
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

5-1-1990

A Simple Vector Language and its Portable
Implementation
Anar Jhaveri
Purdue University

Hank Dietz
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Jhaveri, Anar and Dietz, Hank, "A Simple Vector Language and its Portable Implementation" (1990). Department of Electrical and
Computer Engineering Technical Reports. Paper 724.
https://docs.lib.purdue.edu/ecetr/724

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages

A Simple Vector Language
and its Portable
Implementation

Anar Jhaveri
Hank Dietz

TR-EE 90-41
May 1990

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

A Simple Vector Language and Its Portable Implementation

Anar Jhaveri and Hank Dietz
School of Electrical Engineering

Purdue University
West Lafayettej DSf 47907

jhaveria@ecn.purdue.edu
May 1990

ABSTRACT

Many explicitly parallel languages have been proposed and implemented,
but most such languages are complex and are targeted to specific parallel
machines. The goal of this project was to design a very simple, explicitly paral­
lel, programming language which could easily be implemented and ported to a
wide variety of machines. The result was AJL, a structured language with deter­
ministic vector-oriented parallelism.

AJL programs are first compiled into assembly language instructions for an
idealized parallel machine, then these assembly language instructions are macro
expanded into C code which implements them for the actual target machine.
Finally, the target machine’s “ native” C compiler is used to generate executable
code. Macro definitions for “ generic” sequential machines have been imple­
mented; macros for the PASM (PArtitionable Simd Mimd) prototype parallel
computer are under development I.

I. Introduction

AJL was developed to satisfy the need for a very simple, explicitly parallel, easily portable
programming language. Most of the parallel languages that exist today, are complex. Porting
these languages onto different machines is more difficult not only because of the size of the
languages, but also because most parallel languages have been designed to be compatible with
only a particular class of parallel machines.

AJL is a simple, structured language. It permits operations on both scalar and vector values
and variables. It has a number of special vector-oriented features such as the shuffle, inverse
shuffle, right, left, and the ternary operation on vectors. However, all the “ vector” Operations of
AJL are reasonably efficiently executable with or without shared memory under either the MIMD
or SIMD execution model. It can be ported with ease onto any parallel or sequential computer;
porting AJL onto another machine is just a matter of redefining the C macros that implement the
AJL Target machine instructions.

Page I

A Simple VectorLanguage

Toward making AJL still more portable and flexible, the AJL compiler was constructed
using an EBNF-based LL(I) compiler-compiler system called PCCTS (the Purdue Compiler-
Construction Tool Set). As one of the first compilers built using PCCTS, AJL also helped in
debugging that system. PCCTS, which was developed by T. Parr, W. Cohen, and H. Dietz, gen­
erates both the lexical analyzer and parser from a single, unified, description. Because of this,
AJL is veiy easy to modify or extend.

Actions in the form of C code embedded in the AJL grammar generate instructions for a
hypothetical ideal target machine. These instructions are macro expanded by CPP (the C prepro­
cessor) into C code which implements them for the actual target machine. The “ native” C com­
piler for the target machine is used to generate executable code.

Chapter I discusses the syntax and semantics of AJL and presents a few sample AJL pro­
grams. The AJL target machine language is introduced in Chapter 2. Chapter 3 presents the
implementation of AJL. The conclusions are unveiled in Chapter 4. The appendices contain the C
language source code for AJL.

1.1. TheLanguageAJL

AJL1 is a structured, language similar in some respects to C and Pascal. However, unlike C
and Pascal, AJL supports vector operations that can be executed in parallel. It also supports
operations on scalar variables. It permits the use of global as well as local variables. Functions
can be defined within other functions. Vector or p o ly variables can be converted into scalar or
mono variables and vice versa.

If and while statements are available for loop constructs. The input statement can be used to
read input directly from the stdia Some of the special features include the vector ternary opera­
tor, the l e f t and r i g h t shift operators that move all elements of a vector l e f t or r i g h t
with wrap around, the s h u f and i s h u f operations to shuffle or inverse shuffle the elements of
a vector. The size of the no. of elements of a vector can be altered by redefining the value of
POLYMAX.

1.2. AJLSyntax

The AJL compiler translates programs written in AJL language into AJL macros, which are
the assembly language instructions for an idealized parallel stack machine. The programs written
in AJL should adhere to the language description. Following is the syntax specification of the
input language, AJL.

1 AJL stands for Anar Jhaveri’s Langauge. This name is a play on the much more serious explicitly-
parallel language HJL, also being developed at Purdue.

Page 2

A Simple Vector Language

prog : (decl)* Eof ;
decl : mode WORD (func | vars) ;
vars : ("," WORD)* ;
mode : "mono"

I "poly" ;
func : " { args } ")" body ;
args : mode WORD ("," mode WORD)* ;
body : "" (decl)* (stat)* ;
Stat : "" (stat)* ""

I "if" x stat { "else" stat }
j "while” x stat
I "return" x ";"
I "print" x ";"
I WORD assign
I " ; " ;

assign : "=" x
J x x .

x : xl { "?" Xl ":" xl } ;
xl : x2 (xla)* ;
xla : "<" x2

I "<=" x2
j "<>" x2
I ">=" x2
j ”>" x2
I "=" x2 ;

x2 : x3 (("+" I) x3)* ;
x3 : x4 ((" I "/") x4)* ;
x4 : x5 { x5 } ;
x5 : x6 { ".." x6 } ;
x6 : x7 { "[" x "]" } ;
x l : "sin" x7

I "cos" x7
j "tan" x7
I "floor" x7
I "ceil" x l
I "-" x l
I H v t l \ l l

I " l e f t " x l
I " r i g h t " x l
I " s h u f" x l
I " i s h u f 'V x l
I mode x l
"[" x ("," x)* "]"

I WORD ((> x (x)* ")") I)
I CONST
I "pi"
I "e"
j " in p u t"
I "#" ;

This language permits operations on scalar or mono variables and vector or p o ly vari­
ables. Actions are embedded in AJL grammar to generate the equivalent target machine code for

PageS

the desired target machine. Actions are blocks of C code enclosed in « and » . AJL grammar is
parsed by ANTLR. ANTLR is a software tool that analyzes such grammar descriptions and pro­
duces efficient C programs to recognize phrases in the specified language. This file containing the
C program is then compiled using the native C compiler of the machine to give the executable
file a j l .

1.3. AJLSemantics

The table below briefly summarizes the operations permitted by AJL and the meaning of
each of those operations. In the table, the mono variables a and b, and the p o ly variables
c, d, and e, are used to illustrate the operand types for each operation. For example, a + b
represents the addition of two mono values, whereas c + d represents the addition of two
p o ly values.

