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ABSTRACT

Ben Letaief, Khaled. Ph.D., Purdue University. May 1990. Importance Sampling
Simulation of the Stack Algorithm with Application to Sequentlal Decodmg MaJor
Professor J. S. Sadowsky. .

Importance samplmg is a Monte Carlo variance reduction technique which in
many applications has resulted in a significant reduction in computational cost -

required to obtain accurate Monte Carlo estimates.. The basic idea is to generate the

random inputs usmg a biased snnulauon distribution. - That i is, one that d1ffers from

the true underlymg probablhty model Slmulatlon data is then welghted by an

| ’appropnate likelihood ratio. in order to obtaln an unblased estimate of the desu'ed _

parameter.
This thesis presents new importance sampling techniques for the simulation of
systems that employ the stack algorithm. The stack algeﬁﬂlm is pnrnanly used in-

digital communications to decode convolutional codes, but there are also other appli-

cations. For example, sequential edge linking is a method of finding edges in images

that employs the stack algorithm. In brief, the stack algorithm is an algorithm that

attempts to ‘ﬁ'nd the maximum ineu'ic dpath through a large decision tree. There are

two quantities that characterize its performance. First there is the probability of a

" branching error. The second quantity is the distribution of computation. It turns out

that the number of tree nodes examined in order to make a specific branching decision
is a random variable. The distribution of computation is the distribution of this ran-
dom variable. The estimation of the distribution  of computation, and parameters

derived from this distribution, is the main goal of this work.



. XV
We present two new importanCe sampling schemes (including some variations)
for estimating the distribution of computation of the stack algorjthm. The first geheral |
method is called the referene‘e path method. This method biases noise ihputs using the
- weight disu'ibutiOn.of the associated convolutional code. The second methed is the
parﬁtioning method. This method uSes a stationai'y biasing of noise inputs that alters
the drift of the node metric process in an enéemble average sense. - The biasing is
applied oniy up to a certain ‘point in time; the point where the correct path node metric
r‘ninimutﬁ occurs. This rnethod is inspired by both inforrnation theory.and large devia-
tions theory. | | |
- This thesis also ’presents another two importance sampling fechniquee. The first |
is called the error events simulation method. This scheme will be used to estimate the
" error probabilities of stéck algorithm decoders. The second method that we shall
~ present is a new irhportaqee sampling techniqte for simulating the sequential edge
linking algorithm. The main goal of this presentation will be the development of the
 basic theory that is relevant to this simulation problem and to d;lscuss some of the key ‘

issues that are related to the sequenual edge linking s1mulauon -
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CHAPTER1
INTRODUCTION |

It is often the case that the complexity of the problems ‘associatedr with many of
todays cornmunicatibns systems discourages analytical solutions. Furthermore,even
though there is a vast body of knowledge about the'se systems. Nontheless, when it
comes down to evalniation of system performance, the present state of the art often- -

requires some idealistic assumptions. As a result, it has long been recognized that

- Monte Carlo simulation is effectively  the ‘only practical ‘way to evaluate the

performance of many of todays communications systems A typical example is the . -

* calculation of error probablhtles for digital communications systems If the parameters

of interest are events of rare probablhues, then s1mulat1ng such events usmg a brute
force Monte Carlo approach rmght be intractable, if not 1mpract1cal. The reason bemg
that one has to generate a very‘ large number L of independent random samples in order
to obtain good estimates of the probability of these rare events. To ‘apbpreciate the
magnitude of this problem, suppose that we wish to estimate an error prob‘ability P
To evaluate P, based on Monte Ca.rlo s1mulauon techruques, we estimate P, us1ng the
maximum hkehhood estimator | | |

A ) 1 L 70‘) o
=— ¥ LX)

~ where L.(.) denotes the indicator - random vanable of - the error  event and

X(l),X(z) XU are mdependent random samples Wthh are 1dentlcally dlstnbuted If
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P, is small, then we would not expect to "hit" the error event very often during the L

simulations. This then would require that L must be vefy large to insure that 1’5e is

- close to P, with high probability. In fa_c;, 1t is easy to show that for any €>0

(Chebychev inequality)

. var[P,]
AP, —P.| 2¢) < [ZE]
€
_ varlT,(X®)]
L ¢?
_ P, (1-P,)
Le

For such an estimator to be meaningful, € must be chosen to be some fraction of P..

' ' P, ,
For example, we may choose € = —-. In this case, we will have

10
A3 100 1-P.

P.-P.| 2¢e) £ —
A | Pe el 2€) L P,
< 100 1

L

e

(recall that 0 £ P, < 1.) Consequently, the number of simulation runs L must be greater
than 100/P, in order for f’e to have any significance. Therefore, for sufficiently small
values of P, (requirements in the range of 10‘6 to 107 are not unusual,) the
corresponding Monte Caﬂo ¢sﬁmates can be dif_ﬁcult, if not impossible, even for the
most powerful computers. For example, to estimate a probability on the order 107,

we would need 10° =230 independent simulation runs. If the system is complex,

- computer run times may be prohibitive. Furthermore, the period of a typical random

number generator is anywhere from 215 10 232 [15]. In order for these random number

generators to approximate true "randomness," it is necessary that the total simulation
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utilize only a fraction of this period. Thus Monte Carlo estimation of probabilities
smaller than 107° is difficult because of the questionable ‘quality of the cornpuier
generated random nurnbers, va course, ‘the advantage of Monte Carlo simulation is
that it is often the only way to evaluate the performéncc of cdmplex systems.
Consequéntly, it is highly desirable to develop simulation techniques which retain thé

ability to simulate complex systems, yet require substantially fewer simulaﬁon runs to

estimate small probabilities.

Importance sampling (1S) is a modified Monte Carlo simulation techniqne which,
in comparison to ordinary Monte Carlo, may reduce by orders of magnitude the
number of simulation runs required to obtain a specified estimator accnracy [1-31].
This technique arises ,fil'om the obs}ervations that the events of impoﬁance, namely
erfors, typically occur very réiély by the underlying noise processes. The simulation
efficiency can be irnproved if errors can be made artiﬁcially to oécur more often in
such a way that true error events probabilities can be estimated from the inflated ones.
The basic principle behind importance sampling is to simulate noisier conditions than
the actual operating conditions, so that the simulation of these events can be made
yvithout-needing a very large number of samples. This is dnne by simulating using a
distribution that generates the random inputs in the simulation which is different‘ that
the true distribution. Simulating a high noise environment, of course, produces mnre
errors. In order to properly estimate the relative frequcncy.’of these error events for the |

actual low noise operating conditions, the simulation outputs are weighted by the ratio

of the actual probability distribution to the simulation distribution. The end result is an

unbiased estimator with a substantially lower variance in comparison to the ordinary
Monte Carlo estimator using the same number of simulation runs, or what is usually

sought, the number of importance sampling simulation runs can be made much less
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than the ordinary Monte Carlo ones for a given variance or accuracy.

Importance sampling seems to have first appeared at a conference in 1949 [1],
and it has found wide spread applications in many diverse fields. Recently, importance
sampling has become quite popular in digital communications [5-6], [10-21], [16],
[2'1], [23-24], [30], detection [12], [20], [31], Network simulation and queueing
systems [9], [15], [17], [20], [27]. There has been substantial success in applying this

technique to nonlinear and/or non-gaussian channels. In particular, optical and satellite

communication channels. Most of this work, however, was ad hoc and has mainly
been revolved éround choosing various stretched and shifted versions of the true
distribution in order to achieve improvements in the importance sampling estimator
performance. Such methods, have been referred' to as conventional importance
sampling (CIS) techniques in the communications literature [21], [24], [29]. Many of
these CIS methods are based on optimized variance scaling schemes operating on the
true distribution. It turns out that when CIS was first implemented, good performance

has been obtained (for simple channel models). However, when CIS was applied to

" more realistic channel models and with coding, the computational efficiencies were not

. appreciably reduced [29]. A more recent importance sampling technique which we

shall refer to as the mean translation biasing method, has been proposed in the
communication literature. This new method was first proposed by D. Lu and K. Yao
[21]!, and further refined by Sadowsky and Buc;klcw [26]. In addition, it was shown
that this technique is more powerful and more efficient than the CIS approach [21],
[26]. In particular, under certain conditions, Sadowsky and Bucklew [26] showed thaf

the mean translation biasing method is the unique asymptotically optimal scheme.

1. In [21], this method was referred to as the improved importance sampling (IIS) technique.
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- In this the51s, we con51der the apphcation of 1mportance samplmg to the
s1mulation of systems that employ the stack algorithm [44 ], [5 7] The stack algorithm
or Z-J algorlthm of Zigangirov and Jehnek is a sequentzal tree searchmg algorlthm‘
whose goal is to find the maximum metric path_ through_a decision tree with random
node metrics. Our main application is to the sequential dccoding of a generalkclass of
error control codes that are called convolutional cdiies [5 7] ‘Speciﬁcally, we consider
the simulation of stack algori}thm sequential decoders decision processes. | |

Sequential decoding was introduced by Wozencraft [35] 'as'_o_the first efficient and -

practical scheme for decoding convolutional c':odes..,This'scheme is independent of the

decoder memory, and hence arbitrary low error probabilities can. be achieved provided

operating under cutoff rate [57] Its ma.in drawback is 1ts 1nherent mability to deal
effectively w1th severe bursts of noise. Specxﬁcally, severe noisy frames _may

occasionally take a large amounts of computation ‘causing 1nformation to be lost.

A key charactenstic of the stack algonthm is that the number of computauons per

correct decision is a random variable [38], [45], [57] we denote this random variable

C. Thus in order to assess the performance of stack algorithm sequennal decoders, the. .

probabihty distribution of C must be determined A great deal of work has gone mto
the statistical analy51s of the distribution of C. The bulk of th1s work is the classical

1nformation theoretic analy31s of sequential decoding. This analysis mdicates that the

- distribution of C which we shall refer to as the distribution of computatlon ‘has a

Pareto tail, a function of the channel but 1ndependent of the code constraint length :

| [41], [45], [54], [57] The main drawback of this ana.ly31s is that it is based on random“

coding arguments Such arguments, by the1r very nature, are not t1ed d1rectly to the
properties of spe01ﬁc codes. As a consequence, the classical ana.ly31s cannot predict

the d1str1but10n of computation fora specific convolunonal code It turns out that there
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is abundant experimental evidence that shows that the distribution of computation has
indeed a Pareto tail for any code. However, it has been noticed and demonstrated that
the distribution of computation depends also on the distance property of the
convolutional code [57], [59]. Note that the classical analysis exhibits no such

dependence.

One could continue the above discussion of the statistical analysis of the
distribution of computation for sequential decoders, but the ﬁoint should now be clear.
There are no analytical results expressing the distribution of computation explicitly in -
terms of specific code parameters. Hence for performance evaluation of sequential
decoders, it is necessary to use computer simulations. It turns out that simulating
sequential decoders using a brute force Monte Carlo approach could prove to be

extremely difficult , if not impossible, especially for low noise conditions.

This thesis presents new efficient importance sampling techniques for estimating
the distribution of computation of stack algorithm decoders. The first method is called
the refefence path method. The reference path method is based on the distance
structure of the code being simulated. The second method is the partitioning method.
This method is motivated by the asymptotics of large deviations theory [26] and an
information theoretic ensemble averaging argument. Finally the third method is called
the M-method. This technique is basically a variation of the partitioning method. We
note that in all of the above schemes, we do not consider branching errors probabilities.
In other words, we assume that the decoder ultimately chooses the correct transmitted

path after the search is terminated.

The error probability of sequential decoders is also known as a random coding
average only [57], [59]. That is, as in the case of the distribution of computation, it is

obtained in the form of averages over the ensemble of random convolutional codes.
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Based on this random coding analysis, it is knowh that the error probabiiify of
sequential decoders is a function of only the code constraint length, the transmission
channel, and the code raté [57]. It has been noticed, however, that this error
probability does depend on the distanceb structure of the convolutibnai code. But as in
the case of the distribution of computation there are no analytical results that cxpress
this probability in terms of the code distance properties, ﬁor in terms of vspeciﬁc code
parameters. Hence, in order to evaluate the error probabilities of sequential'décoders,
it is necessary to use cbmpufer simulations. In this thesis, we shall present another

importance sampling technique which we will refer to as the error event simulation

" method. The error event simulation method will be used to estimate bit error rates for

stack algorithm decoders.

The organization of this thesis is as follows. In Chapter 2, a general background
on importance sampling is presented. In particular, we shall derive the expression of
the unconstrained o}atimalirnbortance safnpling simulation distribution. |

Chapter 3 presents some background on tree searching and the stack algorithm.
In addition, it §vill present a new theorem which we‘shall refer to as the fundameﬁtal
theorem. This theorem forms the structural foundation for the simulationv of the stack
algorithm. |

In Chapter 4, we shall present our new importance sampling simulation_ schefnes
for estimating the distribution of computation. |

Chapter 5 demonstrates the power and accuracy of the above simulation
techniques by presenting some simulation results for the rate 1/2 band constraint >lengths
5, 14, and 21‘convolutional codes operating on the binary symmetric channel and the

additive white gaussian noise channel.
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Chapter 6 presents the error event simulation method and demonstrates its

potential by presenting some simulation results.

In Chapter 7, we shift our focus to a different application. In this chapter, we will
present a new importance sampling technique for simulating thé Sequential Edge
Liﬁking (SEL) algbrithm. The SEL élgorithm is a stack algorithm technique forv
defecﬁng edgés in images. Our main objective in this chapter is to develop some of the
basic .theory relevant to this application, and to discuss the key issues that are related to
the SEL simulaﬁon via importance sampling. | '

Finally, Chapter 7 concludes the thesis by commenting on the »resUlfs bf this work

and discussing possible future research topics.
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CHAPTER 2
IMPORTANCE SAMPLING

2.1 Introduction

Importance sampling is a Monte Carlo simulation technique in which the
simulation data is generated using a simulation distribution which is different from the
true underlying distribution. ‘The importance sampling estimator then weights the
simulation data by an appropriate likelihood ratio in order to form an unbiased estimate
of the desired parameter. This method is called importance sampling because the
simulation distributions which minimize the estimator variance also tend to increase

the relative frequency of the "important events."

The goal of importance sampling is to select a simulation density which tends to
minimize the number of simulation runs (and hence, less computations) to obtain a
specified accuracy. The unconstrained optimal simulation distribution is well known,
and in fact, under certain conditions this distribution yields to a perfect esﬁmator. That
is, an estimator with a zero variance. However, the unconstrained optimal solution is
not practical because it assumes knowledge of precisely the parameter that we wish to
estimate. Thus the practical problem of importance sampling is to obtain the most
efficient simulation distribution from a suitably large class of candidate distributions

that are determined by implementation constraints.
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In this chapter, we shall present a brief overview of the basic theory behind
importance sampling. In addition, we will also der‘ive' the expression of the
unconstrained optimal vimportance sampling distribution. ' This distribution will
indicate some of the kcy properties that good impdrtance sampling distributions should

have.

2.2 General Theory Behind Importance Sampling
2.2,1 Importance Sampling

Let (Q, %,P) be a probability space, X be an Q—valued random element and g(.)

be a real valued function of X. We shall consider the problem of estimating
o = E[gX)] ' 2.1)
= [ g(w) P(dw)

Let P*(.) be a probability distribution such that P(.) is absolutely continuous with
respect to P*(.); that is, P(A)> 0 implies P*(A) >0 for every A F. Importance
sampling involves choosing the proability distribution P*(.) and observing that o can

be written as

dP
dP*

o = fg(@) —()P*([dw) 22)

‘where dP/dP"(.) is the radon-Nikodym derivative of P(.) with respect to P*()). The

name importance sampling derives from the fact that one can choose P* to be large in
the regions that are most important, namely where |g(w)| is large. We shall call P*

the importance sampling distribution.

A standard simulation formula for estimating an expected value is to use a sample

mean expression. In this case, the importance sampling estimator is obtained as a
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"empirical evaluation" of the integral (2.2) instead of (2.1). For Q='1,...,L, one
generates independent random samples X, . . ., X® using the importance sampling

distribution P* (.) instead of the true distribution P(.). The importance_ sampling'

estimator is
- 1 L
a= — 3 gXD)wx? ey
S =1 o
where
w(w) = — (). ; 2.4
(W) s ( )

The likelihood ratio w(w) is called the impbrtance sampling weight at ®. the that if _
P*()=P(.), then W(®) =1 and the sample mean estimator (2.3) is reduced to the

ordinary Monte Carlo estimator.

-2.2.2 Bias and Vérianée

Let var [] and E*[.] denote the variance and eXpectaﬁon operations‘ for Vthe'
importance sampling distribution P*(). Because the simulation data X(_lj), cees X_(L) -
are independent random samples generated using P*(.), it follows from (2.3) and (2.4)

that

dp

P*(d
5 (0) P (dw)

E*[&]; %og

[ s(@)

R

Consequently, the importémcc sampling estimator (2.3) is unbiased.
Likewise, since the simulation data is independent and identically distributed

(iid.), it follows that the variance of the importance sampling estimator ais
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- 2
LI * dP ‘ ~ 2
var (o) = % E[ {g(m) s (w)] 1- [E*[a]J

Consequently, we have

var' @ = & [na»*)-aZ] @3
whére
' : 4P 2 ' v
RAOES] [g(co) S (oa)] P*(dw). : (2.6)

Note that the impact of the choice of the importance sampling distribution P*() is
completely represented by the functional n(.). Cohseqqently,- our objective is to

minimize bn(.).- Furthermore, notice that (2.6) clearly indicates that good choices of -

P*() will tend to be large relative to P(.) in the region of "importance”, namely where

‘| g(w)| is large, hence diminishing the variance of o for a fixed L, or equivalently,

reducing the number of simulation runs L for a given variance or accuracy.

The next theorem shows how to choose P* () in order to minimize (2.6). This

‘result is well known [7], but we shall include its proof for completeness. -

Theorem 2.1: Assume E[ |g(X)| ] <ee.

n®" ) = | [g(m) :: (co)] P'dw) 2 E[ [gX)|1* 2.7)
and equality holds if and only if
. |g(@)| o o '
P de) = —22__Ppd 2.
(dw) B 12001 ] dow) | | . (2.8)

A P! (dw).
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We shall call P (.) the uniconstrained optimal importance sampling distribution.
Proof: First observe that (2.7) follows directly if (2.8) is substituted into the left
hand side of (2.7). Next by the Jensen’s ,inequali'ty |

s

2
] P*(dw)

v

’

= E[ [gX01 P

and equality holds if and only if

= ¢ a.s. P*(.),

where c is some constant.

