View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
6-1-1990

Loop Coalescing and Scheduling for Barrier
MIMD Architectures

Matthew T. O'Keefe
Purdue University

Henry G. Dietz
Purdue University, hankd@ecn.purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

O'Keefe, Matthew T. and Dietz, Henry G., "Loop Coalescing and Scheduling for Barrier MIMD Architectures” (1990). Department of
Electrical and Computer Engineering Technical Reports. Paper 727.
https://docs.lib.purdue.edu/ecetr/727

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://core.ac.uk/display/220146664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages

Loop Coalesciﬁg and
Scheduling for Barrier
MIMD Architectures

Matthew T. O'Keefe
Henry G. Dietz

TR-EE 90-44
June 1990

School of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907

'Loop Coalescing and Scheduling
,for Barrler MIMD Archltecturesx,

- Matthew T. O’ Keefe and Henry G. Dietz

‘. *- School of Electrical Engmeermg =
.- Purdue University . -
' West Lafayetie, IN 47907
June 7,1990
'/ han‘kd@e‘cn purdue.edu
| (317) 494 3357

- ABSTRACT

Barﬁer MIMD:s -are asynchronous Multiple Instruction stream Multiple Data |
i stream architectures capable of parallel execution of vanable execuuon time mstruc-‘

tions and arb1trary control flow (e.g., while loops and calls) however ‘they d1ffer_ o

‘ from convent1ona1 MIMDs in that the need for run-time synchromzauon is significantly

reduced. Th1s work considers the problem of schedulmg nested loop structures on a

.~ barrier MIMD. The basic approach employs loop coalescing, a technique for transform-

.- ing.a multiply-nested loop into a single loop. Loop coalescing is extended to nested trz- g

angular loops in which inner loop bounds are functions of outer loop indices. Also; a

more efﬁc1ent scheme to generate the original loop indices from the coalesced index is

‘proposed for the case of constant loop bounds. These results are general, and can be
- applied to extend previous work using loop coalescing techniques. We concentrate on

- using loop coalescing for scheduling barrier MIMDs, and show how previous work. in

loop transformatlons [Wol89], [P0188] and lmear schedulmg theory [ShF88], [Sh090]> - " P

can be apphed to this problem

Key phrases Loop Coalescing, Loop Transformatlon Barrier Synchromzatlon Com— ‘b

pller Para]lehzatmn Compﬂer Optimization, Static Bamer MIMD.

Page 1

mailto:hankd@ecn.purdue.edu

' Loop Coalescing = -

, 1 Introductlon '

Parallel c0mputer arch1tectures hold great prom1se for solvmg large compute-mtensrve problems

To fully explort para]lel machmes 1t 1s necessary to translate apphcatlons software mto efﬁcrent parallel L

code. Most of the parallehsm in programs is found in 100ps and technlques are necessary to extract loop:' '

parallehsm and explort it at run-nme

Th1s work cons1ders loop parallehzatron and schedulmg for a new class of parallel machtnes called

_ barrzer MIMD (M ultlple Instructzon stream M ultzple Data stream) archztectures [D1$88] [OKD90] Bar—l '

rier MIMDs are charactenzed by a fast, ﬂexrble hardware bamer synchromzatlon mechanlsm that exe-"," |

cutes m a few clock cycles Barners may be applted across any arbltrary subset of the processors Recall',
‘ that a processor perfonns the followrng steps at a barrier synchromzatlon pomt R

| o [1] Marks 1tse1f as present at the bamer B g

) [2] Warts for all other partzczpatmg processors to amve at the barner

[3] After all parttcrpattng processors have amved at the bamer, 1t contmues execunon past the bamer -

In a bamer MIMD step [3] is modrﬁed so that processors proceed past the bamer szmultaneouslyv Usmg |

thls property, prevrous work [ZaD90] has shown that for basrc blocks of code executed on a barrler' ,

MIMD statlc schedullng can remove many unnecessary synchromzatlons at comptle ttme

Th1s work consrders the problem of scheduhng nested loop structures on a bamer MIMD Srnce the _

processors have separate, 1ndependent control streams the body of the nested loops can contarn subrou-v S

' ,tme ca]ls, IF statements other control ﬂow constructs and vanable trme 1nstrucnons Hence barner
MIMDs can explolt loop para]lehsm that VLIW and SIMD machmes 11m1ted to a smgle control stream

- ITlllSt 1gnore

VThe basm approach employs loop coalescmg [P0188] a techmque for transformlng a multrply-
nested loop mto a single loop Loop coalescmg is extended to nested trzangular loops, in which inner
'vloop bounds ‘are functtons of outer loop 1nd1ces Also, a more efﬁcrent scheme to generate the ongmalf ;
loop 1ndtces from the coalesced index i is proposed for the case of constant loop bounds These results are
general and can be apphed to extend prev1ous work usmg loop coalescmg techmques We concentrate on
V usmg loop coalescmg for scheduhng bamer MIMDs, and show how prevrous work in loop transfonna- ‘

A ’ttons [W0189] [Pol88] and hnear schedulmg theory [ShF88], [Sh090] can be applted to thls problem -

- .Loop'deale§Cing :

i ThlS manuscnpt 1s organlzed as follows In sectlon two some: prevrous work m schedulmg para]lel :
shared-memory MIMD archltectures 1s revrewed Section three extends the loop coalescmg transforma-v
‘_tlon to- tnangular loops and proposes an 1mproved techruque for coalescmg rectangular 100ps. (w1th con-A
stant. upper and lower bounds) Sectlon four shows how a coalesced loop can be scheduled on a bamer_._
, MIMD an algonthm for generatmg the proper sequence of bamer synchromzanons 1s glven Fmally,‘i

, conclusrons and d1rectlons for future work are grven in secuon ﬁve

: »2 Prevrous Work
Schedulmg schemes for parallel archrtectures fall 1nto two broad classes statzc and dynamzc In'
statzc schedulmg, comprle-trme 1nfonnat10n is used to detemnne a b1nd1ng between tasks and processors‘ ’
: before program executlon begms, thls approach has very low run-trme overhead but can result in poor,r
load balancmg under certam condltlons In contrast dynamzc schedulmg employs run-tlme mformatron to.-f o
' perform tlus bmdmg durmg program executron, resultmg in good load balancmg at the expense of hlgh' :

: run-trme overhead Hybnd schemes between static and dynamrc schedulmg are also possrble

The Flow Model Processor (FMP) MLMD archrtecture [LuB 80] [Lun87] employs statlc scheduhng‘» :
for allocatmg para]lel loop 1teratrons to processors The FMP isa shared memory MIMD notable for its
fast hardware barner synchromzatron mechamsm and a decentralzzed approach to schedulmg and control.
. The target apphcatlon domam for the machme was computanonal aerodynamrcs although 1t supports a
'_'generalMIMDmodel o o ’ ' L EE
The Flow Model Processor was programmed usmg an’ extended Fortran language that 1nc1uded a

