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A b s t r a c t

A central problem in classifier design is the estimation of classification error. The 
difficulty in classifier design arises in situations where the sample distribution is unknown 
and the number o f training samples available is limited. In this paper, We present a new 
approach for solving this problem. In our model, there are two types of classification error: 
approximation and generalization error. The former is due to the imperfect knowledge of 
the underlying sample distribution, while the latter is mainly the result of inaccuracies in 
parameter estimation, which is a consequence of the small number of training samples. We 
therefore propose a criterion for optimal classifier selection, called the Generalized 
Minimum Empirical Criterion (GMEE). The GMEE criterion consists o f two terms, 
corresponding to the estimates of two types of error. The first term is the empirical error, 
which is the classification error observed for the training samples. The second is an 
estimate of the generalization error, which is related to the classifier complexity. In this 
paper we consider the Vapnik-Chervonenkis dimension (VCdim) as a measure of classifier 
complexity. Hence, the classifier which minimizes the criterion is the one with minimal 
error probability. Bayes consistency of the GMEE criterion has been proven.

As an application, the criterion is used to design the optimal neural network 
classifier. A corollary to the Bayes optimality of neural network-based classifiers has been 
proven. Thus, our approach provides a theoretic foundation for the connectionist approach 
to optimal classifier design. Experimental results are given to validate the approach, 
followed by discussions and suggestions for future research.

mailto:lwt@ed.ecn.purdue.edu
mailto:tenorio@ee.ecn.purdue.edu


I

I. Introduction

The pattern classifier is an integral component of any perceptual system. The patterns 

are problem dependent; pixels in image segmentation [I, 2], and acoustic features in 

speech recognition [3] are but two examples. In order to make these systems capable of 

dealing with real world problems, several fundamental issues in classifier design needed to 

be addressed: the underlying distribution of features is, in general, unknown, and the 

number of available training samples is finite [4, 5]. To meet these challenges, a new 

criterion for classifier design is required.

Recently, Lippmann [6] pointed but the importance of matching the complexity of a 

classifier to the training data. A properly matched classifier has the following advantages: 

good generalization ability, thus, preventing over-fitting of training data; computational 

efficiency; and improved memory utilization in the training and recognition stages. The 

idea of matching classifier complexity to sample size stems from the sample-based 

approach to classifier design [7, 8]. From a collection of classifiers T, the approach taken 

in [7] was to maximize the success rate criterion to choose the best classifier; the criterion 

selects a classifier which maximizes the number of correct classifications among the 

training samples. However, since no proper measure of classifier complexity has ever been 

developed, adjusting classifier complexity (or equivalently, adapting the size of O  to the 

sample size can only be done heuristically [7]. Vapnik and Chervonenkis [8,9] proposed 

the growth function as a measure of the separating ability of the decision rules (or 

classifiers). The growth function of a decision rule S being equal to n means no more than 

n samples can be partitioned in an arbitrary way by S. Basically, the concept is 

combinatorial in nature. Vapnik and Chervonenkis showed that the finite valued growth 

function of a decision rule is a sufficient condition for the uniform convergence of the 

empirical events to their probability, which can be interpreted as the convergence of
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empirical error of a classifier to its error probability in the context of pattern recognition 

[9], and used the minimum classification error criterion to choose the best classifier [9]. 

No mention of adapting classifier complexity was made. However, in the finite sample 

case, Vapnik [9] proposed using the "Structured Minimum Empirical Error" to choose the 

best classifier, which was the first criterion developed to constrain the size of the space of 

classifiers, and can be considered a version of the "method of sieves" [10] in classifier 

design. It was not until Devroye [11] clearly suggested how classifier complexity should 

change with sample size such that asymptotic optimal performance of classifiers selected

could be achieved. Furthermore, he investigated the complexity of various classifiers in
’

terms of Vapnik and Chervonenkis dimension [12,13,14,15].

The goal of this paper is to propose a criterion, the Generalized Minimum Empirical 

Criterion (GMEE), as a principle for data dependent classifier design. The criterion can be 

derived from the results of classification error analysis. In our analysis, there are two types 

of classification error: approximation error and generalization error. Depending on the size 

of F, the Bayes classifier may or may not be included in F. Hence, if we pick the classifier 

f* with the smallest error probability from T, it can only be considered an approximation 

to the Bayes classifier. The approximation error is defined as the difference in error 

probability between f* and the Bayes classifier. Generalization error results from 

inaccuracies in the estimates of classifier parameters due to the finite number of training 

samples.