O

Observe that, by (2.6) and (2.7) it follows that var; (&) <var (&) where varg(.)
denotes variance operation for the unconstrained optimal ,importanceb sampling
distribution P} (.). ' |

Corollary 2.1: If g(w) > 0, then the optimal importance sampling distribution is

Pi(dw) = ﬂp(dm) o 29

Furthermore, if P o(.) is used then n(P )= o2, and hence by (2 5) the importance

estimator (2. 3) is perfect; that is, varo(oz) 0.
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As we have mentioned earlier, the unconstrained optimal importance sampling-
distributioq P;(..) is well known. Unfortunatély, P;(.) is not a practical solution as it
assumes knowledge of precisely the parameter which we wish to estimate. However,
P, () indicates certain features which good importance sampling distributions should
have. For example, the simulation relative frequency of the event {® € dw}, which is |
just P, (dw), is directly proportional to the true relative frequency P(dw). Thg intuition .
behind this is that the "important” differential events are those events for which P(dw)
is relatively large. These are precisely the most likely events to be observed under the

true distribution. Consequently, good importance sampling distribution should tend to

- maximize the relative frequency of these important "differential” events. Such

distributions should be selectéd so that (2.6) is minimized. | Hence, good importance
sampling distributions should' inflate the probability mass assigned by P(.) where
| g(w)| is large, and deflate it where | g(w)| is small. The choice of good importance
sampling distributions is the key issue in importancc sampling. Further discussions of
this important subject will be considered later. |

As a final remark in this chapter, we note that when g(w) = Ig(w); that is, g(.) is
the indicatof function of an event E then « is simply the probability of that event.
Thus, if E is an error event, then by Corollary 2.1 note that P,(.) produces errors with
probability 1. Hence, when used to estimate error probabilities, good importance

sampling distributions should tend to produce a lot of errors.
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CHAPTER 3
TREE SEARCHING AND THE
STACK ALGORITHM

3.1 Tree Searching

'3.1.1 Introduction

Consider the problem of ﬁndiﬁg the maxirnﬁm metric path\ through a large
decision tree with random node metrics. Bécéuse the computational complexity grows
exponentially with the tree depth, it is often Anot possible to determine the maximum =
metric path in the tree using either ran‘exhaustive search or an optimal dynamic
programming algorithm. A practical alternative is ’vprovided by a ciass of algorithms
called sequential tree searching algorithms. These algorithms have becn deveioped
primarily in the coding theory literature with early contributions of Wdzencraft, Fano,
Zigangirov and Jelinek. These algbrithxhs were originally de\}eloped for decoding
convolutiénal codes based upon the inherent tree structure possessed by this class of
codes. We shall define a sequential tree searching algorithm as an algorithm which
computes the metric of paths by extending, by one branch.only, a path which has been
already examined, and which bases the decision on which path to extend only on the
metrics of examined paths. The reader is referred to [33-61] for more background and

in depth discussions of séquential tree searching algorithms. :



A

16

3.1.2 Tree Searching

We are interested in finding the maximum metric path through a tree with random
node metrics. In th}s context, a tree, is a directed graph consisting of nodes which are
connected by branches. Starting from the linique root node, a path is a sequence of
suécessively connected nodes. For each node there is a unique path which connects
that node to the root node. The depth of a node shall refer to the number of branches
on the path connecting that node to the root node. A path may be identified by its first
node and the sequence of branches which connect the path nodes. The descendent
nodes of, say node 7y at depth j, are those nbdes at depth j+1 which are connected to
node Yby‘ a single branch. We shall consider trees for which each node has b branches

emanating from it. Hence, In(b) is the exponential growth rate of the tree.

Each branch in the tree will have a random weight called the branch metric. For
each node, the path metric is the sum of branch metﬁcs along the path which starts at
the root node and tcrminatcé at that node. The metric of the root node is zero. In
particular, there is a unique correct path, and on this correct path the sequence of path
metrics should tend on the average to incfease. That is, the correct path metric process
should have a “positive drift.” Conversely, as we follow any path disjoint from the
correct path the path metrics should tend to decrease. That is, the node metric process
on paths disjoint from the correct path should have a "negative drift.” In this
application, we will assume that the average behavior of the path metric is to increase
along the correct pdth and to decrease otherwise. Our goal is to identify the cdrrect
path. Given the observation of the path metrics, the path most likely to be correct is
the one which terminates with the méximum path metric value. Thus, we shall

consider algorithms which attempt to find the maximum metric path.
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3.2 The Stack Algorithm

3.2.1 Algorithm Description

There are many algorithms which fall under the heading of sequential tree

searching algorithms, most notably, the Fano algorithm [36] and the stack or Z-J

algorithm of 'Zigangirov and Jelinek [37], [44]. However, probably the most basic

algorithm in this class, and certainly the easiest to understand and describe is the stack
algorithm. In this algorithm, the stack is a list of previously examined nodes and their
associated node metrics. The stack is ordered by the node metric values, the node with
the largest metric is placed on top, and the others are listed in_ordcr of decreasing
metric. The top-ofstack node is the maximum metric node on the stack. The stack

algorithm consists of the following steps:

1. Initialize the stack with the root node.
2. Compute the node metrics for each direct descendent of the top-of-stack node.

3. Remove the top-of-stack node from the stack -and replace it with its direct

descendents.
4. Reorder the stack according to node metric values. -

5. Stop if the top-of-stack node in the stack is at the end of the tree. Otherwise

return to step 2 and continue.

An example of the stack algorithm search is illustrated in Figure 3.1. This figure
shows a binary tree and the path metrics up to depth 3. In addition, it shows the first
few steps of the search, indicating the path and their associated metrics after each new

pair of nodes have been examined and the stack reordered.
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correct path

History of ordered stack

- Search index Ordered stack
0 a
1 b, c
2 e,cd
3 c,f,gd

Figure 3.1: An example of the stack algorithm search.

Because the correct path metric process has a positive drift, and since all incorrect
paths have a negative drift, the correct path will tend to "float” to the top of the stack.

However, because long paths are built up node by node, it is entirely possible that the
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random metrics might become too noisy and as a consequence the algorithm can from
time to time mistakenly follow an -incofrect path for some depth in the tree. When
followed far enough, these incorrect paths should eventually be halted by the resulting
decrease in metric. From this, it can be seen thét the algorithm is forced to waste
computation time on the ,explorat'ion of incorrect paths which are eventually
abandoned. This brings out a key characteristic of scquential tree séarching ‘
algorithms, namely the number of incorrectly hypothesized branching decisions per

correct decision is a random variable.

The correct node j, shall refer to the unique node on the correct path at depth j.
Next consider the j'th incorrect subtree |, that is, the subtree of incorrect nodes on
paths diverging from the correct path precisely at node j- X shall denote the subset of
A which is actually hypothesized (that is, nodes which were on the Stack at least once)

by the stack algorithm. X; is called the j’th incorrect subset. X; is a random séf, and
C; 4 the number of nodes in X;

is a random variable. As a consequence, it follows that

the expected number of

EIG] = computations per correct node

and
AC;2M)  for M21

are obviously the relevant indicators of the algorithm’s computational requirement.
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root node

et r

Figure 3.2: An illustration of the subsets X; for a binary tree.
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A great deal of work has gone into the statistical analys1s of the probablhty’
d1str1butlon of C; and its average value [38], [41], [45], [49] , [53], [61]. The bulk of
this work is the classical ' mforrnatron theoretic” analysis of sequential decodmg. This
previous work assumes two strong conditions; 1) the path metric processes have iid.
increments; and 2) only a special "maximurn likelihood - like"b metric known as the
Fano metric has been' considered ‘We should note that real codes actually violates
condmon 1) However the information theoretic analys1s avoids this problem by using
an ensemble of time varying convolutlonal codes and then proceeds with a. |
probablhstlc ensemble average" performance analysis. Under the above assumpnons,
ithas been demonstrated that the distribution of o has a Poreto tail [57] That is,
'_P(C 2 M) Y where p is called the pareto exponent In addxtlon, it has been shown
that as some parameter (such as code rate or noise vanance) is vaned there ex1sts a
critical operatmg point which we shall call the point of computanonal cutoff.
Operatmg below the cutoff pomt ensures E[C ] < oo, while E[C;] =0 above cutoff We

refer the reader to [57, chapter 6] for further discussion of this work.

The main problem assoc1ated with the above work i is that the analysis has been
developed in the context of "ensemble average"’techniques, and thus cannot predict
E[G;] or the distribution of C; for specific cases. In a recent work ‘we have

1nvest1gated computatlonal cutoff condmons which determine whether E[C] is ﬁmte

or infinite [61]. This analysis differs from the previous analysis in several aspects. o

Our analysis was developed using large deviations theory' and is more closely

‘associated with methods of sequential decision theory.” We do not require the Fano

metric assumption and hence, our analysis is more readily applied to problems which

do not relate well to the codmg problem. In place of i.i.d. branch metrics we have

1. Large deviations theory is a general probability theory of exponenual convergence of small .
probabilities [26].
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considered stationary branch metric processes which are governed by an underlying
Markov chain. The Markov chain state spéce may be infinite dimensional, hence, this
model provides a rich class of stationary branch metric process distributions. Of
course, the cost of this expanded generality is that we obtain a weaker result: we do not
obtain the Pareto tail result. instead, two disjoint conditions have been derived: the
first implies E[C;] =0 and the second implies that E[C;] <. These conditions, in
effect, provide an upper and a lower bound on the point of computational cutoff. It
turns out that these bounds aré tight under the classical i.i.d. Fario metric assumption.

We should note here that the basic idea behind this analysis was based on the

following observations: 1) the probability of searching an incorrect path in the tree

decreases exponentially with depth; and 2) the ‘number of paths in the tree grows
exponentially with depth. It tumms out that the point of computational cutoff
corresponds to the case w}ien the rate of decrease of the probability of searching an
incorrect path in the tree is equal to the tree growth rate.

Now conéider the stack algorithm, and suppose that the correct node j has been

hypothesized. Next consider a fixed incorrect node 8, which has depth j+n and is on an

incorrect path diverging from the correct path atdepth j. disa candidate node for Xj-

Define
metric of metric of n
S; = correctnode — correctnode = ¥ Z{ (3.1)
n+j i k=1

where Z§ is the k+j’th branch metric on the correct path. Likewise, considering a fixed

incorrect path in the j’th incorrect subtree, define
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. metric of metric of n .
Sk = incorrect —  comect = Y Zi o (3.2)
node n +j node j k=1 ~

where Zi is the k+j’th branch metric on the incorrect path.

Define I to be the minimum metric value along the correct path metric after time

iE
ra mes ‘ 63
We shall also define
Ni 4 min {n : s;sr}. (3.4

Lemma 3.1: Consider a fixed incorrect path in the j’th incorrect subtree and let

5, SS, and Si be defined as above. Then
@@ dis always hypothesized when Sk, > S¢, forall m=1,2,...,n; and

(ii) d is never hypothesized if Si, <T for some m <n.

Proof: The proof of part (i) of Lemma 3.1 is trivial; the incorrect nodes will
always occupy a higher position on the stack than the correct nodes, at least until both
the correct and incorrect paths are searched to the point where the correct path metrics
are larger. Part (ii) is a standard result which has been proven by several authors (see
Lemma 6.2.1 in [57].)

O

We note that Lemma 3.1 provides the structural foundation for the analysis of the
partitioning method, an importance sampling scheme to be ‘Qiscussed in the next

chapter. The conclusions of Lemma 3.1 are illustrated in Figure 3.3.



incorrect path is
always searched up
to this point

node j /\

incorrect path is
never searched past
this point

wot

Figure 3.3: An illustration of the conclusions of Lemma 3.1.

24



e

25

3.2.2 VThe Path Metric

Recall that one Qf the key elements in the stack algorithm, or any sequential tree
searching algorithm, is the concept of path or node metric. The path fnetric provides a
means of éornparing all paths hypothesizéd and reflects in‘a,svense the "closeness" of é
given path to the correct path. In order for the stack algorithm to proceed correc_tly,' the

path metrics should exhibit certain desirable qualities. First, péth meuics should tend

“to increase along the correct path and decrease elsewhere. More specifically, the

correct path metric should have a slight positive drift and incorrect paths should have a
large negatiﬁe drift. Tt turns out that these drifts can be adjusted using a bias ‘tern‘z (a
constant substructed from all branch metrics.) Second, because the stack is ofdered
according to metric "values only, successive nodes on the stack may have different tree |
depths. Thus, the stack algorithm compares nodes of different lengths in it,s decisioh .
process. Algorithms of this type are called metric first algorithms [60]. It is therefore

essential that the path metrics should not be biased by path length. That is, the metric o

should not favor longer paths over shorter ones and vice versa. Third, path metrics

should exhibit a recursive computational efficiency, namely the path metric of a newly
hypothesized node should be obtained from the metric of its parent node by adding a

correction value which depends only on the new node.

3.3 The Fano Algorithm and Variations of the Stack Algorithm

The stack algorithm is a simplification of a number of successively diséévered
sequential tree searching algorithms, each of which was progressively simpler to
analyze and describe. Perhaps, one of the best featﬁres of the stack algorithm is that it
requires few metric computations, but this computational savings is offset to a large

extent by the computations involved in reordering the stack after every iteration. In an
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attempt to alleviate this problem, few variations of the stack algorithm have. been
developed m the literature. The first is the stack bucket algorithm which has been
. introduced by Jelinek in 1969 [44]. In this algorithm, the stack is divided into smailer -
stacks which are called buckets, with each bucket corresponding to an‘ interval of
possible metric values. At each iteration, the paths are placed in the bucket appropriate
to their metrics. In contrast to the ‘stack algorithm, in this algorithm no ordering of the
metrics in ihe bucket takes place. Furthermore, the path to be extended is taken from

the top of the highest non-empty bucket.

~In ‘1975,Haccoun and Ferguson [55] have ihtroduced the generalized stack
algorithm. Ih this algoﬁthm, the paths are ordered and extended as in the stack
algorithm, but more than one path can be extended at the same ﬁf_ne. The remerging
phenomenon (see Chapter 4) is also exploited in this algorithm. ‘“When two paths
remerge, the path wiﬂx the lower metric is deleted from the stack, thereby eliminating
redundant paths in the stack. | | |
» The. rﬁultiple stack algorithm is another variation of the stack algorithm
introduced by Chevilat and Costello in 1977 [56]. This algorithm eliminates the
problem of buffer overflow which is usually associated with the stack algorithm, The
manner in Which this is done involves the introduction of additional smaller stapks to |
‘which the generalized stack algorithm turns when the main stack fills up. The first of
these stacks is made large enough so that only ?ery noisy cases force the. use of
-additional stacks. In contrastv-to the stack algorithm which advances slowly in these
noisy situations because it is forced to search many incorrect subtrees before extending
the correct path, the multiple stack algorithrri penetrates quickly through the tree and
finds "reasonably good” paths. Thus, this algorithm trades away Some perfdrmance, as

its search space becomes smaller, for a substantial improvement in speed. - ‘
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‘We. conclude this sebﬁbn by briefly describing the Fano algorithm, which .. is
generally considered to be the most practical sequential tree searching algorithm to
implement. The Fano algorithm was actually the first algorithm to be developed for
sequéntial tree searchi'ng. This algorithm was first propdsed by Wozencraft [35],‘a.nd

subsequently modified by Fano [36]. One of the best features of the Fano algorithm is

- that it examines only one path at a time, thereby eliminating the storage of all but one

path and its metric. Basically, the Fano algorithm continues to search the most
probable (largest metric) path as long ‘as its metric is growing. If the métric begins to
di'op_ significantly, the algorithm backs up and extends other paths stemming from
previous hodes on the already searched path. This is accomplished by varying a
running threshold T which changes by multiples of some constant A This threshold is
raiscdv by A if the metric is growing on a foi'ward seaiéh and ld\;'éred by A during
backwérd searches. :I‘he decision Structui'c in this algorithm is done m such a way that

no node is ever searched forward twice with the same threshold.

The Fano algorithm has been the subject of extensive treatments in the coding

literature [43]. Its analysis, as well as, its performance is essehtially the same as the

stack algorithm. In fact, Giest (1973) has shown that the Fano algorithm always |

chooses the same path through the tree as the stack algorith-m' [53]. The only
difference is that in the Fano algorithm a path may be searched several times, while in
the stack éplgorithm it is searched only once. This disadvantage is usually offset by the

substantial reduction in storage requirement.
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3.4 A Format for the Simulation of the Stack Algorithm

3.4.1 Terminology and Definitions

| ~ We begin this section by developing varjous definitions which are needed for the
discussions to folléw. Let,
o, B, v, & = tree nodes
M; = node metric at node &
Dg = { the direct descendent nodes of node & }_
Sy = subtre¢ emanating from node ¥ (Y and its descendents)
~TOS node = the top-of-stack nbde |

F = the terminal path (i.e. the ﬁhal hypothesized bath in the greé)

: Eyétheevent{nodeyisan} | | o
Gy=0(l3:8e 8y) where,

Iy & indicator random variable for node |

)1 if d is searched
1o if d is not searched

Now, for any event A, we shall let
I 4 indicator random variable for A

_ 1 if event A occurs
10 ifevent A does not occur

Next for our purposes the terms "reached"”, "'searched", and "extended", will be defined

as follows: |

(I) Wewill say that a node has been reached by ihe algorithm, if it becomes the TOS
node. |
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2 We.will say that a node has been searched by the algorithm if it is on the stack
but not necessarily extended, and | '
(3)' Extending a node § will refer to the process of deleting 8 from the stack and
replacing it with its direcf descendents. . | | |
Note that all nodes that are "reached" are subsequently extended. .

In ﬂle seQuel, we shall let Q denotes the underlying probability Space and ®be an
eventin Q. A typical example of an event @ in the sample space Q cén be defined ‘as" |
follows: Assuming that the branch metrics are indepeﬁdem, then»co can Be defined to -
be the collection of all the branch metric values associated with the tree. That is, the |
event ® speciﬁes all the values of the branch metrics in the tree. It tems out that for
the proof of the main result of this chapter, namely Theorem 3.1, it is not neceésary to
specify the underlying probability space. Consequently, in the sequel We shall assume
~ that Q is given. ' | | o

34.2 The Fimdamental Theorem

We are interested in estimating sorhe key parameterS whieh are associated with

'the stack algorithm. A typica.l example is the estimation of the distribution of
computation: | - |
| HC2M)  for M21 35

“where j is tﬁe correct node at depth jo In g‘eneeal, ho'weverb,b we shall consider the

fellowin g problem.
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The Basic Problem: Given the event E,, estimate
E[X | Ey]

where X is a Gy-measurable random variable.

In other words, given the event that node 7 is on the terminal path F, we are interested

in estimating expectations of random variables that are functions ’of only the algorithm

searching history in the subtree Sy. To motivate this problem and. illustrate its

significance consider the following examples:

®

il

(@)

Suppose that Yis a given node on the correct path and let,
oy 4 direct descendent node of ¥ which is also on the correct path; and
B: 4 direct descendent node of y which lies on the terminal path F.

Next let E denotes the event { B; # o; }, which is the basic error event, and E°

its complement. Then
X=1I | - (3.6)
A the indicato_r random variable for the evenf E |
is Gy—measurable and |
E[X | Ey] = the probability of error foilowing

the correct decision at node .

Let v, 04, B1, and E° be defined as above. Nextlet
oAl X '
G = [ 55, }_IE, ‘ - 3.7

where
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e D‘y’ﬂl

) Then Cyis gx—méasurablg, apd

E[ Cy | Ey] = expected number of metric

computations per correct decision.

~ As pointed out earlier, Ef Cy | Ey1 is one of the relevant indicators of the

(iii).

@)

algorithm’s - computational performance.

Let C, be defined as above, and let M be some positive integer. Next let

xg{l- G 2M
|

0 ifC <M - G9

o
Then X is Gy—measurable and

E[X|E/]=RAC2M| Ey)r.

Tﬁﬁs, the above exﬁeciaﬁon will éllow us to j estimate the distribution Qf ’
corrllputati.dn for the kstack_ ‘al’goriathm.' | .
Let 'y':be. defined as above and let

Ly = length of branching errors following -

- the correct decision at node . | |
That is:-, Ly is the léngthr of an error burst. Then L, is Gy—measurable and
E[ Lyl Eyl1= the,cxpect;d numbcr of branching

errors per correct decision.

(v) Let Ly be defined as above, and let ¢>0. Nextlet -

1 ifLYZQ
Y A ) Q
X:{O CifLy<t o (3'9)’_
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Then X is §Y+measurable and -
CE[X | EY] 1’(Ly>0 I Ey)

‘Consequently, the error burst length distribution. can be also writt_en__-as an .

expectation of a G,—measurable random variable. .

Thevse-examples and others indicate that the problem of estimating most of the

'key"parameters associ_ated with the stack algorithm can indeed be formulated as in the
basic ‘problem.

Now recall that we are 1nterested in estimating expectat10ns of random vanables-’ o

which are gy—measurable Next observe ‘that if one needs to generate the data1 R

: assocxated w1th the whole tree m order to est1mate such expectattons, it follows.that the -
: s1mulatlon complex1ty is an exponential function of the depth of y Thus the
s1mulat10n of such problems will be much simpler and more . efﬁc1ent if only the data o

assoc1ated w1th nodes in SY is generated.