' Tparallel Do loop construct the DOALL The DOALL pr0v1ded the basic parallel construct for the FMP »

: no dependencres exist between DOALL 1terat10ns $0 they can be executed in parallel The 1terat10n space '

ffor the DOALL was descnbed by a DOMAIN statement For example the declaratlon : e
DOMAIN/EYEJAY/ IMAX J—1,»' JMAX

'declares that there are “IMAX* JMAX elements, each cons1st1ng of a palr of values for I and J 1n the :

e 'ranges shown Each parr of mdex values specrﬁes an mstance IJ of the loop body Index sets created b -

- wrth DOMAIN statements such as EYEJAY are called domazns In the aerodynamrc ﬂow codes to be

: executed on the FMP only rcctangular domams were consrdered as these were the most common L

e _ vdomams found in such code Loops lteratmg over rectangular domams are called rectangular loops they _

"correspond to nested loops w1th constant upper and lower bounds

- Page3

enfnpe

Parallel executlon of the DOALL 1terattons began when control ﬂow 1n the program reached the :
DOALL Early FMP stud1es consrdered employmg a centralrzed control umt 0 compute an optrmal allo-_:,— .
catron of the loop mstances However the ﬁnal desrgn employed a decentrahzed mechamsm for statlc .
loop schedulmg processor id numbers P were assrgned from 0 to PMAX 1, where PMAX was the'

: number of processors. Each processor was also given the maximum mstance number and the number of :
processors executmg the DOALL Processor P began by executmg 1nstance number IJ=P. In the prevr-..
ous example the mdex vanables were I and J: each processor can determme these 1ndex vanables

from the mstance number i w1th the followmg equanon

IJ —J*IMAX+I

In th1s case I IJ mod IMAX and J IJ dzv IMAX After computmg each mstance, a proces_or 1ncre-_‘

'ments 1ts mstance number IJ by PMAX to obtain the next mstance 10 compute Th1s mappmg of 1terat10ns;.

to processors 1s called mterleaved allocanon in thls work Th1s contmues untrl 14 > IJMAX All proces-_,'

sors then partlcrpate ina hardware bamer synchromzatron before program executlon proceeds

A centrahzed control mechamsm 1s needed only at the begmmng of the DOALL to broadcast the'
number of processors pamc1pat1ng and the' maximum mstance number. At that pomt processors can
mdependently compute the iterations . assrgned to them without accessing any central control or shared
‘ vanables Tlns avords the contentron and run-trme overhead mherent ina dynamrc schedulmg scheme
The FMP 100p schedulmg techmque establlshes -a binding at' compile-time between loop 1terauons and av
virtual machme, where each processor is given an equal number of 1teratrons a bmdmg between the vir-

tual machme and actual machme is made at run-time.

: Notrce that the loop 1teratrons are drvrded up among the processors equally and are allocated “all at
fonce “at: the begmnmg of parallel executlon If loop iteration. executlon ttmes vary wrdely, _there would
seem to be a danger that the processors would ﬁmsh at wrdely d1fferent tlmes Detarled mstructlon-level
- simulation studles conducted dunng the desrgn of the Flow Model Processor showed that the executton
time of 1terat10ns ‘was close and the amount of processor time spent waiting was small. " Kruskal and
Werss [KrW85] studled thrs problem and showed that for a wide class of drstnbutlons for iteration execu-

: tron times, allocatmg an equal number of iterations to each processor all at-once has good efﬁcrency

1. Although the schedulmg is static, i.e. performed at comprle-ume recompilation is unnecessary if the machine
" " configuration changes or different numbers of processors are used to execute the DOALL.

. Page4

. LOop Coalescing '

A dynarmc schedulmg scheme known as guzded-self schedulmg [Pol88] was developed by,
Polychronopolous and Kuck to reduce the amount of run-trme overhead whrle strlI ma1nta1mng good load:‘ o
| balancmg among processors Loop coalescmg is apphed to transform nested parallel DO loops w1th con-f"
’ stant upper and lower bounds (1 e rectangular loops) 1nto a s1ng1e parallel DO loop w1th a s1ngle dlmen-f
sron Other transfonnatrons such as loop drstnbut]on and loop mterchangmg [Wol89] can be apphed ton s

: .transfonn a set of nested loops mto the proper fonn f0r coalescmg In essence, loop coalescmg 1s a com- .

: prler technlque that constructs the FMP domalns automatrcally at COmplle-tlme

Processors obtam 1terat10ns of the coalesced loop by accessrng the shared coalesced rndex vanable)
the number of 1teratlons glven at each access varys dynamrcally, startmg out large but tapermg off to a‘ .

smgle 1teratron accordrng to -

R L
LX= ‘R‘i}+1 ""‘Ri'f‘x:'"';

PMAX

where Ri 1s the number of 1terat10ns remarmng at step i (and R 1= N .the total number of 1teranons 1n the.

: loop) x, 1s the number of 1terat10ns glven to the processor requestmg work at step i and PMAX is: the .

number of processors Thrs adapnve vanatron m allocated work reduces the number of synchromzanon :
operatrons compared to allocatlng a slngle 1teratron at a Ume 'Ihe number of synchromzatlon operatlons: |
. 1s also reduced by coalescrng, smce only a smgle 1ndex not multlple 1nd1ces as 1n the ongmal loops, need

- be accessed In gurded self-scheduhng, the processor at step i executes 1teratrons [N—R +1 N-—R +xl] o

. Mapprng consecutrve 1teratlons to a s1ng1e processor 1s called consecutzve allocauon in th1s work

3 Generahzed Loop Coalescmg

In thrs sectron a techruque for coalescmg tnangular nested loops with mner loop bounds that are :

- vfunctrons of the outer loop 1nd1ces is proposed An 1mproved method for generatlng the ongmal mdlces

from the coalesced 1ndex rectangular loops is also grven Tnangular loops are ubrqultous in the numencal DR

l lmear algebra codes [DoM79] [GoV83] that are perhaps the most common mput to vectonzmg and paral-" o

lelrzrng comprlers The new. techmque broadens the applrcabrlrty of loop coalescmg

‘The approach used in the FMP to generate the original loop 1nd1ces from the coalesced 1ndex can be

-applied to rectangular loops wrth nest levels greater than two. The basrc 1dea is to coalesce stamng from

R : ’ the 1nnermost nest levels and proceed outward The two 1nnennost levels are coalesced followed by the

next mnennost loop and the coalesced loop formed in the prevrous step, and so on unt11 the outennost‘ :

 Pages

" Loop Coalescing
“loop in the loop nest is ma_ched and coalesced. Consider the following loop:

D010 I = 1,"IMAX"‘ '
DO--20. J =1, JMAX- ..
DO 30 K = 1, KMAX

.Coalescing the two innermost loops yields
DO 10 I =1, IMAX |
DO 20 JK = 1, JMAX*KMAX -

JK div KMAX -
K

JK mod KMAX"

followed by the remaining loops

‘DO 10 IJK =1, IMAX*JMAX*KMAX

L]
II

IJK div JMAX*KMAX

‘JK = IJK mod JMAX*KMAX .