A Simple VectorLanguage

Page 4

A Simple Vector Language

AJL Construct Meaning
mono a ,b ; declaring mono (scalar) variables
p o ly c , d , e ; declaring p o ly (vector) variables
a + b add
a - b subtract
a * b multiply
a / b divide
a " b power
s i n a sine
co s a cosine
t a n a tangent
f l o o r a floor
c e i l a ceiling
a < b less than comparison; I if true, O otherwise
a . . b linear range from a to b as a vector
p o ly a equivalent to a . . a
c [a] a + l111 element of vector c
c + d vector add
c - d vector sub
c * d vector multiply
c / d vector divide
c ~ d vector power
s in c vector sine
cos C vector cosine
ta n c vector tangent
f l o o r c vector floor
c e i l c vector ceiling
[a , b , . . .] vector value list, e.g., c = [I , 2 , 3 , 4 , 5] ;
c < d element-by-element less than comparison
c ? d : e vector ternary operator
l e f t c vector shift by I, e.g., c [x] = c [x+1] with wrap
r i g h t c vector shift by I , e.g., c [x] = c [x-1] with wrap
s h u f c vector shuffle
i s h u f c vector inverse shuffle
Pi built-in constant value of Jt
e built-in constant value of e
number of elements in a vector (poly)
in p u t obtain a mono value from s t d i n

While the above summary suffices to introduce most of the conventional operations, some
of the operators are unfamiliar and require additional explanation:

a . . b
This creates a vector in which the elements have values ranging from a to b. The element
values are computed by making each element i have the value a+t* ((b -a) / (#—I)) . In
other words, the elements are equivalent to values sampled at regular spacing on a line
drawn from a to b. This isparticularlyusefulforconstructingvectorsrepresenting linear
functions for numerical analysis applications.

[a , b , ]
This creates a vector where the element values are a, b, etc. This is not currently

Page 5

A Simple Vector Language

implemented,

c? d : e
This is the vector ternary operator — effectively, an element-by-element conditional substi­
tution. For each element of c which is non-zero, the corresponding element of d is
returned; for the elements of c which are zero, the corresponding element of e is returned.

l e f t c
This shifts each element of the vector c left by one, with wrap around •— the inverse of the
r i g h t operation. E.g., if #==4, the vector l e f t [0, I , 2, 3] would be [I /
2 , 3 , O].

r i g h t c
This shifts each element of the vector c right by one, with wrap around — the inverse of the
l e f t operation. E.g., if #== 4, the vector r i g h t [0 , i , 2 , 3] would be [3 ,
0 , I , 2].

s h u f c
This shuffles the elements of the vector c using a formula derived from that on page 489,
"Ultracomputers", by J.T. Schwartz, ACM Transactions on Programming Languages and
Systems, Oct 1980. This is commonly used in algorithms such as FFT. E.g., if #==8, the
vector s h u f [0 , 1 , 2 , 3 , 4 , 5, 6 , 7] would be [0 , 2 , 4 , 6, I , 3 ,
5 , 7].

i s h u f c
This inverse shuffles the elements of the vector c using a formula derived from that on
page 489, "Ultracomputers", by J.T. Schwartz, ACM Transactions on Programming
Languages and Systems, Oct. 1980. E.g., if #==8, the vector i s h u f [0 , 1, 2 , 3 ,
4 , 5, 6, 7] would be [0 , 4 , I , 5 , 2 , 6, 3 , 7] .

This built-in constant gives the total number of elements in a p o ly variable. Notice that
these elements are indexed as Oto # - 1 . Although # cannot be modified during program
execution, it can be redefined by the user at compile time. To make # be x instead of the
default value, one would simply include the following line in the C program generated by
AJL:

♦ d e f in e POLYMAX x

in p u t
This “ variable” , when examined, will read a single number from the standard input and
will return that value as a mono. White space, etc., are ignored as per the rules of C s
s c a n f function.

AJL allows the use of local as well as global variables in functions. Nested scoping is
allowed The variable/function name, whether it is local or global, mono or poly, a keyword or
not, and its Offset relative to its position in the present active frame, comprise the information that
is stored in the symbol table.

Page 6

A Simple VectorLanguage

1.4. SampIeAJLPrograms

A few sample AJL programs, the resulting target machine code and final output are
described below. In order to understand fully how the final output is generated, the user will find
it helpful to go over the target machine code and note the operation performed by each instruc­
tion.

1.4.1. MonoFactorial

This sample program, e x am p le l .a j l , calculates the factorial of a scalar input. This
program accepts a mono variable input from stdin and computes the factorial of that number by
recursively calling the fact program. The final result is the factorial of the number accepted as
input from the user.

mono fa c t (m o n o n)
{

i f (n < 2) r e t u r n (I) ;
r e t u r n (n * f a c t (n - l)) ;

}

mono m a i n ()
{

p r i n t f a c t (i n p u t) ;
}

Resulting target machine code for the above sample program, e x a m p le l . c.

Page 7

A Simple Vector Language

fact()
{

MFLD(O) ;
MCONST (2);
MLT;
IF {
MCONST(I);
MRET ;
}
MFLD (0);
MARK;
MFLD(0);
MCONST(I);
MSUB;
FRAME;
fact ();
MMUL;
MRET;

}

real_main()
{

MARK;
INPUT;
FRAME;
fact();
MPRINT;

}

♦include "ajl_sup.h"

i n t
m a i n ()
{

fp-> f_m ono = msp;
f p - > f_ p o ly = p s p ;
re a l_ m a in () ;
r e t u r n ((i n t) m s p [- 1]) ;

}

The input and resulting output after compiling e x a m p le l . c are given below. Text typed
by the user is highlighted by using t h i s fo n t . Output and prompts from the computer are
shown in t h i s f o n t . Comments about the output are given in this font.

Page 8

A Simple Vector Language

$ ex a m p leI
5
120
$ e x a m p le !
20
2.4329e+18
$

1.4.2. Vector Operations Demonstration

This sample program, e x a m p l e 2 . a j l , performs a left shift, right shift, shuffle and
inverse shuffle operations, in that order, on the vector x. The resulting vector after this sequence
of operations is the same as the original vector x. A subtraction operation at this stage, hence,
results in a zero vector which is assigned to x. The Oth, 1st and 4th elements of the vector x are
then altered by assigning them individual values. The vector ternary operator then tests each ele­
ment of the vector x. If the element is zero, it prints it, else it prints the corresponding element
of the other vector, namely, one. Intermediate results after the main operations are printed to
enable the reader to understand better the actions performed by these operations.

mono main()
{

poly x;
poly one;
one =1;
x = l . . #;
print x;
X = left(x);
print x;
x = right(x);
print x;
x = shuf(x);
print x;
x = ishuf(x);
print x;
X = ishuf(shuf(right(left(x)))) - x;
print x;
x [0] = 3;
x[l] = 5;
x [4] = 2;
print x;
print x ? one: x;

>

The resulting target machine code for the above sample program is e x am p le2 . c.

Page 9

A Simple Vector Language

r e a l _ m a i n ()
{

MCONST(O);
PCONST;
MCONST(O) ;
PCONST;
MCONST(I);
PCONST;
PFST (I);
MCONST(I);
MCONST(POLYMAX);
PRANGE;
PFST(O);
PFLD (O');
PPRINT;
PFLD(O) ;
PLEFT;
PFST (O);
PFLD (O) ;
PPRINT;
PFLD(O);
PRIGHT;
PFST(O);
PFLD(O);
PPRINT;
PFLD(O);
PSHUF;
PFST(O);
PFLD(O);
PPRINT;
PFLD(0);
PISHUF;
PFST(O);
PFLD(O) ;
PPRINT;
PFLD (O) ;
PLEFT;
PRIGHT ;
PSHUF;
PISHUF;
PFLD (O) ;
P SUB;
PFST (O');
PFLD(O) ;
PPRINT ;
MCONST (O) ;
MCONST(3);

■.PFLD.(O);
PSUBST;
PFST(O);
MCONST(I) ;

♦include "ajl_sup.h"

Page 10

A Simple Vector Language

MCONST (5);
PFLD(O) ;
PSUBST;
PFST(O) ;
MCONST (4);
MCONST (2);
PFLD (0);
PSUBST;
PFST (0);
PFLD(O) ;
PPRINT;
PFLD (0);
PFLD(I) ;
PFLD(O) ;
POLYIF;
PPRINT;