The GMEE criterion consists of two parts, which correspond to the estimates of two 

types of classification error. By considering the two types of classification error as a 

whole, the classifier which minimizes the GMEE criterion is that with minimum 

classification error. Since the second term in the criterion relates the classifier complexity to 

sample size, it can serve as a term controlling the growth in complexity of classifiers
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considered. Hence, the GMEE criterion is a criterion which adapts the size of T to sample 

size. The idea is similar to the "Structured Minimum Empirical Error" criterion [9], and to 

the complexity regulization criterion in [16]. However, the GMEE criterion is more flexible 

and can be used in both the finite and infinite sample cases. The organization of the paper 

is as follows: Section II discusses our model for classifier design, analysis of classification 

error, and the derivation of the GMEE criterion. The consistency property of the GMEE 

criterion has been proven in section in. In section IV, we briefly review neural networks 

and provide results for analyzing the approximation and generalization capability of 

networks as classifiers. In section V, the GMEE criterion is, then, applied to the optimal 

design of neural network-based classifiers. Two examples are given to demonstrate the 

performance of the criterion. A discussion and conclusions follow in section VI.

II. Formulation of Pattern Recognition Problems

We consider the following pattern recognition problem: Given n pairs of training 

samples {(xi,yi), (X2,y2),..., (xn,yn) }, find a classifier f  which best maps feature vectors 

Xjg X to classes yi e Y.That is,

f : X - >  Y (I)

where feature space X has distribution D, and Y= {1,2,..,M} are the allowed classes for 

vectors in X. The empirical error v ( or error frequency) is the ratio of classification errors 

to the total number of samples, i.e.,

n

S  1Iy (̂Xi))
v = i=1—  ------  (2)n

where ^ypty-(Xi)) t^e indicator function, which is one when the classifier decision is 

different from the true class and is zero otherwise. The errorprobability is
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Plextor) s  P(y*f(x)) = - ^ x^dP(x) (3)

For simplicity, we have used P(x) to denote the class mixture distribution. The Bayes error 

is the minimum achievable error probability, i.e.,

and the Bayes classifier is that which attains this bound. As mentioned above, to make full 

use of information, we need to adapt the size of T to the number of samples. To derive

11.1. Classification Error Analysis

There exist various approaches to estimating the expected performance of a 

classifier, notably, the holdout [17], resubstitution [18], and leave-one-out methods [19]. 

An excellent review of work in this area is given in Toussaint [20]. As pointed out in [21], 

the major difficulties in evaluating classifier performance are that the true sample 

distribution is unknown and that the number of available samples is finite.

These two problems cause two different types of classification error, which we 

have labelled the approximation error and the generalization error.

11.1.1. Approximation Error

The absence of the information concerning the underlying sample distribution 

makes it impossible to know the Bayes classifier fBayes, or even whether fBayes is in T. If 

f Bayes & P* then f*, the classifier in T with minimum error, is at best an approximation to 

fBayes, giving rise to an approximation error, hence the name. More formally, the 

approximation error is defined as:

Pflayes(Orror) = inf P/(error) 
f

(4)

such a criterion, we start with an analysis of classification error.
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^ A p p r o x i m a t i o n — Y ( f * ( x ) ^ f g ayes(x ))  = J  l(y * (x )^ /ftayeiS( x ) ) ^ >̂ X  ̂ (5)

Hence, the error probability of f* can be written as

Py (error) — Yfgafts(error) + ^Approximation̂ ^®*") _

Intuitively, it is not surprising that the approximation error decreases as the size of 

T increases. Moreover, if the Bayes classifier is included in T, then the approximation 

error is zero.

Example 1.1: Let samples be drawn from two classes, each represented by a 2 dimensional
. r.

Gaussian distribution having a different covariance matrix. The Bayes classifier will be a 

quadratic polynomial. If T is the collection of linear classifiers, then the approximation 

error will be the value of the integration over the area, with respect to the mixture 

distribution of the two classes, where the output of the linear classifier is not coincident 

with the Bayes classifier. However, if we extend T to quadratic polynomials, the 

approximation error is zero.