Smce the stack is ordered according to metric values only, the stack algonthm

compares nodes of dlfferent tree depths in its decision process Thus at a glven 1nstant o

the stack ‘may contain nodes in both S, and SC2 Consequently, the search performed '

- , by the algortthm in Sy will be affected by the search performed by the algonthm in Sc

before and/or after node ¥ has been reached and therefore to estlmate expectatlons of_r _' S

gy—measurable random vanables knowledge of ‘the ennre hlstory of the stack 1s;¢'

} requlred However if condltloned on the event Ey (i.e., that Y is on the terrmnal path) o |

. then thls last. statement is no longer true. In other words, gzven the event EY then zhe ,
: search performed by the stack algorlthm in Sy is not aﬂected by the search outs1de S e

2.In th1s context, S will denote the complement of S
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" before -and/or' after reaching node v.
The next theorem proves this statement and thus provndes the structural'
;foundatlon for the sunulauon of the stack algonthrn

Suppose that node gamma is on the terminal path and let

FY = the terxmhal path in Sy glven the entire h1story of the stack , ‘
Labupbs-o o (3.10)
. tNe)‘(t let Zo 4 { v) and fori=1 deﬁne, | " |
Z A: {de Sy which are searched before‘ |

By is extended., and8¢ Z;forj<i).

Observe that the Z;’s are dJS]Olnt and the " o Z is S1mply the collectlon of a11 the

' nodes searched in SY

We are now ready to state our main result (T heorem 3.1) The bas1c idea in the

o proof of this result is to show that given E,, then for any node 8 € 8§y, the event {

vIg('m) #'O orl } does not depend on the stack algoﬁthm searching history outside'St,
for any 0) € E,. Because this hold for any node & € Sy, it follows thatgi_\ten‘ E,, then
for any event E in Gy, the event { Ig(w) =_O or 1l } does not depend on the stack
| algorithm searching history outside S, for any @ € E,. The proof of Theorem 3.1 will .‘

- then follow from this last statement.

Theorem 31 (The Fundamental Theorem) Let X be any gy—measurable

> 'random variable, and let Ey be defined as in Section 3.4.1. Then

E[XlEY]=E[X|yistherootnode]. @y



34

’ Pr’oof : Let Ey be deﬁned as above and let us consider a fixed w € E. | Note that
in this case, the terminal path in SY is Fy as specified by (3.10).. Funhermore notlce

that smce ois ﬁxed it fol]ows that FY is determined.

Now let & be a candidate node for Z; with j 2 1; that is, 8 3 Sy and & ¢ A for L

"i:(), L j—l.' Consequently, it follows that there exists some node»a_e Zlfor some '. o

i <’_ j such that o has not been extended before Bj; and furtherrnore, t_here exists apath
(a, N1, n2’ * s Moo 8)
Wthh connects node o to 8 Note that if de Da, then this path is Just (oc d). V'
Furthermore, observe thatn;, T]2, “*+ , T, and dare all candldates for. ZJ. ’
Now
8 € Z; if and only if nk are extended before B; for all k—l : f‘?‘ n
It follows that for all j > 1
e Zj if My, >Mg, for k=1, - om0 (i)
~and
57 onlyif My, >My for k=1, cct.m G120
' Note that (3 12b) estabhshes only necessrty and not sufﬁc1ency as in (3 12a) The
breason is that whenever MB = M for some j2'1 and some 1< k < n, then whether
the algorrthm extends BJ Or M- w111 simply depend on 1) the way the dJrect descendent' :
| nodes are inserted into the stack, 2) the rule by which the stack is ordered when metric
t1es occur between the d1rect descendent nodes, and 3) the rule by whlch the stack is
' reordered when metrrc ties occur between the dlrect descendent nodes and pnor

exammed nodes Thus the sets Z; for-all i 21 are characterized by (3 12a) (3 12b)

and the tie’ handhng rule. Asa consequence it follows that whether a node de S has



been” «exanﬁned or not by the stack. algorithm is =detem1lned once Ey is ;ginen. _ |
v Furthcrmore, this fact .does not depend on the_ stack valrgoﬂthm searching hlstoxjy in S3.. "
In :otlt_e‘r words, when we condition on the event that node 7y is ‘on the termmal path,
then for any node -58 in Sy, fthe events { Is(w) = l"} and { I‘s((o‘)»—:() } are (condi’tionally)
-mdependent from the stack algonthm searching hlstory in S35 Consequently, for any )

: ﬁxed WE EY we conclude that

' T(Iﬁ((o) 1 IEY) = ﬂls(co)—l I”yls?if‘e:footnv) forany&e S :;(3 13)

- _Smcc th1s is true for any node din Sy, we conclude that glven EY then the cntu'e

'scarch performed by the stack algonthm in-Sy does not depend on the search S

jpcrformed by the stack algorithm outside S, before and/or after reachlng node 'y Asa a - - :

| result it follows that g1ven EY then for any event Ein gy, the ievent { IE((:)) O orl } N
;does not depend on the stack a]gonthm searchlng h1story outs1de S for any (oe EY
' As a consequence, we get our: des1rcd result

0

h As a result of the above theorem we may estlmate E[ X | EY] usmg mulnple
mdependent sunulatlons observmg X (w1th Y bemg the root node) for each simulation,

: ‘, and then estlmatmg E{(X | 'y1s the root node ] usmg the sample mean estlmator



Figure 3.4: ~ An exaxr'xple'of the sets Z;.

terminal path . -



We conc‘-lude this section by. noting ftwo important issues. 'First’ ifor practical -
' reasons a termmatzon strategy for the stack algonthm is always needed For example,

v;one mlght delete any node from the stack 1f its metric is less than the T@’S node metric

' _‘_.;occurs in practrcal apphcatxons and ulumately results in branchmg errors [57] Th1s

_phenonrenon adds addmonal complexxty to the srmulatlon of the stack algomhm asit *
-corresponds to mcorrect paths in the wee which behave exactly hke the correct path
} _after the pomt of remergmg These issues wrll be addressed in full details in ethe next

chapters.

3.5 The Modified ;Sta:ck Algorithm Simulation

| Recall that we are mterested in applymg 1mportance samphng in: order to estlmate |
v some key performance parameters that are assocrated w1th the stack algonthm It turns -
‘stack algonthm in the 3 th incorrect subtree 5\4 is. requlred For example to estlmate
' E[C ] or fE(‘C 2 M) for some M21, 1t is apparent that only the search performed by the o
stack algonthm in 9\4 is needed Keeplng this :m rmnd we conclude ﬂrat any
s1mulatron scheme whrch modlﬁes the stack algonthm s0 that only the 1ncorrect nodes .
in A are extended will most hkely be more efficient -than any other -srmulatron scheme

: vW;hICh uses the stack algonthm In other words, usmg a modrﬁed stack algorlthm

‘ whlch operates exactly like the stack al: gonthm except that it

EV aextends only the j’th incorrect :-su.b.tree and

: 2) replaces every top of—stack node whrc‘h is on the correct path by only its dlrect o

’ descendent which is on the correct path
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- will lead to a substantial improvement in speed and thus increases the efﬁciency of the
importance sampling simulations. In the sequel, we will refer to such algonthm as the

modlﬁed stack algorlthm simulation (MSAS).

Because the search performed by the stack algorithm in 4] can be affected by the
- -search performed by the stack algorithm in other incorrect subtrees 9\6+1 R
estimates obtamed usmg the modified stack algonthm simulation might be incorrect.
We shall see in Chapter 5 that the difference between the results obtained using the
stack algorithm and the rhodiﬁed stack algorithm simulation \is .apparehtlly insigniﬁcant.
In other WOrd it does. appear that the modified stack algorithm .simulation gives
estlmates Wthh are very close to the ones obtained when the stack algonthm is

actually used
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. CHAPTER4
IMPORTANCE SAMPLING

APPLIEDTO | R
SEQUENT_IAL DECODINC_ : e

B 4.1 Introdtretion | )

| In 1955 Elias has mtroduced a general class of error control codes called |
:convolutzonal codes as an altematlve to block codes [32] Shortly thereafter (1957)
, _‘Wozencraft [33] mtroduced an efﬁcrent ‘scheme for decoding convolutlonal codes v
. Wthh is called” sequennal decodmg Then in 1967 V1terb1 [39] mtroduced an
| v‘algonthm for decodmg convolutlonal codes Wthh has since bccome known as the

_‘Vzterbz Algortthm [52 ] Thls scheme, together w1th 1mproved vers1ons of sequenual‘ B

.decodmg led to the apphcatlon of convolutlonal codes to practrcal comrnumcatlon

o ,channels ‘sueh as satelhte and deep-space communication channels [40], [48], [59]. -
In contrast to sequential _decoding schemes,, the Viterbi aléorithm per_formsxa full
 maximum vlikelihoodSearc»h, This algoﬁthm is known to be }ootimum 1n the sense that “ :
it rrﬁnirrtizes the probability of error in deeoding the; entirc transmitted ; 'scquenee of
| inforrnation 'Mb-its [571, [59]" In addition, it is more "robust" with respect'to»"the model
' .vanatlons The main difficulty with the Viterbi algonthrn is that in practrce arbrtrary ‘
small error probablhtres are not achlevable This is. due 10 the fact that only smalltv

constramt lengths can be-used because of the hrmtatlons on the decoder memory
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Another dlfﬁculty wrth the V1terb1 algorrthm is that 1ts computattonal complexxty
grows: exponentlally with codes constraint length. Sequent1al decoding, on the other
hand, is a very powerful techmque for decodmg convolutional codes Wthh appears as
’a natural method of reducmg the amount of computations per decoded 1nformatron "

block by a tnal and-error rather than an exhaustlve search.- In contrast to the V1terb1

| algonthm sequent1a1 decoding is essenually mdependent of the encoder memory, and _ '

‘hence arblt:rary low error probabilities can be achieved prov1ded operatlon under cutoff

‘ rate. Its maJor drawback 1s its 1nherent 1nab1l1ty to deal effect1vely W1th severe noisy

- »bursts which somet1mes take large amounts of computat10ns and occas1onally cause

‘ 1nformatxon to be lost or erased.

As stated earl1er sequentlal decodlng was ﬁrst proposed and analyzed in 1957 by
Wozencraft [33] asa practlcal means of decodlng convolunonal codes In 1963 Fano

[36] 1ntroduced a new version of sequennal decodmg, ,subsequently referred to as the‘

R Fano algorzthm Vanous minor modlﬁcatlons of the Fano algonthm have been‘

| analyzed by Yudkm (1964) Wozencraft and Jacobs (1965) and Gallager (1968) A_
: few years later another vers1on of sequentlal decodmg, called the stack algorlthm (also
'called the Z-.I algorzthm ), was 1ndependently discovered by Zlgangtrov [37] and
-Jeltnek [44] In th1s Chapter we will cons1der the stack algorxthm exclus1vely We
should note however, that most our results and conclusrons can be apphed to the other ‘

| sequenttal decodmg schemes The reader is referred to [33 61] and references therern

o for more dtscuss1ons about sequent1al decodm g

In th1s chapter we apply lmportance sampling to the problem of s1mulat1ng the
sequenual decoders dec1s1on process, in partlcular ones that use the stack algonthm
1We shall present three. 1mportance samphng techniques which we shall refer to as the

e reference path method the partmonmg method and the M—method The reference path |
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‘ method and the M-method are ad hoc importance sampling techniques. However, we
should note that the reference path method is based on the distance properties of the
"code bemg 51mulated The pamnomng method on the other hand 1s motlvated by.-‘__
vlarge devmtzons theory and an information theoretlc ensemble averagmg argument N
smular to the one used in [26]. Itis noted that in all of the above techmques ‘we do not
:constdexf,:;deelsmn error probabilities. In other words, we assume that the decoder
4 »ulvttr’nately‘ ehooses the correct transmitted path. In Chapter 6, we shall present an other
i'tnportance: sarnpling technique which we will refer to as' the error eyént simulation
method. In contrast to the above importance sampling ‘methods, the error event
sirnulationtnethod deals specifically with the problem of simulating the error events.
associated with stack algorithm sequential decoders. In particular, we shall use this-

method to estimate bit error rates for such decoders.
= 4.’2‘”Ch"annel. Model and Convolutional Codes

‘ Because of the 1nherent tree structure of convoluuonal codes, we shall start this
secuon by bneﬂy describing tree codes. However, before doing so, we w111 ﬁrst ‘

1 ‘descnbe our channel model.

4 2.1 Channel Model

Let us assume that we des1re to communicate over a memoryless codlng channel o
’ vAt each t1me mstant k,a channel symbol input uy is transxmtted over the channel to
‘produce the channel output symbol Vi. Given uy transmitted, Vy is a randorn quantlty
with conditional density! fi (vy |uy). Since the channel is memoryless, the sequence of
' outpu'tf symbols V= (V1 ,V2,..,Vp), is a sequence of independent random vchannel_
output symbols w1th joint densny | |

1. We will use the term "density” to mean probablhty dens:ty function or probability mass
’ funcﬁon‘depending on whether the channel outputs are continuous or discrete.
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fviw = 1% (vk |uk> S @

k._

for the transmtssmn of n channel symbols We should note that if fk(vk Iuk) does not
depend on 'k, then the channel is also stattonary We ‘shall see later that it is

~. N worthwhlleto think of -fk(vk luk) as a function of k.

'+ information © |° - o u | Memoryless .. | V0

S ot~ Encoder : — | I R S
e B , ' .channel" - Lo

- . symbols e

' Figure4.1:  The channel model.

Throughout thts chapter we will con51der convolutlonal codes Wthh operates on

’ the bmary symmetrzc channel (BSC) and the addttzve whlte gausszan nozse (AWGN)' =

. Channel Assumlng that the 1nput alphabet and the output alphabet of the channel are :
o 'both equal to { 1 l} Then the BSCcan be charactenzed as follows = »
o fwe wik 'robabilit” 1-¢ *_.’" ER I,

B R e | with probablltty £ - e

e zs called the crossover probabllzt) The BSC s shown in Fxgure 4. 2
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Figure 4.2:  Binary symmetric channel..

- In a similar fashion, we can define the AWGN channel to be a .conﬁnuo.__us channel
for which the channel output symbol density is given by

| Csewr IR
filvkjuy) = — S L 4.3)
N L o :

where
. NO
0‘2 3 —

and Nj is the one sided power -spe‘ctrai density of the noise which is assumed to be
white. The AWGN channel is represented in Figure 4.3 with {Nk} k=1,2,. bemg a

Gaussian random sequence with zero mean and variance G°.
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" Figwre43:  Additive white gaussian noise channel.

-4, 2 2 Tree Codes
For brevrty, we shall resmct our attentron 10 bmary tree. codes of rate R = 1/2
:,”f‘Generaltzatlons for rate b/n codes is stralghtforward |

i A bmary tree code of Rate R— 1/2 is formed by a551gnmg two channel mput

B symbols to’ each branch of a rooted bznary tree. Dependln g on whether the mformatmn .

. ‘ 'b1t symbol is 0 or 1 the encoder follows the upper or lower branch and transmlts

through the channel the code sequence assocmted w1th the branch wh1ch was followed e

" In thlS way a sequence of 1nformat10n b1ts traces a path through the tree and the code- '

L ‘._.causes the code sequence OOl l 1011 to: be transmltted through the channel

- sequence correspondmg w0 that path is then transmltted Thus 1n Flgure 44 the

"“"',"'E»"’lnformanon b1t sequence 0100 determmes the path indicated by the bold lme and' o
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Figure 44:  An fexfaimple of a binary tree code of rate 1/2.
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For a "gi.ven_, st:_cjuence_of 'information bits,’,let u=(uy,uy,...) v’den'ote's the ’se.quence'v o
of ‘»encoder output syrnbols Gi\}en the sequence. of channel - output Symbols
- V (VI,VZ, Js the job of the decoder is to deterrmne the 1nformanon blt sequence

3 - whlch was most hkely to have been transrmtted or equlvalently, its con'espondmg path ”

: [on the tree Note that because the code rate lS 1/2 it follows that the encoder and -

: channel output symbols uk and Vk are symbols Wthh consrst of 2 b1ts That 1s,
Vk- (Vkl ,sz) and U= (Uk1 ,Ukz) | |

For each branch on the tree, the decoder computes a branch metrzc -

L ,m(uk,Vk)— Z m(uk,,Vkl) Wthh 1s an mdlcator of the hkehhood that Ug was mdeed the o " o

. 1—1 )

T channel 1nput symbol Wthh produced the channel output symbol Vk The F ano metrzc e

isa max1mum l1kel1hood l1ke metnc which is commonly used in sequent1al decod1ng :

‘:_'"The Fano metnc 1s deﬁned as

o, ) = g[—k%"gfl] R ‘,i=. L2 0 es

In the above equatlon R 1s denotes the rate of the code; fkl(vkl Iuk,) 1s the channel

L 'trans1tlon dens1ty, and f, (vkl) the channel output symbol dens1ty The metrtc of 4.4)

'was ﬁrst mtroduced by ‘Fano on 1ntu1t1ve grounds [34], and hence the name Fano B .

memc‘ In 1972 Massey [5 l] has g1ven analyncal Justlﬁcanon for usmg the Fanoi |
metrlc 1n sequent1a1 decodmg Itis noted that the average behavror of the Fano metnc

- 1s to 1ncrease along the correct path and to decrease otherwrse as long as R:< RO where R

. Ro is called the computatzonal cutoﬂ rate of the channel [57]
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4.2. 3 Convolutional Codes -

Convolutlonal codes are tree codes that are generated by passing the 1nformatlon
b1t sequence to be transrmtted through a linear finite state shift reglster At each
operatlon of the encoder, b znformatzon bits are shifted into the shift regrster Wthh
contarns a total of - Kb bits. We shall. refer to these b bits as mformanon symbols
Hence, the Shlft register contains K information symbols The output of the encoder is

block of n b1ts which we refer to as a code symbol Consequently the code rate is
deﬁned as ‘
R = % . bits per OutPut .syrnbolb : o @AS)

‘ For a convoluuonal encoder of rate b/n the shift regtster consists of Kb stages

: and n hnear algebraic functlon generators, or slmply, n modulo-2 adders which are

often implemented as exclusive-or gates. As- in block codes, convolutlonal codes can

be- descrlbed by glvmg their generator matnces [571. An equlvalent representatlon
~which is commonly used consists of spec1fymg a set of n vectors g;,82,...,8n, ONE

for each of then modulo-2 adders is used.  Each vector has Kb dimensions. ’Ifhat is, for
~each ‘i'=1,;.n, g= [gn’, g2, -+ -»&ikpb] (With gi;=0or 1, fori=1,..,n and j= l,...,Kb.) A

lin the jth position of the vector g; indicates that the corresponding stage in the shift
re gxster is connected to the modulo 2 adder and a0ina glven posmon indicates that no
_b connectxon ex1sts between that stage and the modulo-2 adder For example, the

':generators for the convolutlonal codes shown in Figure 4.5 are
g =[101]
_ il

= [111]
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In octal form., these vectors are 5,7
The complexity of the code is determined by its cOnstraint length I‘(b"\ihich‘is the “ :

: total number of bits used to compute the output code symbol. Inthis 'conter(t K-l is
‘v ,s1mp1y the number of mformatlon bits stored in the encoder shift reglster not countmg
: the most recent mformatron bit mput In a srrmlar fashion, the encoder state is defined
1o be the last K-1 1nformat10n symbols in the shrft register with the last most recent bit
being the last bit in the state. Smce there are (K-1)b b1ts which determme the state the

‘ total number of states is Z(K Db, For each state at trme 'k there are 2b possrble-
: predecessor states one correspondmg to each of the 2P 1nformat10n symbols that could
-have been shlfted out of the sh1ft register durmg the state transition- from t1me k to time
- k+1. The encoder output at time k is thus a function of the encoder states. at time k

andk—l

Convolunonal codes are often described using three altematlve methods These
are the tree dzagram, the trellis dzagram, and the state dlagram [57] To demonstrate
~the use and 1nsxght prov1ded by such dragrams we consrder the convolutxonal encoder

of Flgure 4 5
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A Z( output |

information
——
bit .
Figure 4.5: A rate 1/2 and constraint length 3 convolutional encoder.