}

i n t
m a i n ()
{

fp->f_m ono = msp;
f p - > f _ p o l y = p s p ;
r e a l _ m a i n () ;
r e t u r n ((i n t) m s p [- l]) ;

}

The resulting output after compiling e x am p le2 . c is as follows:

Page 11

$ ex a x n p le 2
0 :1 4 :5 8 :9 1 2 :13 value of x
1 :2 5 :6 9:10 13:14
2 :3 6 :7 1 0 :1 1 14:15
3 :4 7 :8 11 :12 15:16

0 :2 4 :6 8 :10 12:14 value of left(x)
1 :3 5 :7 9:11 13 :15
2 :4 6 :8 10:12 14:16
3 :5 7 :9 11 :13 15 :1

0 :1 4 :5 8 :9 1 2 :13 value ofright(x)
1 :2 5 :6 9:10 13 :14
2 :3 6 :7 10 :11 14:15
3 :4 7 :8 11 :12 15:16

0 :1 4 :3 8 :5 12 :7 value of shuf(x)
1 :9 5 :1 1 9:13 13 :15
2 :2 6 :4 10:6 14:8
3 :10 7:12 11 :14 15:16

0 :1 4 :5 8 :9 1 2 :13 value of ishuf(x)
1 :2 5 :6 9:10 13 :14
2 :3 6 :7 10 :11 14:15
3 :4 7 :8 11 :12 15 :16

0 :0 4 :0 8 :0 12:0 value of x minus x
1 :0 5 :0 9:0 13:0
2 :0 6 :0 10:0 14:0
3 :0 7 :0 11:0 15:0

0 :3 4 :2 8 :0 12 :0 value of altered x
1 :5 5 :0 9 :0 13:0
2 :0 6 :0 10:0 14 :0
3 :0 7 :0 11 :0 15 :0

0 :1 4 :1 8 :0 12 :0 value after ? : operation
1 :1 5 :0 9 :0 13 :0
2 :0 6 :0 10:0 14 :0
3 :0 7 :0 11 :0 15:0
$

A Simple VectorLanguage

Page 12

A Simple Vector Language

1.4.3. VectorSummation

This sample program, example3 .a jl, operates on both mono and poly variables. It
takes two scalars as input and creates a vector with a value which is a linear range from the first
to the second. It then sums up all the elements of the resulting vector using “ recursive doubling”
(in compiler parlance, a tree-structured associative reduction).

poly global_thingy;

poiyIeft_by_n(poly one, mono two)
{

if (two > 0) {
return(Ieft_by_n(left(one), (two)-I));

} else {
return(one);

}
}

mono
sum(poly one)
{

mono i;
poly t;
t - one;
i = I;
while (i < #) {

t = t + left_by_n(t, i);
i = 2 * i;

}
return(t [0]);

}

mono
main()
{

global_thingy = input..input;
print global_thingy;
print sum(global_thingy);

}

The resulting target machine code for the above sample program is e x am p le3 . c.

Page 13

A Simple Vector Language

l e f t _ b y _ n ()
{

MFLD (0);
MCONST(0);
MGT;
IF {
MARK;
PFLD(0);
PLEFT;
MFLD(0);
MCONST(I);
MSUB;
FRAME;
l e f t _ b y _ n () ;
PRET ;
} e l s e {
PFLD(0);
PRET;
}

♦include "ajl_sup.h"

sum()
{

MCONST(0);
MCONST(0);
PCONST;
PFLD(0);
PFST (I);
MCONST (I) ;
MFST(O);
WHILE
MFLD (0);
MCONST(POLYMAX);
MLT ;
DO
PFLD(I) ;
MARK;
PFLD(I) ;
MFLD(0);
FRAME;
left_by_n();
PADD;
PFST (I);
MCONST(2);
MFLD(0);
MMUL ;
MFST (0);
}
PFLD(I);
MCONST(0);
PSUBLD;

Page 14

A Simple Vector Language

MRET;
}

real_main ()
{

INPUT;
INPUT;
PRANGE;
PST(0);
PLD(0);
PPRINT;
MARK;
PLD(O) ;
FRAME;
sum();
MPRINT ;

}

int
main()
{

MCONST(0); PCONST;
fp->f_mono = msp;
fp->f_poly = psp;
real_main();
return((int) msp[-1]);

}

Running this program yields:

$ exaznple3
I 16

0:1 4:5 8:9 12:13 value o f globaljhingy
1:2 5:6 9:10 13:14
2:3 6:7 10:11 14:15
3:4 7:8 11:12 15:16
136 value o f sum
$

Page 15

A Simple Vector Language

2. AJL Target Language

AJL is a simple vector calculator language designed to be easily implemented and used on
PASM and other parallel or serial machines. The language compiles into C code with various
macro references, and porting the language is simply a matter of changing the macro definitions
to reflect the target architecture.

A set of macros for executing AJL code within a single process under any flavor of UNIX
system has been developed. Macro definitions for PASM are underway.

This document simply outlines the function of each macro, hence serving as an
implementor’s guide in porting AJL to other target machines.

2.1. Terminology

In the interest of brevity, a few terms are used within following descriptions. These
terms are:

PSP Polystackpointer

MSP Monostackpointer

POLYMAX No. of elements in a poly

Second on the stack
This refers to the position that is below the topmost element on the stack.

mx Mono expression

mxl Mono expression in the second place on the mono stack

mx2 Monoexpressioninthetopmostplace onthe mono stack

22. PolyMacros

The following macros implement the poly (vector) operations,

f o r p o l y (v)
This is a simple f o r loop. The variable v takes on integer values from O to
P OLYMAX-1 in increments of one.

PPRINT Pretty prints the vector topmost on the poly stack on an element-by-element basis.
The vector is then removed from the poly stack.

POLYIF This is the vector ternary operator. Each element of the vector which is third on the
stack is tested. If it is true, then the resulting element is assigned the value of the ele­
ment of the vector second on the stack else it is assigned the value of the element of
the vector topmost on the poly stack. The top 3 vectors are then removed from the
stack and replaced by the result.

PLT Compares the top two poly stack vectors element-by-element for less than.These two
polys are removed from the poly stack and replaced by a single poly result which has
a value of I for each element where the first poly element was less than the second, O

Page 16

A Simple VectorLanguage

PLE

PNE

PGE

PGT

PEQ

PADD

PSUB

PMUL

PDIV

PPOW

PSIN

PCOS

PTAN

otherwise.

Compares the top two poly stack vectors element-by-element for less than or equal
to. These two polys arc removed from the poly stack and replaced by a single poly
result which has a value of I for each element where the first poly element was less
than or equal to the second, O otherwise.

Compares the top two poly stack vectors element-by-element for not equal to. These
two polys are removed from the poly stack and replaced by a single poly result which
has a value of I for each element where the first poly element was not equal to the
second, O otherwise.

Compares the top two poly stack vectors element-by-element for greater than or
equal to. These two polys are removed from the poly stack and replaced by a single
poly result which has a value of I for each element where the first poly element was
greater than or equal to the second, O otherwise.

Compares the top two poly stack vectors element-by-element for greater than. These
two polys are removed from the poly stack and replaced by a single poly result which
has a value of I for each element where the first poly element was greater than the
second, O otherwise.

Compares the top two poly stack vectors element-by-element for equality. These two
polys are removed from the poly stack and replaced by a single poly result which has
a value of I for each element where the first poly element was equal to the second, O
otherwise.

