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ABSTRACT

An optimal method is developed for adaptive multistage image transform coding. 
The optimality is in the sense of minimizing the mean square reconstruction error with a 
given total number of bits and a given number of stages. The statistics of the coefficients 
in different stages and marginal analysis are used to optimize the division of the total 
number of bits among the stages. Experimental results indicate that, with two stages, 
more than 14% improvement for one class and more than 10% improvement for 
multiclasses is achieved in mean square reconstruction error over one stage image 
transform coding. Higher improvements are achieved with three stages. The 
reconstructed images with multistage coding are subjectively much more preferable than 
the reconstructed images with one-stage coding.
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1. INTRODUCTION

Transform coding is widely used in coding of images since it gives a very high 
compression ratio. The effectiveness of transform coding has a lot to do with the 
properties of decorrelating the pixel values and packing the energy of the signal in a few 
transform coefficients. Based on these two criteria, the Karhunen-Loeve transform (KLT) 
is the optimal transform for image coding [1]. However, the KLT is signal dependent and 
difficult to compute in real time. The discrete cosine transform (DCT) is among the best 
fast transforms to approximate the KLT in image coding [2]. One technique for 
improving the efficiency of image coding is to apply adaptivity to the coding procedure 
by classifying image blocks in a number of classes. An efficient adaptive algorithm for 
image coding was proposed by Chen and Smith [3].

In this paper, we discuss optimization techniques of transform image coding in 
the form of a multistage procedure in which the error signal resulting from the 
quantization of the previous stage is input to the following stage. Multistage transform 
coding thus involves transform domain quantization in a number of stages such that each 
stage attempts to correct the errors in the previous stage. The technique to be discussed is 
different from progressive image coding even though there is some degree of similarity. 
In progressive image coding, first a low-grade version of the image is sent, and then the 
image is refined by sending more information in the following stages. A number of 
different techniques for progressive image coding in both spatial and transform domains 
have been discussed by Tzou [4], Wang and Goldberg [5,6]. In this technique, the 
coefficients of each stage are quantized by a predetermined average rate and die number 
of stages are increased until satisfactory image reconstruction is obtained at the receiver. 
So far, no adaptive method has been reported in order to adjust the number of bits for 
each stage based on the statistics of the coefficients of different stages, and for a total 
given bit rate.

The method to be discussed in this paper involves optimal adaptive multistage 
transform coding with a fixed total number of bits per pixel and a fixed number of stages. 
It is optimal in the sense that it minimizes the total final reconstruction error with the 
given total number of bits and stages. The statistics of the coefficients in different stages 
are used to optimize the division of the total number of bits among different stages. The 
adaptivity introduced does not significantly add to the complexity of the coding system
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since it utilizes the information that is necessary for any kind of multistage transform 
coding. Simulation results have shown a considerable percentage decrease in 
reconstruction error despite the simplicity of the coding scheme. In addition, the 
remaining error image is more noise-like than the error image in one-stage coding, 
especially with reduced error around the edges. This is believed to be the main reason 
why multistage transform coding gives subjectively much more pleasing results than 
one-stage coding at the same bit rate.

There are a number of subjective and objective error measures to quantify the 
quality of image reconstruction, but the mean square error (MSE) is the most widely 
used. The MSE is also the measure in this paper to be used to compare experimental 
results. However, the experimental results will also be discussed in terms of subjective 
performance.

The paper consists of 6 sections. In Sec. 2, the new proposed method is 
introduced, and a mathematical expression is derived for the total final reconstruction 
error which is to be minimized during bit allocation and coding. This expression is based 
on the mean square error. The optimal bit allocation for different stages to minimize the 
quantization error is explained in Sec. 3 by using the statistics of the coefficients in 
different stages. In Sec. 4, the experimental results with the discrete cosine transform 
(DCT) are discussed with a number of images, and rates, as well as with one class and 
multiclass adaptive procedures. Sec. 5 is some discussion of problems facing the 
implementation of multistage transform coding. Sec. 6 is conclusions.

2. OPTIMAL ADAPTIVE MULTISTAGE IMAGE TRANSFORM CODING

The block diagram for adaptive multistage transform coding is shown in Fig. 1. 
The transform coefficients of the first stage are assumed to have little correlation so that 
they are quantized and coded independently with an optimal bit map for the first stage as 
explained below. The two dimensional error signal resulting from the first stage 
quantization is fed to the second stage and subsequently quantized and coded with 
another optimal bit map. This procedure is continued for the given total number of 
stages.