II. 1.2. Generalization Error

In practice, there are always a finite number of samples available for training and 

testing. The limited amount of available data causes inaccuracies in estimates of classifier 

parameters. Random variation over the finite training set also degrades the performance of 

the resulting classifier. It has been observed that discrepancies exist between the empirical 

error and the classification error for testing data [14,21, 22], Since there are only a finite 

number of testing samples, the generalization error defined in [14] will be a random 

variable for both training and testing samples. To avoid such complications here, we define 

the generalization error to be the discrepancy between the empiricaferror and the classifier 

error probability.
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Since the empirical error is a random quantity dependent on the finite collection of 

training samples, the generalization error is thus also a random variable dependent on the 

number of samples and on the classifier complexity [22]. In general, complex classifiers 

require more training samples to ensure reliable parameter estimation. One rule of thumb 

is to keep the ratio of classifier parameters to the number of samples constant [14,23].

IL2. Estimates of the Approximation E rror and Generalization E rror

II.2.1. Classifier Complexity
/

In [7], the maximum sample success rate (or minimum empirical error rate) criterion 

was used to select the best-count classifier f from T. The sample success rate for arbitrary 

f  € r  converges to its success probability uniformly as number of samples approaches 

infinity, provided that T consists of the collection of linear, m-linear, or m-convex 

classifiers. (Note: In [7], an m-linear classifier is defined as a classifier with partition 

regions constructed by m half-spaces; more generally, an m-convex classifier has partition 

regions constructed from m measurable convex sets.)

Vapnik and Chervonenkis [8] established the same convergence result over 

extended collections of classifiers, including those with finite growth function. The 

theorem is given in the appendix. For completeness, the definition of the growth function is 

given below:

Let Xr= xi, X2,..., xr be a set of r samples from a distribution D 

in Rn . Each two-class classifier f  e T can be considered as a mapping, assigning x to 

class one if fix) > O , or to class two if f{x) < 0. Let A/ be the subspace induced by f, i.e., 

Af -  [ x e  Rn l/(x) > 0 }. Each f  divides Xr into two subsequences: one consisting of 

samples in A/, the other of samples not in A/. Note also that each classifier f  e T  induces a 

subspace A/ in Rn .
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Let S be the collection of sets A/. The index of the system S with respect to the 

samples xi, X2,..., xr is the number of different subsequences partitioned by Aye S, and 

will be denoted As(xi, X2,..., xr) . The growth function ms(r) is obtained by taking the 

maximum index among all possible samples of length r, Le., 

ms(r) = max A (xi, X2,..., xr). In [12], the growth function of set is used to characterize

the metric entropy property of the space of functions under the name of Vapnik- 

Chervonenkis dimension (VCdim). A set S has VCdim = k if ms(r) = 2k. We will follow 

this line of thinking, and consider the VCdim as characterizing the richness of T, and 

hence, the complexity of a classifier.

II.2.2. Estimate of Approximation E rror

By Theorem I in the appendix, the empirical error can serve as an estimate of the 

error probability of a classifier. We will show how the empirical error can be used as an 

estimate of the approximation error. We first consider the convergence property of the 

minimum empirical error criterion, a result similar to that in [7].

Lemma I: If T is a collection of classifiers with finite VCdim, f * e T  is the minimum 

empirical error classifier, and Pf*(error) is the error probability of f*, then the empirical

error Vf(Q) converges to the minimum error probability inf P/(error). Moreover, P/-'(error)
/ e r

converges to inf P/error) uniformly.
/ e r

Proof: From Theorem I in the appendix, for every /  e-F»

Vf(O) convergences to P/-(error) uniformly. (7)
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Define a function g= -/.

Vf(Q) - inf P/error) 
/ e r

inf Vf (Q) - inf P/error) 
\ f e r  / e r

v /0 )  + P8(Crror)i
T

SUP k ( 0) ■ Pgierrorj
T

Since Vg(Q) converges to P/error) uniformly by (7),'the right hand side of (8) 

converges to zero. This implies

inf
Vf(Q)  convergences to P/error) uniformly. (9)

Moreover,

Py'(error) - J P/error) 
/ e r

< |P/*(error) - v/*(0)| Vf(Q) - inf P/error) 
/ e r

(10)

The first term on the right hand side converges to zero uniformly by (7), and the 

second term converges to zero uniformly by (9). Hence,

P/-'(error) convergences to P/error) uniformly.
/ e r (H)

Q.E.D.