JK div KMAX

JK mod KMAX

- Each coalescmg step results in the need for one 1nteger division? at mn-tlrne to generate the loop 1ndlces :
- from the coalesced mdex, ~and th1s example requ1res two mteger d1v1s10ns ~In contrast -
‘Polychronopolous S scheme [P0188] requlres two integer. d1v1s1ons, one multrphcatlon and one subtrac-'."
tlon per loop index, resultmg in six integer d1v1s1ons three mult1p11cattons and three subtractlons for this

example

Techmques for coalescrng two-level trzangular loops are now glven Ina tnangular nested loop, the_' o

mner loop bounds are functlons of the outer loop index variable.

2. The diy and mod operattons have been specified in the loop body for clanty The quottent of the mteger lelSlOI‘l
: represents the div result, the remainder the mod result. , S

Loop Coalescing

~ Consider the following triangular loop structure_: -

DO 10 J = 1, N
DO 20 K =1, I

: The,index.‘set for this loop with N=5 is given in figure one. |

9 13

4— o o
e 5 g 12

K 34 0 o o
2 4 7 11

2. o o o)
1o 1 3 6 10

1 2 3 4. 5

Figure 1: Example Triangular Loop with Serial Execuﬁon O'rder.‘

,The 1terat10ns are labeled with their sertal execuuon order. The total number of mstances 'c(N) in the

E coalesced loop, is grven by the expression R
: | Vo |
~UN) = . AMULN)
J=l ,

where ?»(J N)=J for thrs example,” which y1e1ds 'c(N Y=NWN+1)/2. The functmn 7»(.1 N) represents the
number of iterations of the inner K 100p as a function of the outer loop mdex J and upper bound N Nor- _
- rnahzed mner loops have lower loop bounds and increments equal to one and ?»(J N) reduces to l:he loop:

upper bound In the general case, the function MU, N)is grven as

-'._ ~ Page7

“Loop Coalescing

AUN) = (ubUNY~ IbUN) + 1) div inc(J.N)
where ub(J N), Ib(J,N), and inc(J,N) are the upper bound, lower bound, and 1ncrement functlons
respectwely, for the mner loop '

For the example loop, ‘the function T(N) =NN 4-1)/2 is the number: of iterations in the coalesced |
loop. The mdex vanable for the coalesced loop will be JK, with a lower bound of 0 and upper bound of

N)—1 The ongmal loop indices J and K must be re- generated from the coalesced mdex

| Figures 2 and 3 show how Jand K vary wrth the coalesced mdex JK.

e
K 3_ 0 0 0
2- o o 0 0
1?1 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10111213 14 15
| . K |

Figure 2: Kasa Function of JK.

It can be seen that’transitions occur at 0, 1, 3, 6 and 10.. This series can be generated by a transition func-
tion 1(j), 0< JSN-1 where in this example, l.(_]) _1(1+1)/2 The transmon function can be used to -
determlne the value of mdex J. given coalesced 1ndex JK: J=min{ j 1(1) >JK }, ie., the smallest J
such that 1(1) > JK Hence to detenmne J from. JK, the functxon W(j): must be computed for
J=0,1,2,... until 1(/) > JK It is then strarghtforward to compute the inner loop 1ndex K in’ the example
' 'ofﬁgure 1K= JK——l(/ 1)+1 R '

Page 8

- Loop Coalescing

IR N NS N CRCRN RN N NI N EIEN SN RS S S S B S
0 1 23 4 5 6 7 8 9°10 11 12 1314 15

» g Flgure 3:Jas a Function of JK.
To execute the coalesced loop ona barner MIMD, each processor 1ndependently computes the tran-
) s1t10n functton for successnve j unt11 1(j)>JK, where JK is the current instance for the processor. This
gives. J for the mstance, wh1ch is then used to compute K. The body of the loop i 1s executed usmg these
generated values for I and J.-The cost of these operatlons depends on the complexity of the trans1t10n

function, wh1ch in tum depends on the form of the inner loop bounds. Altemately, the transmon senes

. could be generated at comprleotlme ‘and saved in local memory in'the processors reducmg the run-trme

'overhead at the expense of extra storage

To generallze the approach glven above for doubly nested loops 1t is necessary to determine the

" proper transrtron functlon for general loop bounds In the general case, doubly-nested loops have the fol-

lowing form:

DO 10 I =M, N, P
‘DO 20 J = lb(IMN) , ub(IMN), mc(JMN)

- -Figure 4: General Form for Doubly-Nested Loops. :

Page 9

. L‘o’dp‘ Coalescing -

. B The upper and lower bounds and mcrement of the inner loop are- functlons of the outer loop 1ndex and’
bounds. Note that the outer loop bounds and mcrement M N, and. P can be 1nteger express1ons Loop

. normahzatlon could be employed to transform the loop 1ncrement and lower bounds to one to s1mpllfy‘
} the general—fonn loop structure, but th1s increases the complexlty of subscrlpt express1ons3 It is not usedf S

in this work

The transmon functlon for l(j) for the general form doubly-nested loops 1s o

"ﬂl' ZXUMN)AKFNl :
WD =M
o jQMV

- MJ MN) { (ub(JM N) lb(J M N)+1) le mc(JM N) 1f mc(J,M,N)>0 ‘7
: (lb(JM N)—ub(JM N)+l) le mc(JM N) 1f,-mc(J,M,N)<0,’ RS
| The number of 1nstances 1n the coalesced loop Tis then grven as . | .
S e T(M,N) = 1(N)

A closed form expressron for 1(/) 1s requrred and thlS w1ll sometlmes requlre mampulatlon of the) "

summatlon ThlS was not the case for the example m ﬁgure one where

o XI =g+ 1SN
) =1 J=l BT
n 10 R £

s fis'aWeH-lthWn forrn;ffA,s' another‘.‘eXample, consider the following loop structure:
D010 J =1, N
. DO 20 K =1, N-J+1

Flgure 5 Example ofa General Form Doubly-Nested Loop

‘3. -Wolfe [W0186] recently observed that loop normalization can adversely affect the complexxty of t:ransformmg v “
" 1oops s since it typically increases the complexity of the array subscript express1ons, and it can sometlmes preventa.
useful t:ransfonnatxon by cha.ngmg the dlrectron vectors for a given loop nest, -) P

Pagel0

Loop Coalescing

In this caSe,
: J
) Y N-J+1 1<jSN-1
W) =9 = :
0 ji<l1
which can be rcducéd to |

d o d o
Ay = IN-3J+ 1 = NS+, 1SjSN-T
» J=1 J=1. J=1. .