Adds the top 2 poly stack vectors element-by-element. These 2 polys are removed
from the stack and replaced by the resulting vector.

Subtracts the top 2 poly stack vectors element-by-element. These 2 polys are
removed from the stack and replaced by the resulting vector.

Multiplies the top 2 poly stack vectors element-by-element. These 2 polys are
removed from the stack and replaced by the resulting vector.

Divides the top 2 poly stack vectors element-by-element. These 2 polys are removed
from the stack and replaced by the resulting vector.

Raises the second vector on the stack to the power of the first vector. The top 2 vec­
tors are removed from the poly stack and replaced by the result.

Performs the sine operation on an element-by-element basis on the vector topmost on
the poly stack. This vector is then replaced by the result.

Performs the cosine operation on an element-by-element basis on the vector topmost
on the poly stack. This vector is then replaced by the result.

Performs the tangent operation on an element-by-element basis on the vector top­
most on the poly stack. This vector is then replaced by the result.

Page 17

A Simple VectorLanguage

PNEG Negates each element of the vector topmost on the poly stack.

PFLOOR Computes the vector floor. The floor operation is performed element-by-element on
the vector topmost on the poly stack giving the result vector.

PCEIL Computes the vector ceiling. The ceiling operation is performed element-by-element
on the vector topmost on the poly stack giving the result vector.

PLEFT This is a vector shift left operation. AU the elements of the vector topmost on the
stack are shifted left by one place with wrap around.

PRIGHT This is a vector right shift operation. AU the elements of the vector topmost on the
stack are shifted right by one place with wrap around.

PSHUF This shuffles the elements of the vector using the formula derived from that on page
489, "Ultracomputers", by J.T. Schwartz, ACM Transactions on Programming
Languages and Systems, Oct. 1980.

PISHUF This does the inverse shuffle of the elements of the vector using the formula derived
from that on page 489, "Ultracomputers", by J.T. Schwartz, ACM Transactions on
Programming Languages and Systems, Oct. 1980.

PRANGE This forms a linear range from mxl to mx2 as a vector. It takes the values of the 2
monoexpressions from the mono stack and generates a vector on the poly stack
whose elements have values starting from the value of mxl up to mx2 in equal incre­
ments. The 2 monoexpressions are then removed from the mono stack.

PCONST This forms a Unear range from mx2 to mx2 as a vector. It takes the value of the
monoexpression mx2 from the top of the stack and generates a vector on the poly
stack each of whose elements have the value of mx2. The mono stack element is then
removed.

PSUBST IUis assigns a value to a single element of a vector on top of the poly stack. The
value of mxl, which is the monoexpression below the one on top of the stack is used
to select an element offset by that value in the vector. The value of mx2, which is on
top of the stack, is then assigned to the chosen element of the vector. The 2 mono
stack elements are then popped off the stack.

PSUBLD This is used to put a mono value on top of the mono stack from the poly stack. The
mx on top of the mono stack is used to select an element offset by that value in the
vector on the poly stack and the contents of this element replace the mxfP on the
mono stack.

PLD (x) This moves a vector to the top of the poly stack from a location offset by x from the
starting address of the poly stack. This is typicaUy used with gjobal variables.

PST (x) This pops off an element from on top of the poly stack and places it in a location on
the poly stack Uiat is offset by x from the starring address of the poly stack. This is
typicaUy used with global variables.

Page 18

PFLD (x) This moves a Vector to Ihe top of the poly stack from a location offset by x from the
starting address of the frame pointed to by the frame pointer, which is the currently
active frame. The contents of this location arc pushed onto the top of the poly stack.
This is typically used for local variables.

PFST (x) Here x is used to access the location offset by x in the frame pointed at by the frame
pointer, which is the currently active frame. The top vector of the poly stack is then
stored at this location. This is typically used for local variables.

23. Frame Manipulation Macros

PRET Performs a poly return. It resets the mono and poly stack pointers. It puts the poly
value to be returned on top of the poly stack. Itdecrementstheffamepointerthereby
discarding the previous frame.

MAXFRAMES
This defines the maximum no. of frames that can be active at any given time within a
program. It can be altered by the user by redefining it, if the user so desires.

MARK
FRAME The above stated 2 macros result in setting the frame pointer to point to a new frame.

This new frame is created at the time that a function is called and it stores the argu­
ments passed to the function as well as the variables local to that function a ta posi­
tive offset from the frame pointer.

2.4. MonoMacros

The following macros implement the mono (scalar) operations.

IF Checks whether the topmost element on the mono stack evaluates to non-zero. The
element is then removed from the mono stack.

WHILE
DO
The substatement is executed repeatedly so long as the value of the element topmost on the mono
stack remains non-zero. The test takes place before each execution of the statement The element
is then removed from the mono stack.

POLYMAX This defines the no. of elements that can be present in a vector. It can beredefined
by the user if necessary.

MPRiNT Prints the element topmost on the mono stack and then removes the element from the
stack.

MLT Compares the top 2 elements of the mono stack for less than. These 2 elements are
removed from the mono stack and replaced by a single mono result which has a
value of I if the first element was less than the second, which is the element on top of
the stack, O else.

A Simple VectorLanguage

Page 19

MLE

MNE

MGE

MGT

MEQ

MADD

MSUB

MMUL

MDIV

MNEG
MPOW

MSIN

MCOS

MTAN

Compares the top 2 elements of the mono stack for less than or equal to. These 2 ele­
ments are removed from the mono stack and replaced by a single mono result which
has a value of I if the first element was less than or equal to the second, which is the
element on the top of the stack, O else.

Compares the top 2 elements of the mono stack for not equal to. These 2 elements
are removed from the mono stack and replaced by a single mono result which has a
value of I if the first element was not equal to the second, the element on top of the
stack, O else.

Compares the top 2 elements of the mono stack for greater than or equal to. These 2
elements are removed from the mono stack and replaced by a single mono result
which has a value of I if the first element was greater than or equal to the second, the
element on top of the stack, O else.

Compares the top 2 elements of the mono stack for greater than. These 2 elements
are removed from the mono stack and replaced by a single mono result which has a
value of I if the first element was greater than the second, the element on top of the
stack, O else.

Compares the top 2 elements of the mono stack for equality. These 2 elements are
removed from the mono stack and replaced by a single mono result which has a
value of I if the first element was equal to the second, the element on top of the
stack, O else.

Adds the top 2 mono stack elements. These are then removed and replaced by the
result.

Subtracts the top 2 mono stack elements. These are then removed and replaced by
the result.

Multiplies the top 2 mono stack elements. These are then removed and replaced by
the result.

Divides the top 2 mono stack elements. These are then removed and replaced by the
result.

Negates the element on top of the mono stack.

Raises the first element to the power of the second element, which is on top of the
mono stack. The top 2 elements are then removed and replaced by the result.

Performs the sine operation on the element topmost on the mono stack. This element
is then replaced by the result.

Performs the cosine operation on the element topmost on the mono stack. This ele­
ment is then replaced by the result.

Performs the tangent operation on the element topmost on the mono stack. This ele­
ment is then replaced by the result.

A Simple VectorLanguage

Page 20

A Simple Vector Language

MFLOOR Computes the floor of the element topmost on the mono stack and replaces the ele­
ment by the result.

MCE IL Computes the ceiling of the element topmost on the mono stack and replaces the ele­
ment by the result.

MCONST(X)
Pushes the constant x on the mono stack.

MLD (x) Pushes the element offset by x from the starting address of the mono stack onto the
top of the mono stack.

