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ABSTRACT

An optimal method is developed for adaptive multistage image transform coding.
The optimality is in the sense of minimizing the mean square reconstruction error with a
‘given total number of bits and a given number of stagés. The statistics of the coefficients
in different stages and marginal analysis are used to optimize the division of the total
number of bits among the stages. Experimental results indicate thai, with two stages,
more than 14% improvement for one class and more than 10% improvement for
multiclasses is achieved in mean squarc reconstruction error over one stage image
transform coding.  Higher improvcmcnts are achieved with three stages. The
reconstructed images with multistage coding are subjectively much more preferable than

the reconstructed images with one-stage coding.



1. INTRODUCTION

Transform coding is widely used in coding of images since it gives a very high
compression ratio. The effectiveness of transform coding has a lot to do with the |
properties of decorrelating the pixel values and packing the energy of the signal in a few
- transform coefficients. Based on these two criteria, the Karhunen-Loch transform (KLT)

is the optimal transform for image coding [1]. However, the KLT is signal dependent and
djfﬁcultbto comp‘utc'in real time. The discreté cosine transform (DCT) is Among the best
fast transforms to approximate the KLT in image coding [2). One technique for
improving the refﬁciency of image coding is to apply adaptivity to the coding proccdure
by classifying image blocks in a number of classes. An efficient adaptive algorithm for
image coding was proposed by Chen and Smith [3]. | :

In this paper, we discuss optimization techniques of transform image coding in
the form of a multistage procedure in which the error signal resulting from the
quantization of the previous stage is input to the following stage. Multistage transform

“coding thus involves transform domain quantization in a number of stages such that each
stage attempts to correct the errors in the previous stage. The technigue to be discussed is
different from progresbsive image coding even though there is some degreé of Sitnilarity.'

- In progressive image coding, first a low-grade version of the image is sent, and then the
image is refined by sending more information in the following stages. A number of
different techniques for progressive image coding in both spatial and transform domains
have been discussed by Tzou ‘7[4], Wéng and Goldberg [5,6].v In this te‘c_hniq\je, the
coefficients of each stage are quantized by a predetermined average rate and the number
of stages are increasedkuhtil satisfactory image reconstruction is obtained at the receiver.
So far, no adaptive method has been reported in order to adjust the number of bits for
each stage based on the statistics of the coefficients of different stages and for a total

: glvcn bit rate. .

The method to be discussed in this paper involves optimal adaptive multistage
transform coding with a fixed total number of bitsv per pixel and a fixed number of stages.
It is optimal in the sense that it minimizes the total final reconstruction error with the
given total number of bits and stages. The statistics of the coefficients in different stages
are used to optimikze the division of the total number of bits among different stages. The
‘adaptivity introduced does not significantly add to the complexity of the coding system
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since it utilizes the information that is necessary for any kind of multistage transform
coding. Simulation  results have shown a considerable percentage decrease in
reconstruction error despite “the simplicity of the coding scheme. In addition, the
remaining error image is more noise-like than the error image in one-stage coding,
especially w1tl; reduced error around the edges. This is believed to be thé' main reason
' why multistage transform coding gives subjectively much more pleasing results than
one-stage coding at the same bit rate. ,

There are a number of subjective and objective error measures to quantify the
quality of image reconstruction, but the mean square error (MSE) is the most widely
used. The MSE is also the measure in this paper to be used to compare experimental
results. However, the experimehtal results will also be diScusscd in terms of subjective
performance.

The paper consists of 6 sections. In Sec. 2, the new proposed method is
introduced, and a mathematical expression is derived for the total final reconstruction
error which is to b.ebn'ﬁnirnvizcd during bit allocation and coding. This expression is based
‘on the mean square error. The optimal bit allocation for different stages to minimize the
quantization error is explained in Sec. 3 by using the statistics of the coefficients in
different stages. In Sec. 4, the experimental results with the discrete cosine transform
(DCT) are discussed with a number 'of images, and rates, as well as with one class and
multiclass adaptive procedures. Sec. 5 is some discussion of problerhs facing the

implementation of multistage transform coding. Sec. 6 is conclusions.
2. OPTIMAL ADAPTIVE MULTISTAGE IMAGE TRANSFORM CODING