For the general loop"fonn, once J is comyputed from the transition function, K is determined from the
expression - ‘

K = JK —1(j-1)+ IbJ,M,N) .

As a more complex example, consider the loop of ﬁguré 6, which is part of Trench’s algorithm for

determining the inverse of a Toeplitz matrix [GoV83]*:

DO 10 J = 2, (N-1)/2 + 1
D020 K=J, N-J+1
B(J,K) = B(J-1,K-1) +
IR R PTE E P (v[N+1-K]*v[N+1-J] - V[J—l]*v[K—l])/GAMMA:
10 CONTINUE |
20 CONTINUE

Figure 6: Doubly-nested LOop Taken from Trench’s Algdl‘itllm.
The iteration space for this loop (with N=10) is given in figure 7.

The transition function is derived as follows:

) ’i(N—-ZJ-;Z) 2<j<S((N-1)/2+1)
W) =1 j=2 '

0. j<2

Distributing the summation

4 Proper synchronization for the coalesced form of this loop is considered in the next section. '

Page 11

* Loop Coalescing

Figure 7: Iteration Space for Loop Ncs’t from-Trench’s Aigoﬁmm' (N=10).

j j j -
()= SN=-S2+32 , 25N -1)/12+1)
IR L =2y U2 '
and_ simplifying yi‘elc:,ls ,
() = NG-D) =2 G+D2-1) +2(j-1) = =2 + (N +1)) -N , 25jS(N-)2 .
Table 1 shows how the coalesced loop iterations for Trench’s zilgo_rithin are spread across a fouerrdcessor.
~ barrier MIMD. The oﬁgihél ihdices for the loop are given in parentheses '(,J,K), next (o the (;‘og:lés"ce;q‘ '

index.

Page 12

“Loop Coalescing

PEO | PEI | PE2 | PE3 |

oea | 1@y | 204 | 39|
|4es | sen | se® | 109
186y | see | 10(35)""-"‘\11(36)_ Tl
C|een | Besy | ves | sas|
Js@e | van | 86s | 1960

k'Tabl‘e 1: Processor ASsignnrent for Trench Loop. Nest (4 processors) R s :
| The approach for coalescmg doubly-nested tnangular loops can be apphed success1vely to coalesce
multrply-nested loops This procedure begms with the mnermost loops and contmues outward for exam-
o ple, w1th a tnply-nested loop, the two mner loops are coalesced followed by the outermost loop and the
new coalesced mner loop The followmg multlply-nested rectangular loop w1ll be coalesced w1th the tr1-
angular loop coalescmg techmques This w1ll allow a oompanson between the prevrous loop coalescmg }

techmques for rectangular loops and the new, general approach descrlbed in th1s work

DO 10 I = 1, IMAX
DO 20 J=1, JMAX |
DO 30 K = 1, KMAX ;i"“

- Coalescing the J and ’K_loops yields the transition- funCtion"

| 111((]) - ZKMAX = j*KMAX
J l

and the loops now have the form
”sfgno 10 1= 1, IMAX

'w’f} DO 20 UK —-0 JMAX*KMAX 1
mln { j = j*KMAX > JK }

'L‘._
]

K = JK - 1) *RUAX 41

LIRE BT S

o Page 13

Loop Coalescing
Coalescing these two 100ps gives the transition function -

luK(l) = E(JMAX*KMAX) = 1(.IMAX*KMAX)
i . =1

and the 'completely' coaleSced loop'is

. 'DO 10 IJK~=_0, IMAX*JMAX*KMAX 1 ‘
I = min (i 1*(JMAX*KMAX) > IJK Vo

JK = IJK - (i- 1)*(JMAX*KMAX)

mln{] : j*KMAX>JK} B

=y
I

JK - (j- 1)*KMAX +1 '

_ Unhke the other rectangular loop coalescmg techmques the new approach does not use mteger d1v1-
s1on In the best case the I and J computatrons requtre a smgle compare operatton each and J K and K
computatlons requrre two 1nteger multrphes two subtractlons and one addmon However on average the
I and J computattons w111 requ1re that i and _] be mcremented some average amount untll the mequahty '

1s satlsﬁed

; The best approach will depend on the avarlabthty of mteger d1v1s1on in hardware and the relatlve
speed of i integer division and mu1t1p11cat10n, as well as the average increment per iteration in the triangu-
lar approach.” Recent processor architecture designs have reduced the amount of hardware support for
,relatlvely mfrequent operations such. as division, and software support routines for integer d1v1s1on are
slow. One study found that a general purpose divide routine averaged 80 cycles per dlvrde operatron
- [MaP88] ' ’

v Nottce that the need for multlphes and d1v1des to compute 1ndlces for each iteration can in- general
be ellmmated by usmg consecutlve allocatlon (mentioned i in sectlon 2) and replrcatmg the. ongmal loop-
ing control structure in the code for each process This is discussed further in [P0188] We stress the
b.other techmques because they efﬁcrently support arbltrary allocatlons (1nc1ud1ng consecutrve allocatlon) -
'however ‘when' conseCutrve allocatlon is appropriate, the use of the ongmal loopmg structure may be :

preferable

" Page 14

»:LOop»Coalescing

4. Loop Schedulmg and Synchromzatlon on Barner MIMD Archltectures .

- In the previous section, a generalized techmque for coalescing loops was descrlbed In thrs sectlon
loop ,coalescmg_rs -consrdere_d for static, decentralized scheduling of barrier MIMD archrtectures..»’I‘he
approach taken w1ll be s1m11ar to that for the FMP except the compller w111 automatlcally construct: the
domam for a set of nested loops after the appropnate analysrs has been performed and the domams are'
not restncted to rectangular shapes. -In addition, the instances of the coalesced loop may be-synchromzed
as necessary by a barrier, so coalescing is not restricted to loops without dependencies. Loop coalescing
simplibﬁes loop scheduling, since. the single dimensior__rof the,.coalesced,.-‘iterationi space. can be allocated/
eyenly,among' the processors with small scheduling overhead. | o R

'Ihe basic properties: of barrier MIMD ‘architectures were mentioned ‘in _the iintrodu_‘c'tio‘n.g'Ihey
include a. fast hardware_barﬁer synchronization mechanism that can be applied. across any sub_set_ of the
processors. A barrier procéssor generates the proper sequence of barricr masks to insure correct sequenc-
ing and proper timing retaﬁonships between computational proce,ssors:. It places the;.vbﬁ‘arriervs in aﬁba,’rri,e,r
synchronizationvbuﬁfer‘vwhere they are matched against processors waiting at‘a‘ban‘ier and then executed
A smgle WAIT 11ne from each processor to the synchromzatlon buffer is used to mdlcate that a partlcular
processor is part1c1pat1ng m a barrier synchromzatron Thus when schedulmg a loop 1t is necessary to
generate code for the computatlonal processors 1o request a bamer and: for the barrier processor to gen-'

5 erate the proper bamer masks in the correct order.