MST (x) Removes the topmost element of the mono stack and places it in a location on the
mono stack that is offset by x from the starting address of the stack.

MFLD (x) Copies the element offset by x in the current frame to the top of the mono stack.

MFST (x) Stores the element on top of the mono stack in a location offset by x in the current
frame. The same element on top of the stack is then popped off.

MRET Performs a mono return. It resets the mono and poly stack pointers. It puts the mono
value to be returned on top of the mono stack. It decrements the frame pointer
thereby discarding the previous frame.

2.5. Predefined Variables

input Reads a mono value from the standard input and pushes it onto the mono stack.

M_PI The constant n.

M_E The constant e.

MAKEMONO
This creates a mono variable from a vector by pushing the first element of the vector
on top of the poly stack onto the mono stack. The vector on the poly stack is then
popped off.

Page 21

A Simple VectorLanguage

3. AJLImpIementation

The single-process unix-based version of AIL is currently maintained on a Sun workstation.
On that machine, an executable AJL compiler, a j I , would be created according to the following
makefile:

CFLAGS = -I/home/aquarium3/carp/ANTLR/h -g
ANT LRF LAG S = -I
SRC = ajl.c scan.c sym_table.c err.c
OBJ = ajl.o scan.o sym_table.o err.o
ajl : $ (OBJ) $ (SRC)

cc -g -o ajl $ (CFLAGS) $ (OBJ)
ajl.c : ajl.g

/home/aquarium3/carp/bin/antlr $ (ANTLRFLAGS) ajl.g
scan.c : parser.dlg ajl.g

/home/aquarium3/carp/bin/dlg -C2 parser.dlg scan.c

AJL programs serve as input to the executable file a j l and the output is a C program con­
taining the target machine code for the ideal machine. This C program can then be compiled
using the native C compiler of the machine to generate the desired output. There is also an ajl
support file, a j l _ s u p . c, which has to be compiled along with the above. For example, if the
input file containing the AJL program was called vO. a j l , then the following commands gen­
erate the desired executable file vO:

a j l < v O . a j l > vO. c
cc vO.c a j l _ s u p . c - o vO

A brief description of various files associated with AJL is listed below. Tte sources are
listed in appendixes A-E.

Appendix A
Thefile a j l . g ; the AJL syntax specification

AppendixB
The file a j I . h; extern declarations of global variables used in a j l . g actions

Appendix C
The file a j l _ s u p . h; this is an include file containing the types, extern declarations, and
macros for AJL programs running under UNIX.

Appendix D
The file a j l _ s u p . c ; the global data intialization and support functions for AJL programs
running under UNIX.

Appendix E
The file sym _t a b l e . c; the symbol table manager for AJL.

Page 22

A Simple VectorLanguage

4. Conclusions

AJL has been successfully implemented on the UNIX operating system. Porting it to any
parallel computer should be accomplished without much trouble. It is just a matter of redefining
the macros used to implement the target language. In most cases, the only changes are in the
implementations of the communication instructions, such as LEFT.

An initial, untested, set of macro definitions for AIL to run on the PASM (PArtitionable
Simd-Mimdj prototype parallel computer have already been developed and further work is going
on in this area.

Further, as one of the first compilers built using PCCTS, AJL served to help debug the sys­
tem, and has helped show the utility of PCCTS.

5, Acknowledgements

Will Cohen and Terence Parr, PhD students in Electrical Engineering at Purdue, deserve
special thanks for always being there to help me with any problems that I had with PCCTS (Pur­
due Compiler-Construction Tool Set) — particularly with the pre-(3 release versions.

Page 23

A Simple Vector Language

Appendix A: a j l . g

/* AJL syntax specification
May 1990, A. Jhaveri & H. Dietz

* /
♦attrib «

♦include <stdio.h>
♦define D_Text
♦include "ajl.h"
»

«
Attrib MONO - { "mono" };
Attrib POLY = { "poly" };
♦define ISMONO(x) (!strcmp("mono",x.text))
♦define ISPOLY(x) (!strcmp("poly",x.text))
»

♦token KVAR
♦token KFUNC
♦token " [\t\]" « LexSkip(); » /* Ignore White */
♦token "[Vn]" « lex_line++; LexSkipO ; » /* Track Line ♦ * /

prog: « /* syminit(); */
g_ptr = s p = 0; mg_cnt=0; pg_cnt=0;
frame__ptr_array [frame_ptr++] = sp;
type = GLOBAL;
printf("♦include \"ajl_sup.h\"\n\n");

»
(decl)* "@"
«

printf("\nint\nmain()\n{\n");
{

/* Save space for globals. . . * / ■ _
register int i;

»

f o r (i= 0 ; i< p g _ c n t ; + + i) {
printf("VtMCONST(0); PCONST;\n");

}
f o r (i= 0 ; i< m g_cn t; ++i) {

printf("VtMCONST(O);\n");
}

} ■

p r i n t f (" \ t f p - > f _ m o n o = m s p ; \ n ") ;
p r i n t f (” \ t f p - > f _ p o l y = p s p ; \ n ") ;
p r i n t f (" \ t r e a l _ m a i n () ; \ n ") ;
p r i n t f (" \ t r e t u r n ((i n t) m s p [- l]) ;Vn}Vn") ;

Page 24

A Simple Vector Language

decl: mode WORD
«

mode_flg = 0;
strcpy(temp, $2.text);
if '(ISMONO ($1)) {

mode_flg = MONOWD;
}

else {
mode_flg = POLYWD;

}
»
(func[$0] I vars)[$2]

vars: «
if (mode_flg == MONOWD) {

if (type — GLOBAL) {
enter(temp, KVAR, type, M0N0WD,mg_cnt);
mg_cnt++;

} else {
printf("XtMCONST(O);\n");
enter(temp, KVAR, type, M0N0WD,ml_cnt);
ml_cnt++;

}
} else if(mode_fIg == POLYWD) {

if (type == GLOBAL) {
enter(temp, KVAR, type, POLYWD,pg_cnt);
pg_cnt++;

} else {
printf("XtMCONST(O);\n");
printf("XtPCONST;\n");
enter(temp, KVAR, type, POLYWD, pl_cnt);
pl_cnt++;

}
. » . ■ ■ ■

("," WORD
«

if (mode_flg — MONOWD) {
if (type == GLOBAL) {

enter($2.text, KVAR, type, MONOWD,mg_cnt);
mg_cnt++;

} else {
printf("XtMCONST(O);\n");
enter($2.text, KVAR, type, MONOWD,ml_cnt);
ml_cnt++;

}
} else if(mode_fIg == POLYWD) {

if (type == GLOBAL) {
enter($2.text, KVAR, type, POLYWD,pg_cnt);
pg_cnt++;

} else {
printf("XtMCONST(O);\n");
printf("XtPCONST;\n");

Page 25

A Simple VectorLanguage

enter($2.text, KVAR, type, POLYWD, pl_cnt);
pl_cnt++;

»
))*

mode: "mono”
«
strcpy($0.text,"mono");

»
I "poly"
«
strcpy($0.text,"poly");
»
;

func: "\(" «
type = LOCAL;
f rame_j?tr_array [frame_ptr++] = sp;
l__ptr = sp; ml_cnt=0; pl_cnt=0;
enter($0.text, KFUNC, type, mode_flg,0);
if (strcmp($0.text, "main") == 0) {

printf("real_%s()\n{\n",$0.text) ;
} else {

printf("%s()\n{\n", $0.text);
} ' '