The block diagram for adaptive multistage transform coding is shown in Fig. 1.
The transform coefficients of the ﬁrst stage are assumed to have little correlation so that
~ they are quantized and coded independently bwrith an optimal bit map for the first stage—as |
explained below. The two dimensional error signal resulting from the first stage
_quantization is fed to the second stage and subsequently quantized and coded with
another optimal bit map. This procedure is continued for the given total number of
stages. o
- Next, we derive a mathematical expression for the total final reconstruction error

- based on the mean square error (MSE) measure. We assume that unitary transforms are.
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used for transfbrm coding. Then, the variance of the reconstruction error is equal to that
introduced during the quantization of coefficients [7].
Referring to Fig. 1, the following notations are defined:

n : Thenumber of stages.

Ey :  The coefficient matrix of size NxN as input to stage k+1,k=0,1,...,n-1. -

I:Zk :  The matrix of size NxN for the quantized coefficients as output of stage
k+1,k=0,1,..,n-1 -

exj:  The ijth coefficient of the matrix Ey.

& :  Theijth coefficient of the matrix Ej .

byij The number of bits used to quantize €y;;. |

fi(by;;) : The mean square distortion of the by;;-bit quantizer for unity variance

input (see Sec. 3).

Oiij: The variance of ey;;.
~2 - A
Okij: The variance of ey;;.

There are different kinds of quantizers such as optimum mean square (Lloyd-
Max) and uniform optimal quantizer [8]. The optimum mean square quantizer is used in
this paper. Suppose €y;; and Ekij are the input and the output of the optimum mean square -

quantizer. They have the following properties [9]:

E(exij) = E(€i)) = Efewj — €ij) = E(egnyij) =0 (1)
A a2 - A .

E(ewijexij) =E(€y;) = E [Ckij (Ckij_ekij)] =0 e))

ka_; [1 fk(bm)] | 3)

The following equation can be derived from Egs. (1),(2) and (3):

. L2 A2 »
E (eyij€xij) = E (€xyj) = Oy = [1»-fk(bksj)]0§;j fork=1,2,..,n~1. (3)
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Referring to Fig. 1, the_ﬁnal reconstructed image is formed by taking the inverse
transform of (ﬁo + ﬁl + -0+ ﬁn_l). Therefore the mean square error (MSE) is given by

, ] N-1N-1 o X 2
'MSE=FZ p) E[COij‘(COij"'elij"' '*'e(n—l)ij)'} : ©)
i=0 70

For simplicity, we begin with the cases of n =2 and n= 3, and then extend the

results to any value of n. For n = 2, the expectation in Eq. (5) can be written as

2 2
E [eou = (eg;; + Clij)] =E [(emj - €0ij) — elij]
=E [(eOij - 30ij)2] -E [élij(elij - élij)} - E(egji€ri). (6)
The first expectation on the right side of Eq. (6) is the expectation of the squared error in |
the first stage as shown in Fig. 1. By using Eqgs. (1), (2), (3), and the fact that the average

value of the coefficients in the first stage, excluding the DC coefficient, is zero, it can be

written as

2 . ’ 2
E(e3;;) + E(80i) — 2 E(eq;; €0) = E(ed;j) — E€ij)

= 00 fo(bo;j) 7

The second expectation on thé right side of Eq. (6) is zero according to Eq. (2),
and the third expectation on the right side of Eq. (6) is equal to c%ij [l-fl (bl;j)]
according to Eq. (4). Therefore the MSE for the case n =2 is given by

1 NI N’;l P 2 -
MSE = F Z Z G0 fO(bOij) + O7j [fl (blij) - l] . )]
i=0 =0 :

Forn=3, the expectation in Eq. (5) is written as
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Y Y
E [COij‘(eOij + e+ Czij)] =E [(emj — €0jj — C135) — ezij]
. . .2 . . |
=E(eq;j — &0 — €155)* + E [Czi_j = 2(eqij — €0ij)ezij + 2(€155€25 )-] R )

The first cxpectétion on the right side of Eq. (9) is equal to the left side of Eq. (6)', and its
value is glven by the cxpressxon inside the bracket in Eq ®). Knowmg that
€0ij eo,J = 1 and €15 = €25 + ehj, the second expectation on the right side of Eq. (9) is
found to be