In addition, before executlon of a coalesced loop on a bamer MIMD the barner processor must
broadcast the. number of iterations in the coalesced loop and the number of processors executing the loop.
Loop 1teratlons in the coalesced index set are assigned to the computational processors usmg interleaved
‘allocatron as in the FMP. - This binding occurs at comprle-trme between loop iterations and a v1rtua1 bar-
rier MIMD machme the bmdmg between the v1rtua1 and actual barrier MIMD. machine: occurs at run-
time when the bamer processor broadcasts the number of iterations in the loop and ‘the number of proces-

sors in the actual machine.’
Data dependencles [ShF88] [W0189] between loop iterations must be considered durmg coalescmg,
and if such dependencles do exist then the resulting coalesced loop may requrre barrier synchromzatron

If no dependencres exist between 1terat10ns then no synchrontzatlon is required and processors proceed to-

5. Thls approach also allows the machine to be parttttoned 5o .that mdependent loops (or programs) may be
executmg sxmultaneously on different parts of the machine. : : .

 Pagel5

Loop' C:oéléééih_g. .

'asynchronously execute the coalesced loop until a.ll iterations are computed At this pomt all processors

barner synchromze before contmumg execut1on

Loop transformatxons can be- used to restructure a loop nest to provide different coalescmg results
[P0188] -For example loop interchanging [Wol89] can be applied as necessary to move parallel loops to
the mnermost nest levels [Pol88] Altemately, serial loops could be moved into the innermost levels w1th--
outer para]lel loops coalesced around them. Loop. d1stnbut10n [KuM72] [W0189] can also be employed to
transform loops mto perfectly-nested form for coalescmg The best loop structure for coalescmg depends_
on several factors, lncludlng the necessrty of balancmg work among processors to explo1t as much paral-‘ .
lehsrn as possxble the data dependence structure of the nested loops and run tlme constralnts such as data
locality. One ma_]or drfference between bamer MIMDs and other MIMD machmes 1s that bamer syn—

' chron1zat10n is very fast and efﬁcrent also, the stat1c nature of schedulmg the machme makes large vana-;‘

~ tions in processor execuuon times unlikely.

. The order of loops before coalescing directly -affects the allocation of loop iterations across the pro--.
cessors as well as the number of barriers generated. Proper execution on a barrier MIMD imposes certam
constramts on th1s ordenng In partlcular, the innermost coalesced loops must not have any dependencxes
across loop 1teratxons In th1s work only the outennost coalesced loop is allowed to have dependencws :

the dependencres across thls loop may requrre bamers for correct execut10n

For example, cons1der the loop nest from Trench’s algonthm (figure 7): a dependence exists
between iterations (J,K)‘ and (J+1,K+1), which will be represented as the dependence vector d = [_,1 1]
" [ShF88]; This de‘pendenCe 'vector can be seen in figure 7. From the figure, it is'clear that all itera‘tions

with J = b where bisa constant, can be executed in parallel, i.e., the K loop may be executed in-: parallel

the J loop is executed serially, and barriers can be used to enforce this ordering. The basic idea: is 0 o

determine a schedule- o(_J ,K) = n(J,K)+c that is a linear function of the loop indices so that iterations exe-
cuting in parallel have 6(/,K) = d, where d is a constant. ' '
 The difference between schedule values for oonsecutlve iterations executed ‘on a sinigle processor
determmes how many - bamers that processor should execute. Table 2 shows how this approach generates
bamers to enforce the proper execution order for the loop nest from Trench’s algonthm Bamers are

represented as horizontal lines in the table. The linear schedule for this example i is o(/.K) =J —2._ o .

~ Schedules that are linear functions of the loop indices are referred to_as jli'nea’r‘ schedules- '[.ShF.88_].

These': schedules are related to the well-known wavefront method [KuM72], [Kuh80']‘ but are generallzed

- Page 16

Loop Coalescing '

PEO | PEI1 PE2 | PE3

oy | 1@y 2(2,4)_ 325 |
4@ | sen | @8 | 129

o 8(3 3| 964 | 1065 | 11 3B6) |
coqen | Bey | e

1646 | 1747 | 1444 | 1545

186 | 1966 | - | -

Table 2: Proper Execution Ordering Enforced by ‘Barriers. o
in the sense that coefficients of the linear schedule funCtion are not restricted to integers and ‘may be
ratlonal numbers [ShF88] It will be shown in this work that the wavefronts (called hyperplanes in
[ShF88]) in a linear schedule can be 1mplemented d1rectly by barrrers This work will be concemed pri-
marily w1th szmple lmear schedules that are functions of a single index variable although more general
linear schedules are- bneﬂy considered. The schedule ‘proposed for the loop nest of Trench’s algorlthm

was a s1mple linear schedule. The wavefronts generated by thls schedule can be seen in ﬁgure 8.

Linear schedules have many advantages. In a classic paper_ [KaM67], Karp, Miller and Winograd
proved that, under certain conditions (uniform data dependencies and'unit-tirne cornputations) the execu_
tion time of an optimal linear schedule and the free or dataflow schedule, which executes a computation -
as soon as its operands are available, is bounded by a constants. Hence,'a good linear: schedule should be -
able to exploit most of the >parallelism within a loop (or set of nested loops). Simple linear schedules
have a straightforward interpretation in terms of nested loops. The outermost loop correSponds to the
wavefront direction the simple lmear schedule is a function of the outermost loop mdex as in the exam-

» ple loop nest from Trench s algonthm The bamers that enforce the wavefront order are, in-effect,

' enforcrng the senal order 1nherent in the outermost loop

6 Shang and Fortes [ShF88] sharpened this result by provrdmg sufﬁcrent conditions for the schedules to have equal '
executron nme S , . :

_ Page 17

Loop.Coalescing

9._
T
o R b
)
1 T l | | l

Frgure 8: Wavefronts for Loop Nest from Trench’s Algonthm N=10). - ‘
The algonthm for generatmg bamers for srmple linear schedules is now descnbed Each computa- ‘
tional processor executes this algonthm to generate a proper sequence of barriers to correctly 1mplement'_

‘ the sunple lmear schedule

Algori'thm4 Barrier Genera-tion

The: wavefront index ® is generated from linear schedule functlon o()), where J= (J 1 J 2, s J) .
.are the n 1nd1ces of the or1g1na1 nested loops that have been coalesced The wavefront 1ndex represents- ‘
the wavefront in Wthh iteration (/)) is executed. Let p be the processor 1d number P the number of pro- |
cessors executlng the schedule, and let N be the number of 1terat10ns in the coalesced loop 1 represents

,the current iteration being executed by processor p The procedure is:

- [1] [Inmalrze] W, 0,7 «p, done « FALSE.

| . '[2] : [Generate mdrces] Compute the 1ndlces J from the coalesced mdex I (As descnbed in the

: prev1ous sectron)

[3]‘ » 'b[Calculate wavefront 1ndex] O« c(]) B(—— - (D,, (B g1ves the number of bamers before

vexecutron of 1terat10n L)

_ Page 18

“
5]

VLoop'Coalescing .