»
{args} "\)" body
«

printf("}\n\n");
sp =l_ptr+l; frame_ptr— ;
if (frame_ptr > I) {

l_ptr = frame_ptr_array [frame_ptr-l];
}

»
;

args:
«

mode WORD
if (ISMONO($1)) {

mode_fIg = MONOWD;
enter($2.text, KVAR, type, mode_flg,ml_cnt);
ml_cnt++;
}

else { mode_flg =POLYWD;
enter($2.text, KVAR, type, mode_flg,pl_cnt);
pl_cnt++;

}
»

«
mode WORD

if (ISMONO($2)) {

Page 26

A Simple Vector Language

mode_fIg = MONOWD;
enter($3.text, KVAR, type, mode_flg,ml_cnt);
ml_cnt++;
}

else {
mode_flg =POLYWD;
enter($3.text, KVAR, type, mode_flg,pl_cnt);
pl_cnt++;

}
»
) *
;

body: "\{"
«

type = LOCAL;
»
(decl)* (stat)* "\}n

stat: "\{" (stat)* "\>"
I "if" x
«

printf ("\tIF {\n");
»
stat {"else"
«

printf("\t} else {\n");
»
stat}
«

printf ("\t}\n");
»
I "while"

«
printf("\tWHILE\n");

»
x
«

printf("\tD0\n");
»
stat
«

printf(" Yt }\n");
»
I "return" x

«
if '(ISMONp ($2)) {

printf("\tMRET;\n");
} else {

printf("\tPRET;\n");
}

"print" x ";"

Page 27

»

«
if (ISMONO($2)) {

printf("\tMPRlNT;\n"j;
} else {

printf (”\tPPRINT;\n");
}

»
I WORD assign[$1] ";"
I

A Simple Vector Language

assign: "=" x
« ;

note = lookup($0.text);
if ((modes[note] == POLYWD) && ISMONO($2)) {

/* Promote x to a POLY value */
printf("\tPC0NST;\n");
$2 = POLY;

} else if ((modes[note] == MONOWD) && ISPOLY($2)) {
error("cannot assign a poly value to a mono variable");

}

switch (modes[note]) {
case MONOWD:

switch (scope[note]) {
case GLOBAL:

printf("\tMST(%d);\n", offsets[note]);
break;

case LOCAL:
printf ("\tMFST (%d) An", offsets [note]);

}
break;

case POLYWD:
switch (scope[note]) {
case GLOBAL:

printf("\tPST(%d);\n", offsets[note]);
break;

case LOCAL:
printf("\tPFST(%d);\n", offsets[note]);

}
break;

}
»

I "\[" x "\]« x
«

flag = off;
if (! (ISMONO (-$5))) error ("%s operand should be mono value", $ 5) ;
oldoffset = lookup($0.text);
if (scope[oldoffsetJ==GLOBAL) [

printf("\tPLD(%d);\n",offsets[oldoffset]);
flag = on;

} ■
else [

Page 28

A Simple VectorLanguage

printf("\tPFLD(%d);\n",offsets[oldoffset]);
}
printf("\tPSUBST;\n");
if (flag == on) {

flag = off;
printf("\tPST(%d);\n",offsets[oldoffset]);

; ■}
else printf CWtPFST(%d);\n",offsets[oldoffset]);

»

x : xl {"?"
xl
xl
« i f (!ISMONO($0)) printf ("\tP0LYIF;\n") ; »
} [$1] « $0=$1; »

xl: x2 (xla)* [$1] « $0=$1; »

xla: "<" x2
«

type_match("<",$0, $2);
printf("\t%cLT;\n", (ISM0N0($2) ? 'Mf : 'P'));

»
I "<=" x2

type_matCh("<=", $0,$2);
printf("\t%cLE;\n", (ISMONO($2) ? fMf : 'Pf));

»
I "<>" x2

•«
type_match("<>", $0, $2);
printf("\t%cNE;\n", (ISM0N0($2) ? 'M' : rP'));

»
I ">=” x2

«
type_match(">=", $0, $2);
printf (?,\t%cGE;\n,,/ (ISM0N0($2) ? rM r'': rPr));

»
I ">" x2

« t y p e _ m a t c h $0, $2);
printf ("\t%cGT; Vn'', (ISMONO ($2) ? rM r : rPr));

»
I x2

«
t y p e _ m a t c h , $0, $2);
printf("\t%cEQ;\n", (ISMONO($2) ? rMr : rPr));

»

Page 29

A Simple Vector Language

x2: x3 (("\+" « $0=$1; » | " \ - " « $0=$1; ») x3
«

if (strcmp($1.text,"+")==0) {
if (ISMONO($ 0)) printf ("\tMADD;\n");

else printf("\tPADD;\n");
}

else { if (ISMONO($ 0)) printf("\tMSUB;\n");
else printf("\tPSUB;\n");

}
»
) * [$ 1]
« $0 = $1 ; »

x3: x4 (("*" « $0=$1;» |"/" « $0=$1; ») x4
« ■

if (strcmp($1.text,”*")==0) {
if (ISMONO($0)) printf("\tMMUL;\n");
else printf("\tPMUL;\n");
}

else { if (ISMONO($0)) printf("\tMDIV;\n");
else printf("\tPDIV;\n");

»
)*[$!] « $0=$1 ; »

x4: x5
{""" x5
« if (ISMONO($0) && ISMONO($2)) {

printf("\tMPOW\n");
} else if (ISPOLY($0) && ISPOLY($2)) {

printf("\tPPOW\n");
} else {
error("Types of operands to ~ don't match");
}

»
} [$1]
«

$0 = $1 ;
' > >

;
x5: x6

« $0 = $1; »
x6

« if (!(ISMONO($0) && ISMONO($2))) {
error("Operands of .. must be mono values");

V-
printf("\tPRANGE;\n");
$$ = POLY;

»
}[$1]

Page 30

A Simple VectorLanguage

x6: x7 « found = off; » {"\[" x "\]"
« found = on;

if (!ISMONO($2))
error("%s should be mono valued",$2);

»
}
«

if (found == on) {
$0 = MONO;
printf ("\tPSUBLD;\n") ;

} else $0 = $1;
»

x7: "sin" x7
« printf(ISMONO($2) ? "\tMSIN;\n" : "\tPSIN;\n");

$0 = $2 ;
»

I "cos” x7
« printf(ISM0N0($2) ? "\tMC0S;\n" : "\tPC0S;\n");

$0 = $2;
»

I "tan" x7
« printf{ISMONO($2) ? "\tMTAN;\n" : "\tPTAN;\n");

$0 = $ 2 ;
»

I "floor" x7
« printf(ISMONO($2) ? "\tMFL00R;\n" : "\tPFL00R;\n");

$0 = $ 2 ;
»

I "ceil" x7
« printf(ISMONO($2) ? "\tMCEIL;\n" : "\tPCEIL;\n");

$0 = $2 ;
»

I "\-" x7
«printf (ISMONO ($2) ? "\tMNEG; \n" : "\tPNEG;\n");

$0 = $ 2 ;
»

I "\(" x "\)« « $0 = $2; »
I "left" x7

« printf("\tPLEFT;\n");
$0 = $ 2 ;
»

I "right" x7
« printf("\tPRIGHT;\n");
$0 = $2;
»

I "shuf" x7
« printf ("\tPSHUF;\n");
$0 = $2 ;

»
I "ishuf" x7

« printf("\tPISHUF;\n");
$0 = $2 ;