Next, we derive a mathematical expression for the total final reconstruction error 
based on the mean square error (MSE) measure. We assume that unitary transforms are
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used for transform coding. Then, the variance of the reconstruction error is equal to that 
introduced during the quantization of coefficients [7].

Referring to Fig. 1, the following notations are defined:

n : The number of stages.
Ek : The coefficient matrix of size NxN as input to stage k+1, k = 0 ,l,...,n -l.
AEk : The matrix of size NxN for the quantized coefficients as output of stage

k+1, k = 0 ,l,...,n -l.
ejuj: The ijth coefficient of the matrix Ek.

Aejuj : The ijth coefficient of the matrix Ek.
bjaj : The number of bits used to quantize ejuj.
fk(bkij) • The mean square distortion of the b^-bit quantizer for unity variance

There are different kinds of quantizers such as optimum mean square (Lloyd-

input (see Sec. 3).
Okij: The variance of eky.
*2 . 'i •Ojaj: The vanance of eky.

Max) and uniform optimal quantizer [8]. The optimum mean square quantizer is used in 
this paper. Suppose e^j and e^j are the input and the output of the optimum mean square 
quantizer. They have the following properties [9]:

E(ekij)= E(ekij) —> E(e)aj — e^y) = E(e(k+i)y) — 0 ( 1 )

(2)

(3)

The following equation can be derived from Eqs. (1),(2) and (3):

E (®kij®kij) “  E (®kij) ^kij = ^  fk(bkij) ̂  Okij for k l,2,...,n~*1. (4)
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Referring to Fig. 1, the final reconstructed image is formed by taking the inverse
*  A  Atransform of (Eq + Ej + • * • + En_i). Therefore the mean square error (MSE) is given by

i N-1N-1 f '\2
M SE =  — Y  X  I E k - ( ® 0 i j  +  ®lij +  • * • +  e(n-l)ij) •N i=o i=0 1 J

(5)
i=0 j=0

For simplicity, we begin with the cases of n = 2 and n = 3, and then extend the 
results to any value of n. For n = 2, the expectation in Eq. (5) can be written as

E [e0ij -  (eoij + ciij) j  = E [(e0lJ -  % )  -  eHj]

=E (̂eoij ~ ®0ij)̂  j  ~ E |^lij(elij ~ ®lij) ~ E(e lij6lij) (6)

The first expectation on the right side of Eq. (6) is the expectation of the squared error in 
the first stage as shown in Fig. 1. By using Eqs. (1), (2), (3), and the fact that the average 
value of the coefficients in the first stage, excluding the DC coefficient, is zero, it can be 
written as

E(eoij) + E(eoij) -  2 E(e0y e0y) = E(e&j) -  E(eaj)
2 * 2 = o 0ij -  o 0ij

=  crgy foCboij) (7)

The second expectation on the right side of Eq. (6) is zero according to Eq. (2), 
and the third expectation on the right side of Eq. (6) is equal to crfy ^ l- f i(b iy ) j  
according to Eq. (4). Therefore the MSE for the case n = 2 is given by

i N-1N-1
MSE = — X  X  N2 S ogij fofboy) + [fi (b,u) - 1  ]

For n = 3, the expectation in Eq, (5) is written as

( 8 )
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E [eoij—(eoij + eHj + e2ij)j = E [(e^ -  eoy -  e^j) -  e2ij ]

= E(eoij ”  eoij -  eHj)2 + E ĵ e2ij -  2(eoij -  eoij)e2ij + 2(eijje2ij). j  (9)

The first expectation on the right side of Eq. (9) is equal to the left side of Eq. (6), and its 
value is given by the expression inside the bracket in Eq. (8). Knowing that 
eoij -  eoij = ejjj and e^j = e2,j + e^j, the second expectation on the right side of Eq. (9) is 
found to be