[Generate barners] Execute B barrier waits before executmg iteration /.

','[Check for completlon] If done =TRUE, execute one more bamer and then termmate the

N ‘algonthm

R
m
8

[Set up for next 1terat10n] oao <—— o, 1 «1 +P

[Check for last 1terat10n] 1f I 2> N, thenI «— N—l done « TRUE.

Go to [2].

The barrier processor must generate O max) = G(J mm) bamer masks, where J max. and Jmm are the '

maximum and mmunum pomts for the hnear schedule G. Note that in this algorlthm the bamer mask

1ncludes all P Processors, $o the capablhty to barner synchromze subsets of the processors is unused.

More sophlsttcated algonthms could be developed to avoid this. In step [6], the next 1terat10n to execute'.

is obtained as I « I+P, yreldmg and 1nter1eaved allocatlon of 1teratrons Consecutive a110cat10n as used-

in guided self-scheduling, is also poss1b1e with minor modifications of the algorithm.

Several examples of loop scheduhng for bamer MIMDs will now be given to clanfy and expand the -

1deas in this section. The first example code glven 1n ﬁgure 9, solves a:lower. tnangular system of equa-

tlons using forward ehmlnatlon [GOV83]

DOlOI=1,N_
1000 ¥(I) = B(I)
DO 20 J =1, I-1

200 Y(I) = Y(I) - L(I,3)*¥(J)
20 CONTINUE | |
300 Y(I) - Y(I)/L(I,T)

' to , CONTINUE

Flgure 9: Forward Elimination for Tnangular System Solutlon L

Statement 100 can be dlsmbuted out of the I loop, and the I and " J loops mterchanged brmgmg the

;parallel loop T into the 1nnermost nestmg level. The restructured code is grven in Frgure 10:

- Page 19

~ Loop Coalescing

- 3tDo'1O“i1.% 1, N
1000 Y(I1) = B(IL)
10~ CONTINUE
' DO20 J =1, N
300 V(D) = YD) /LI, 0)
DO T = gtl, N

S2000 o Y(I) = V(D) - L(I,0)*Y(J)
30 CONTINUE R S
20 CONTINUE

'Figure 10: Restructured boop‘ before Coalescing.
The‘ 7511 loop ‘may be executed in parallel, vvith'a barrier separating- 1ot;§s' I'}l‘ and' "J. i fLOopsb J and "I’
can now be coalesced. Statement 30 0 can be moved into the inner I loop at the cost of computatlonal
-redundancy;. altemately, this statement could be executed condrttonally within the inner loop, dependmg =
on the generated mdex values [Pol88]. The right approach depends partly upon the abtltty of the machme }
to qutckly broadcast values from one processor to all others; if this capablllty is m1ss1ng, en 1t may pay

to compute the value locally in each processor.

The transmon function for the coalesced loop is '
"YN-J 1SN
1 : -

W) =1 i
0 j<1

»whtch reduces to 1(_1) jN _](]+1)/2 , ISj<N.'VV The original - indices ‘can be vgenerated»'-fromi the

. coalesced mdex as follows

¥

" min {j :,L(l) >,Ji}
o !

’ JI—l(/ 1)+(J+1)

' ThlS transmon functron is rather complex but there are. several approaches to reducmg the overhead in
- 3 ' computjng 1t One obvrous solut1on is to have an mdependent integer. functton umt dedtcated to comput-) "

tng the transmon functton in parallel w1th the loop body computattons Note that the transmon functton |

o Pégé 20

, Lpop/Coalcscing

- can be computed in advance for 1ncreasmg values of J as 1t is mdependent of the loop body Th1s
“look-ahea ’ approach to computmg the transition function could also be used to ﬁll gaps in computa--

tlon wh11e a processor is waltmg to barrrer synchromze with other processors Thus, 1t appears that the ’

transmon functlon overhead can be masked quite effecuvely

. Coalescmg loops J and I y1elds e

e A Do 10 Il = 1 N
1000 (T = B(I1):
'*«{jgloJN;xcoNTINUE -

- DO 20 ;.ui -1 N

L di= k mJ.n { J.or t(j) Ci> JI"“ } ; o

o j,;r JI -»1(3 1) +, (J+1)
hzadba;{5~ Y(I)*=-Y(I) = 14T, J)*Y(J) _
h IR (T .EQ 0+1) (D) = Y(I)/L(I Iy

'“?20’ CONTINUE ' | o

' .'”"'Fi’gureﬂ llRestructured Loop'afterl‘,C‘oalescing, o

" The s1mple lmear schedule for th1s coalesced loop is o(J y=J-1. The barners enforce the proper ordermg

B between success1ve column computatrons Row. computatmns are executed m parallel dependmg on the’

number of processors allocated at the end of the loop Notlce how the parallellsm width of the forward
elrmmatron algonthm decreases monotomcally as the algonthm moves down the columns of the matnx

L. Thts is qutte common for. such tnangular loop structures The barrier processor can tune the processor

’ allocatron for the coalesced loop by separatlng the computauon into phases as the parallehsm w1dth goes o

'down (or up) for each phase fewer (or more) processors can be allocated by the bamer processor for the

current phase

The next example consrdered is Gaussran ellmmatlon [GoV83] The 1nnermost loops for Gaussran '
| '.ehmmatlon labeled 20 and 30 in ﬁgure 12, can be. coalesced and scheduled effect1vely on a barrier v
 MIMD, ’ ' | U

" page2l

: Loop Coalescihg" '
Do 40 K %'1; N—le
C - cdde“‘,fo; 'vpiarrtial (or »comp_lete)» pivotin'g elirded‘
f Dd 10 P ¥:K+1, N

CW(R) = A(K,P)
10 ﬁZCONTINUE“" o

| D030 I =K+l, N
‘14 © . COEF = A(I,K)/A(K,K)
16 A(I,K) = COEF

DO 20 J = K+1, N
| AL, 9) = A(I,d) - COEF*W(J)
200 CONTINUE -
30 ' CONTINUE
© 40 CONTINUE -

| ; Figure-12: Orviginalv Code for Gaussian Elimination [GOV83].