E(CZIJ chxjehj + 2311_;321_1)
= E | €255 — 2(ey;j + €155)e2i5 + 2815562
= E(e2;j — 2ez;5€2;)) = E | €2;(€2;5 — €23) | — E(€2ij€235) (10)

= 0%; [fz(bzij)-'l]

where Egs. (2) and (4) were used in the last step.
Therefore the MSE in the case of n= 3 is givenas .-

1 N- . : '
MSE=—-3 % |:°%ij fo(boi) + 63 [fl (by) = 1]
N“ o 0 ! :

z

+ of; [f2(b2ij) - 1]] an

Eq. (11) can be easily extended to arbiu-éry n, and the result is

1 N-IN-1
MSE= N2 z ) 01) fO(bOU) + 0'11] [fl (bllj) } PN
N® =0 F0 |

+ c%n-l)ij‘ [fn-l(b(n-l)ij)— 1]} 12
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Eq. (12) is the objective function that is to be minimized in order to achieve the
minimum mean square error. The procedure of bit allocation in order to minimize this

function is given in the next section.
3. ERROR i\'lODELS AND OPTIMAL BIT ALLOCATION

In general, an analytic expression for the quantizer error is desirable. Usually,

such an expression is given in terms of thé variance of the input sequence to the quan- |
| tizer, the number of bits (or the number of levels) used for quantization, and some param-

eters that depend on the distribution of the input. A closed form expression for the MSE |
is very difficult to derive, and most reported results have been obtained either by numeri-
cal or approximate means. In the case of the optimum mean square (Lloyd-Max) quan-
tizer, the MSE is usually expressed in the form of o?dj fi (by;;) where fi (by;;) is a function
of by;; and the probability density function (pdf) of the input signal to the quantizer. One

such expression for fy (by;;) for Gaussian distribution is given by [8]

1.32 (2_1'741}““) for bkij around 2,

fi (byi) = 1
k(bi;) 2.21 271985y for by around 5.17. @3
Another approximate model in the case of Gaussian distribution is given by [10]
5=157by for by;; S'2.32
fic (biig) = 2by o (14)
! 26982 forby; 2232

%" +0.8532)°

Some other error functions have been reported for both Gaussian and Laplacian distribu-
tions in Ref. [9] and is given in Table 1.

All of the above models are either for the Gaussian or the Laplacian distribution.
In practice, the input to the qﬁaniizer usually has neither Gaussian nor Laplacian di.étribu-

tion exactly but some distribution close to one of them.
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Recently it was reported that most of AC c0efﬁcients for the first stage of the -
DCT transform have Laplacian pdf {1 1. It was also mentioned that the DC coefficients
have a pdf close to Gaussian. We performed the Kolmogorov-Srmrnov(K -S) [12] test for
the. coefﬁ01ents of the second stage. The results indicate that the 8-bit quantlzatlon error
for the DC coefﬁc,lents has a pdf close to the umform dlStﬂbuthl'l. All the AC COCfﬁClCl’ltSh

which have been allocated 2 or more bits (4 or more quantization levels) have a pdf close -

to Gaus51a.n and most coefficients which have been allocated 1 b1t (2 quanuzatton levels)
have a pdf close to Gaussian as well. Of course, those coefficients which have not been_
allocated any bit at the first stage have a Laplacmn pdf in most cases. Overall, a large
number of coefﬁclents which will receive non zero bits in the second stage have a Gaus-
sian pdf. Therefore in our slmulanons we assume Gaussian pdf for the. second stage and
use the error model given in Table L. ' _ |
Having the error models for each‘stage,‘ the total final error given in Eq. (12) can
- be rninimized through an optimal bit allocation procedure. Coefficients in each stage usu-
ally have different variances, and their varianCes are also different from stage to stage.