*2E(e2y — 2eijje2ij + 2eijje2ij)
= E |s 2jj — 2(e2y + eijj)e2jj + 2ejjje2jj j

= E(e|y -  2e2ije2ij) = E e2ij(e2ij -  e2iJ)j -  E(e2ije2ij) (10)

where Eqs. (2) and (4) were used in the last step.
Therefore the MSE in the case of n -  3 is given as

i N-l N-l
m s e = - ^ - x  XN i=o j=o Ooij fo(boij) +  G lij ^1 (blij) ”  1

+ <*2ij [f2(b2y)-l] (ID

Eq. (11) can be easily extended to arbitrary n, and the result is

1 N -l N-l
MSE = — X  IN2 itS po

Ooijfo(boij) +  o?ij [ f i ( b n j ) - l j

°(n-l)ij ^n-1 (b(n-l)ij) -  l j ( 12 )
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Eq. (12) is the objective function that is to be minimized in order to achieve the 
minimum mean square error. The procedure of bit allocation in order to minimize this 
function is given in the next section.

3. ERROR MODELS AND OPTIMAL BIT ALLOCATION

In general, an analytic expression for the quantizer error is desirable. Usually, 
such an expression is given in terms of the variance of the input sequence to the quan
tizer, the number of bits (or the number of levels) used for quantization, and some param
eters that depend on the distribution of the input. A closed form expression for the MSE 
is very difficult to derive, and most reported results have been obtained either by numeri
cal or approximate means. In the case of the optimum mean square (Lloyd-Max) quan
tizer, the MSE is usually expressed in the form of a^j fk(bkij) where fk(bkij) is a function 
of bkij and the probability density function (pdf) of the input signal to the quantizer. One 
such expression for fk(bkij) for Gaussian distribution is given by [8]

f"k (bkij ) — 1.32 (2"1,74bkij)<
2.21 (2-1 '96bkij)

for b^j around 2, 
for bkij around 5.17. (13)

Another approximate model in the case of Gaussian distribution is given by [10]

fk (bkij ) “
2-1-57^ for b ^  £ 2.32

“ 2.698 22bkij for bkij ^ 2.32
(14)

(22biii + 0.8532)3

Some other error functions have been reported for both Gaussian and Laplacian distribu
tions in Ref. [9] and is given in Table 1.

All of the above models are either for the Gaussian or the Laplacian distribution. 
In practice, the input to the quantizer usually has neither Gaussian nor Laplacian distribu
tion exactly but some distribution close to one of them.



Recently it was reported that most of AC coefficients for the first stage of the 
DCT transform have Laplacian pdf [11]. It was also mentioned that the DC coefficients 
have a pdf close to Gaussian. We performed the Kolmogorov-Smirnov(K-S) [12] test for 
the coefficients of the second stage. The results indicate that the 8-bit quantization error 
for the DC coefficients has a pdf close to the uniform distribution. All the AC coefficients 
which have been allocated 2 or more bits (4 or more quantization levels) have a pdf close 
to Gaussian, and most coefficients which have been allocated 1 bit (2 quantization levels) 
have a pdf close to Gaussian as well. Of course, those coefficients which have not been 
allocated any bit at the first stage have a Laplacian pdf in most cases. Overall, a large 
number of coefficients which will receive non-zero bits in the second stage have a Gaus
sian pdf. Therefore in our simulations, we assume Gaussian pdf for the second stage and 
use the error model given in Table 1.

Having the error models for each stage, the total final error given in Eq. (12) can 
be minimized through an optimal bit allocation procedure. Coefficients in each stage usu
ally have different variances, and their variances are also different from stage to stage. 
Therefore, different number of bits should be assigned to each coefficient. The major 
constraint that should be satisfied is that the total number of bits is fixed. There are a 
number of methods for bit allocation, and they are not necessarily optimal in minimizing 
the MSE. Some methods assume the number of bits (or the number of levels) to be a con
tinuous variable in order to get an optimal and closed form expression, but the result has 
to be rounded to the nearest integer and is no longer optimal. The procedure for obtaining 
optimal non-integer number of bits was discussed in Ref. [13]. In this paper, we use mar
ginal analysis described in Ref. [14] to develop an optimal method with integer number 
of bits. The piecewise enor models given in Table 1 are strictly convex function and 
guarantee that the global minimum is achieved. Here, we give the necessary steps for bit 
allocation with 2 stages where the generalization for more stages being straightforward. 
The steps involved in bit allocation according to marginal analysis are as follows:

1. Set bfcj = 0, for k = 0,1 and i.j = 0 ,1,...,N-1.
2. Calculate the marginal return, A ^, which is the reduction in the total final error 

given by Eq. (12) if 1 bit is assigned to the coefficient e^j, for k=0,1, and 
i,j—1,...,N.