Remark:

From Lemma I, the minimum empirical error is an estimate of the error probability of f*. If

the Bayes classifier in included in T, then P/error) is equal to Ps^e/error). Hence,
........ — ......—................. /6. T . , - :

the error probability of the minimum empirical classifier converges to the Bayes error.
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Recall that the error probability of f* can be decomposed into two parts as in (6). 

The first part, the Bayes error, is a constant once the distribution of the samples is 

specified. The second part, the approximation error, is a variable dependent upon the 

richness of I \  Hence, it is reasonable to consider the empirical error as an estimate of the 

approximation error.

II.2.3. Estimate of the Generalization Error

Next, we consider estimating the generalization error using the "Structured 

Minimum Empirical Error" approach suggested in [9]. By expanding the expression in 

(A. I), Vapnik obtains the following, which holds with probability l-r\,

'p(/„2n + ! ) . / „ !  

v(0)-2 ' M  ----- 9
p(/fl2JL + I)-Zn!  

<P(0)<v(0) + 2"W P 9 ( 12)

After eliminating the constant terms, the following holds with high probability for 

properly chosen X, and sufficiently large sample sizes:

v(6) - < P(S) < v(0) + (13)

By our definition of the generalization error, the second term X y can serve

as an estimate of the generalization error.
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II.3. Generalized Minimum Empirical Error Criterion

From (13), the error probability of a classifier is bounded from above by the sum of 

the estimated approximation and generalization errors. Thus, to minimize the error 

probability, both types of error must be minimized simultaneously. Hence, we define the 

Generahzation Minimum Empirical Error (GMEE) as follows:

where v(0) is the empirical error, which is the estimate of the approximation error, 0 a 

vector of classifier parameters, /3 is the VCdim of the classifier, n is number of the 

samples, and In refers to the natural logarithm. X is a positive number, and can be

generalization error.

As mentioned above, the approximation capability of classifier/is determined by 

the size of Y. In general, the larger the size of T, the smaller the approximation error will 

be. Hence, more complex classifiers reduce the empirical error [24, 25], but increase the 

generalization error, due to the finite number of training samples. The behavior is 

consistent with the GMEE criterion, for which generalization error also increases with 

classifier complexity. Since the error probability of a classifier is bounded from above by 

the sum of two types of classification error, the classifier which minimizes the GMEE 

criterion has minimum error probability.

(14)
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III. Bayes Consistency of the GMEE Criterion

As in estimation theory, the asymptotic optimality of the estimator is of particular 

interest. In classifier design, we are concerned with the Bayes consistency of the criterion.

Definition [Bayes Consistency]: a classifier selection criterion is said to be Baves 

consistent if Pyn(error) -> P^^Cerror), provided that there exists a sequence of

classifiers fn s  r n such that error probability of fn approaches the Bayes error probability 

as n goes to infinity. The sequence of classifiers is said to be Bayes optimal.

Lemma 2. if

Proof: Let g(n) = VCdim(n)
r» 9

VCdim(n) ln
VCdim(n)

n

( 1 5 )I
g(n)

By applying l'Hopital's rule, (15) can be shown to converge to zero if 

converges to 0.

VCdim(n)
n

Q.E.D

Theorem I: The GMEE criterion is Bayes Consistent if nn-> oo

Iim VCdim(n) _ ^
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Proof: As n approaches infinity, let f* be the classifier selected by the GMEE criterion, 

VCdim(T) be the VCdim of f*, and VCdim(n) be the VCdim off.

For a given bounded constant X and for every /> /* ,

Vf(Q) + x y VCdim(T)i
VCdim(T)

Vf (Q) + VCdim(n),
VCdim(n) (16)

/ VCdim(n), ^ VCdim(n)
Since y  f v rriitri(nT _> (I a s ------H----- ' > ® (6y Lemma 2), it follows that

Vf(Q) < Vf (Q)

(17)

Hence, f* is the minimum empirical error classifier. Thus, Vf(Q) converges to

i n f
Pj(Cttot) uniformly by (9). Since the Bayes classifier is included in F by assumption,

/ e r

Vf(Q) converges to Ptfayeir(error) uniformly. Moreover, P^-(error) also converges to 

Psayej(Crror)Uniformlyby(Il).