o Therefore, different number of bits should be assigned to each coefﬁment The major

constraint that should be satisfied is that the total number of bits is fixed. There are a
number of methods for bit allocation, and they are not necessanly optimal in minimizing -
the MSE. Some methods assume the number of bits (or the number of levels) to be a con-
tinuous variahle in order to get an optimal and closed form expression, but the result has
to be rounded to the nearest integer and is no longer opnmal ‘The procedure for obtammg .
optimal non-mteger number of bits was discussed in Ref. [13]. In this paper, we use mar-
~ ginal analysis described in Ref. [14] to .vdevelop an optimal method with integer number
of bits. The piecewise error models given'in Table 1 are strictly convex function and
' guarantee that the global minimum is achieved. Here, we give t‘he necessary steps for bit
allocation with 2 stages where the generahzauon for more stages bemg stratghtforward
The steps involved in bit allocation accordmg to margmal analysxs are as follows
1. SetbklJ =0, fork=0,1andi,j=0,1,..
2. Calculate the marginal return, Ak,J, wh1ch is the reductlon in the total final error |
given by Eq. (12) if 1 b1t is asslgned to the coefficient ek,J, for k=0,1, and |
i,j=1,...N.
3. Allocate one blt to the coefficient €ij which has the . largest marginal return
By |
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4. If the total number of assigned bits is equal to or greater than the total number
of bits, stop; otherwise go to Step 2 to decide for the next bit.

If ties happen in step 3, the same procedure is répeated among the coefficients which
have the same value for Ay;; by assigning anothér vbit to these coefficients and looking for
the winner. i

The above procedure for bit allocation can be applied to find the bit map that
minimize the total final reconstruction error for the multistage transform éoding if the
~multiclass adaptive method is not used for each 's'tage.‘In deriving the estimated total final
error given in Eq. (12), we assume that the coefficient ey;; is the resulting error of quan-
tizing the coefficient €g_1y;. On the other hand, if the multiclass adaptive method is used,
the class map of each stage is possibiy different, sovvthe above assumption does not hold.

For multiclasses, we introduce another method of optimization to minimize the
total error. In this method, we first derive a relation between the total average rate, R, and
the average rate for each stage, Ry, k=0,...,n~1. When the average rate of each stage is
known, the bit allocation procedure for each stage can be done independently. It is also |
possible to use different number of classes for the folldwing stages since the spectra in
those stages are more flat than the first stége.

First we will find the relation between R and Ry, k=0,...,n-1 for n=2 (two

stages). Then, we will show that for n 2 3 the procedure is straightforward. Forn= 2, the

problem is

L 1 N-1N-1 [ » 2 v

minimize -ﬁ-z—g‘,o EO LC50ij fo(boyj) + Of;j [fl(blij)‘l]

1=
) | (15)

' 1 N-1N-1 ¢ '

subjectto —3 ¥ bOij"“b]ij]:Rf

N iz =0 '

The variances c%;j depend on the bits by;;, allocated to the first stage, which is not
known in advance. In order to get around this problem, we will first assume that the vari-
ances of the coefficients of both stages, o%ij and o%ij, fori,j=1,..,N~1, are available.
Based on this, we will derive the optimal bit rates for the two stages. Once the rates are
known, the new values of o%ij will be computéd._ The process is iterated with these new
values until the optimum point is reached. In practiéc, we found that two or three itera-

tions are sufficient.
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In the analysis, we will assume that boi; and by;; are continuous. Since we are

looking for an analytical expression for the rates Ry and R;, the error functions

fo(.) and f; (.) must be known. The piecewise functions given in Table (1) can be used for : _

marginal analysis bit allocation, but it is not easy to use them in the above minimization

problem. Instead, we try to approximate these functions with another function in the form _

of fi(byj) = 2 Bibi ,bfor_k =0,1. We choose the single parameter By such that the pro

posed function is the closest approximation to the corresponding piecewise model in the

‘least mean square sense, or any other kind of measure. Figs. 2 and 3 show the approxima- -

tion for particular By, which is used in this paper. It is observed that the fit is very close.

The problem can now be restated in the following form:
N-1N-1 [

2 &
i=0 =0 |

1 N-IN-1 ¢
subject to — Y Y |boy+ blij] =R.
N® =0 j=0 v

minimize L y 3 o%ij 2~ Bobuj G%ij [Z-B,blij _ IJ]

(16)

We use the Lagrange multiplier method [15] for this optimization problem. Thus,

a 1 Nil Nil
abou N2 i=0 FO

1 N-1 N-1
- A R"FEO zo [bOij+bllj} =0
and
1 N1 N-1
1 1=

Egs. (17) and (18) lead to the following equations, respectively;

A=A o%ij Bo 2..B°b°ij

(17

(18)