3. Allocate one bit to the coefficient efcj which has the largest marginal return
Arij- ■

-  8 -



4. If the total number of assigned bits is equal to or greater than the total number 
of bits, stop; otherwise go to Step 2 to decide for the next bit.

If ties happen in step 3, the same procedure is repeated among the coefficients which 
have the same value for Ayj by assigning another bit to these coefficients and looking for 
the winner.

The above procedure for bit allocation can be applied to find the bit map that 
minimize the total final reconstruction error for the multistage transform coding if the 
multiclass adaptive method is not used for each stage. In deriving the estimated total final 
error given in Eq. (12), we assume that the coefficient e^j is the resulting error of quan
tizing the coefficient e^-i^j. On the other hand, if the multiclass adaptive method is used, 
the class map of each stage is possibly different, so the above assumption does not hold.

For multiclasses, we introduce another method of optimization to minimize the 
total error. In this method, we first derive a relation between the total average rate, R, and 
the average rate for each stage, R*, k = 0,...,n-l. When the average rate of each stage is 
known, the bit allocation procedure for each stage can be done independently. It is also 
possible to use different number of classes for the following stages since the spectra in 
those stages are more flat than the first stage.

First we will find the relation between R and R*, k = 0,...,n-l for n = 2 (two 
stages). Then, we will show that for n > 3 the procedure is straightforward. For n = 2, the 
problem is

*

minimize
*

subject to

The variances crfij depend on the bits boij, allocated to the first stage, which is not 
known in advance. In order to get around this problem, we will first assume that the vari
ances of the coefficients of both stages, Ooij and ofy, for i,j = 1,...,N-1, are available. 
Based on this, we will derive the optimal bit rates for the two stages. Once the rates are 
known, the new values of o 2y will be computed. The process is iterated with these new 
values until the optimum point is reached. In practice, we found that two or three itera
tions are sufficient.

- 9 -

_1_
N2

N-l N-l
X Xi=0 j=0 <*3y fo(boij) +  Oiij [f i (b iij) -  1 ]

(15)
i N-l N-lxN2 A  jS  ̂boy + biijj —R.
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In the analysis, we will assume that boij and biy are continuous. Since we are 
looking for an analytical expression for the rates Ro and R], the error functions 
f0(.) and fi(.) must be known. The piecewise functions given in Table (1) can be used for 
marginal analysis bit allocation, but it is not easy to use them in the above minimization 
problem. Instead, we try to approximate these functions with another function in the form 
of fk(bkij) = 2-Bkbkij , for k = 0,1. We choose the single parameter Bj. such that the pro
posed function is the closest approximation to the corresponding piecewise model in the 
least mean square sense, or any other kind of measure. Figs. 2 and 3 show the approxima
tion for particular B^, which is used in this paper. It is observed that the fit is very dose. 
The problem can now be restated in the following form:

j N -l N -l 
minimize —y  £  X  N i=o j=o

i N -l N -l r 'j
subject to —— X  X  b°y + blii = R- N i=o j=o  ̂ J

<*0ij 2-Bobojj +  ° l i j l 2-B>b> «_lj
(16)

and

We use the Lagrange multiplier method [15] for this optimization problem. Thus,

3boij
i N -l N -l

- t X XN2 to t Ooij 2 B°boij + o 2ij [ 2 B‘blij- l ]

-  X
i N -l N -l r i

=  0

dbiij
i N -l N -l

- t X XN2 t  £ >
G2 . 2  Boboij +  0 2 . J 2 -B ,blij _  J  j

-  X i N -l N -l r ^
R-^-X X boij+biijlN j=o j=o t. J

= 0.

Eqs. (17) and (18) lead to the following equations, respectively;

(17)

(18)

X = A  o&; B0 2' B0b0ij (19)
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and
X = A Ciij B! 2_B‘blij ,

where A is some constant.
Using Eqs. (19) and (20), we write

Bj 1bo'j= fiTb!*i+ B̂
By taking the summation of both sides of Eq. (21), and defining

r

log2 oij
Olij

b 4

+ log2
f  NB0
Bj

1 N-l N-l
S0 = 3 - I  Z loS2O0ijN i=o j=o

and
1 N-l N-l ,

Si = —~ X  Z  *°g2° liji=0 j=0N2

we obtain

Bi 1R o **2- Ri + 4 -Do iio So — Si + log2 Bo
Bi m

where
i N-l N-l 

= Z  boiji=0 j=0
and

Ri = ^ - I  I b i s .