Page 31

A Simple VectorLanguage

»
I mode x7

«
if IISMONO($1) && ! (ISMONO($2)>) {

printf("\tMAKEMONO;\n");
} else if (!ISMONO($1)&& ISM0N0($2)) {

printf("XtPCONST;Xn") ;
}
$0 = $1; V* make type be mode */

»I "\ r x c,« x) * *'\]"
«
error("Yet to be implemented");
$0 = POLY;
»I WORD
(("VC

«
printf("\tMARK;\n");

»
x C," x) * ”\) ")

«
printfC\tFRAME;\n\t%s();\n",$0.text);
$$ = ((modes[lookup($0.text)] == MONOWD) ?MONO

»
I '

«
note = lookup($0.text);
switch (modes[note]) {
case MONOWD:

switch (scope[note]) {
case GLOBAL:

printf CXtMLD (%d) ;\n", offsets [note]) ;
break;

case LOCAL:
printf CXtMFLD (%d) ;\n", of fsets [note]);

, ■ }■ .■

$$ = MONO;
break;

case POLYWD:
switch (scope[note]) {
case GLOBAL:

printf CXtPLD (%d) ;\n", of fsets [note]) ;
break;

case LOCAL:
printf CXtPFLD(%d); \n", offsets[note]);

}
$$ = POLY;
break;

' }
»

) [$1]
I CONST

« printfCXtMCONST(%s);\n", $l.text); $0=MONO;

POLY);

Page 32

A Simple Vector Language

»
I "Pi"« printf("XtMCONST(3 .141592654);\n"); $0=MONO;

»
I "e"

« printf (''XtMGONST (2.71828) ;\n") ; $0=MONO;
»

I "input"
« printf("\tINPUT;\n") ; $0=MONO;
»

I "#"
« printf("XtMCONST(POLYMAX);\n"); $0=MONO;
»

;«/* empty action for error * / »
#token CONST "[0-9][0-9]*"
#token WORD "[a-zA-Z][A-Za-zO-9]*" « ; »

«
main()
{

Attrib tmp;
strcpy(tmp.text, "ick");
ANTLRi(prog, tmp, stdin);

}

error(s, a, b, c, d)
char *s;
int a, b, c, d;
{

fprintf(stderr, "Error Line %d — - ", lex_line);
fprintf(stderr, s, a, b, c, d);
fprintf(stderr, "\n");

}

type_match(s, a, b)
char *s;
Attrib a, b;
{

if (ISMONO(a) != ISMONO(b)) {
error("Type mismatch for operands to %s", s);

}
}
»

Page 33

A Simple VectorLanguage

AppendixB: a j l . h

#include <ctype.h>
♦define STKSIZ 128
#define CHAR_MAX 32
#define LOCAL 2
♦define GLOBAL I
♦define on I
♦define off O
♦define MONOWD I
♦define POLYWD 2
extern char mempool.[], temp [CHAR_MAX];
extern int memnext;
extern int string[];
extern int types[];
extern int scope[];
extern int modes[];
extern int offsets[];
extern int type, sp, g_ptr, l_ptr, frame_ptr, mg_cnt, pg_cnt, ml_cnt

pl_cnt, mode_flg, oldoffset, flag;
extern int found, note;
extern int frame_j?tr_array [] ;

Page 34

A Simple Vector Language

AppendixC: a j l_ s u p .h

/* ajl_sup.h
Support code for AJL programs running under unix:
include file.
May 1990, A. Jhaveri & H. Dietz

* /

#include <stdio.h>
♦include <math.h>
♦define IF if (*(— msp))
♦define WHILE for (;;) {
♦define DO if (!(*(— msp))) break;
♦define POLYMAX 16 /* Number of elements in a poly */
♦define mono double /* Type of a mono value */
♦define MSTKMAX 1000 /* Mono value workspace */
extern mono mstk[];
extern mono *msp;

♦define MONOBOP(OP) { \
msp[-2] = msp[-2] OP msp[-l]; \
— msp; \

)

♦define MONOP(OP) { \
msp[-l] = 0P(msp[-l]); \

}

♦define MONOUOP(OP) { \
extern double OP(); \

\
msp[-l] = OP(msp[-1]); \

}

♦define MPRINT { \
printf("%g\n", ((double) *(— msp))); \

}

♦define MLT M0N0B0P(<)
♦define MLE MONOBOP(<=)
♦define MNE M0N0B0P(<>)
♦define MGE M0N0B0P(>=)
♦define MGT MONOBOP(>)
♦define MEQ MONOBOP(==)

Page 35

A Simple Vector Language

♦define MADD
♦define MSUB

MONOBOP(+)
MONOBOP(-)

♦define MMUL
♦define MDIV

MONOBOP(*)
MONOBOP(/) ■

♦define MNEG MONOP-D'- .

♦define MPOW { \
extern double pow(); \

\
msp[-2] = pow((double) msp[-2], (double) msp[-1]); \
— msp; \

}

♦define MSIN MONOUOP(sin)
♦define MCOS MONOUOP(cos)
♦define MTAN MONOUOP(tan)
♦define MFLOOR { \

extern double floor(); \
\

msp[-l] = floor((double) msp[-l]); \
}
♦define MCEIL { \

extern double ceil(); \
\ ' - ■ ' ■ ■ ■

msp[-1] = ceil((double) msp[-1]); \
}

♦define MCONST(x) * (msp++) = (x)
♦define MLD(x) * (msp++) = mstk[x]
♦define MST (x) mstk[x] = *(— msp)
♦define MFLD(x) { * (msp++) = * (fp->f_mono + x); }
♦define MFST (x) { *(fp->f_mono + x) — *(— msp); }
♦define MRET { \

* (fp->f_mono) ^ mspf-1]; Y
psp - fp->f_poly; \
msp = fp->f_mono + I; \
— fp; \
return; \

}

♦define INPUT { \
double d; Y

A
scanf("%lf", &d); \
* (msp++) = d; \

}

♦ifndef M_PI
♦define M PI 3.141592654

Page 36

A Simple VectorLanguage

#endif
#ifndef M_E
#define M_E 2.718281828
#endif
fdefine MAKEMONO { \

*msp = psp[-l]._[0]; \
— psp; \
++msp; \

}

fdefine poly struct _j>oly /* Type of a poly value */
poly {

mono _ [POLYMAX];
};

fdefine PSTKMAX 1000 /* Poly value workspace */
poly pstk[];
poly *psp;

fdefine POLYBOP(OP) { \
register mono *q = & ((— psp)->_[0]); \
register mono *p = & (psp[-1]._[0]); \
register mono *1 = p + POLYMAX; \

\
do { \

*p = (*p OP * (q++)) ; \
} while (++p < I); \

}

fdefine POLYUOP(OP) { \
extern double OP(); \
register mono *p = & (psp[-1]._[0]); \
register mono *1 = p + POLYMAX; \

\
do { \

*p = OP (*p) ; \
} while (++p < I); \

fdefine POLYOP(OP) { \
register mono *p = & (psp[-1]._[0]); \
register mono *1 = p + POLYMAX; \

\
do { \

*p = OP(*p); \
} while (++p < I); \

fdefine forpoly(v) for (v=0; v<P0LYMAX; ++v)
fdefine PPRINT pprint();

Page 37

A Simple Vector Language

#define POLYIF { \
register int v; \

\
forpoly(v) { \

psp[-3]*_[v] = (psp[—3]._[v] ? psp[-2]._[v] : psp[-1]._[v]); \
} \
psp -= 2; \

tdefine PLT POLYBOP(<)
#define PLE POLYBOP(<=)
#define PNE POLYBOP (<>).
#define PGE POLYBOP(>=)
#define PGT POLYBOP(>)
#define PEQ POLYBOP(==)
#define PADD
tdefine PSUB
tdefine PMUL
tdefine PDIV