19)
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and
A=A o} B, 2750, 20)

where A is some constant.
Using Eqgs. (19) and (20), we write

_Bi 1 ofi |  [Bo
_— —_— —11. 21

By taking 'the summation of both sides of Eq. (21), and defining

N-1 N-1 , , .
z Y logzﬁol_] " 22)
i=0 =0 . i
énd
1 N-1 N-1 ,
Z Z logZGIU (23)
=0 =0 v
we obtain
DR+ So—-S; +1o Do | 24)
—Bo 1 B, 0~ 91 g2 B, |
where
1 N-1 N-1
Ro=—r ¥ I by 25
N® 0 0
and
1 N-1 N-1
Ri=-— % X by. (26)
N° -0 0

Applying the constraint given in Eq. (16), which is equivalent to Ry + R; =R, to
Eq. (24), the average rate for the first stage becomes

B, 1 | Bo
Ry = — R+ So - S; +log, B 27)
1

B0+B1 BO +B1

‘Then, R, is found as R — Ry,
Extending the above procedure to the case n=3 is easy. Suppose we can
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approximate the error function model of the third stage by fz(bZij) = 2‘?”’"" , for some B,
(see Sec. 5.) Then, similar to Eq. (24), the following equation is derived:

R—-I-33R + L ’s -S +1§ Bl (28)
1-Bl 2 B, 1 2 22 B, ‘ ‘
’ where
Ry = N2 z Z b211 _ v 29)
=0 =0 o :
and
1 N-1 N-1 , ‘
SZ = Z z 10g2021_] ' . (30)
= &0 v v

Solving Egs. (24) and (28) with the constramt Ro + Rl + R2 R results in the following
relauons for Rgand R;: _

o BB, R+ B1+B2 ) Bo
= - : - 0g9 =
Ro BoB; +BgB; + BB, ByB; +ByB; +B;B; 0‘ 528,
+ B1 1 o1 S
0%y — ,
BgB; +ByB;, + B1B2‘ ; g_2 B, 2 7
‘ B o 31)
BoB; +BoB+B,B; = - - 6D
and
BoB B
R1 = 02 R- 2 » .SO
BoB; +ByB, + BB, ByB; + ByB, + BB,
By + B, o By
+ S; - — Sy
Bg¢B; + ByB; + BB,y -~ BgBj +ByB; + BB,
B, ) By
" BoB; +BeB, + BB, %82p, |
log, o (32)

B()B] + BOB2 +B;B, B,

Agam R2 is foundas R-Rgp —R;.
The above procedure can be generahzed to any number of stages. Once the
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~ average bit rates foreach stage are known, the bit allocation for each stage can be done
independently using the marginal analysis for any desired number of classes.

4. EXPERIMENTAL RESULTS

‘The multistage transform coding techuique discussed above Was applied to an

unage of size 256 x 256 shown in Frg 4 (a) and another image of size 128 x 128 Wthh is

- the head and shoulder part of the prevrous image. Both i unages were quanuzed with 8 bits
(256 levels.) We will refer to these two images as "g1r1256" and "g1r1128" respectlvely
The number of stages used were either 2 or 3. The two-dxmensronal DCT was used as the
umtary u'ansforrn Cod.mg was camed out with a block size of 16x16 We compared mul-‘l
tistage transform coding w1th one stage codmg The adaptlve coding techmque of Chen
| and Smith [Chen ] with 4 classes was used for each stage. The total rates used were 1.0,
05 and 0.25 blts per pixel (bpp)..
For the first stage, the optimum mean square error quannzer for Laplacxan distri-
' bution was used The DC coefﬁcrent in the first stage was quantrzed by the optlmum
mean square error quanuzer for Gaussian dlsmbutlon The optrmum mean square quan- :
‘ tizer for Gaussian drsmbutton was also used for the second stage. This choice was based
’ on the statlstlcal tests explamed in Sec. 3.