(20)

(21)

(22)

(23)

(24)

(25)

(26)i N-l N-l
- T  2  ZN2 A  %

Applying the constraint given in Eq. (16), which is equivalent to Ro + Ri = R, to 
Eq. (24), the average rate for the first stage becomes

B i 1Ro=- - R-+Bo + B l B q +  Bj So -  Si + log2
Bo_
Bi (27)

Then, Ri is found as R -  Ro.
Extending the above procedure to the case n = 3 is easy. Suppose we can
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approximate the error function model of the third stage by f2 (b2ij) = 2-B2b2ij, for some B2 
(see Sec. 5.) Then, similar to Eq. (24), the following equation is derived:

®2 1 r ^BiSi “ S2 + 10g2 b2 (28)

where
1 N-1N-1

*2 = 733- X X baa-N j=0 j=0 (29)

and
1 n- i n -1

S2= — 2 X X log2°2ijNZ i=0 j=0 (30)

Solving Eqs. (24) and (28) with the constraint Ro + Ri + R2 = R results in the following relations for Rq and R j:

and

Ro =

Ri =

B1B2
B0B1 + B0B2 + B1B2

Bi
BoBj + B0B2 + B1B2

b 2
B0B1 + B0B2 + B1B2

B0B2
BoBi + B0B2 + B1B2

Bo + B2
BoBj + B0B2 + B1B2

b 2
BqBi + B0B2 + B1B2

Bi
BoBj + B0B2 + B1B2

R + B-i +  B 2 So + log2 Be
Bi

Bji0g2-5---- S2B2
Si

R - B2
SoB0B1 + B0B2 + B1B2 

B0Si -  — — — ------ —  S21 B0B1 +B oB2 + Bi B2 2
, B0 l0g2BT 
1 B i log2BT

(31)

(32)

Again, R2 is found as R -  Rq -  R i.The above procedure can be generalized to any number of stages. Once the
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average bit rates for each stage are known, the bit allocation for each stage can be done 
independently using the marginal analysis for any desired number of classes.

4. EXPERIMENTAL RESULTS

The multistage transform coding technique discussed above was applied to an 
image of size 256 x 256 shown in Fig. 4 (a) and another image of size 128 x 128 which is 
the head and shoulder part of the previous image. Both images were quantized with 8 bits 
(256 levels.) We will refer to these two images as "girl256" and "girl 128", respectively. 
The number of stages used were either 2 or 3. The two-dimensional DCT was used as the 
unitary transform. Coding was carried out with a block size of 16x16. We compared mul
tistage transform coding with one stage coding. The adaptive coding technique of Chen 
and Smith [Chen ] with 4 classes was used for each stage. The total rates used were 1.0, 
0.5 and 0.25 bits per pixel (bpp).

For the first stage, the optimum mean square error quantizer for Laplacian distri
bution was used. The DC coefficient in the first stage was quantized by the optimum 
mean square error quantizer for Gaussian distribution. The optimum mean square quan
tizer for Gaussian distribution was also used for the second stage. This choice was based 
on the statistical tests explained in Sec. 3.

For two stages with one class (without using Chen and Smith adaptive method), 
the total number of bits were allocated according to the marginal analysis method dis
cussed in Sec. 3 to minimize the total final error function given by Eq. (12). For this case, 
two scheme are possible. Either the variances of the second stage, ofy, can be estimated 
by the known variances of the first stage by Oiij = Ooij fo(boijX or we can start from ini
tial rates for the first and second stages and then iterate once the variances of the second 
stage are known. Our experiments showed that the second scheme is not as efficient as 
the first scheme. In addition, the first scheme is much better in terms of computational 
cost. Therefore, we chose the first scheme.