‘The tree code represenrétion (or tree diagram) for the encoder of Figure 4.5 is
shown in Figure 4.4. Assuming that the encoder is in the all-zero state initially, the
diagram shows that, if the first mput mformatlon bitis a 1, the code symbol is 11 and,
if the ﬁrst bit is a 0, the output sequence is s 00. In other words, an input 1 spec1ﬁes the
lower branch, and an input 0 specrﬁesvthe upper one. For example, the information bit
‘SeQuence 0100 traces the thick path shown in Figure 4.4 and produces the code symbolr

| s’equerice which is indica-ted along the branches traversed: 00, 11, 10, 11.

Close observanon of the tree in Flcure 4.4 reveals that after the ﬁrst three'

branches the structure repeats itself. This behavror is obvious from exammatxon of the



s0

' encoder and is con51stent w1th the fact that the constra.mt length is 3 When the thu'd

mformanon bit is shrfted mto the encoder the ﬁrst mformauon b1t (1 e., the b1t in the o
' last stage of the. sh1ft regxster) is shrfted out at the nght and thereafter no longer affects :

the code symbols ‘Thus we may say that the 2 bit code syrnbol is determmed by the

| mformauon bit and the four poss1ble states of the shrft regxster 00 01 10 and 1.
,‘ ~This leads to redrawm g the tree dlagram as- shown in Fxgure 4 6 ThlS new
| ’representauon Wthh is more compact is called the trellzs dzagram In drawmg this -
dlagrarn we. use the conventxon that a dotted lme denotes the output generated by the

’mf_ormatron bv,rt 1 'and a sohd line denotes the ,QUtPUt generated by":the information bit 0.

Flgure46 .:’Trielliisfdiagrarn for the encoder of V‘Figuref4.>5;- L
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Since the output is determined by the information bit and the encoder states and
be’cau‘se‘» of the repetitive slructufe of ther trellis diagram, an even more compact
representation than. the trellis diagram has been suggested. This néw representation is
called the state diagram. The state diagram is simply a graph of all possible states of
the ericoder and the possible transition from one state to another. For example, the
siate digram of the convolutional encoder shown in Figure 4.5 is illustrated in Figure
4.7. Again, in drawing this diagram, we use the convention that a dotted line dénotcs
the édtput' gene‘ratéd by the information bit .1 and a solid line denotes the output

generated by the information bit 0.

Figure 4.7: State diagram for the encoder of Figure 4.5.



4.3 ,E"»"O."“ Events and 'Remérging

Close observatlon of the trellis dlagram reveals that 1t is possrble for mcorrect |

B :.paths in the tree to merge with the correct path Th1s is known as the remergmg R

o phenomenon [57] These remerged paths correspond to mcorrect paths 1n the tree'v "

o "whrch behave exactly like the correct path after the pomt of nemergmg That is, the -

'remerged paths are 1ncorrect paths in the tree wh1ch bneﬂy exh1b1t a negatrve metnc

Gl dnft and then begm o exactly parallel the behav1or of the correct path after the pomt -

- of remergmg On the trelhs dxagram however a remerged path corresponds to a trelhs :
path wh1ch bneﬂy d1verges from the correct trelhs path The deergent path of the- o
1ncorrect path is. called an error event. Spec1ﬁcally, 1f we let uf = (ul,u£ D denotes"

~the ﬁnal path hypothesrzed by the sequennal decoder and u = (ul,u§ D) denotes the?“ :

correct (that is, the transrmtted) path then decodmg errors. occur- when u d1verges -

from u More precisely, an error event is a partlal sequence of uf whrch begms at a o

correct path node ends at’ a correct path node, and has . no correct 'p th‘ nodes 1n

L between the correct begmnmg and endmg nodes. The error event length is the number

: of branches in the error event For example, Flgure 4.8 shows that u comc1des w1th

) the correct path u® up to some depth min. the trellis, branches off at depth m, and then-

f

remerges w1th u at depth m + 3. In th1s case, u contarns an error event of length 3




53

< ,
~.-
N~ .
~. .
SN T
~N : !
SN /
~. i
. \ R I'
N i
N ]
N\ j
N\
A\
\ i
\ !
A !
A !
\.\ i
A j
\ i
-
\\ /
\ i
\ 2
Vo
AR
\ !
\
v
\
J
Figure 4.8: An 111ustratton of error events. and the remergmg phenomenon The
v boldline is the correct path and. the dashed line isa: remerged path

4.4 The Reference Path Method
In thrs secuon we propose a srmulatron model design whlch drrectly exploits the

dxstance mformatron of convolunonal codes. Our goal is to apply thls scheme to

srmulate (stack al gonthm) sequential decoders for convolutlonal codes.
) be the encoder output sequence assocrated wrth the correct
(U'] ,Uz, cas ,UN)' be th-e

Let ll = (U] 5]
path That is, the transmltted tree path. leCWlSC let ui =

encoder output sequence assocrated w1th any incorrect path of depth N that d1verges
from the correct path at the root node Next suppose that u} dlffCI‘S from u m exactly

dN posmons The number dy; is then said to be the Hammmg dzstance [57] between u®
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- and uN The reason for our interest in this distance is that the "important"” branchmg

error events are precisely those with low to moderate d1stance dy: In other words 1t is

- more likely for the stack algonthm to search 1ncornect paths w1th low d1stances than_'

those with’ large dlstances even if the lengths of the paths are qu1te long -In fact the

distance of a path is a direct indicator of its hkehhood of being searched The path s |

" length for the most pan is 1rrelevant except to the extent that long paths are . more'.
'hkely to have hlgher dlstances To properly. understand this consrder the followmg»
example. ‘ |

"Suppose that the channel is a binary‘ sytmﬂetric channel with cI:ro'ssox'ier:
probab1hty E. Furtherrnore assume that the Fano metric is used. In this case, the path

metnc of the 1ncorrect path. assoc1ated w1th uk is glven by

f(v [u®)
fv(v)

Sk = logl - nNR"_-E;@f%f@@'

: where R is the rate of the code (b/n ) f(v] u°) is the condmonal probabrhty of recervmg- -
' V- (V 1,V2, i VN) grven that u® was transmitted and fv(v) is the probabrhty of: .

recelvmg the sequence V. A stra1ghtforward computatlon 1nd1cates that

fviu) = e 1-e™ N @n
- d '
) =2—3N— | o (48)
oL Con’s“equent-ly,‘ the path metric in (4.6) can then be twritten as
| Sk = —a dN +bN . 3 '- .:- L (49)

where

1-
a 2 log( ,8)



and
b A log(2(1—e))

Wlthout loss of generality, we may assume that 0 <e<1/2 (for if th1s is not the case
we can make it such by just 1nterchang1ng the 1nd1ces on vy and v2 in Flgure 4 2) In :
th1s case, we have a > 0 and thus from (4.9) we conclude that it is more l1kely for the |
stack algonthm to search 1ncorrect paths with low distances than those w1th large
dxstances. In fact, close observation of (4.9) indicates that any incorrect path will be
rejected by the stack algori,thm if its distance from the received sequence Vis
sufficiently large. | '
' To further illustrate the relationship betuteen the distance properties of the code
and the search perfoxmed by the stack algorithm, consider Flgures 4 9-4. 11 These V*
ﬁgures show the actual search performed by the stack algonthrn in the Oth incorrect

- subtree Ap (the all zero path is assumed to be _the transrmtted path.) In this case,

ordjnary Monte Carlo was used to simulate the stack algorithm decoder for arate 1/2 |

‘and constramt length 14 convolutlonal code- operatmg on an AWGN channel w1th -

E vanance equal t0 .36.
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(b)

L ©

‘Figure 4.9:
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The stack algorithm- searchmg hlstory in % (@) Gy = =9, (b) Co =13,
and (c) Co=17.
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@

(b) -

@

01

Figure 4.10:  The stack algorithm searching history in 2g. (a) Co =19, (b) Cy =23,
L and (c) Cy = 31. ‘
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(b)

‘>Figu'ré 411: The stack‘ algorithm se:.irching.history in- Ay. (@) Cy=43, and v(b)
R Cp=45. o o o
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- Figures 4.,9-4;11‘ indicate that the search performed by the Stack algorith_m in _an '
'incorrect\vsubtree is done in such away that 1) if the algorithm searches an incorrect .
p_ath _fpr:some.depth'in the tree, then this path is mostl’ikely an incorrect 'path-’__wi.t_hra ,
low distance frorn the correct path and 2) most of the incorrect paths eXtended‘b.y.the.
>stack algorrthm are short paths (i.e. with few branches) which emanates from the low
'd1stance paths Thus we can see that the “important” branchlng error -events are
prec1ser those associated with incorrect paths with low te moderatedistances from the
correct path Consequently, a good importance samphng scheme must be des1gned 1n_ |

such a way that the relative frequency of these events is increased. Close observatlon_'
of Flgure 4. 9—4 11 indicates that this can be done by "forcmg the stack algorlthm to
follow a reference path with a low distance, and hence the name reference path

method

o Let ufq (u},u},...,uly) be the encoder output sequence assoc1ated w1th a
reference path ‘of depth N. Such a path is chosen in such a way that its hammmg
dlstance from the correct path is minimized over all mcorrect paths of depth N These

reference paths can be found by an exhaustive search for various depths N.

Now for a given reference path our baszc prmczple is to des1gn an‘ 1mportance.
sampling channel model which will tend to "trick" the stack algorithm into decodmgr
the reference path instead of the correct path. Specifically, each simulation run will .
produce a randomly- generated channel ontput sequence V=(V1,Va,..) tc p'roduce a
Vsequence of branching decisions which are biased toward the reference path. That is, _'
, j’bl"anc:ihi'n‘g decisions which attempt to follow the reference path instead of the ccrrect‘-'. |
‘ transrnitted path. This importance sampling channel model however must be chosen rn
such a way that the stack algorithm will ultimately' make a correct decision at 'depth

.j+1", even 't.hough the datavis biased towards producing the reference path ('not:e that we
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el do not need to do th1s when we are mterested in dec1510n €ITors.) Th1s can be done, for_'

L '1nstance, by swrtchmg the - 1mportance samphng 51mulatlon channel model to the .

- "’,ortgmal channel model at’ depth N. As an example con51der the blnary symmetnc |

o »channel w1th crossover probabzlzty €. Then the followmg non- statlonary model is an

example of a reference path srmulatlon model 'I'hrs IS srmulauon model is

= ffcharactenzed by a time varymg crossover probablhty

e 12 ifug #up
T € 1fuk—uk R R

for k< N For 13 > N we use: ek €. It should be clear that w1th roughly probab111ty 1/2 N

B the reference path will be exarnmed up to depth N _
.45 Th_é Partit'ion‘ing‘;Met‘hod Analysis

The refcrence path method is an ad hoc 1mportance samplmg scheme Wthh leads

‘ to substantral efﬁcrency in companson to ordmary Monte Carlo In th1s sectlon, we_

vv.shall drscuss another 1mportance samphng scheme whrch is - 1nsp1red by the -~ |

e "j'asymptotlcs of large dev1atlons theory. -and an ' ensemble average varxance Chemoff

i | : »bound argument (S1rmlar to that used in [26] )

We begm by developmg few deﬁmtlons Wthh are needed for the dlscussmn to

'-"follow
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o 451 Preliinjinarfes and Definitions

v :Consider the" rr’iernOryle‘ss codi‘nig channel disc‘ussed pre-vioust m section :‘42 1.
Next let {Uk} k— 1 2,.. denote the encoder output sequence assomated w1th the
correct path L1kew1se, et {UL}, k=1,2,.. - denote - the encoder output sequence
correspondmg to an incorrect path. In the analysis of the paruuonmg method {Uk} |
a.nd {Uk} are both assumed to be mdependent and i. 1 d random processes w1th the
same umvanate densxty q() Next let { Xk k—l 2,... ) be an 11d sequence of

random variables with univariate density g(x) such that =
Xk = (U k,Vk)
'where Vk is the channel output symbol Consequently, _ |
gt = filupaed) - @10
" ‘Now: conisider the stack algorithm and suppose that the correct node"j.. has been
: hypotheswed Next let Z¢ and Zi denote the k+j’th branch metric on the correct path
andon any incorrect path which diverges from the'corre‘ct path at node j. Likewise, let

§¢ = @11y

It
(A
N
=6,

and

st = 4.12)

i
.t
N
oo

: ,dc_no'te the correct and incorfect nodemeu'ic processes respectiver.
| We shall also deﬁne :
CNp&af(nisisy) @1y
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NS 4 inf{n:SS<y). o (418)

. In the sequel we shall assume the following hypothesis:

‘ H'ypothesis H: _
The branch metric processes are bounded. That is, there exists. "_som'e;:‘iA < oo such
that |Z$ | <4 and |ZL] <A. |

Define

L oXo. Xy, (415

Then note that because X, &(U§, Vy), it follows that given the entire history of {Xy),

7, (Z§} and {Z{(} are conditionally bindependentz.‘ In other W(.)r'ds;w‘cf, have -~ .

odzf,dzh | %) = Fo@f ) Fidzkixd @416

 where F,(.|.) and Fy(.|) are respectively the conditional distributions of Z§ and Z}

given xy. | |
It is now convenient to define the following exponential tra‘insforrnat_i'(_)niz_

FO@ Ix) = @ AN R@z ) @)

" where

=In [j e® % Fy(dzg |X1;)].
Likewise, we can also define

‘  -2. ThlS is true because Zﬁ and Z} depend on only (Ug; Vi) and (U{(',Vk), respécﬁi)eli o



AC(@ lx yA ln[ Ef¢ (’leﬁ ]] o | N | . | : (4T9’)

= In [J'ea %p (dzk ka)]
We shou}d note, however, that since X =’€Uﬁ,\_lk.\)f and since Z§ is only & fu:n’ctioh of
© UE and Vi, it follows that |
A°( l ) and A‘( } ) are respectlvely the condmonal Iog-moment generatmg
funcuons assocrated thh the correct path and mcorrect path metrlc processes It turns -

fout that A°( | ) and A‘( l D) have very mce smoothness pt!opertres In partrcular they‘

- ame analytrc and smctly convex on R o D A

4 5 2 The Partmomng Me@hod Results

and suppose that the correct node J has been v

: Cons1der the stack algont?;}s

- hypothesazed Next consider afixed i incorrect node 8, Whrch has depth J+n and is on an

' mcorrect path dtvergmg from the correet path at depth j. 6isa candidate node for the.

; 1ncorrect subset X;. The kemel of our anaIysrs is tor consider the probablhty that & is
hypothesxzed by the stack algorithny; that is, Hée X ). The analys1s is then
‘ s1mp11ﬁed by cornparmg the correct path metric process w1th the metnc process along .
a smgl'e ﬁxed mcorrect path emanating from node J Specrﬁcally, we compare an
mcorrect path ini the j th 1ncorrect subtree: to the correct path ' ‘
Let _tdenotes the Jomt densrty of U= (Ul,Uz, Uf,) Ul = (Ul,Uz, U}l), and

"’v (vl,vz, V). Then
iy = fele) qe)gw) @2

where =



) = flawo 0 @x
k=1 : : R TR AT
is thé channel input symbols joint densify.
. Ii ishpw convéhierit fo define

'-mgﬂsmmmmw)}"_.‘u _': §f @Bf
= 17( de X)) | -

= E]

‘vwher'e‘
I = In_dicétOr random variable for node 3.
The ’basic Aidga' béhind f:he parﬁfioning metho‘d,‘iS - tb_ co‘n'si.d'erf tﬁe pr0blc_m of

éSiithating ‘P5>‘ using 'ifnponance sampling. Thﬁs, if . wé lct‘lss‘ be the importance
Sa_mpiing eStimator for P5. Then | o |

133' =

% 15U, U W%MWUWU @28

u Mr-

. where



65

Lofewivy
(VA e 8 (4.25)

5 fv]u®) q) g
" (v]u®) q(u°) q(u’)
(v [u®y
' (v]u®)

Sl U e
k=1 fi(vic [uk) .
The likeli?hobd funiction (4:25) is the ‘iﬁngrtancé 3ampling weight, and the joint density
f* is the importance Sampling simulation joint density from which the random »sampies
v, V(Z) .,V are generated. |
A stralghtforward computauon indicates that the welght funcnon specified by N

(4.25) does indeed produce an unbiased estimator. That is,’

s L. N
B[Py -Iljzzzjjls(u o) wetuhy) @.27)

- xf(vlu)dv q(ui) q(u®)

I

L .
_11? 3 E[l5(U°, Ui, V)]
g 0=l '

Ps.

A similar computation indicates that the variance of 135 is given by
var [Ps] = T |- Ps , - (4.28)
~where:

ms = BB UV @UUVPT @29)



66

, Not1ce that the 1mpact of the ch01ce of the. IS drstnbutlon is completely represented by |

 the functlonal Ns. Consequently, our obJectrve is to rmmmlze na

= Now from part (11) of Lemma 3.1,itis apparent that -
] hypothesrzed) = fP(BE x) fP(Nf Sn). s ::.‘,(4.30)'] ,

_ " Recall that F 1s the correct path metnc minimum deﬁned by (3 3) and note that _
,7 | N} is the pomt where the 1ncorrect path metric process Crosses sT (see Frgure 3. 3 ) In a.
-‘ 'vrecent work [61], we have shown that asymptotrcally (under certam condrtlons,) the :
,probabrhtres '.P(Nl- >n) decay exponentlally By 1ett1ng r be the rate of decrease of
these probab111t1es and p be the exponentlal growth rate: of the tree (Wthh is ln(b)‘

‘when the tree has b branches per node,) then it is apparent that the cntrcal pomt whlch

| - we have called the p01nt of computatlonal cutoff (recall sectron 3. 2 1) corresponds to -

o the - case- when p=Tr. Thus simulating the stack algorlthm usmg a s1mulat10n data

: whrch is generated from an 1mportance samphng drstnbuuon that makes T < p w111 h

, make the operatmg condmon of the stack algonthm very n01sy and hence, ensures a g

e hrgh percentage of error events This last observanon together w1th the fact that one of -

the key performance crrtenon of the stack algonthm namely the average number of o

- metnc computatlons per correct dec1s10n is d1rectly related to Pa, led us to consrder :
o the problem of estrmatrng Ps Indeed if we let 9\4 n be the set of candldate nodes for

| ‘the mcorrect subsetx at depth J+n then

G=3X T L
- m=18e Ny
B and consequently,
EGl=Y% ¥ P @3]

n=18e N,
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| ’Eﬁcfﬁf@w‘y 1tfollﬂws that the problem of estimating E[C;]: is: eqyiwlén@ io:::t»he;pr:@&l_‘emg. ‘
- of esumatmg Ps. R ’
- , Now noncc that (4. 30) 1mphes that »
M <N @3
 where

M = Bl sy @0V )(zaamv»2 P @3y

. fk(Vk | Uk)

2 f; ¢ iv e ‘
AT it k_'“k’ av q(um(u y

' &n&_limiz ;h%}; is the indicator random variable: of the event { NE > n}

"';’-’ . Define N to be the depth at whlch F, the minimum value along the correct pathx

» (aftcr depth 1) occurs Them we: can partmon the undcrlymg probabllrty space by thc )

. ,_:evcnts { N =m }, m= 0,1, 2,..., and hencc,

Zn(5 N’ m) T ws
.m0 o o e

“where -

M8 ;N =m) & E [ Ejon; N=m} <UUV Y@L MPY @35y

I s -my @36

n=n+it.
M (8 N =‘m‘)9 LE Nt s Nom) (U'e,.Ui;,V') (zg(ﬂﬁuf,y)_)z ]‘ @3

Thc ncxt theorem xdentmcs the 1mportancc samplmg dcnsxty whxch rmmmlzes

T\n ( 8 N m) for all n"2m. The key comphcauon in: the proof of thls thcorem is
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- that' Nk is not a stopping time [63] because" thecOrrect ’path mettic 'minimutn is

deterrmned by the entlre ‘history of the correct path metric process In the proof of

. ‘Theorem 4, 1 we av01d this d1fﬁcu1ty by utlhzmg the followrng facts 1) for a ﬁXed Yo

. Nl, isa. stoppmg tlme, and 2) glven the ent1re hlstory of the {Xk} :}X the correct and = o

»1ncorrect branch metnc processes are condmonally mdependent These facts are
| apphed to an mtegratron by parts. whrch upper bounds 1’(Nr n’ N =m l }x) and
’then we use Jensen S 1nequa11ty to minimize nn ( O;N = m) for all n > m |

We should note here that 1n the proof of Theorem 4 1 we do not conslder theg
problem of estrmatmg the d1str1but10n of computatton d1rect1y Instead we only '

con51der the problem of esumatmg the probablhty that a glven node 8 at. depth nonan

1ncorrect path that d1verges from the correct path at depth J 1s hypothesxzed by thc. O

vstack algonthm That is, we only c0n81der the esttmatron of P5 As a result the ,'n
' "optrmal 1mportance samplmg densny that is g1ven in- Theorem 4 1 1s not an- optlmal |
s1mulat10n densny for estlmatmg rP( C >M ) for a glven M Furthermore we should o
| » _,note that the partmonmg method srmulatlon densny does not mmlrmze na (and hence .V
"."the varlance -of P5) Specrﬁcally, the results of Theorem 41 are based on the’
_ : :mmrrmzatlon of T]s whrch is an upper bound of n5 Nontheless when the partrtlomng
ymethod 51mulat10n model was used to estlmate the dlsmbuuon of computauon the

' resultmg computattona] efﬁcrency gams were very. hrgh in companson to convennonal o

' :Monte Carlo
' Lemma 4.1: LetT, N *, and }x be deﬁned as above. 'Then for anya°s 0, )

. ﬂrq N em | 7") < exp [_a (- zzk)] (438) |

kel
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Proof Let IE be the 1nd1cator of the event { < y, N =m | :Tx } Thcn for any

'a <0

= [%4<%-'F>]

[l
.m|m
IA

cxp [“ac (Y- ZZk)]
k=
8 "I‘hg bfbof of Lemma 4.1 now follows becaﬁs‘e
1’(F<y N'=m| &) = E[IE 1.