. For two stages with one class (w1thout using Chen and Srmth adaptlve method),» :
the total number of brts were allocated accordmg to the marginal analysis method dis-
cussed in Sec. 3 to minimize the total ﬁnal error functton glven by Eq. (12). For this case,
two scheme are possrble Either the vanances of the second stage, an can be estimated
by the known variances of the first stage by 01,_, = GO,J fo(bg;;), or we can start from ini-
tial rates for the first and second stages and then iterate once the variances of the second
stage are known. Our experiments showed that the,second scheme is not as efficient as
the first scheme. In addition, the first scheme is much better in terms of computational
cost. Therefore, we chose the first scheme. | :

For the two-stage multiclass adaptlve method we used Eq. (27) to allocate the

v ‘total bits between two stages In this case, we started w1th the mtttal rates Rp = R and
=0. ThlS choice was based on our observatton that, for optimum rate division, Ro is
valways greater than R;. In most cases two 1terat10ns were sufﬁcrent to get the optrmum.j

| . rates Ro and R]



-15.

difference images for the one stage coding. In addition, the diffcrcnces on and around the
edges are less for the multistage coding case.

In the two-stage experiments, we tested all possible combinations of Ry and R;
for rates equal to 0.5 and 0.25 bits per pixel, and some of the results are shown in Figs. 6.
It is clear that the optimum points are very close to what we found by either minimizihg
Eq. (12) directly for the one-class case or dividing the total rate by Eq. (27) for the multi-
class case. ’

We also tested three stages, at the total rate 0.5 bpp and 4 classes, with the image
shown in Fig. 4 (a). The results showed 13.88% ikmprovemcn‘t over one stage. This is
5.33% more than the improvement with two stages, and the same type of improvement is

expected for other cases.
5. DISCUSSION

As mentioned in Sec. 4, a large number, but not all, of coefficients in the second
Stage' have a pdf close to Gaussian. Since one kind of pdf is usually assumed during
quantization, we chose the Gaussian pdf in Secs. 3 and 4. However, more than one choice
of pdf is possible, but it increases the overhead information that should be known during
decoding. Thus, for one kind of pdf assumption, we have the error of mismatch between
the assumed pdf and the real pdf for some coefficients. This error was experimentally stu-
died by Mauersberger [17]. The reported results show that the error resulting from using
Gaussian quantizer for a random variable with Laplacian pdf is more than the error
resulting from using Laplacian quantizer for a random variable with Gaussian pdf
(assuming the same vaﬁancc and number of leVéls.) In practice, the total error depcnds
on the number of mismatch cases. For the third stage in fnultistage image transform cod-
ing, our statistical tests showed that the coefficients have a mikture of uniform, Gaussian
and Laplacian pdf. Again, since more than half of them had Gaussian pdf; we used the'
Gaussian quantizer. We are investigating further how the mismatch error can be minim-
ized for multistage image transform coding.

It must be mentioned that the multistage procedure discussed in this paper will
slightly increasé the overhead infdrmation. The main part of overhead information is the
bit map. Fdr. the optimal multistage image transform coding, we assume that the total
number of bits (or the corresponding total average rate) is fixed. When the total rate is
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divided between stages, more number of pixels per stage assume zero bits. Thus, the
overhead information will not be doubled. Usually, about 0.03 bpp is needed in one-stage
coding for overhead information, including error protection bits, for the 0.5 bpp case with .
an image of size 256 x 256 [3].‘For estimating the net improvement, we assumed 0.015
bpp for extra 6verhead in two—stagé coding. When we increased_ the bit rate by this
amount in one-stage coding, we found that the net impro.vcmént was about 1.5% less
than what is given in Table ). ‘

With sequential video images, it may be pd_ssible to use the same variances in
~ corresponding blocks of successive images to reduce the cbmputaiion in the iterative pro-

cedure of finding the bit rates Rg, Ry, + - - in the multiclass problem.
6. CONCLUSIONS

Both theoretical and experimental results indicate that optimal adaptive multis-
tage im_agc transform coding is quite effective in reducing mean square reconstruction E
error over what is possible with one stage transform coding. Optimality is achieved by
minimization of the total final error expression using marginal analysis. This minirniza-_
tion determines how to aJlocafc bits to the coefficients in each stage. After the first stage,
the pdf of the coefficients appear to be either Gaussian or uniform. Reconstruction of the
quantized image is obtained by adding together the quantized transform domain
coefficients from all the stages and inverse transforming. Further improvements in the
techniques described are expected to reduce reconstruction error further.