~ Statements 14 and 16 can be distributed out the I loop; since the range for the resulting loop m‘atches
that of the DO loop labeled 10 and no dependencws exist between these loops, they can be fused |
[W0189] The resultmg code is shown in ﬁgure 13. ’

_ Page 2

Loop Coalescing
DO 40 K = 1, N-1

code for partial (or compléte) pivoting elided

Q-0

DO 10 P = K+1l, N

‘ : (P) = A(K,P')
'”5i*14"“”%g‘c0EF = A(P,K)/A(K,K)
16 A(R,K) = COEF

10 ¢ CONTINUE
D0 30 T = K#1, N
DO 20 J =K+l, N ,
i 'A(I,) = A(I,J) - COEF*W(J)
200 . CONTINUE -
30 © CONTINUE
40 CONTINUE
“ "Figure‘113:‘ Restructured Code for Gaussian_Elinnnation.y ,‘ -
The P loop may be executed in 'par'allel' of course, since it isa single loop; no coalescing is necessary.
The restructured code after coalescmg inner loops I and J 1nto index IJis shown in figure 147 A bar-’
| rier is requrred between the P loop and the coalesced IJ loop, and after the IJ loop to enforce the

proper ordering mherent in the outer loop, whichi is executed senally Clearly, TN, K)=(N —K)2 and the

h functlons to generate the ongrnal indices from IJare
I =(J div(N-K))+ (K +1)
and ks |
" J= ar mod (N=K)) + (K +1)
'Since both the I .‘and_ J Ioops muy be executed in parallel, there is no vn.eed to generate'bar_ﬁers to

enforce a proper ordering between ‘iterations of the coalesced loop. The code for partial or complete pivot-

ing, if it were includedz;in—» the example, could be parallelized like the P loop. As with the forward

7. Inthis rectangular loop ertample, the transition function has been replaced by div and mod operations.

‘Page 23

- Loop Coalescing
elimination example, the barrier processor could tune the processor. allocation to adapt tvo‘ the mo'n'ot,(_)ni-'
cally decreasing parallelism as K increases. ' \ »

DO 40 K = 1, N-1

C
CA code for partial (or complete) pivoting elided
. . .
DO 10 P = K+1, N
'h(g) - A(K,P)
14 .~ COEF = A(P,K)/A(K,K)
;‘.16:.‘ _A(P,K) = COEF-
‘,10 .~ CONTINUE
DO. 30 1J:= 0, (N-K)**2 -1
| I = (IJ div (N-K)) + (K+1)
J = (IJ mod (N—K)) + (K+1)
A(I,J) = A(I,J) - COEF*W(J)
30 CONTINUE |

40 CONTINUE
Figure 14: Restructured Code for Gaussian Elimination.

The next example considers executing a nbn-simple linear schedule on a barrier MIMD. Thrs émd
the following example show how linear schedules can exploit the maximum parallelism in nested loop
structureS by considen'ng all loops simultaneously. The loop given in figure 15 implements a foufr;ﬁbi_rit_i
differehc;é problem: notice that,the dependencies, shown in figure 16, préclude paralleliiing-cithér ihe I

or J loop directly. This example is taken from [Wol89].

 Page 24

Loop Coalescing

bc 20 I = 2, N-1
DO 10 J =2, N-1
A(I,J) = (A(I-1,J) + A(I+1,J)
+ 4 A(II-1) 4 AL 1)) /4
10 . | CONTINUE_V‘ﬁ o N | \
20) 'CONTINUE |
Figuré 15: Four-:poinfdif‘fc‘:irencevprOblem. -
- The wavefront technique [KuM?72], [Kuh80] was originally developed to. exploit the parallelism in
such loops. These loops can be coalesced ahd executed with a linear schedule. Loop struétufes such as the
four-point differencé problem show that parallelism in some nested loops is not inherent in one or the

other loop, but can be extracted by considering both loops simultaneously. This simultaneous approach is

natural when loop coalescing is combined with linear schedules.

A valid lihear schedule for executing the loops in figure 15 is o(/,J) = I+J—4; the wavefronts for
this schedule‘correspond to the dashed lines in figure 16. Note that this is not a simple linear schedule,
since ¢ is a function of both I and J. However, in this example, the coalesced loop can be executcd on

~a barrier MIMD if the number of processors allocated is equél to N-2. The barrier generation algorithm
will still work properly for some linear schedules if the number of processors is restricted to the range of |
the innermost coalesced loop. The exact conditions when it may still be applied is a current research

' problem. Table 3 shows the allocation of the iterations of the coalesced loop for four processors (N =6).

 Page 25

Loop Coalescing

Figure 16: Ihdek Space and Wavefronts for 4-Point Problem (N=6).

L Pégc 26

‘Loop Coalescing

PEO | PE1 | PE2 PE3 |

Clnres | sea | swy | 36n |

- "_713 35) | 10@.4) 7(53)

4@s) | neayl

R R N RIS,

' ‘, ' Table 3 Proper Execution Ordering Enforced by B'arriers., :

» Another example of the 1nteract10n between loops that affects the amount of explortable parallehsm

E can be seen: m the loop nest of ﬁgure 17 Th1s loop nest also prov1des an example of a rat10nal lmear

' schedule [ShF88] [Sh090]

o 20 I= 1, N

_",D010J—1 M o S

: A(I,J) = A(I-2, J) + B(I J)*C(I) + D(J I)

10 ', . CONTINUE L | SN
120 CONTINUE E | | | - SRR

Flgure 17: LoOp Nest with a Rational Linear Schedule;.

., The J loop can be executed in parallel but a dependence along I loop prevents parallehzatron

. notlce, however that the dependence dlstance in the I loop is 2. Th1s means that two wavefronts along
' ;the J loop can be executed in parallel thrs can be realized w1th the rauonal lmear schedule -
o(J K) (I 1)/2 The loop is coalesced m the normal manner and the resultmg schedule 1s, 1n fact:
optlmal in terms of executron tlme In this example a ratronal lmear schedule ylelds tw1ce as much paral-;:"

i 1e11sm compared to parallellzmg the J loop alone. A detalled d1scuss1on of issues related to opt1mal' ‘

- Page 27 |

-Loop Coalescing

linear schedules and loop schedulmg can be found in [ShO90]

- The fo]lowmg example provides 1n31ght on a subtle problem in exp101t1ng loop parallelrsm and how
loop coalescmg can help solve the problem The mnermost loop nest for Cholesky decomposmon

([GoV83] pp- 89) is shown in ﬁgure 18

DO 40 K

1,N

temp v k
~ po10 - 1,K- 1):
10 ";'témp = temp + G(K P)*G(K P)
G(K,K) = sqrt(A(K,K) - temp)

0.0
D' 20. P = 1,K-1 ..

~temp

200 . temp = temp + G(I,P)*G(K,P)
30 G(LK = (A(LK) - temp)/G(K,K)
40 CONTINUE

Flgure 18 Code for Cholesky Decomposrtlon [GoV83]

Notrce how the the loop 11m1ts for the inner I and P loops (labeled 20 and 30) vary with K. For
small values of K, most of the parallehsm resides in the I loop since the P loop range is small; how-
: ever,_the srtuatlon changes as K approaches N, where the T loop range becomes small, and the .P range.
large. Parallelism exists in both loops® but shifts from the I loop to the P loop as K moves through its
range. Slnce loopi'nterchange is possible, itis difﬁcult to decide which loop should be paralleli‘zed fora
machine that supports a'single level of loop parallelism. If coalescing is applied to these loops the paral¥
: lehsm 1nherent in the loop structure can be exploued more effectrvely, since it would be 1nherent in, the
s1ng1e coalesced loop ' '