O

Lemma 4 2: Let T, N*, Nr, Ai(.]) and 7* be deﬁned as above Then for all

}a>0

:P(Nl- n” N —mlf}x = y) < exp -a(v A)+ZA‘(alxk) (4.39)
. : k._ : §
. - Proof: Let 1§,:,Y(zi,.;.,z},) be the indicator of the event {N§=n’}.We.ha§e v
= AN} =n"| 7)

= fTy@ 2 Bz Ix). Fidzh 1xy)

= [ ey@s .z exp(—at X 2k + TANE X))
: . k=1 k=l
- xF® i) - FO i )
o ZA‘(a ka) oYz . -
 = el Ea)[ k=1 ;N‘ly'= n’ I; TX ]
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. n .
< exp |-+ X A | xg) |
k=1

The first line above exploits the conditional independence of Z§ and Zi given :TX The |
vlast: line above follows from the bounded branch metric assumption (HypOthesis H)
‘ and from definition (4.13) which together imply that y— A < S}qi7 < 'y The u'pper‘boufnd

in this equaﬁon holds only if o > 0. o

a

‘Lemma 4.3: Let N*, A'(.), Nk, and #* be defined as above. Then there exists

some constant K < O such that for alln” > m,

. . . R v T m
"PANr=n";N =m | :}X) < Kexp( ¥, A’(a’lxk)+a° Y zg) (4.40)
: © k=1 : k=1 - :

‘whenever

0 <o <-af S (441)

Proof: From Lcrhma 4.1 and Lemma 4.2, we have

[ AN =N =m | K T=p)daC <y N =m | #)

ANE=n";N" =m)

L AN 0 . |
< %4 e [ e¥YdRIr<y; N =m | #)dy
LT A@ %) [ 9 . i
< g*B e T+ IT(I“SV;N =m| & )e ™V dy
n’ M m
COTA@I | ey 0
< e® e l1+ale &t | e @ o gy
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(by Lemma 4.1.) Consequently, we have

o . 3 A R) (3 A Ix)+ 08 2 )
1’(N}-=n’;N =m) £ K; e +K,e & purt
where
K, 4 %2
and - "

Ky &% ai [ e +org

oia —O
o + o

= ¢

whenever o and o satisfy

0 <ol € —af

: : o m
Next note that the fact that a° <0 which together with the fact that ¥ zfAT
» v k=1
imply that
m
of Y zx 20
k=1
Consequently
| 5 R . n . m .
exp( X, A@'|x¢)) < exp( ¥ Al [xk) +a° ¥ zk)
k=l _ k=1 k=1
and thus

| T . & i e ™ oo
ANp=0";N'=m| #) < Kexp( T Al(@' |x)+a° ¥ zf)
ST k=1 .
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.~ where K= Kl + K2 ‘
,’ . D

o We should note that the proof of Lemma 4 3 1ndlcates that 4 40) holds for any n

o and m. However for the proof of the next theorem we only need that n’ > m.

g .lTheorem 4.1: Assume the conditions of Lemma 4 3 and let nn ( 8 N m) be" :
, »‘deﬁned as m “4.37). Then the 1mportance samphng s1mu1at10n dens1ty f that :

minimizes nn(S N* =m ) for alln 2mis glven by
I ]'[fk(vkluk) T X N
where

-'7'»f;(rvk‘|u§)“'_A % exp [-5 (OC°Z§+{\‘.(9t‘ka-)“)] ik Sm o

AT T omerwise 44D
-_;k(vk'u“)_ -, dkexp’[-S’A‘(alvxx)J | oSt

: ’and ck and dy are constants Wthh are. chosen 'SO. that fk( | ) is a probablhty densuy’

‘funcnon The opumal values ofa o, andocarechosen so that B
[- { E[ exp( 5078 + N@ %)) _}"‘ (Bl exp( SCA@Ix))) ] (@43)

" is minimized.
;o

i 'Proo'f: ‘Using successive conditioning along with A(4.}'4'0),' -v_tt‘e get




B

nn(é N m)AE[I{Nm Ny (U, U'V)<_<U°va»2]
SR = E'[E[ I, wm](U°tPV)(_<U°U*v»2|7x1

"—E[f(Nr 0’ N m)(_(UCU‘V»"’w"]

N '

KE [exp( of z Zg+ z: Al |xk))c_(U° U* V))21 |
k—I k=i

KE [HCKP( Zk+/\l(0£ X)) H CXP(A’(GIXk))
o k'j-~- : k—m+1»

X @@?,U?,V))f 1
| Next‘ by‘ J e'n.Sen’isv ineqﬁalit‘y,_

‘_E [nexp( a°zk+A‘<a %) ) n cXP(A'(alxk) )(w(U° U V2T
. k—l o - keme] ,

v

o -
[E[Hexp( S(o Zk+A'(0t ka))) H exp(’ S(Al(alxk)))]:l |

k=1 ) ) k=m+]

' 2
[{E[ CXP( 5( Zk+A’(0t ka))) " {E[ eXP( 5(A‘(a|xk))) }""" ]

) wrth equahty If and only 1f

Hexp( O Z§ + K@ 1x0) T exp(AiGIx) Y@(US,ULV) = ¢ (4.44)
k=1 : L kemtl | R o

almost surely W1th respect to the lmportancc samplmg dcns1ty (c in the above
cqu-atton is simply a constant.) Thcorem 4.1 now follows because |

T n k(Vkluk)
w(Ue, UL V) 4
» l£ll fk(VkIUk)
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It turns out that for the practical implementation of the nnportance samplmg v

model 4. 43) one should choose o=0. In thls case, the pamtlonmg method

, s1mulanon model becomes

¥ c : i crrC SPIR| . o :
| fk(vh|Uk) _ J cxexp [-5 (o Zj + Ao | x50) )J fk<m (445
fe(viclu) |1 : 3 otherwise
For this simulation model, the optimal values of of and o must be chosen so that
E[exp(.5(0°Z§ + Al %))+ | (4.46)
is minimized.

Notice that letting a=0" insures  that. the importance sampyling" Qei‘g'ht will
converge to 1. Furthermore, note that if we continue the simulation of the stack
allgorithm. using o # 0 (that is, with a noisy channel,) then the resulting' simulations will
g tend to produce a lot -of errors and the incorrect subtrees may become excessrvely

- large. This is the ]ustlﬁcatlon for choosing o=0.

4.5.3 The Partmomng Method Applied to the BSC '

In this sectlon we will apply the results of the partitioning method to the spec1a1
case when the channel isa bmary symmetric channel As in the prevrous section, let
{Uk} and {Uk} k—l 2 denote the encoder output sequences assocxated W1th the
correct path and any incorrect path, respectively. -Recall that {Ug} and {Uk} are both
» assumed to be 1ndependent and i. 1d random processes w1th the same umvanate

dens1ty q() We shall assume that both the 1nput alphabet and the output alphabet of

o ..the channelare{ -1, 1} w1th

w2 ifusl S @41
=112 if u=-1 o (°,)
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Now let Z§ and Zi bé the correct and the incorrect branch metrics. Furthcrmofe, '
vl‘et Aé(. |.) and Al |.) be the conditional log-moment generating functions associated
Wiih‘ the correct andvincorrect branch nietric processes. In order to inake our notation
for these parameters as simple as possible, we will assume in the reminder .of this
chapter that there is only 1 use of fhe éhanncl for each information symbol input to the
convolutional encoder. In other words, we shall 'assume that the rate of the code is 1
‘bit per output symbol. Generalization of the above expressions for rate b/n codes is

straightforward. Thus, assuming a Fano metric. Then

In2(1-g)-R - if Uk=Vg

| (4.48
In(2p)-R if Ug# Vy 449

and

nQR(1-g)-R  if Up=Vg

) - . 4.49
In(2p)~ R if UL 2V, (4.49)

where € is the crossover probability, Vi is the channel output symbol, and R is the
code rate.

A straightforward computation indicates that

_ In(2(1 —-¢))—R with probability 1 — €
£ =< :
Zk = { In(2p) - R with probability € (4.50)
and
zi = { 1n(2(1 -€))—R w%th probab?l?ty ‘1/2 . @51
In(2p)-R ~with probability 1/2

~ Consequently, when conditioned on X &(Uf,V}), Z§ becomes a deterministic
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quantlty, and thus for any d € R |
| A°(a %) = o % e @y

Closc observatlon of (4 51) shows that Zk is 1ndepcndent of Xk »1n dds spcc1al f
e dase Consequently for any ol <0, ' | | B |
S A‘(a I = - Nl e R . (4 55

ln(E[ e“ % 1)

» where a and b d‘r“c'deﬁned} avs} ,
L R A= ln(2(11 _e)) | o | : | "‘1‘5':.(2‘1‘.‘5v5a)7 -

and SRR = -
ba-meo o @sy
Now recall that .ﬁﬁe.ﬁfaxﬁtioning method m‘odei (yyith-& " ‘Q)‘is giycn by |

| cpexp [.5_ (a°z§_+Ai(oé|xk)')]~ ,‘ K S m L -
_otherwise - .

fk(Vk luk)

BAUN Illk) d‘.‘ exp [.5 ‘Ai(&i?(k)}

: For a, glven a and a notlce that exp(A‘(alxk)) cxp(A‘(oz)) Consequcntly, the - :

. s1mu1at10n model (4 56) 1s automancally reduced to the s1mu1at10n model (4 45)

S Thus the partlomng method sunulatlon model in the BSC case is glvcn by S " ,’

fk<vk|uk) {ck exp(5a°Z°’ k<

asny
flu) @D

1 I othc_rwlse.

Solvmg for ck, we get.



77

o = e M%) : . (458)
where - ~ |
| AS(0f) & In(E[ %% )
= In((1-e)e™® +ec ™) -aR (4.59)

and a and b are defined as in (4.554) and (4.55b). Conséquently, for the BSC case the

partitioning method simulation model is given by

| 505ZE — A% o )
LN v u)) fk<m

_ 4.60
fi (v |ug) ’ . otherwise (+.60)

fr(vg [uf) =

or equivé.lren-tly, it is based on a non-stationary -memoryless BSC model which is

characterized by a time varying crossover probability

. [ 50578 - AS(0C)2) oo o |
et ={e € if k <m 4.61)

otherwise

where A°(0°) is given in (4.59).

| Finally note that fr0m>(4.4'6), it folléws that the optifnal value of a° <0 for the“
pai*titidﬁin g method simulation model must be chosen

E[ exp(.5(0°Z§ + A'(0' [x) ) ]

18 mlmrruzed ‘ Since Zi | is independent of X, in the BSC case, we have
‘ Al xk);:- Al@). Consequently,
| | E[ exp( .5(0°Z§ + Al(od %)) ) ] = €33 E[exp( .50°Z |
and thus the optimal o should be'choscn 50 that |

E[ exp(.50°Z§ 1 4 M@/
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is minimized.

4.5.4 The 'Partitioning 'Method Applied to the"AWGN Chajnnel" B
We shall now apply the partitioning method to the add1t1ve whlte gauss1an noise

| ,channel case. Wlthout loss of generahty, we shall assume that the all zero path is the
_' -transrmtted path. - Consequently, Uf = -1 Slnce the channel 1s assumed o be anv :

| AWGN channel then the output channel symbols Vk can be wntten as follows
V = —1 +_Nkﬁ .

where Nk is the white gausslan random process wh1ch is assumed to have zero mean, ~
and variance o2 (recall sectlon 4.2.1.) Asin the previous section, we shall aSSume that -
for any 1ncorrect path the correspondmg encoder output symbols {Uk} for k— l 2 are
mutually 1ndependent wrth umvanate den51ty q() Thus on any mcorrect path we 3

) have Uk +1 with probab111ty 1/2

Assummg a Fano metnc, then the mcorrect and the correct: branch memcs are .

g1venby
- Zk = v olncosh(—)+RT .62 -

Sl % -0 [ln(cosh(——2-)+Rv] : 21 R
1 R =i (4.63)

g’kvpcz[ln(cosh(vkoz):'{l){ ]lr | “i‘f:U

© Consequenily, we haye

A0S | xk)-_"E CICZﬁ (464)

" where Z§ is given by (4.62). Likewise, the incorrect branch metric conditional log-
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moment generating function is given by

CAE o =h[Et ] @)

In [ ST DB | oy at) + b)) ]

In [@osh(.:aivg) e’

i

i (a(v,) +b(v,) J

 orequivalently,
Al [x) = Infcosh(edvy)) —of(atv) +b(vi)) ¢ (4.65)
‘wher.e | |

Cavp) L on(cosh(~—%) (4.662)

and
bvy) LR, o  (8.66b)
‘Define. |
Wg, ukovi) & 0525 + Aol Ixy). - @s7)
Then for any 0< o <0, the partitioning method imponaﬁée _'sva:mpling density is
glven by |

exp (5 ¥k, vk | fveu) #fk<m

i) o - (4.68)

fetve [uf) : otherwise -
Thus if we approximate In(x) by [x| - In(2), it follows that

*I'(uﬁu}(vk) = =0y — (o + ol) o ’f[;ln(cpsh(g’)d-ik] +i:1fn-(cos’h(aivk))_ a

0-2 P



lvkl.

0.2

i

v~ (0 +0of) 0% | ~In@2) + Rl +o vl - In(2) |

o (v + Ve )+ (0 +0) 62 (In@) ~R) - In@).
Consequently, - - |

o | . @+d)? @ -R-@) €W S0
| ,Uk’u}é’vk. “~ _zacvk'+('(ac+ai) 0.2 (ln(2)—-R)—ln(2) i Vi

~ and thus by Substituﬁng the above equation in (4.68), we. can see that for all k<m o

Cfilvluf) o if v <0

o % . >c — ‘ ‘ :
: fk(vk »"uk) . Cc"uc‘,’k fk(Vkluﬁ) if ka‘> 0. . . (470)

where C is some constant for a given o and ol. Since fx(.].) is a probability density
function, it follows that
(v + (1 + aco?))?

o H1P

-

S ; ‘ ; o |
¢ "fe o2 dvy +expl d+o oj) ” .1 ]je \‘2"2 o odvg = L
_7._4‘/27:10._‘2 - o 20 Lo
Consequently, - S '
| _, AR S
R Py (A+0°6®)? -1 1+0°> . |
= 1- - - ' . : .
.C v ( ,Q[G])%CXP[, 2z ]Q[v - ] - (471)‘
wher‘e‘k
o = B
QoA =Ty
: Itis nQW'convenierit to define the following dcnéity funcﬁons:
_‘(y+1)2
@y & 2RO @72

1- Q[—(l;]
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__j (y +i(1-+0°02))?
20?2

(@73)

f(y) is simply the conditional density of y given that y <0and y is ‘@ gaussian random
‘'variable with mean -1 and standard deviation ©. Similarly, f'(y) is the ;condiﬁona‘l
;dens}i-,t); of y«;givc;ri that y>0 and y \%is a ,gauézsian :-réndoni variable with ‘mean-
=—(1 ‘.+\,a°.0~2j) :an,d standard hdéviation O. o |

" A close observation of (4.70)-(4.73) indic;ate«sl that the importance sémpjlin:g

density f;.\,('vfk |uf) in (4.70) can be x:ewﬁtten as

. BERE #ve <0
fr(viclug) = 1

| 97 (vi) if vy >0 : .l'(4."74)

where £7(.) and £*(.) are defined in (4.72) and (4.73). The constants q~ and q* are

given by
‘q' = C(l—Q[-':;]-) | 4.75)

and

C2y2 i €
(1+a°c?)? 1]Q[1+a0'2]

= = (4.76)

q" = Cexpl -

with C being the constant given by (4.71). Consequently, for a given N* =m, it
| .follows that the random observations needed in the partitioning method simulations for
all k £m can be realized by sampling from f;(vk |ug) as follows: with probability q,

the random samples will be generated from the density f (.) and with probability
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q" =1-q", the random samples will be generated from the density £ (). 'The optimal
q" and q* should be chosen so that (4.46) is minimized. '
" Figure 4.12 shows the simulation density fx(vi |u) for 6=.5, ¢ = .63, and

qt =.37 (assuming k <N".)
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0.6 1

PM &ensil‘y S

" The partitioning method simulation densny for the AWGN channel

Figure 4.12:
- - witho = Sq —63 andq 37.
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4.6 The Partltnomng Method in the Markov Case

In this section we shall extend the partmomng method analysis to the. Markov
case. That is, _1n_stead of the ii.d branch metric process assumption we consrder’ :
stationary branch metrics _arising from a unifo-nnly'récur’rent kM\arkov-Addr'tive MA) v-
i proce‘ss' This model assume‘s that the branch mem'c process distributions are 'goVe'rned =

- by an underlylng Markov chain. The uniform recurrence hypothe51s is very strong, ‘but -

it-allows us. to present our results w1th a minimal amountof prehmrnarnes Ruffly
j "speaking, uniforrnly reCurrent chains are those chains tvhich behave like chains on a
ﬁnite state space 1n the sense that theyi admit a strong Pelron-Frobenius theory. We
; should note that the uniform recurrence model does mclude two 1mportant cases the

i d case and the ﬁnlte state space Markov chain case.