In this péper, we considered MSE as the performance criterion. However, the
difference images shown in Fig. 5 indicate that the reconstruction errors are more noise-
like in multistage coding than in one-stage coding, with especially reduced errors at the
edges. This is believed to be the reason why the reconstructed images with the multistage
method are subjectively much more preferable than the reconstructed images with the
one-stage method at the same bit rate. | '

Although the proposed method was tested for DCT and monochrome images, it

can be easily applied to other transforms and color images.
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APPENDIX

The error variances-in the (k + 1)th stage can be computed in terms of the vari-

ances of the i—nput coefficients from the kth stage as follows:
0(21(;1 y =E [C%kmij} = E(?kij - &)
= E(e?) + ECrij) - 2E(enizi)
= E(efy)-Elex;éii)
= o - [l-fk (bkij)] ofij

=512cijfk(bkij) ' ' ; A1)
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Fig. 1. Block diagram of multistage image transform coding.
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Table 1. The error model for Gahssia’t;-and Laplacian distribution of the form

fi (byij) = A2 given in Ref. [9].

Distribution 0<by;<2.32 2.32<b};i<5.17 5.17<b};<9

A B A B A B
Gaussian 1 1.5047{1.5253 1.8274 [2.2573 1.9626
Laplacian 1 2.0851 1.7645 |3.6308 1.9572

1.1711
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solid curve: Table 1 ,
dotted curve: approximated with B=1.52
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Fig. 3. Approximation of the error model for the Laplacian pdf
given in Table 1 with By =1.23in the form of
fi (byij) = 27000
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- Table 2. Simulation results for multistage transform coding.

‘Rates

0.50

# of classes

31.83

25.88

1

4

MSE for 1 te 67.76]53.35] 126.3 | 98.82
NMSE("/(:) for 1 10.450}0.366}0.959}0.755]1.787|1.398
stage | |
MSE for 2 30.10]24.23[62.89]47.78 [ 116.9] 88.31
stages ;
"girl128" NMSE(%) for 2 [0.426]0.343[0.890}0.676|1.654 [ 1.250
stages |
Improvement in| 5.44 | 5.99 | 7.18 110.44| 7.44 110.64
MSE (%) |
Improvement in ]0.243]0.286|0.32410.479/0.33610.488
aB '
RO 0.70710.827]0.34410.33810.176]0.052
R1 0.293[0.17310.156}0.162|0.074]0.198
sy
MSE for 1 stage 30.78118.16162.78136.04]1116.9}70.29
NMSE(%) for 1 [0.426]0.251]0.868 [0.4981.616]0.972
stage |
MSE for 2 27.6618.12|55.35[32.96[99.77 [ 63.60
stages | |
"girl256" NMSE(%) for 2 |0.382]0.251]0.765]0.456 [ 1.379]0.879
‘ stages ,
Improvement inf10.14] 0.22 {11.83] 8.55 | 14.65] 9.52
MSE (%)
Improvement in |0.464]0.01010.547]0.38810.688}0.434
dB
Ro 0.695] 0.86 [0.352] 0.34 [0.176[0.148
R1 0.305} 0.14 {0.148] 0.16 §10.07410.102




Fig. 4. (a) Original image of "gir]256". (b) Reconstructed image for one stage
coding with rate 0.5 bpp and 1 class. (c) Reconstructed image for two stage coding with
rate 0.5 bpp and 1 class. (d) Reconstructed image for one stage coding with rate 0.5 bpp
and 4 classes. (¢) Reconstructed image for two stage coding with rate 0.5 bpp and 4
classes. (f) Reconstructed image for one stage coding with rate 0.25 bpp and 4 classes.
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 Fig. 4. (con’t) (g) Reconstructed image for two stage coding with rate 0.25 bpp and 4
- cClasses. ' ‘
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(@) -
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Fig. 5. The difference images between: (a) Fig. 4 (a) and Fig. 4 (b); (b) Fig. 4 (a) and Fig.
4 (c); (c) Fig. 4 (a) and Fig. 4 (d); (d) Fig. 4 (a) and Fig. 4 (e); (e) Fig. 4 (a) and Fig. 4 ;
(f) Fig. 4 (a) and Fig. 4 (g).
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MSE
(normalized by MSE .of 1 stage coding)
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Fxg 6. Experimental results with two stage coding for all possible values for Ry and R,
(R=Rp +R;): (a) with "girl256", rate 0.5 bpp and 1 class; (b) with "g1r1256" rate 0.25
bpp and 1 class; (c) with "girl128", rate 1.0 bpp and 4 classes.
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