Q.E.D.

IV. Optimal Neural Network Classifier Design

The neural network, in particular, the Multi-Layer Perceptron (MLP), has emerged 

recently as a solution for difficult perceptual tasks. Successful applications include 

classification of sonar signals [25] and speech recognition [26]. The MLP has been proven 

robust [24], and capable of forming the arbitrary complex decision boundaries necessary 

for pattern recognition [27].
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As mentioned above, Lippmann [6] pointed out the advantages of matching 

classifier complexity to training data. In this section, the GMEE criterion is applied to 

obtain the optimal neural network classifier, where optimality is in the sense of minimum 

error probability.

IV.l. Model of Neural Network Classifiers

A neural network consists of an interconnected group of neurons, each a 

computational unit with several output and input links. Weights associated with each link 

control the strength of the interconnection between neurons. At each neuron, the sum of the 

weighted inputs is passed through a nonlinear function, usually a linear threshold or 

sigmoidal function, giving rise to the output. The mapping relation of the sigmoidal 

function is defined as follows:

sigmoid (x )= -----*-—  n81
1+e- (x-w) KLO)

where x is the input to the neuron, w is the weights associated with the input links, and 

(x-w) refers the inner product of x and w.

A multi-layer neural network can be characterized by five parameters: the 

dimension of the input vector (#d), the number of layers (#1), the number of hidden 

neurons in each hidden layer (#h), the number of classes to be classified (#c), and the 

decision function computed by each neuron. Figure I depicts a homogeneous network, 

which consists of three layers of neurons: the input, hidden, and output layers, with one 

output neuron, d input neurons, and h hidden neurons.

To design a neural network classifier, the samples are fed one at a time into the 

network. The mean square error between the desired outputs and the actual outputs of the
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neural network is minimized by adjusting the weights in the negative gradient direction 

(19).

Awij(t) = - £ ----------+ aA w ij(t-l)  (19)
3wij(t)

where wy is the weight between neuron i and j, e is the learning rate, and a  is the 

momentum constant. When the last sample is reached, the process is repeated, thus 

beginning a new epochs. The training is stopped when the terminal condition is satisfied.

To be able to analyze the optimality of neural network classifiers, we need to 

consider the approximation and generalization capabilities of the network.

IV.2. Analysis of Approximation Capability

The approximation capability of neural networks has been studied from many 

different points of view [28, 29], and [30,28] and [29] regard the networks as a basis in 

function space and justify their use as universal approximating functions, while the latter 

(Cybenko [30]) discusses the approximating capability of neural networks with sigmoidal 

nodes in the context of pattern recognition.
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Theorem 2 (Cybenko) [30]: Let a  be a continuous sigmoidal function. Let f be the 

decision function for any finite measurable partition of /„. For any s  > 0, there is a finite 

sum of the form

■' ■ N ■ :
G(x) = 2 ,  OitfCyJx + 9j) (20)

j=l

and a set D c  In, so that m(D ) > 1-e and

I G(x) - fix) I < e for x e D (21)

Proof: see [30]

Remark:

By Theorem 2, a network with sigmoidal output functions requires only a finite number of 

hidden layer nodes to approximate any decision function to arbitrary accuracy. The 

implication is that the complexity of neural network classifiers is also finite.

IV.3. Analysis of Generalization Capability

To evaluate the generalization capability of a neural network, we need a method to 

compute the VCdim. We have derived two such methods [15], listed below.
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Theorem 3: The VCdim of a homogeneous neural network with d inputs, 

h hidden layer neurons and sigmoidal output functions is

h+l

0 ^ VCdim < X  d = (h +1) * d (22)
i= l

Proof: see [15].

Theorem 4: For an arbitrary network with sigmoidal output functions and connection 

graph G, an upper bound on VCdim is given by

N
0 ^ VCdim( F) ^  21og(eN)£ VCdim(Fi) (23)

i=l .

where F is the function computed by the network representation of G, N is the number of 

nodes in G, and Fi is a function of node i in G.