We shall begm th1s sectmn by presentmg the requlred background on MA‘

.pI'OCCSSCS

L 461 Markov Additiue Processes
’ Let {Xk k——O 1,..} be a Markov chain takmg values ina measurable space (E E)
We assocxate w1th {Xk} the followmg addmve components '
| A on “on

Si = X% ad Si =¥z
k=1 kel

- 'where {Zk) and {Zk} are real valued processes assoc1ated w1th {Xk} as follows For

’ anyer Ae 'EandchB‘é 232



P((Xnt1,Z51,Zhe1) € AXBXB | X=X, F).
= P(Kpw1Ziw1,Zhe1) € AXBOXB | Xp=x)
A P(x,AXB°xB1) | | o o (477)
where F 206X, XnoZS »o0rZSZY 5. Zh) and B is the Borel field on R In this

context, the superscripts ¢ and i will denote “correct” and "incorrect” paths. The triple

;_{\(X,,;s'?,,;;si,,;;} is a two dimensional Markov additiile (MA) process- and »

"P-‘; E x: (®<B°><‘=Bi) —’)/[50 1] is its MA transition Kernel {64-66] We ‘sha‘lfl further - '

restnct our Markov model so that when conditioned on & =6(Xg,X1,...), {Zk} and

{Zk} are condmonally 1ndependent Specifically, we assume that
PG, dy><B°><B‘) = Q(x,dy) F.(B° | x,y) Fi(B' | x y) " (4 73)

’, where Q(x dy) is the transition probablllty of the Markov chain {Xk}. F( | x,y) and _ :
F.(. Ix, ) are respectlvely the conditional distributions of Zk and Zk glven: |
(Xk.l,Xk) (x,y) An MA process of the form (4 78) is called a separable MA,
Process.

In the sequel we w111 assume Hypothes1s I below in partlcular condmon 4. 79) 1s.‘

what we call the umform recurrence condltlon

Hypothesns 1:

i) - The tnple {(Xn,S"n,S‘n)} isa separable MA process with transition probablhty of
| the form (4.78), whlch is uniformly recurrent. That is, there exists a probablhty
' measﬁre von EX 1?2, and real numbers 0 <c <c¢ < oo, such that ._fo-r s"o‘rne integer
np <o, | |

C cW(AXT) € PU(xAXT) < CWAXT) . @79
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forallxe E,Ae £, andT e 2.
‘ (i) The increments processes Zg -and VZ{( are bounded, that ié, V|Zv°k | <A and
IZ‘k|<AforsomeA<oo and L

(1ii) V(Exl") >0forI'= (O oo)xR (—,0)%R, R><(O s} and Rx(—oo 0)

Note that part (iii) of hypothes1s I insures that nelther {S°} nor {S } are

‘ monotone 1ncreas1ng or decreasmg processes For example, 1f v(Ex(—oo O)><B°) 0

~-then from (4 79) it 1s apparent that P(x, Ax(—oo 0)xB®) = O for all x € E and A € 'E, and
| 'hence Z§ > 0 almost surely.

NOwl ,for. each ae RZ’ define the -follOwing | ’nQn-negatiVe ‘Kernel

Bt ExE > [0, as | |

. ﬁ(x’,A;.a) 4 L exp(az) P(x;Axdz) _ ', o 4.80)

| 7 for any X € E and Ae Z { P(oc) oe R2 } is called the family" of transform kernels

‘ o [64] Part (ii) of hypothesm I 1mphes that I exp"‘z V(Exdz) < oo, and th1s in turn 1mp11es
o that P(0t)v1s a bounded operator (P(a)f(x) =Jf(y) P(x dy;oc)) on the Banach space of

' bounded real valued Borel measurable functions. Hence, the specl:ral radlus of P(a) is-

B well deﬁned and finite for all ae R2. The followmg Lemmas are taken from [66] ‘In
vpartlcular Lemma lis a generahzed Perron-Frobemus result onglnally due to T'
Hams Wthh states that the spectral radlus of P(a) is actually obtamed by a non-

' negatlve elgenvalue
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’Lemma 4. 4" Assume hypothesis I. Then for each o € R2, P(o) has a maximal
sunple real cxgenvaluc O <. 7L(a) <e0, ‘and -an csscnually unique nght elgenfunctlon
r(x a) Funhermore the elgenfunctxon is umformly posmve and boundcd that is,

'thcrc exist constarits kl (a) and ky{a) such that ‘
o<k (@) < r(x;e) < ko(a) < oo C @8

’fqr all x€ E.

. Define

A(@) = In(AMa)) foroae R® o 4.82)

Lemma 4.5: Assume hj(pothesis I. Then (1) A(e) is analytic and strictly convex S

onR? , and (i) A(e) Teoas || | —e.

4. 6 2 The Partltlomng Method Results
Let S° and S1 dcnote the correct and mcorrect path mcmc proccsscs Wc shall
assume that thc tnple {(X,,,SS,,S}I)} is a separablc MA proccss with transmon
probability of the form (4.78). Furthermore, we shall assume that hypothe.sls Iis |
'satisﬁéd,
Define
A@°) & A(a,0) (4.83)
A‘(a) A A(Oa) | (4.84)
Thcsc are ‘the log-clgenvaluc functlons for the ‘one. d1mens1ona1 MA processes

{(Xn,Sf,)} and {(Xn,S},)} respecnvely We shall assume thc following drlft condition:
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EA ©) <0 and dBA O > 0 | :,:‘ (4.85)

, .We note that from a large dev1atxons theorem for umformly recurrent MA processes

(see Theorem 5.1 in [64]), S°n/n and S, /n converge to dA°(0)/dB and dA‘(O)/dB atan

:'exponentlal rate-' Consequently, the denvatlves in (4.85) determine the drlft of the =

. additive processes {S°} and {S’ } Recall that the stack algorithm. W1ll not work if the
; 1ncorrect nodes tend to increase faster than the correct ones. Thus 4. 85) is mtumvely
a mlnlmal dnft condmon -

7 Nowr'recall that in section 4.5.1, we assumed that {X} ‘is an i.i.d. 'seqtience'. In‘ '
o this sect‘ion, hotvever, we shall let Xk: k=0, l,...} be a Markov chain taklng \'talues ina
measurable ‘(E ) with‘tr'ansition probabillty Q(x,dy) and recurrence measure u" This
Markov cham state space may be infinite drmensronal hence, th1s model prov1des a

nch class of statlonary branch metric process distribution.

As in the sectlon 4. 5 2 we consrder the problem of estlmatlng P5 (recall (4 23))
'v1a- 1mportance sampllng We shall restrict our attention to 1mportance samplmg :
srmulatron with unrformly recurrent Markov chams generated by a transmon
’ ,probabrlrty Q (x,dy). Furthermore we shall assume that Qx, dy) is- absolutely -
) contlnuous thh respect to Q (x dy) (This is requrred to get an unblased 1mportance

samplmg estlmator ) In this case, the nnportance samphng welght (4 26) becomes

Q(Xk—1,xk) C e
_ w(u . v) ————. e 1(4.86)
g Q (xk—laxk) ‘ S .

i _ The next theorem is basically an extension of Theorem 4.1 to the Markov case.
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Theorem 4.2: Assume the .conditionfS'v»‘of Lemma 4.3 ‘and» ‘Hypothesis I :

Furthermore, let Q(x,dy), Q"(x, dy) be deﬂned as above, and wﬁ‘,,r( 8;N* =m) be

. deﬁned %és Cin (4 '3'7) “Then the importance samphng model that mmlmlzes
' "nn(o N '—m)xscharactenzedby o '
rkexp[S( Zk+Al(a|xk))] ' 1fk_m .

" 87‘
otherwxse ' ‘( )

| scexp 5 M@0

wheté 1, and s are constants which are chosen so that Q" (x,dy) is a valid transition

Pl'Obablhty ‘The optimal values 6f*9‘° ,of, and & are-.chosen so that -
[ {ELexp(5C0Z5 + Ai(@ %)) 1™ (BLexp( S(AiG1x0)) 17 | (4:89)

Proof First nouce that under the assumptions of Theorem 4, 2 Lemmas 4 1 -43

- a:e stil Z‘Vahd Conseque*ntly, the’ proof of Theorem 4, 2 can be done by s1mp1y

| . followmg the same steps used in the proof of Theorem 4.1. The mam dlfference
t between ithe proofs of both of these theorems is the 1mportance samphng welght In o
the pf of Theorem 4. 1,the IS welght is gwen by (4.26). In the pf of Theoremg

4 2, however the IS weightis-given by (4 86).

7 The M-method -

In this section, we /propose another importance sampling technigue which we

, ‘shail refer 10 as the M-method The ‘M-method is an unportance sanphng snnulatwn

- model thch is msplred by the partitioning method. Our goal is is to apply thls |
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, scheme to s1mu1ate (stack algorithm) sequennal decoders.

We shall begin our discussion of the M-method by developlng vanous deﬁnmons

- Wh]Ch are needed for the dJscussxons to follow

Let X be-a random vanable with probablhty densny function fx (x) and let g(.) be
L a real valued function of X As in Sectlon 2 2.1, we sha.ll consxder the problem of -
estunatmg |
~a = E[gX)] ’ s - - (4.90)
= f'g-(x)'fx(x) dx
Now let M be a d1screte random variable with a probab111ty mass functxon Pm-
-vThatls,_” o
M ; m) = P for m=12...J . (@491)
We shall assume that the random variables M and X are statlstlcally mdependent SO
, that thCII‘ Jomt densxty fXM (x, m) is glven by |
CBmm) = K@ @9
: Next let fXM(x m) be the importance samphng density Wthh we shall use in

: 'erder to estimate o..- Note that this densxty can be wntten as
, fXM(x,m) = fX|M(XIm) Pm e v_; N (493)
« w1th p,:l ztnd f;(rlM(.l.)v being respeetively the ‘conditional -and marjg_innliirn‘pertance'
sa;npling densities. | b- o . e
' The basw zdea behmd the M—method is to write o in (4 90) as
L= E [g(X) w(X M)] S I f‘ 4.94)

where
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- f(x,m)

 m) A
Wm‘%wm

@)

is the joint im_p,brtance sampling weight and E*[] is the expectatioh with krespect‘to
f'(x,m). Notice here that the basic Aimpoftance sampling pﬁnciples develeﬁed in
Sectlon 2. 2 1 apply d1rect1y to the joint samphng of the pair (X M) However observe

that we can rewrite the Jomt wexght (4 95) as

wm) = wxmGimwy@@  (496)
.wherei‘:v :
WX|M(X|m)A==*—;Xﬂ— 49
, fxm(x|m) o
. Apm .
wmmA o  (4.98)
Pm S BT

The importance sampling estimator for « is given by

Ml"

A 1 v '
o=+ 3 gX?) wX® M) wM®) ©(4.99)
=1 ' ' :

,wh"erevthe simulation data X(l)_, LX) gnd MO LX) gre 11d i‘andeth samples
being reépectively generated from f;}, m(x|m) and pm. Notice here that the eStimator
- (4.99)is implemented as follows: For {=1,2,...,L, the samples M@ af‘v? genereted from
the nearginal bdehs_ity PM. Forb each ‘of these samples, ‘the samples Xf(o) '-are ‘then
generated from the conditional _deﬁsity f;(IM(x | m). |

Because the si_mﬁlationﬁ data is ii.d., it-follows that the vir'nportance sampling
estimétof o 1s unbiased if and ohly if it is unbiaSedr for L=1. Thus, it is sufﬁeient to .

.'Sh‘ow th;at E*[ gX) wx MX M) wy (M) ]=a. By considering (4.94)-(4.98), we have
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E [g(X) WX|M(XIM) wmMM) ]

= 2 E* [g(X) WX|M(X|m) l M—m]WM(M) PM

m—l

fx (x) | P'v

leM (x|m pm

):fv<)

z j g(X> fx(x) dx P

m=1

=0 Y Pm-

-.m=1 .
= Q.
: This completeé the proof.
A §iﬁﬁiar coﬁiputation indicates that the variance of the"estnnat_o'r (4.99) is
e = %[n R | '(4'.100)

where » |

n’=E*[,g""(xyw%}:.M(mM)w%«(M)} I j (4.101)

= E*‘[’E*f'[ g"‘.(X) W%(lM(XIm)|M=m]W%d(M)j. -

= E E'[ 22(X) WX|M(X|m) | M—m]wM(m) Pm

om=1

ZE[g(X)WX|M(XIm)IM—m] 2

m=1 ) pm i

. o . .
= an.“?"pxzn

m=1 Pm

- where
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M E[g(X)wx|M(le)IM—m] @)
v’fNow note that if we deﬁne p -

Then for a given m, a, is simply a constant. However, notice that py, is independent
of the simulation densities fx|p(x{m) and ph. Thus; by writing 1 as

xv I, | .
N= X anpm R C R )]

m=l

Then for a glven s1mulat10n dcnsmes fX| M(xlm) and pm, one can 1 select Pm in such a
| way that thc vanance of the esttmator 4.99) is mmlrmzcd Thus, for . a ngen '

fx IjM(z; |m) and pp,, we!may conmder the _foIlowmg minimization problem:

Minimize 7 = Zamprn o @a0s)

©subjecto

Z Pm = _1t_ and  pn 20 form=12,.,J.  (4106)

, m—l

- A stralghtforward computauon (usmg Lagrangc muItlphers) 1ndlcates that the solutlon

t the abovc (constramed) rmmx:mzatlon problem is glven by

P [Z pi ] T T ( ‘ )v

In ,this-éa;sc;n is given by B

‘where 1), is defined in (4.102).
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As a final remark in this section, we notice that in the special case where
PM =DPm, it follows that wy(m) =1, and hence the importance sampling estimator

. (4.99) reduces to

1
L

M

o=
' 0

2(X®) w(x® | M),  @109)

The variance for the above estimator is still given by (4.100). However, in this case 1
is given by o |

n= FETLEO Wk MXIm) | Memlpn.  @110)

m=1



95

CHAPTER 5 | :
SEQUENTIAL DECODERS SIMUL ATION o ‘,
USING - | S
IMPORTANCE SAMPLING,

51 ?Iht‘i',oducvtion
~In th/isbchaptcr, we shall discuss and demonstrate the potential of the iportance o
samp‘lingﬁ techniques which ch have developed in the previous chapter. -Our. main |

objective is to verify and demonstrate the power and accuracy of these importance -

sampling schemes. Throughout this chapter, we will consider convolutional codes -

with rate 1/2 and constraint lengths 5, 14 and 21. These codes are sufficiently complex
- that their simulations via ordinary Monte Carlo is quite difficult, if not_impoSsiblc; -_fbr '

" low noise conditions. The convolutional encoders that generate these codes are shown -

in Figures 5.1-5.3. Because the communications channels on which the convolutional -

codes are going to operate are assumed to be discrete memoryless binary input-output
channels, it follows that we can arbitrarily set the corréct path to be the all-zero bpath.'
" Let j denotes the node on the correct path at depth j and let |
C; = the number of nodes in X
'~ where Xj is the j’th incorrect subset (recall Section 3.2.1.) Recall ihat ij isvsi‘mply_th'e
* number of tree nodes examined by the stack algorithm in order to make a correct -

branéhing decision at depth j Furthermore, recall that Ciisa random‘ variabljc and iha't
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its distribution is one of the key quantities that characterize the perforrnance of the
“ stack algorithm. In this chapter, our main goal}is to estimate the distribuﬁon of -
computation. That is, the distribution of C;. Itis noted that the techniques which we
sha‘ll discuss here can be used to estimate other key parameters .such as‘t_he average

- number of metric computations per correct decision. That is, E[C;].

The organization of this chapter is as follows. In Section 5.2. nve shall brieﬂy
review the importance sampling background for coded communications systems.
Speciﬁcally, we will present the required imporcance sampling hackgroundthat is
needed to estimate the distribution of computation.."This presentation also includes a
'discussion of some of the issues which are relevant to the estirnation of the distribution
of computatlon The presentation of our simulation results will be conS1dered next.

For s1mp11c1ty and in order to gain valuable insight about our 1mportance samphng
_- techmques we will - first cons1der the binary symmetric channel (BSC) case
exclusrvely Once this case is fully presented, we will then consider the add1t1ve wh1te
gauss1an noise (AWGN) channel case. As we have mentioned prev1ously, we are not -
1nterested in dCClSIOH errors (we shall consider that in Chapter 7. ) Spe01ﬁca11y, all of
our estimates throughout this chapter will be conditioned on the event E where E is
the event that correct dec1s1ons at both depth j and j+1 have been made once the search
is terrmnated -For notatlonal simplicity, we shall drop the condltlonmg on E in our
notauon Hence for a glven M 21, we will write C; 2 M) mstead of '.P(C > M IE )
We should ﬁnally mention that all of the simulation results that we shall present in thlS
chapter were obtalned using the modified stack algonthm 51mulat10n (MSAS) The
only exceptlon is at the end of Section 5.3.3 where we compare the performance of the

| MSAS with the stack algorlthm
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A rate 1/2 convolutional encoder with constraint length 5.
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Figure 5.2: A rate 1/2 Convolutional encoder with constraint length 14.
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iy Flgure 53: . Arate 1/2 Convolutional encoder with constraint length 21.



5.2 Importance Snmpling’

Consider the memoryless coding channel of Section 4.2. Recall that for a given

- sequence of channel input Symb01s u°= (u‘f;uﬁ, .»up), the 'sequenee of ‘output symbols

V= (Vl ,Vz, rl) consist of 1ndependent random samples with Jomt dens1ty )

f(viu®) = H fk(Vkluk)
. k=l

where fi (v, |uf) is the channel transition density function.
k(Vk , .

~ Now forany M 21, let

*Iyn() & the indicator of the event { C;2M ).

Then the important sampling estimator of Py =E[ In() 1is-
= L 3 (V) wv® |u9)
L 0=1 e '» . .

where

. (N f(vluc) ‘
YD F o

n i (vg [uf)
et T vl Ufc)

i ¢.1)

62

and V(l) V(L) are independent random samples from the 1mportance samplmg |

' ,dlstrlbutlon f 6 | ) The hkehhood ratlo w( | ) is the 1mportance samplmg wezght

’ Agam note that if fk(vlu") fi(v]u®) then wvju®)=1 and the sample mean

estimator (5.2) is reduced to the ordmary Monte Carlo relative frequency estimator. -
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Let E* [.] and var [] denote the expectation and variance operations  for the
s1mulat10n densny Then because the s1mulat10n data’ V(l) V(L) are mdependent |

random samples from the snnulatlon dens1ty f* (v | u®), it follows that B
‘ E*[ Py 1 = E'[Iu(V?) w(V? [u) ]

S Hlm(v) w(viu) (v lu®) dv

- J'I ( ) ff((‘,'lu c) f*(vlu(:) dV

= Py.
Consequently, the importance sam;)ling estimator (5.2) is unbjased.

A similar computation indicates that the variance of Py is

.i\biar* [ﬁ‘M] = —Ll—- var [Im(_v) w(V]u®) ] :

L ()[f((‘”l“c)] (v u) dv - @' 69

4

' "Expression {5.4) indicates that a good choice of the simulation density f (vju®)
will tend to be large relative to f(v|u®). This will tend to minimize (5.4), and hence
diminish the estimator’s variance for a fixed L, or cquivalently, reduce the. number of

simulation runs L for a given vanance or accuracy.

