enhancement and edge' detectlon .
, Requlrements for transform image coding are low bit rate and low- comple)nty’

of 1mplementatlon whlle keeping the quality of decoded image hlgh For these

purposes, ‘the . optlmal adaptive - multlstage ‘transform” codlng has been‘ :
: xntroduced 1n ‘Chapter - 2. In this method the optlmallty is achieved by

‘minimization of the total final" reconstructlon error using: marglnal analysis..

o .Both theoretlcal and experlmental results ' indicate. that optlmal adaptlveﬁ

multlstage image- transform codlng is certainly eﬁ‘ectwe in reduclng mean
- square ‘reconstruction error over what is possible: with- one" stage transform

o ‘coding: ThlS ‘has’ ‘been - shown by generating the dlﬁ‘erence 1mages in two -

'-dlﬂ'erent ways The reconstructed images with multlstage codmg method are
_ also. subjectlvely much more preferable that the reconstructed 1mages w1th the}j '
‘one stage codlng method at the same bit rate. T '

In Chapter 3, transform i image enhancement with a number of newly'v

developed fast transforms has been mvestlgated We have dlscussed three 3

L -different methods for image enhancement in the transform domaln In order: to

_-‘_reduce the computatlonal complexrty of enhancement all these technlques are
' ]lmplemented blockwise. The simulation results 1nd1cate that the DCT, ‘the -

- SRDFT and the DC3T are the best for i image enhancement For reducing the

block edge eﬁects due to blockwise processing, an overlap-save technlque has.
" been introduced. This technlque is completely eﬁ‘ectrve w1th a llttle 1ncrease in :.:

’ _computatlonal complexnty.v S : L ‘ .
In Chapter 4, we have discussed the transform edge detect;on An X

. vlnvestlgatlon of ‘many edge detection methods' indicate that they are very

 similar to bandpass filtering. Exploiting the frequency characterlstlcs of a".;

SO number of real fast transforms, generalized bandpass ﬁlterlng w1th two type of .



i } »_'bandpass masks has been proposed for edge detectlon The transform edgey;

o ‘detection method cons:sts of ‘modifying the transform coeﬁicxents of small =

y ‘, ."j‘blocks of 1nput image by pre-designed bandpass masks, followed by locating

_the Zero-crossmg pomts and" calculatlng their slopes The final step of edge e

.- detection. method: s’ thresholdmg Transform edge det.ectlon has. been done -
blockw1se and the overlap—save method discussed in. Chapter 3 has been used »
o ._-y."for reduclng the block- edge eﬁ”ects ernulatlon results show that transform
. edge detection is- quite comparable with and generally Dbetter than other
e 'f"bandpass ﬁltermg methods desplte 1ts lower computatlonal complexxty :

o %25;2_' Future Research D’irectio_nsl o

, S ‘:‘-v--,The followmg issues will be conSIdered a.s future research dlrectxons in o
B the extenswn of prev1ous chapter results LU O

';We have d1scussed the problem 1nvolv1ng the 1mplementatlon of
ultlstage transform codmg for 3 or. more number of stages in Sec.:
2:5. The ‘most obv1ous problem is’ the error due to’ mlsmatch: '
_ \reen the assumed pdf and the real’ pdf for some coeﬁiclents in
. “‘the course . of bit allocatlon and quantlzatlon It is suggested “to
""fﬂv.’jstudy the: 1mplementatlon of the bit- allocatlon method given by
/" Shoham and Gersho [29] which- may get closer to the optlmum case -
"b"by an 1terat1ve procedure S : o : :

| 2The optlmum mean square error quantlzatlon has been - used for'
L _multistage. codmg in Chapter 2. It would be- 1nterest1ng to study the

quantlzatlon base for newly adopted image codxng standard [65]

3. ']It is. suggested to study the 1mplementat10n of the complete
. __:v:”multlstage transform codlng procedure 1n ‘the. frame of the above_»

o number of stages fOl’ lummance and color ‘componentS, Y I and Q

15

i multlst; ge codmg method thh umform quantlzatlon whlch is the

ned standard ‘for. ‘image codmg w1th poss1ble dlﬁerent ,'
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It is p0551ble to mvestrgate how to make optlmal multlstage’
transform coding totally adaptwe in the sense of - the system

dec1d1ng itself how many stages it needs.

It is interesting to investigate optimal multistage tra‘nsform coding

vw1th the inclusion of source coding in overall design. We observed

that the number of bits in the second stage are malnly Oor 1. It is
possible that source coding such as Huffman codmg may lead to_

further gains due to reduced overhead 1nformatlon in the second B
stage. L R .

For image enhancement ‘the results of some apphed transforms are
promising. ‘Therefore it is appropriate to 1mprove these techmques
with ‘these transforms further. For instance, in' modified alpha-
rooting, it is interesting to investigate whether we can replace the
windowing in‘the image domain by some -proper filtering in the
frequency domain to prevent more complexnty with respect to
conventional alpha—rootmg '

One'pc‘)ssible _Y'-reseavrvch direction could be "using different alp_ha"
values with alpha-rooting enhancement method inside a processing

“block or different alpha values for different blocks based on the

amplitude of coefficients or the energy of each block, respectively.

It has been observed in simulation results of transform edge

detection that real pictures with different signal to noise ratio need
different threshold values in the last step of edge detection. It is

suggested to study the possibility of developing some adaptive
technique to determine the best threshold for each picture based on
some energy measure in the transform domain. It would not
increase the complexity of 1mplementat10n much since the
transformed coefficients are already calculated dunng the course of

applying bandpass masklng

~ Another direction in transform edge detection can be the study of
~ designing some optimal masks for different transform which
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' pro.b"vably give better results than the masks used in Chapter 4.

10. Another quantitative measure called Pratt figure of merit [27] can
be used for companng the performance of transform edge detectlon
method wnth other methods. o
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