Proof: see [15].

Remark:

According to the proof given in [15], Theorems 2 and 3 hold for any monotonic decision 

function, including the sigmoidal function.

IV.4. Bayes Optimality of Neural Network CIassiHers

Since networks can approximate any decision function to arbitrary precision, they 

have the potential to approximate the Bayes classifier if the size of the network is large 

enough. On the other hand, large networks increase the VCdim, thus increasing the 

generalization eiror. A good classifier design criterion must arbitrate the trade-off between
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increasing the approximating capability and deteriorating the generalization error. The 

GMEE criterion can be proven optimal by the following corollary.

Corollary I: Neural network-Based classifiers with sigmoidal nodes designed according 

to the GMEE criterion are Bayes optimal.

proof: Let T be the collection of neural network classifiers with sigmoidal nodes. The 

Bayes classifier is included in T by Theorem 2. Since the GMEE criterion is Bayes 

consistent by Theorem I, the sequence of neural network classifiers selected by the GMEE 

criterion is Bayes optimal.

Q.E.D.

V. Experiments

Although the form of the GMEE criterion (14) is known, one quantity, the 

weighting factor X applied to the generalization error, is data dependent and must be 

determined empirically. A simple heuristic is to make X proportional to the "randomness" 

of the samples, as more randomly distributed samples tend to increase the generalization 

error.

Prior to evaluating a particular classifier by the GMEE criterion, we must know its 

VCdim P and its parameters 0. In the case of neural network classifiers, the VCdim P is

directly related to the number of hidden layer nodes, and can be evaluated by (22) or (23), 

depending on the connectivity of the network.

The parameters 0 of the classifier which minimizes the GMEE criterion can be 

found using a two step procedure. Starting with a small number, h, of hidden layer nodes, 

find the optimal parameter values using the Back-Propogation training rule (19) [31], then
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evaluate the GMEE criterion. Increase h, and repeat the process until a local minimum of 

the GMEE criterion is achieved, thus determining the optimal classifier.

We now illustrate the behavior of the minimization procedure using two examples. 

In the first example, samples are drawn from two classes, each represented by a two 

dimensional Gaussian distribution, and each having a different covariance matrix. In the 

second example, one class is represented by the mixture of two Gaussians, while the other 

is represented by a pure Gaussian, as before. In each case, 40 runs of the GMEE criterion 

optimization are performed, on sample sizes of 50, 150, and 450. Statistics collected 

include the mean and variance of the empirical error and error probabilities, based on a 

10,000 point sample, as well as the success rate of the GMEE criterion.

Example 5.1- determination of the optimal neural network classifier for two Gaussian 

distributions.

The covariance matrix for each class is given below.

The mean of class I is -0.9, while that of class 2 is 0.9. Figure 2 shows the 

samples from the classes and the Bayesian decision boundary, which is quadratic; the 

Bayes error probability is 0.1711. The minimization of the GMEE criterion is performed 

over four types of classifier with varying complexity (Figure 3), indexed by the integers I 

through 4, where the index refers to the number of hidden units; thus the complexity 

increases with the index.

(24)
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The GMEE criterion is evaluated below for the 450 sample case. Figure 4 shows a 

plot of the empirical error obtained using the Back-Propagation training rule with 

parameters listed in Table I. The estimated generalization error shown in Figure 5 has 

been computed using a value of .1 for X and the upper bound on VCdim (22) for the 

complexity. The resulting GMEE criterion (Figured) exhibits a minimum at two, indicating 

that the optimal classifier has two hidden units (hidden layer nodes). The observed error 

probability, based on 10,000 samples, is shown in Figure 7. It is consistent with the 

GMEE criterion in that it also displays a minimum at two.

To evaluate the statistical behavior of the criterion, forty runs of the two step 

optimization procedure are performed for each sample size. At the start of each run, the 

network parameters are set to randomly chosen initial values in the range [-1,1]. The 

average and standard deviation of the empirical error and probability are shown in Figure 8 

and 9, respectively, as well as in Table 2. Figure 8 shows that the average empirical error 

drops as the complexity of the classifier increases, while Figure 9 shows that the standard 

deviation of the error probability decreases with increasing numbers of training samples, 

implying that the resulting classifiers are more stable as the number of training samples 

increases. Table 3 shows that the success rate of the GMEE criterion increases as the 

number of training samples increases.
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Example 5.2 - determination of the optimal neural network classifier for a Gaussian mixture 

distribution.