On a first exposure it may seem reasonable to deduce that the best 1mportance

’ samplmg models w1ll be statlonaxy and memoryless, espec1a11y 1f the true channel

e model is stationary and memoryless However, our expenence mdicates that th1s is not :

thg _ca_se-; To p_roperly understand this, first note that a good lmp_ort_ance sampling '_

simulation model tend to increase the relative frequency of the "important” events.
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Thus,r 1t should "bias" or force the stack algorithm to search nodes in tﬁe,‘j’th incorrect
' sub&ee 9\6 This suggests that we should begin our importance samplivng éﬁnulaﬁons
with a very noisy operating condition to ensure arhigh percentage of error events.
However, if we continue the simulatioh runs with a noisy chahnel, then these
simulations wiil_ tend to produce a lot of errors in other incorrect suvb:trees vand the
desired ihcorrect subset may become excessively large. Our desire is tb erophasize
A ohly the "important events',":t,hat is, those error events which tend to hypothesize paths -
invthe j’th incoi'rect subtree ‘.7\4 Thus, it is: elearA that the simulation channel model
should start out with a high noise operating condition in order to initiete the érror
events of interest, and ‘then in some fashion be programmed to become less noisy as

ﬁdie orogfesses. | (R

Now consider the »importa.nce sampling estimator (5.2) and let
N ' : 1 L © 2 ©) A ,‘ : v
\Y% (V<°>|u°)A=f Y WV Y Im(V) | =@py)? - 7 (5.5)
0=1 , )

because  the  simulation data are  independent, it follows . that
1 g @ (aer2 1. (VO : | . g

: f( 3 WV u®)” Im(VH)) 1s. an unblased‘ estimator -for
E*[ (w(V® |u®) Iy (V))? ] and hence,

P . .

isa good emplncal estimate of var [PM]

3

The nommal variance, that is, the variance for the ordmary Monte Carlo
' estlmator can be also estlmated using good estimates of PM No(mg that IM (V(o)) isa
O—l Bernoullx random variable, it follows that the approprlate : esumator for

var( Iy (V(o_)') is given by



vcv<°>lu°)—PM(1—PM) e
Consequently, the estlmator for the nommal variance is

A V(V.<°>|u¢)
L

Now glven expressxon (5 6), we can then esumate the accuracy that 1s, the
estxmator standard devxauon asa percentage of PM The estxmates for the accuracy can -
be computed usmg both PM and the sample variance esttmator (5 6) as follows . o
Accuracy estimate & ——— (59
It 1s now conventent to let LMC and Lls denote the numbers of s1mulauon runs' .
) reqmred to estlmate PM toa spemﬁed accuracy, respecnvely for ordmary Monte Carlo

’iand w1th 1mportance samplmg Then the relatzve eﬁ‘ic:ency gam (reg) can be deﬁned :

The relat:ve efﬁmency gams can be esumated using the sample vanance estxmates
é. 6) and (5 8) as follows. Suppose that an accuracy is spec1ﬁed by a variance v.
‘Then for Lls sunulanons the tmportance samphng ‘variance is 'VM/LVIS Hence to
: obtaln- a given varxance v, the requu'ed number of i unportance sam-phng s1mulat10n runs. 8
s L;s = VM/v leew1se, the number of ordinary Monte Carlo s1mulat10n runs whtch
are requu'ed to obtam a ngen variance v is LMC VM/v Consequently, from (5 10)

_we conclude that

- . : . ] N VM ’ . ) 8
reg estimate = —y—. BRI 1 § ) T
v T v @
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We should mention that the relative efficiency gains can sometimesbe misleading
because they do not take into account a number of factors. For example, recall that
efficient importance sampling schemes should cause errors to occur more often.
vConsequently, it follows that the same number of simulation runs w111 requme more'
metric computations with 1rnportance samphng than with ordinary Monte Carlo Thus,
a companson based on required number of simulations runs will be blased toward
importance samplin§- As a consequence, it is sometimes appropriate to take as‘a besic

figure of merit the importance sampling efficiency (M;s)

Cmc ’ |
A= ‘ | R 5.12
_ LmcE[T] | R (5i3)

LsE'[T ] e

Whére E[ T ] and E*[ T* ] are respectively the average number of mefric computations
for ordmary Monte Carlo and- with importance sampling. - L1kew1se CMC and CIS‘
denote the expected number of metric computatlons requlred to esnmate PM to a

spec1ﬁed accuracy with ordinary Monte Carlo and importance samplmg respect1ve1y

By letting T(°) be the total number of nodes exarmned in the ¢ ‘th s1mu1at10n it

follows that a good estimate forE[ T]is

'—]I
-

% TOWVOe). (514

--
._‘

Likewise, for the importance sampling simulation model, the estimate of E*['T’é ] is

easily computed as -

R AT
0=1 ‘ _ - v

Observe that an identical computation to that given in the proof of the unbiasedness of
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v f’M proves. that Tisan unbiased estimator of E[ T ].
Flnally by recalling (5.12) we conclude that the appropnate estrmator for the '

vrmportance samplmg efﬁcrency as defined in (5.13) is

~

Mis = % —*- . (5.16)

We conclude this secnon by dxscussmg the termmatron of the sunulanon 1ssue--r.':
' Recall that for practlcal 1mplementat10n of the stack algorrthm a termrnatxon strategy
nls al‘ways needed. To properly understand our termination strategy, reca.-ll t_hat because o
of the‘randomness of the node metrics in the tree, it is entirely possible that the,staek =

o faIgorithrn- can 'mistakenly' follow an incorrect path for. some depth in the tree.

Howeyer because of the average behavior of the node metn'cs, 'incorrect paths will -

eventually become inactive as they get longer and longer. Consequently, drscardmg_ .

: any node whose metric is’ very small compared to the TOS node metnc would probably- :

: have a neghglble effect on the stack algorrthm performance Understandrng thls is the .

key to our terrmnatron strategy To state this strategy, few deﬁmtlons are needed

Assume that node j is the root node. and suppose that a given srm:ulatlon starts at

t= 0. Next let
M’I‘OS 3. TOS node metric.

Furthermore, forany & e b; (recall that D; is the collectlon of all the direct descendent

. nodes of node j) let
M;(t) & max (M, :ne Ss N & }

where .SI is the collection of all nodes in the stack at time t. Fmally for a glven A> 0,

we. w111 say that the subtree S;, is inactive if
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Ms(t) < Mros()— A.

‘Now recall that we are not interested in decision errors. Specifically, all of our
estimates will be conditioned on the event E;. That is, on the ‘event that ‘correct
decisions at both depth j and j+1. Keeping that in mind, we have édopt‘ed the

following stopping rule: . -

" The DELTA-Stopping Rule (For the {'th simulation):

Initialize: Start the seérch at node j.
“Simulate until iny oné subtree is active, call it Sg, -
IF B, is a correct node THEN
. IF C; 2 M THEN
IM(‘V(°)'| u®)=1.
' Stop.
. ELSE
Iy (V® [u%) =0.
“ Stop. |
- ENDIF
 ELSE.
| o IM(VO uf) =0.
- Stop. ' |
END IFV'



v5 3 Slmulatlon Results

“ ’ We are now ready to present our 1mportance sampling s1mulanon results for_'_
esnmatlng the dasmbutlon of ‘computation. That is, 1’(C =2M) for M>1 As we
”mennoned earher we will consider rate 1/2 convolutronal codes w1th constramtf '
lengths 5 14 and 21 Wthh operate on the binary syrnmetnc channel and the AWGN-
'channel In adchtlon to the importance samplmg results we shall also glve some:'
"ordmary Monte Carlo estimates (MC). Throughout this chapter the Monte Carlo- :
srmulatxon data were obtained usmg a total of 1,000, ”0 sxmulatlon runs There are

two main reasons for presentmg these Monte Carlo s1mulatlon results F1rst we would'

like to show that for small values for M, ordmary Monte Carlo mmulatxon of the

:P(C 2 M) works just fine. Hence, for such values the ordmaxy Monte Carlo
,51mulat10n estimates can be used as a verification of the accuracy of our 1mportance
samplmg esnmates On the other hand, for large values of M, we will show that Monte o
‘Carlo s1mu1at10ns are simply not efficient enough to obtam any meamngful estlmates |
However for such large values we shall see that by usmg our 1mportance samplmg‘
| schemes we will achieve hlgh computatlonal efficiency gains along with accurate

estimates.

We begin our presentation by considering the binary symmetric channel case.

5.3.1 The Binary Symmetric Channel Case
_A. The Reference Path Method

In th1s section, we present some importance samplmg 51mulatlonresults which we

have obtamed via the reference path method (RPM). Recall that the basic idea behind

the refer:ence path method is is to design an importance samphn_g -channel mo_del whrch |

will tend to "force” or "trick" the stack algorithm into decoding a given reference path
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‘ qu-— (ul,uz, k) mstead of the correct path u® -—(ul,u2, | ) As 1nd1cated in the

| previous chapter, reference paths of a given depth N can be found by an exhaustive

'search in such a way that their hamming distances from the correct path are mmrmrzed
over all 1ncorrect paths of depth N. For example, Flgure 5.4 shows part of the tree

" code generated by the constralnt length 14 convolutlonal code. A close observatron to

Flgure 5 4 mdlcates that at depth 5; for. 1nstance we have two rmmmum dJStaIlCC paths ’

’ : ul —(1 000 1) and u —(1 0011 Hence ‘at depth 5, there are two candldate , -.

vreference paths ul and u?



109

Mini'mumzhammin'g;;distanéczpath's:;
from the: all zero:path:
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Let u§ and uf denote reéspectively the code symbols ‘assoc‘iated thh the correct
,“path and a given reference path.v Note that uf and u are actuallyv t\uo-dimensional

,because the convolutional code rate is 1/2. That is, uf= (uﬁl,uﬁg) and ul=(ulq,ulp).
) S‘ince’.the correct path isassumed to.be the all-zero path; it folloWs that 'uﬁz (—1,—l_).
On the other hand, all incorrect paths (which include the reference paths) are of the
forrn ui(s (# ,3—1). Now recall that the main objcctivc of the reference path‘rn:ethod is
to "force" the s:tack'algorithm into decoding the' réference path instead of the correct E

path‘ To do so, Wc have deSigned the reference path siinulation scheme ‘in such a way

that 1) we do not bxas the channel when ukl = uk,, and 2) we use a uniform b1asmg for

the remamlng instances when ug; # uk, (i=1 or 2) Specxﬁcally, we use a crossover
v’vprobablhty of ek, = 1/2 at the . 1nstances ‘when uf; # uj; (1—1 2.) Once the data is

gencratcd up to N, the depth of the reference path, no more b1as1ng 1s done Thus the |

rcfcrence path method is based on a non- statlonary memoryless BSC model Wthh is.

charactenzed by a time varymg crossover probablhty
12 fufy = ouf R
' o ERY)
€ 1fu§1-fdb B
o }for 1—1 or 2 and k < N For k> N we use €x; =E. It should be clear that w1th roughly

probabtllty 1/2 the reference path will be exammed up to depth N

s Some of thc srmulatron results for the reference path method are summarlzed in
Y_Tables 5. 1 =5.5. The first two columns glve the estimates of the dlstnbutlon of )
computatxon and the accuracy usmg the reference path method The last two columnst
" glve the estlmates of the dlstnbutlon of computatlon and the accuracy usmg ordmary'

' _Monte Carlo



Table 5.1:

3.67%

111

-The distribution of computation estimates for the constraint lcngth 5
- code operating on the BSC with e— 01. L=250,000 for the RPM-
—and L = 1,000,000 for MC. , _ _

“ | RPM Accuracy || | MC | | Accuracy
{72y | 116x107 | 70% | .115x107 | 939
j'r_é('cjals) 369 x107 ‘~_ 2.42'% 42 x107 | "‘('),0'5 % |
[2c220 [ 318x10% | 184% | 352x10% | 533%
| :P(cjzao) 17x10° | 148% 131x107% | 873 % |
js.'ar(c@és)" [T16x10° | 146% | 13x10° 877%

‘ ~1"(C,jz42)‘- .fi'8.7 x104 | 686% .1’6~><1'0‘,4> B 25.00 %
'-KC,263) 73100 | 248% | 8 xld‘?’ 35.36%

| ’-P(C >69) | 687 x1075 | 251% 8x107 35.36 %
| '_P(c 278)4 '.304><1(v)-5 | 357% 2x107° 70;72% «
'»,".P(CJ 290) | 278 x10° 2x10° | 7072%



Table 5.2:

HC;290)
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The distribution of computation estimates for the constraint length 5

code operating on the BSC with €= 005 L= 250 000 for the RPM
and L = 1,000,000 for MC. | .
RPM | Accuracy MC Accuracy
AC;23) | 540x1072 | 060% | 547x102 | 135% |
AC26) | 147x103 | 210% | .149x10° | 8.19%
HC212) | .136x10 | 216% | .136x107 8.58 %
AC;230) | 26610 | 135% | 230x10% | 20.96%
BC245) | 150105 | 7.64% | .300 <10 | 57.80 %
| &C254) | 784x1078 | 225% | .100x107° 106:6% |
RC;272) | 296x107° | 3.67% | .100x105 | 100.0%
| ®C278) | 288x10°¢ | 372% || .100x10° | 100.0%
ACE84) | 278x10° | 379% | .100x10° | 1000% |
273%10 | 382% | .100x10° | 100.0% |



113

The distribution of computation estimates for the constraint length 14

- code operating on the BSC with € =.01.

and L = 1,000,000 for MC.

RPM

| Accuracy

~MC

Acduraéy

|acey | .

116 x107™" |

070% |

115107

093% |

q -

| &c218)

172 x1073

2.36 %

Il 197 x1073

112%

157107 |

229% |

167 X107 |

174 % |

| 7c233) |

393 107

6.26 %

1 39 x10

| 1602%

a4 |

242 %107 |

663%

24 x1074

1 2041% |

| &ci2sy) |

200 X107 |

675% |

19 x107

2203% |

| 7G50

138 1074

12 x107*

2893 % |

| 2c275) |

109 x107* |

Il 70 x10°

| 3774 %

| ac;281)

887 x107 |

Il .60 x1075

| 4082% |

| C;287)

| 71x10°

| 50x10°

| 4464 %

L =250,000 for the RPM
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The distribution of computation estimates for the constraint length 14

Table 5.4: ,
o code operating on the BSC with € =.005. L =500,000 for the RPM
-and L = 1,000,000 for MC. '
RPM Accuracy - MC Accuracy
HCR3) | 537x102 | 035% | 553x102 | 134%
ACZ6) | 204x107 | 156% | 203x10° | 7.02%
A(C;212) 1 825 x10# 101% | .155x103 | 8.03%
AC218) | 319x10% | 192% | 400x10% | 1582%
AC;230) | 419x10°5 | 826% | 500x107° | 44729%
| mc248) | 240%10° | 7.46% | 20010 | 71.43 % |
AC257) | 180x10°5 | 636% | .100x105 | 100 %
RC;266) | 995x10°° | 8.16% | .100x107 100% |
| mC287) | 622%10°¢ | 225% || .100x10 | 100% |
| "P(Cjz»9‘0) | 495x10° | 244% | 100x10°° | 100%




Table 55

and L = 1,000,000 for MC.

RPM

| Accur.ach | MC

| Accuracy |

‘ﬂCj?—?’)

| 5391072

0.34 %

542x10°2 |

135% |

%

| a51x103 |

147 %

141 x1073 |

8.42 % |

o HC212) |

133 %1073 |

1.54 %

13 x1073

877% |

| ®C221) |

319 x107%

- 1.65%

26 X107

19.61 % |

| 7C;233) |

174 %107 |

253 %

10 x1075

| 100% |

| ."-‘”(”('31248):‘ !

120x10°5

292 %

[l .10x10°

| 100%

| 7C;257) |

796 X107 |

333%

Il .10x1075

| 100 %

| 7c;269) |

5161078 |

428 %

10x1073

| 100%

| AC;281)

360x107° |

4.69 %

1 .10 x107°

| 100%

| &c;290) |

336 x10°6 |

477 %

I .10 x10°5

| 100%

- 115

The dJstnbuuon of computation estimates for the constraint length 21
~ code operating on the BSC with € = 005 L =300, 000 for the RPM
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B. The Partitioning Method |
We shall know present and demonstrate the power and aecuracy of the
part1t10mng method (PM) for the rate 1/2 and constraint lengths 5 and 14 convolutional
codes operatmg on a binary symmetrlc channel that is charactenzed by a crossover' '

probablhty €.

Define N* to be the depth at which the minimum valué along the correct path
V(after depth j) occurs. Then frem the partitioning method analysis in Section 4.5.3,
recall that the basic idea behind the partitio'ning. scheme is to partition the underlying
probablhty space by the events {N*=m}, m=0, 1 2 ., and hence

év(csz) 21’(C>MN—m) | - (5.18)

m=0

For m= 0 1 2.., we bias the simulation model to estimate the terms in (5 18) separately

The 51mu1at10n model is given by

[ 50578 - A%(ac/2) . .
e = { e €. if k S' (5.19)
‘ otherwise
where
A%(af) = 2'[1n(4(1-e)e°¢°a+se**°b)—a°R]. (5.20)

and Zﬁ'is'the correct path (fano) branch metric. Recall that the constants a end b in the

ahove equation were defined in the previous chapter as
adln@(1-€) and b&-InQe). .. (52D
Furthermore recall that the optimal value of of that is predicted by the
- partmomng method analysis should be chosen so that | |

Efexp(.5acZg] = MO . (5.22)
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Few comments on this scheme are in order here. First, notice that for k < m: the

S1mulan0n model basically uses a uniform: biasing. Spec1ﬁcallz ,,;.f'or k _<_‘m4,, eﬁﬁ EEO

srmulatmn should "force™ the minimum: value along the comect path: &ftfer- deptha jto
occur at depth m. Keeping that in mind, we may conclude that by biasing -the
snnulatmm model when m =0, we may force the correct path mimimum to occur at

dep,th m #@ Hence, it seems reasonable: to: deduce: that for m=0 1t is better to set

sﬁmwlian@m model 655.,1%@)::: is not an optimal srmulaon: scheme for e-s;uxmgtmg; the- :
dlsmbutlon of computation. Specifically, the partitioning model was: dersi;:vled by
mmnmzmg an upper bound of the variance of Ps, = A node & hypothcsued’) Hen‘ce,\ 1t
is not necessarily true that the pastitioning simulation model is the optimal simulation
schcmg‘ for estimating the distribution: of computation. More i?mpmmariie]&,, 1t 1s

reasanabrlfcv to deduce that by using values of ef which are different from the ones

arns: out that this last statement is. in: fact true. Specifically, suppose

efficiencies. It t
that instead of using £} as specified by the simulation model (5.19), we: use another
crossover probability €k - “The value of e is obtained in such a way that the
computational efficiency for estimating X C;2M ; N;*.; =k) is maximized. By doing
that, we: have found that for small values of k, € ‘and ef are not equal in general.
However, it turns out that as; k T oo, the: optimal values: of ‘ 81? seem to: be converging to

| eg. Thus, it does appear that the pamuomng method is in a sense an asymptotically
~ optimal simulation scheme for estimating the distribution of computation. Figures

5.5-5.7 illustrate this by showing the relative efficiency gains (erg) fof the PM
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estimates of AC;2M ; N* =m) as a function of the simulation crbssover pro‘bability
€'. In each of these figures m is kept fixed and the erg plots'éorréspond to the
estimates of AC2M; N*=m) for various values of M. In all of- these ﬁgures, |
€= .01 and the code is the constraint length 5 code. Notice that as m increases, the
optimal values of the crossover probabilities that maximize the reg tend to converge to

€, which is equal to .1373 in this case.
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104

reg o
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Figure 5.5: The re:lati\ée; ‘efficiency gains (reg) for the PM estimates of
‘ ' AC;2M; N =9) as a function of the simulation crossover
probability. o S T
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Figure 56: - The relanve efficiency gains (reg) for the PM estimates of

AC;2M; N" =11) ‘as a’ funcnon of thc 31mu1at10n Crossover.
proéablhty :
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Thé rclative* efficiency gains. (reg) for the PM vestimatcs of
AC;>2M;N"=20) as a function of the simulation crossover
:proéability-.‘ : : T _
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~ We are now ready to present the partitioning method simulatiQn, data.  These ‘
results show that the partitioning method simulation téchnique is indeed an extremely
efficient scheme for estimating the distribution of coinputatioh. We begin by
éohsidcrin,g the case where €=.01. In this case, for a given { N*= m}, €f = .1-373 for »
all k £ m. The following table shows the distribution of computation for the chnstraint‘
length} '5 convolutional code. Again as in the reference path method, Mvo'nte‘- Carlo
simulation results are -also included. We shall refei'_to thé simulation model used to
comphte the estimates in Table 5.6 as the partitioning méthod model 1 (PM Model 1)

This model is characterized by

€ m=20

e =1{.1373 ifks<m 6
€ otherwise e

The paftitioning method estimates in Tables 5.6 and 5.8-5.10 are based on
L'=300,000 simulation runs. Specifically, we use 20,000 simulation runs for each
‘ yalug: of m (m=0,1,..,15) O;i the other vhand, recall that the Monte Carlo estimates

are based on a 1 million simulation runs.



| Table56 -

f and L = 1,000,000 for MC.