For the two-stage multiclass adaptive method, we used Eq. (27) to allocate the 
total bits between two stages. In this case, we started with the initial rates Ro = R and 
Ri = 0. This choice was based on our observation that, for optimum rate division, Ro is 
always greater than R j. In most cases two iterations were sufficient to get the optimum 
rates Ro and R i.
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difference images for the one stage coding. In addition, the differences on and around the 
edges are less for the multistage coding case.

In the two-stage experiments, we tested all possible combinations of Ro and Rj 
for rates equal to 0.5 and 0.25 bits per pixel, and some of the results are shown in Figs. 6. 
It is clear that the optimum points are very close to what we found by either minimizing 
Eq. (12) directly for the one-class case or dividing the total rate by Eq. (27) for the multi
class case.

We also tested three stages, at the total rate 0.5 bpp and 4 classes, with the image 
shown in Fig. 4 (a). The results showed 13.88% improvement over one stage. This is 
5.33% more than the improvement with two stages, and the same type of improvement is 
expected for other cases.

5. DISCUSSION

As mentioned in Sec. 4, a large number, but not all, of coefficients in the second 
stage have a pdf close to Gaussian. Since one kind of pdf is usually assumed during 
quantization, we chose the Gaussian pdf in Secs. 3 and 4. However, more than one choice 
of pdf is possible, but it increases the overhead information that should be known during 
decoding. Thus, for one kind of pdf assumption, we have the error of mismatch between 
the assumed pdf and the real pdf for some coefficients. This error was experimentally stu
died by Mauersberger [17]. The reported results show that the error resulting from using 
Gaussian quantizer for a random variable with Laplacian pdf is more than the error 
resulting from using Laplacian quantizer for a random variable with Gaussian pdf 
(assuming the same variance and number of levels.) In practice, the total error depends 
on the number of mismatch cases. For the third stage in multistage image transform cod
ing, our statistical tests showed that the coefficients have a mixture of uniform, Gaussian 
and Laplacian pdf. Again, since more than half of them had Gaussian pdf, we used the 
Gaussian quantizer. We are investigating further how the mismatch error can be minim
ized for multistage image transform coding.

It must be mentioned that the multistage procedure discussed in this paper will 
slightly increase the overhead information. The main part of overhead information is the 
bit map. For the optimal multistage image transform coding, we assume that the total 
number of bits (or the corresponding total average rate) is fixed. When the total rate is
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divided between stages, more number of pixels per stage assume zero bits. Thus, the 
overhead information will not be doubled. Usually, about 0.03 bpp is needed in one-stage 
coding for overhead information, including error protection bits, for the 0.5 bpp case with 
an image of size 256 x 256 [3]. For estimating the net improvement, we assumed 0.015 
bpp for extra overhead in two-stage coding. When we increased the bit rate by this 
amount in one-stage coding, we found that the net improvement was about 1.5% less 
than what is given in Table (2).

With sequential video images, it may be possible to use the same variances in 
corresponding blocks of successive images to reduce the computation in the iterative pro- 
cedure of finding the bit rates Ro, R], • in the multiclass problem.

6. CONCLUSIONS

Both theoretical and, experimental results indicate that optimal adaptive multis
tage image transform coding is quite effective in reducing mean square reconstruction 
error over what is possible with one stage transform coding. Optimality is achieved by 
minimization of the total final error expression using marginal analysis. This minimiza
tion determines how to allocate bits to the coefficients in each stage. After the first stage, 
the pdf of the coefficients appear to be either Gaussian or uniform. Reconstruction of the 
quantized image is obtained by adding together the quantized transform domain 
coefficients from all the stages and inverse transforming. Further improvements in the 
techniques described are expected to reduce reconstruction error further.

In this paper, we considered MSE as the performance criterion. However, the 
difference images shown in Fig. 5 indicate that the reconstruction errors are more noise
like in multistage coding than in one-stage coding, with especially reduced errors at the 
edges. This is believed to be the reason why the reconstructed images with the multistage 
method are subjectively much more preferable than the reconstructed images with the 
one-stage method at the same bit rate.