The two classes are described by the following density function:

Pi(x,y) = N(x,0,a2)N(y,mi,1.4a2) (25)

p2(x,y) . ^ .̂ ? ? ) t N ( ^ : m?,°2)N(y,0, 1.5<72) ( 2 6 )

where mi is equal to 1.636a, m2 is equal to 3.4a, and a  is equal to 0.2, and is chosen 

such that the Bayes error probability is 0.052.

Experiments were performed as per Example 5.1, but now using a value o f . 15 for 

X to account for the increased randomness of the class 2 distribution. The parameters for 

the Back-Propagation training rule are listed in Table 4. The results for various sample 

sizes are summarized in Figures 10 through 13. As before, statistics were collected over 40 

runs. The effects of sample size and classifier complexity on the average and standard 

deviation of the empirical error and error probability, shown in Figures 14 and 15, and 

summarized in Table 5, are as observed previously. That is, the empirical error decreases 

with increasing classifier complexity, and the standard deviation decreases with increasing 

numbers of samples.

The success rate of applying the GMEE criterion, shown in Table 6, is lower than 

for Example 5.1. This can be explained by the increased difficulty of estimating the 

generalization error with more complex sample distributions.
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VI. Discussion and Conclusion

We have developed a Bayes consistent classifier design criterion, the GMEE 

criterion, from an analysis of classification error. The criterion has been applied to the 

design of neural network classifiers. The result of two examples indicate that the GMEE 

criterion can yield optimal neural network classifiers. We have also proven that a neural 

network classifier is Bayes optimal if it is selected by the GMEE criterion. Hence, our 

results provide a theoretical foundation for the connectionist approach to classification 

problems. These results can also be extended to the optimal design of other types of neural 

network, e.g., radial basis function networks [32]. In our research, the choice of the 

coefficient X. in the GMEE criterion is done empirically, but it should be readily determined 

from the data using the cross-validation technique [33].
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Appendix :

Theorem I  (Vapnik) [8,9] : Let O  be the class of decision rales with VCdim= fl,

X={ Xi, X2 ,..., xn } the set of training samples drawn independently from the distribution 

D, and Vp(a) the frequency of incorrectly classified samples. Suppose n > |3, then with

probability 1-T|, the following expression holds for each element in IV

Pr{ sup I Pp(a)- Vp(a)I > y } < 9 ^ - e x p { - i ^ }
P! (A. I)
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Figure I. Ahomogeneousneuralnetworkwithhhidden and d input nodes.
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Figure 2. The Bayesian decision boundary, V5.41xi + 1.64$, for two Gaussian
distributions with different covariance matrices. Class I samples are denoted 
by class 2 by 'V .



Figure 3. Four types of neural network classifiers, (a) One hidden node, 
(b) Two hidden nodes, (c) Three hidden nodes.
(d) Four hidden nodes.
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Figure 4. The plot of the error frequency for four types of neural network classifier
considered in Example 5.1.
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Figure 5. The plot of the estimated generalization error for four types of neural network
classifier considered in Example 5.1.
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Figure 6. The plot of the Generalized Minimum Empirical Error (GMEE) criterion for 
four types of neural network classifier considered in Example 5.1.
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Figure 7. The plot of the error probability for four types of neural network classifier 
considered in Example 5.1.
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Figure 9. The plot of the mean and variance of the error probability for four types of
neural network classifier considered in Example 5.1.
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Figure 10. The plot of the error frequency for four types of neural network classifier
considered in Example 5.2.
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Figure 11. The plot of the estimated generalization error for four types of neural network 
classifier considered in Example 5.2.
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Figure 12. The plot of the Generalized Minimum Empirical Error(GMEE) criterion for 
four types of neural network classifier considered in Example 5.2.
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Figure 13. The plot of the error probability for four types of neural network classifier 
considered in Example 5.2.
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Figure 14. The plot of the mean and variance of the empirical error of four types of
neural network classifier considered in Example 5.2.
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Figure 15. The plot of the mean and variance of the error probability of four types of
neural network classifier considered in Example 5.2.