POLYBOP(+)
POLYBOP(-)
POLYBOP(*)
POLYBOP(/)

tdefine PPOW { \
extern double pow(); \
register mono *q = &((— psp)->_[0]); \
register mono *p = & (psp[-1]._[0]); \
register mono *1 = p + POLYMAX; \

\
do { \

*p = pow((double)*p, (double)* (q++)); \
} while (++p < I); \

tdefine PSIN
tdefine PCOS
tdefine PTAN
tdefine PNEG

POLYUOP(sin)
POLYUOP(cos)
POLYUOP(tan)
POLYOP(~)

tdefine PFLOOR { \
e x t e r n d o u b le f l o o r () ; \
r e g i s t e r mono *p = &(p s p [- 1] . _ [0]) ; \
r e g i s t e r mono *1 = p + POLYMAX; \

\
do { \

*p = f l o o r ((double) * p) ; \
} w h i l e (++p < I) ; \

}
tdefine PCEIL { \

e x t e r n d o u b le c e i l () ; \
r e g i s t e r mono *p = &(p s p [- l] ._[O]) ; \
r e g i s t e r mono *1 = p + POLYMAX; \

\
do { \

Page 38

A Simple VectorLanguage

*p = ceil((double) *p); \
} while (++p < I); Y

}

♦define PLEFT { \
register mono *p = & (psp[-1]._[0]); \
register mono *1 = p + (POLYMAX - I); \
register mono wrap = *p; \

\
do { \

*p = *(p + I); \
} while (++p < I); \
*p = wrap; V

}
♦define PRIGHT { \

register mono *p = & (psp[-l]._[O]); \
register mono *1 = p + (POLYMAX - I); \
register mono wrap = *1; \Y
do { \

*1 = *(1 - I) ; \
} while (p < — 1) ; V
*1 = wrap; \

}
♦define PSHUF { \

/ * Perform SHUFfle using formula derived from that on page 489, \
"Ultracomputers," by J. T. Schwartz, ACM Transactions on \
Programming Languages and Systems, Oct. 1980. Y

* / \
register int i; \
poly temp; \

V
forpoly(i) { \

register int j = i + i; \
\

if (j >= POLYMAX) j — (POLYMAX - I); \
temp._[j] = psp[-1]._[i]; \

} \
psp[-1] = temp; \

}
♦define PISHUF { \

/* Perform ISHUFfle using formula derived from that on page 489, \
"Ultracomputers," by J. T. Schwartz, ACM Transactions on \
Programming Languages and Systems, Oct. 1980. \

* / \
register int i; \
poly temp; \

\
forpoly (i) { \

register int j = i + i; \
\

if (j >= POLYMAX) j -= (POLYMAX - I); A
temp._[i] = psp [-l] j]; \

} \

Page 39

A Simple Vector Language

p s p [- l] = temp; \
} '

♦ d e f i n e PRANCE { \
r e g i s t e r mono *p = &(p s p [0] . _ [0]) ; A
r e g i s t e r i n t i ; \

V
++psp; V
f o r p o l y (i) { \

*(P++) - ((i * (msp [.-I-] - msp [-2])) / (POLYMAX-1)) + m s p [- 2 J ; \
} \
msp -= 2; \

} ■

#d e f i n e PCONST { \
r e g i s t e r mono *p = &(p s p [0] ._[0]) ; \
r e g i s t e r i n t i ; \

\ ;
++psp; \
—msp; \
f o r p o l y (i) { \

* (p++) = *msp; \
} \

#define PSUBST { \
psp[-1]._[(int) msp [—2 3 3 = msp[-l]; \
msp -= 2; \

#define PSUBLD { \
msp[-l] = psp[—1] (int) msp[~l]]; \
— psp; \

♦define PLD(x) * (psp++) = pstk[x];
♦define PST(x) pstk[x] = *(— psp);
♦define PFLD(x) { * (psp++) = *(fp->f_poly + x); }
♦define PFST(x) { * (fp->f_poly + x) = *(— psp); }
♦define PRET { \

* (fp->f_poly) = psp[—1]; \
psp = fp->f_poly + I; \
msp = fp->f_mono; \
— fp; \
return; \

}

♦define MAXFRAMES 256
♦define frame struct _frame
frame {

mono *f_mono;
poly *f_poly;

Page 40

A Simple Vector Language

};

extern frame fstack[];
extern frame *fp;
#define MARK { register mono *fp_jnono = msp; \

register poly *fp_poly = psp;
♦define FRAME ++fp; fp->f_mono = fp__mono; \

fp->f_poly = fp_poly; }
J

extern void debug();

Page 41

A Simple VectOrLanguage

AppendixD: a j l_ s u p .c

/* a jl_sup.c
Support code for AJL programs running under unix:
global data initialization and support functions.
May 1990, A. Jhaveri & H. Dietz

* /

♦include "ajl_sup.hn
mono mstk[MSTKMAX];
mono *msp = & (mstk[0]);
poly pstk[PSTKMAX];
poly *psp = & Cpstk[0]);
frame fstack[MAXFRAMES]/
frame *fp = & (fstack[0]);
pprintO
{

register int i, j;
printf("\n");
for (i=0; i<((POLYMAX+3)/ 4) ; ++i) {

printf("%d:%g", i, ((double) psp[-l][i]));
for (j=((POLYMAX+3)/ 4) ; j+KPOLYMAX; j+= ((POLYMAX+3)/ 4)) {

printf("\t%d:%g", j+i, ((double) psp[—I]._[j+i
} '

printf ("An") ;
■} :
printf("Xn");
— psp;

}

void
debug(s)
char *s;
{

register int i, j;
printf("In function %s\n", s);

}

Page 42

A Simple Veetor Language

Appendix E: s y m _ t a b le .c

/* symbol table manager for ajl */
♦include, "ajl.h"
♦include "tokens.h"
char *text[STKSIZ];
char temp[CHAR_MAX];
int types[STKSIZ];
int scope[STKSIZ];
int modes[STKSIZ];
int offsets[STKSIZ];
int type, sp,g_ptr, l_j?tr, flag,mode_flg,oldoffset,mg_cnt,pg_cnt,ml_cnt,pl_cnt
int found, note;
int frame_ptr_array[STKSIZ];
int frame_ptr — 0;
int
lookup(s) ‘
char * s;
{

register int i = sp;
while (— i >= 0) {

if (Strcmp(s, text[i]) == 0) return(i);

/* make dummy entry... to recover from undefined var */
return(enter("UndefinedVariable", KVAR, LOCAL, MONOWD));

} ' '

static char *
strsav(s)
register char *s;
{

/* save a copy of the string s...
* /
extern char *malloc();
register char *p = malloc(strlen(s)+1);
strcpy(p, s);
return(p);

}

int
enter(s, type, scop, mode, set)
char *s;
int type, scop, mode, set;
{ ■"

types[sp] = type;
scope[sp] = scop;
modes[sp] = mode;
textfSp] = strsav(s);

Page 43

A Simple VectorLanguage

offsets[sp] = set;
return(sp++);

Page 44

	Purdue University
	Purdue e-Pubs
	5-1-1990

	A Simple Vector Language and its Portable Implementation
	Anar Jhaveri
	Hank Dietz

	tmp.1542052450.pdf.gphVv