Although the proposed method was tested for DCT and monochrome images, it 
can be easily applied to other transforms and color images.
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APPENDIX

The error variances in the (k+ l)th stage can be computed in terms of the vari
ances of the input coefficients from the kth stage as follows:

Ôc+l)ij = E |c(k+l)ij j = E(eiuj — ©k.ij)
2= E(ekjj) 4* E(ekij) ~ 2E(ckjjCiyj)

= E(^kij)“”E(^kij^kij)
=  O k ij- [l-fkfbkij^Clgij

=  ofefk(bkij) (A .1)
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Fig. 1. Block diagram of multistage image transform coding.
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Table 1. The error model for Gaussian and Laplacian distribution of the form 
fk(bkij) = A2-Bbkij given in Ref. [9].

D istr ib u tio n 0<bkii<2.32 2.32<bkii<5.17 5:17<bkii^9
A B A B A B

Gaussian 1 1.5047 1.5253 1.8274 2.2573 1.9626
Laplacian 1 1.1711 2.0851 1.7645 3.6308 1.9572
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Fig. 2. Approximation of the error model for the Gaussian pdf 
given in Table 1 with Bj. = 1.52 in the form of
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Fig. 3. Approximation of the error model for the Laplacian pdf 
given in Table 1 with B* = 1.23 in the form of 

fk(bkij) = 2 'B* ^ .



- 24 -

Table 2. Simulation results for multistage transform coding.

I m a g e s
Rates 1. DO 0 .5 0 0 .2 5

# o f c la sses 1 4 1 4 1 4

" g i r l l  2 8 "

MSE fo r 1 stage 31 .83 25 .88 67 .76 53 .35 126.3 98 .82
NMSE(% ) fo r 1 

s ta g e
0 .450 0 .366 0 .959 0 .755 1 .787 1 .398

MSE for 2 
s ta g e s

30 .10 24 .23 62 .89 47 .78 116.9 88.31

NMSE(% ) fo r 2 
s ta g e s

0 .426 0 .343 0 .890 0 .676 1.654 1 .250

Im p rovem en t in 
MSE (%)

5.44 5 .99 7 .19 10.44 7 .44 10.64

Im p rovem en t in 
dB

0 .243 0 286 0 .324 0 .479 0 .336 0 .488

R o 0 .707 0 .827 0 .344 0 .338 0 .176 0 .052
R i 0 .293 0 .173 0 .156 0 .162 0 .074 0 .198

" g ir l2 5 6 "

MSE for 1 stage 30 .78 18.16 62 .78 36 .04 116.9 70 .29
NMSE(% ) fo r 1 

s ta g e
0 .426 0.251 0 .868 0 .498 1.616 0 .972

MSE for 2 
s ta g e s

27 .66 18.12 55 .35 32 .96 99 .77 63 .60

NMSE(% ) for 2  
s ta g e s

0 .382 0.251 0 .765 0 .456 1 .379 0 .879

Im p rovem en t in 
MSE (%)

10.14 0.22 11.83 8 .5 5 14.65 9 .52

Im p rovem en t in 
dB

0.464 0 .010 0 .547 0 .388 0 .688 0 .434

R o 0 .695 0 .86 0 .352 0.34 0 .176 0 .148
R t 0 .305 0.14 0 .148 0 .16 0 .074 0 .102
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Fig. 4. (a) Original image of "girl256". (b) Reconstructed image for one stage coding with rate 0.5 bpp and 1 class, (c) Reconstructed image for two stage coding with rate 0.5 bpp and 1 class, (d) Reconstructed image for one stage coding with rate 0.5 bpp and 4 classes, (e) Reconstructed image for two stage coding with rate 0.5 bpp and 4 classes, (f) Reconstructed image for one stage coding with rate 0.25 bpp and 4 classes.
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(g)
Fig. 4. (con’t) (g) Reconstructed image for two stage coding with rate 0.25 bpp and 4 classes.
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(a) W)

( 0  ( f )
Fig. 5. The difference images between: (a) Fig. 4 (a) and Fig. 4 (b); (b) Fig. 4 (a) and Fig. 
4 (c); (c) Fig. 4 (a) and Fig. 4 (d); (d) Fig. 4 (a) and Fig. 4 (e); (e) Fig. 4 (a) and Fig. 4 (f); 
(f) Fig. 4 (a) and Fig. 4 (g).
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Fig. 6. Experimental results with two stage coding for all possible values for Ro and Rj (R = Ro + R i): (a) with "girl256", rate 0.5 bpp and 1 class; (b) with "girl256", rate 0.25 bpp and 1 class; (c) with "girl 128", rate 1.0 bpp and 4 classes.
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