(a)

No. of Neurons 
in Hidden Layer I 2 3 4

No. of Iterations 600 600 600 600

LeamingRate 0.001 0.001 0.001 0.001

Momentum Constant 0.5 0.5 0.5 0.5

(b)

No. of Neurons 
in Hidden Layer I 2 3 4

No. of Iterations 500 500 500 500

Learning Rate 0.0001 0.0001 0.0001 0.0001

Momentum Constant 0.4 0.4 0.4 0.4

(c)

No. of Neurons 
in Hidden Laver I 2 3 4 .

No. of Iterations 500 500 500 500

Learning Rate 0.0001 0.0001 0.0001 0.0001

Momentum Constant 0.3 0.3 0.3 0.3

Table I. The Back-Propogation training rule parameters for each sample size
in Example 5.1. (a) 50 samples, (b) 150 samples, (c) 450 samples.



(a)

No. of Neurons 
in Hidden Layer I 2 3 4

N 50 0.222±0.0050 0.21210.0052 0.211±0.0053 0.210±0.0053

(Number 150 0.19310.0033 0.180±0.0033 0.180±0.0034 0.178±0.0034
of
samples) 450 0.156±0.0021 0.151±0.0023 0.151±0.0022 0.150±0.0023

(b)

No. of Neurons 
in Hidden Layer I 2 3 4

N 50 0.198±0.0015 0.19610.0029 0.197±0.0030 0.198±0.0030

(Number
of

150 0.19510.0013 0.19010.0025 0.191±0.0026 0.19210.0027

samples) 450 0.186±0.0013 0.17810.0023 0.180±0.0025 0.18110.0025

Table 2. The training and testing set error rates for four types of neural network
classifier of Example 5.1. (a) Training set error rates, (b) Testing set error rates.



N #success(#total) Success Rate 
of GMEE(%)

50 27(40) 67.5

150 29(40) 72.5

450 33(40) 82.5

Table 3. Thesuccessratesof the Generalized Minimum Empirical Error (GMEE) 
criterion for Example 5.1.



(a)

No. of Neurons 
in Hidden Layer I 2 3 4

No. of Iterations 600 600 600 600

Learning Rate 0.001 0.001 0.001 0.001

Momentum Constant 0.8 0.8 0.8 0.8

(b)

No. of Neurons 
in Hidden Laver I 2 3 4

No. of Iterations 600 600 600 600

Learning Rate 0.0005 0.0005 0.0005 0.0005

Momentum Constant 0.75 0.75 0.75 0.75

(c)

No. of Neurons 
in Hidden Laver I 2 3 4

No. of Iterations 500 500 500 500

Learning Rate 0.0005 0.0005 0.0005 0.0005

Momentum Constant 0.7 0.7 0.7 0.7

Table 4. The Back-Propogation training rule parameters for each sample size
in Example 5.2. (a) 50 samples, (b) 150 samples, (c) 450 samples.



(a)

No. of Neurons 
in Hidden Layer I 2 3 4

N 50 0.086+0.0032 0.07710.0036 0.06810.0041 0.06510.0043

(Number 150 0.07910.0021 0.071+0.0028 0.05610.0035 0.05310.0042
of
samples) 450 0.068±0.0015 0.05910.0027 0.05210.0021 0.04910.0025

(b)

No. of 
Neurons ■ I 2 3 4
in Hidden 
N

-ayer
50 0.09110.0034 0.07810.0042 0.07210.0047 0.07410.0049

(Number 150 0.08110.0025 0.06710.0039 0.06110.0041 0.06510.0045
of
samples; 450 0.07110.0018 0.057+0.0021 0.05310.0021 0.055+0.0023

Table5. Thetrainingandcesiingseterrorratesforfourtypesofneuralnetwork
classifier of Exampie 5.2. (a) Training set error rates, (b) Testing set error rates.



N #success(#total) Success Rate 
of GMEE(%)

50 25(40) 62.5

150 28(40) 70.0

450 32(40) 80.0

Table 6. The success rates of the Generalized Minimum Empirical Error (GMEE) 
criterion for Example 5.2.
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