- As another example of the difﬁCulty in effective loop parallelization consider again the 100p nest

from Trench S algonthm given in ﬁgure 6. Now assume that, instead of the loop bounds g1ven in‘the

8. . 'The parallelrsm inthe P loop must be reahzed through and an associative reductron [W0189]

 Page 28

" Loop Coalescing =

figure, vthe-»bounds for- J'are 1.N and for K are 1.. M. Given the. dependence‘structure 4 linear 'schedul‘e '
can exp101t parallehsm in‘one or.the other loop, the loop: w1th maxnnum parallehsm depends: on the rela-' t
| ’t1ve values of ‘M and: N9 The appropnate test .can be executed Aat:run- -time " to detenmne wh1ch loop »
: should be parallehzed w1th loop coalescmg, the dzv and mod parameter can be: a varlable set accordmg to
the results of thts test. The result is avery efﬁcrent techmque to: statrcally generate the proper run-tlme

e test to explort the maximum parallehsm possrble

: 5 Conclusrons ¥
, ~In thts work loop coalescmg has been extended to. apply to tnangular nested loops A new approach |
“has been proposed for coalescmg rectangular loops that is more efﬁcrent than current techmques 'I’he new
loop coalescing. techmques combmed w1th some fam111ar loop transfonnatlons for parallehzatron have
been apphed to the problem of schedulmg nested loop structures on barrier MIMD archrtectures Srmple‘
: hnear schedules have been shown to be an effective paradlgm for efﬁmently explomng the para]lelrsm in-

k. nested loops These schedules can also qu1te casily take advantage of parallehsm that is mherent in ‘the

mteracuon between nested loops. Loop coalescing also has advantages in parallehzmg loop structures

~where the parallellsm shxfts from one loop 1o another dunng executlon and where s1mp1e tests at run-tlme' _' i

can determme the best loop to parallehze
v Future research effort mclude extendmg the barrier generatron algonthm SO that 1t can be apphed to :
. linear schedules in general Current work also mcludes a prototype comprler that Wlll 1mp1ement several

of the transformalmns descnbed in thls work

9. i ,"‘The‘ a.naly51s necessary to deternline such tests in the general case is given in [Sh090].:" v

- Page29

Loop Coalescing

References
[Dis8s]

H. G Dietz and T. Schwedersk1 “Extendmg Stat1c Synchromzatlon Beyond SIMD and VLIW,”
Tech Report TR-EE 88- 25 Purdue Umversuy, School of Electncal Englneenng, June 1988.

[DoM79] : _ o . -
J. J Dongarra C. B Moler J R. Bunch and G. W. Stewart LINPACK Users’ Guide, SIAM: Phi-
ladelphla 1979 ‘ '
[Gov83] - SR |
G H Golub and C F ‘Van Loan Matrzx Computatzons, Johns Hopklns Umversuy Baltlmore
1983 L
[KaM67]
R. M Karp, R E. M111er and S. Wmograd “The Orgamzatxon of Computatlons for Umform
Recurrence Equatlons ”Journal of the ACM, Vol 14, No. 3, pp. 563-590, July 1967 |
[KrW85] | , r ’
: C. P. Kruskal and A WCISS “Allocatmg Independent Subtasks on Parallel Processors ** IEEE-
Trans Software Eng vol SE-11, no. 10, Pp- 1001-1016, October 1985. ' ‘ '

[KuM72] , o .

D. I. Kuck, Y Muraoka and S. C. Chen, “‘On the Number of Operatlons Slmultaneously Execut-
ble in Fortran-ere Programs and Their Resultmg Speedup,’f IEEE Trans Comput vol C 21 no.
12, pp. 1293- 1310 ' ‘

{Kuh80] ,
R. H. Kuhn Optzmzzauon and Interconnectzon Complexity for Parallel Processors Smgle-Stage'
Network.s and Decision Trees. Ph.D, dissertation, Dept of Comp. Science, U. of Illinois at
Urbana-Champalgn, February 1680.

[LuB80] ‘ o

*S.'F, Lundstrom and G. H. Bames. ‘‘A Controllable MIMD Architecture,"’ Proc. Int. Co'nf. on
Parallel Processing, pp. 19-27, 1980.
[Lun87] ‘
- S.F. Lundstrom “Apphcatlons Cons1deratlons in the System Des1gn of nghly Concurrent Mul-
tlprocessors ” IEEE Trans Comput vol C- 36, no. 11, pp 1292-1309, Noy. 1987 '

- Page 30

Loop Coalescing .

[MaP88] ' ‘
D.J. Magenhelmer L Peters K. W Pettxs, and D. Zuras, “Integer Multlphcatlon and Drvrsron on .
- the HPPrecrswn Archrtecture ”IEEE Trans. Comput., vol. C-37, no. 8, pp. 980-990, August 1988.
[OKD90] | | L
M. T o’ Keefe and H G Dletz, “Hardware Bamer Synchromzatlon Statlc Barner MIMD ”?
appear 1990 Int Conf on Parallel Processmg, St. Charles IL. '
[Pol88] } , ; , _
C. D Polychronopolous Parallel Programming and Compzlers Kluwer Academrc Pubhshers Bos- '
ton, 1988. . | |
[ShF88] , | .
W Shang and 1. AB Fortes ““Time Optimal Linear Schedules for Algonthms with Umform'
| Dependenc1es * Proceedmgs of Int'l Conf on Systolzc Arrays, May 1988, pp. 393-402 (also to
appearrnIEEE Trans on Computers) ' ' o
(Sho90] | o
W. Shang, M. T. O’ Keefe and J. A.B. Fortes, ‘‘On Optlmal Generalized Cycle Shnnklng,” Techn-
ical Report, School of Electncal Engmeermg, Purdue Umversrty, in preparatlon (May 1990).
" [Wol86]
M. J Wolfe *‘Loop Skewmg The Wavefront Method Rev1s1ted ” Int Jour. of Parallel Program- 5
ming, vol. 15, no. 4, 1986
[Wolg9] | _4
| M. J. Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press: Cambridge; MA, 1989.
[ZaD90] I | -
A Zaafram H.G. Dietz, and M. T. O’Keefe, “Statlc Scheduling for Barrier MIMD Archrtectures
to appear 1990 Int. Conf on Parallel Processmg, St. Charles, IL. :

Page 31

	Purdue University
	Purdue e-Pubs
	6-1-1990

	Loop Coalescing and Scheduling for Barrier MIMD Architectures
	Matthew T. O'Keefe
	Henry G. Dietz

	tmp.1542052450.pdf.RWanC