1 PM Model 1

| Accuracy

- MC

| Accuracy |

BRECR

689 x1073

1 119%

762 x107%

[

- 362% |

589 x1073

205%

644 x107

346 x1073

261%

388107 |

508%

xc24) |

©.206 x107

3.86 %

| 16x107

| 2500%

| mes7) |

924 x10°75

5.10%

I .8 x107%

| e |

822 x1075

563%

: I x107°

 37.80%

 ACT2) |

579 x10°5-

- 3x1075

| s174%

??_p(cjzsl).f

405 x1075 |

5.81 %

.2 x107°

| 7072%

| #Cp287) |

374 x1055

6.12%

| 2x10°

| 072% |

| mc200

| 352x10°

6.42%

10729 |

" },2 xIO‘S

123

The distribution of computation estimates for the constramt length 5
code operating on the BSC with € =.01. L 300, 0()0 for PM Model 1
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We shall now present some simulation results that have been obtained using
~ another partitioning method simulation models. We shall refer to these models as the
partitioning method model 2 (PM Model 2) and the partitioning method model 3 (PM

Model 3.) These models are characterized in the following table.

Table 5.7: " gy for the constraint length 5 code operating on the BS‘C,wi'th e=.01.
er
k ‘1 PM Model 2 {| PM Model 3
0 € £
1 9 55
2 55
3| . 5
4 35 4
51 .3 3
6 275 , 3
7 25 3
8| 225 2
9,10,11 | . .2 2
12| aTs 18
3| a5 18
14| 14 s
15 {1373 .15

" 'The values of €, in the above simulation models were obtained by trial an error in
such a way that computational efficiency is maximized. It turns out that the
performances of both of these models were very similar as seen from Table 5.8.

However, we have found that overall the PM Model 3 yielded the most efficient
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simulation in terms of computational cfﬁéiency.ga.ins. T

_— ',Tablc' 58 , The d1stnbut10n of computanon estimates for thc constraint lcngth 5
. code operating on the BSC with £= .01. L 300,000 for PM Modcl 2
. and PM Model 3. . . _

“PM Model 2 | Accuracy M Modcl 3 A‘ccuracy 1

| ’:1’(CJ26)

—

696x10° | 084% T 70 <102 | 083% |

“i"":P(C, 12)‘,»:;

591 x1073

091 %

| .597 <10°

089%

. @(cjzzl)i |

350107 |

1.14%

| 344x10

159 |

; s,f_r.p(c 242) 1

201 x107* |

2.52% '

T 20910+

 258% |

1 9361075

| 329%

897 x10°%

| 3219

» 'ﬂq 6,6)';',‘

811x107

| 360% |

780 x107%

352%

“ sv('cj>7?2f), | s30x10% |

412% ||

502 x10°

| 386% |

"rf(c, 81) | .

369 x1075 - |

232 %

- 372x107°

219%

- frf(c, 8,7')-7:‘.

341 x10°5

| 239

| 339x10° |

200% |

. 11(C290) [ 317x10° | 203% Tome|

ﬂ5 338 x107°

Tabies 5. 9 and 5. 10 also show some partmomng method snnulatlon rcsults for the

constraints length 5 and 14 convolutlonal codcs



Table 5.9:
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- The distribution of computation estimates for the constraint length 5

301 x1078

- AC;290)

code operating on the BSC with € = .005. L = 300,000 for the PM and
L =1,000,000 for MC.
PM * Accuracy MC Accuracy
AC23) | .533x107 | 114% | 547x102 | 135%
1’(CJ;26) 156x107 | 086% | .149x107 8.19 %
#Cj212) | .138x107 | 093% | .136x10° | 858%
RC;230) | 277x107* | 106% | 230x107* | 20.96 %
HC;245) | 174x10° | 374% | 300x10°S 57.80 %
HKC;254) | 976x107% | 4.07% | .100x107 | 100.0 % S
| ®c272) | 367x10 | 201% | .100x10°S | 100.0%
:p(cjz78) 338 x107 | 1.99% | .100x107 100.0% |
AC;284) | 316x10° | 198% [ .100x107° | 1000% |
198% | 100x107° | 1000% |



Table 5.10:
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The distribution of computation estimates for the constramt length 14

code operating on the BSC with ¢ = .01. L = 300,000 for the PM and

L = 1,000,000 for MC. S

PM. | Accuracy | MC Accpraéy

|ac3) | 113x10 | 186% | .115x107 | 093%
| AC;218) | 173x107 | 086% | 197x10% | 7.12% ’;
| ®C224) 152x107 .'b.sz% | 167x107 | 774%
| mc239) | 397x10% | 227% 1 39x10% | 1602%
Elr.;v(cjz42) 2451070 | 249% || 24 X107 ‘;y 20.41 %
| /C;251) | 210x10% | 286% | 19x10% | 2293%
P(C;266) | .148 x107* | 362% | 12x107 2893 %

| &c;275) | 106 x107* 362% | 70x10° | 37.74% |

AC281) | 844x107° | 357% | 60x10° | 4082 % |
HC;287) | .666x10° | 3.82% 50x10° | 44.64%
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C. The M-Method
We shall now present and demonstrate the power and accuracy of the M-method

(MM) for the rate 1/2 and constraint lengths 5 and 14 convolutional codes operating on

the binary symmetnc channel.

Recall that the M-method is basically a variation of the partmomng method
discussed earlier. Spec1ﬁca11y, in the M-method scheme we con51der a discrete random- ,
variable M with probability mass functlon Pm=PM= m) for m=12,..,J. Fo_f
{=1,2,.., the random samples M® are generated from‘ another probability maés' N
function Pm = P M=m) for m=1,2,..,J. For each of these ‘samples, the samples
V@ are then generated from the conditional density f~ (viu‘:,m). Specifically, for a -  7
vgiven m ‘the samples V@ are generated from the density f* (v|ru° m) as in the.
partltlonmg s1mu1at1on model That is, for a given m, we w111 b1as thc channel model_'

' only up to depth m usmg a time varying biasing. As in the simulation modcl (5 19)
recall that the MM simulation model also switches to the original channcl dcnsxty for
depths k2m. In the sequel, we shall assume that Pm =Pm. Then for any N> 1, the

M-method estimator for C 2 N) is

IN(VO) w(VO [u®,M®) (529

M

oA 1
L5

where IN (.) % the indicator of the event {Cj=N}and

" -'-w(vluc,m) = ?%L—u%-n—)— , S " (525)

S n o fi(viluf)
5 k=1 fk(Vkluk’m).
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- Observe that an identical computation to that given in the proof of the
| unbiasedness of the estimator (5.2) indicates that I3N i$ an unbiased estimator of
Py = C; 2 N). | |

 The following simulation results demonstrate the potential of the MM simulation
teéhniqug. Throughout this chapter, we shall assume that the random variable M has
the lelowing probability mass function

 Pm=eT" form=12,..J o (5.26)

l
where ‘c is a positive constant that should be selected so that (5.26) is a valid
probability mass function. The value of J was equal to 10 in all of the MM simulation
results that are listed in this chapter (hence ¢ = .6229.) The MM simulation model that

l
we have used in the BSC case is characterized by the following crossover probability

. [ 25  forksm
{ orx=m (5.27)

L otherwise
Tables 5.11 and 5.12 indicate that the above simulation model does indeed yield
to accurate estimates of the distribution of computation along with high computational
efficiency gains. Notice that only 250,000 simulation runs were used to obtain the MM
estimates. The Monte Carlo simulation are based on 1,000,000 simulation runs and yet
notice that for values of N (say greater than 30,) the Monte Carlo estimates of the

AC; 2 n) are simply meaningless.
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‘Table 5.11: The distribution of computation estimates for the constramt length 14

code operating on the BSC with e =.01. L =250,000 for the MM and -
L = 1,000,000 for MC. |
MM Accurécy’ MC Accuracy 1
HC;23) | .113x1077 | 030% | .115x1077 | 093 %
| mc18) | 163%10% | 139% | 197x10% | 7129
AC224) | 148x107 | 135% | .167x10% | 7.74%
B(C;233) | 373x107% | 379% | 39x107* | 16.02%
| mca2) | 23ax10% | 458% | 24x10% | 2041% |
I AC;251) | 2021074 | 494% | .19 x107¢ 722,2‘93’?71.{1-,‘ FEann
AC;266) | .150x10* | 573% | 12x10% | 2893% |
"ixcjz75_) 108x107* | 594% | .70x107 ’37-.74,‘7“’1' :
AC;281) | 959x107° | 647% || 60x10° | 40.82%
(AC;287) | 7741070 653% | S0x10° | 44.64% o



. Table 5.12

The distribution of computation estimates for the constraint length 5

131

code operating on the BSC with € =.005. L =250,000 for the MM
and L = 1,000,000 for MC.

Accuracy

A.ccuracy‘

BCj23)

547 x1072

==

0.32 %

1.35% |

.?ﬂcj 2

.157x-10~*3'

130 %

14910

8.19% |

142 x1073

1.33 %

136 x10-3

858% |

C230)

280 ><10'4

1.20 %

| 230 x10-'4

20.96 %

B(C;245)

.1%;97 <107

8'.3‘7' %

| 300 %107

57.80 %

HC272) |

330 x10°6

4.19 %

100 x107°

- 100.0% |

315x10°6 |

427 %

100 x1078

1000%

HC;281)

311 ><1o-6

- 430 %

100 (1076

' 100.0 %

 AC;284) |

304 x10’6

4.34 %

fgm x10‘6

- 100.0%

HC;290) |

207 ><10-‘6

43T %

n 100 x10*6_‘

- 1000% |
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5.3.2 The AWGN Channel Case

We shall now present our importance samplmg simulation results for the AWGN _
channel case. Recall that the correct path is assumed to be the all-zero path That is,
u§ = (ufy,ufp) = (1,-1), and thus, if we define '

v

g L g 528

V2no?

Then the channel output symbol density is

fk(Vk | Uk) = ka.l(vkl | ui) ‘ | (5-29,)‘
i=1 . . : i

where
fis(vig | ufs) = gvig — 1) fori=lor2. - = - (5.30)

. We begin by presenting the simulation results for the reference path rhethod. ‘

 A. The Reference Path Method

The biasing in the reference path method (RPM) for the AWGN channel and the

BSC cases are cssentlally the same. In other words, for a glven reference path of depth '_ .

N, uy = (111,112,...,LN), 1§ we do not bias the channel when ug; = uf;; and 2) we u__se‘a.
uniform biasing for the remaining instances when uj; # uii (i=1or2.) Speciﬁealiy, for
the AWGN channel case, we use a channel output symbol S1mulat10n densxty whxch 1s‘
: normal w1th zero mean and variance ‘67 at the instances when uk1 # uk, (1—1 2) Once"
the data is generated up to N, the depth of the reference path no more blasmg is done
Thus the reference path method is based on a non- stat10nary memoryless model whlch

is charactenzed by a non stationary simulation density

& g(Vki) ifuf; 2 uly
fui(vii luki) = . - (5.31)
a i (Vig | uis) ifuf =ufy - o
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fori=1or2 and k<N. For k>N we use fs(vi |uf) = f(vi |uf). Again, it should be
: clear that with ro‘ughly probabiiity 1/2 the reference path will be e,xar'_nine‘d up to depth
) Some of the simulation results for the reference path method'ar'e‘ sunimarized in
Ta'blés 513 énd 5.14. The first two columns give the estimates of the distri_bu'tibn of '_ ‘
cdmputation and the accuracy using the reference path method (RPM)Q The last two
.c,élumns' give the estimates of the distx'ibution of computation and the accuracy usihg

“ordinary Monte :C‘arlo.
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The distribution of computation estimates for the constraint length 14 .
‘code operating on the AWGN channel with 6= 6 L =500,000 for .
theRPMandL—lOOOOOOforMC _

Table 5.13:

RPM Accuracy ‘MC Accuracy.. |
AC;23) | .129x1070 | 042% | .130x107 0.87 %
{mcp9) | 250x102 | 068% | 252x102 | 199% |
HC215) | 101x102 | 170% | .102x10™2 3._13 % |
HC230) | 277107 | 358% | 274x107 | 604 % :
AC;248) | 118x107 | 386% | .116x107 | 929%
| mc60) | T11x107* | 476% || 710 x107¢ 11.86 % fis
AC;272) 46x10% | 473% | 500x10% | 1414%
RC;278) | 357x107 | 432% 400 x107* 1582% |
HC281) | 334x107% | 451% | 380x107% | 16.23 %
| AC290) | 244x107 | 5.02% [ 350x107* | 1690.% 1 |




Table 5.14:

RPM

. Accuracy ||

~Mc

| Accuracy |

| #C;23)

.648 >.<10.'2

047 % |

638 x1072

125% |

| 114x107

1.04 %

‘114 x1072 |

296 % |

. ","m(cjzw')

415 x1073

124 %

| 39610

502 |

., r,p(cJ 18) |

240 %1073

136 %

 233x10°

655% |

. 17(__21)

1671073 |

159% ||

161 X107

7.88%

RC;224) |

917 x1074 |

207 %

|| 850 x107 |

1084 % |

| HC;230) |

424 x107*

3229

[ 33 %10

1739 %

| &C;239)

192 x1074

5.01 %

140 x107

| 2674% |

| f(',cjz45)

117x107

7.01 %

900 x1073

133339

| 7cy287)

828 x10°¢ |

728% ||

*k

k%
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The dlstrlbutlon of computatlon estimates for the constramt length 5 '
© %o code operating on the AWGN channel with 6= 55 L= 600 000 for
~ the RPM and L = 1,000,000 for MC. : , '
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Notlce that Table 5.14 mdlcates that the event { CJ 87 } has not been observedv :
| dunng the one million Monte Carlo s1mulat10n runs. We note that for 10 % accuracy,
: ord1nary MC would requ1re more than 120 Mllhon s1mulauon runs to estlmate

’.P(C > 87)

B The Partltlonmg Method

.  Let N* be the depth at which' the correct path minimum (after depth J) occurs’
Recall that in Sectlon 4.5. 4 we have shown that Given N* =m, the partltlomng A
method S1mulat10n model is

e | exp. [5‘I’(Uk,llk,vk)J f] (Vklllk) P

fR(vk [ug) o< : ik Sm 632

_ fk(vkluk) I © otherwise.  © -

where W(.,.,) is an optimized twisting function which is given by (4.67).

'Futthermore, recall - that we have also“ shown rthat for k <m, the vahove _simulation ’
, model can be eXpressed as

fR(vijug) = ¢ : e o (5.33

.,‘k’(xkl k) Gty Hwe >0 (5.33)

where £(), f'(), ¢ and q* are defined in (4.72), (473), (4.75) and (476),

respcctiv‘ely A close observation of equations (4.72), (473), (475)- and (476)

‘ 1nd1cates that the densmes (. ) ff() and the constants q and q depend on only af.

E As in the BSC case, 1t turns out that for small values of m, the optlmal value of a

Wthh is predlcted by the partltlomng method analysis does not lead to the most
‘ -efﬁc1ent sunulatlon model Hence, in order to optimize the computatlonal efﬁc1enc1es

1t was necessary to find the opumal values of o by a trial and error.
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Tables 5.15 and 5.16 show some partitioning method simulation results for the

constjai’nt- lengths 5 and 14 convolutional codes. For both of these codeS a total of

600,000 simulation runs were used. The values of o which we have used for the

constraint length 5 convolutional code are shown below (the maximum values of m

used in this case was 15.)

.

0

- —4.25

-4.65
—4.55

if k=0

if k=1

k=2 (5.34)
if3<k<g15

Likewise, the values of a which we have used for the constraint length 14

convolutional code are shown below (the maximum values of m used in this case was

12.)

—4.25
—4.65
-4.00
-3.5

-3.25
-3.00

if k =

ifk=1

if k=

fk=3 - -~ (5.35)
if4<k<S5

if 6 <k<7

if 8 <k <12
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- Table 5'.15: " The distribution of computation estimates for the cdnstfaiﬁt léngth 5
' code operating on the AWGN channel w1th 6 =.6. L=600,000 for
the PM and L = 1,000,000 for MC. - :

PM Accuracy MC Accuracy

RC23) | .127x107 | 210% || .131x1070 | 087 %

AC;29) | 300x107% | 339% | .303x107% | 181%

HC215) | 144107 | 439% | .146x102 | 2.61%

| ac2n | 334x107 | 642% || 338x10° | 5.44%

AC;233) | 206x107% | 7.73% || 207x107° | 695%

HC254) | 399x107% | 747% | 590x10% | 13.02% |

AC;260) | .290x10™* | 7.06% || 390x10™* | 16.03 %

ACj266) | 212x107% | 7.87% || 340x107* | 17.15% |

AC;287) | 899x1075 | 808% | .170x107%* | 2425% |

HC290) | 826x10° | 864% | .140x107* | 2672%
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The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with 6=.6. L =600,000 for
- the PM and L = 1,000,000 for MC. ‘

Table 5.16:

PM Accuracy ll - MC Accuracy
AC23) | .124x107 | 197% | .130x107 | 087%
HC;29) | 234x1072 | 299% [ 252x102 | 1.99%
HC;224) | 369x107 .| 588% | .398x107 | 501%
| KC;230) | 252%107° | 6.61% || 274x107% | 604 %
| HC248) | 105x107 | 687% | .116x107 | 929%
HC;257) | .704x10* | 692% | .860 x10¢ | 10.78 %
AC;263) | .584x107* | 7.69% || 670x107* | 1222 %
HC;278) | 281x107* [ 7.40% | .400x10™* | 1582 %
AC;281) | 271x107* | 7.60% | .380x10™* | 1623 %
| AC290) | 207x107* | 8.14% | 350 x107¢ | 16.90 %
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C. The M-Method

 We shall now present and demonstrate the power and accuracy of the M-Method
- (MM) by showing some simulation results for the rate 1/2 and constraint length 5 dnd

14 convolutional codes operating on the AWGN channel.

As in the BSC case, the MM estimator is giveh by (5.24) and the‘probability mass
fimctibn of the random vaﬁable M is given by (5.26). The MM simulation model that
‘we have used in the AWGN channel case is given by | |

g(vk). if k=m

. 5.36
fi (vic |ug) otherwise ( )

fe(vi luf,m) = {

In other words, for a given m, the simulation density is normal wi;h Zero mean
~ and variance o for all k<m. for k >m, the MM simulation model ‘sWiytc'h‘es‘; to the
original chanﬁel model.

Some of the MM simulation results which We‘have obtained using the simulation

model (5.36) are shown in Tables 5.17-5.19.
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The distribution of computation estimates for the cobnstr‘amtf length 14
code operating on the AWGN channel with 6= 6 L =300,000 for
the MM and L = 1,000,000 for MC. .

‘Table 5.17:

MM - Accuracy || MC 'Accu'rac‘:y‘j
= : , i v »
| ®C23) | .118x107" | 143% | .130x107" | 087 %

ﬂcjz9) 243x107% | 245% || 252x107% | 1;99% !
| &c218) | 627x10° | 270% || 637x10° | 396%
HC230) | 25810 | 345% || 274x107 | 6.04%
HC;248) | 109x10% | 438% | 116x103 | 929%
AC;260) | 658x10% | 471% | 710x10% | 11.86%
HC266) | 509x107 | 586% | 650x10¢ | 12.40%
HC272) | 395x10% | 579% | 500x10¢ | 14.14 %
'r.p(cj287) | 233x10% | 535% | 350x10% | 1690 %
_1a(cJ 90) 217x107* | 586% | .350x107* | 16.90 %
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The distribution of computation estimates for the constraint length 5

Table 5.18:
code operating on the AWGN channel with 6 =.55. L =300,000 for
the MM and L = 1,000,000 for MC. :
MM Accuracy MC Accuracy

AC;29) | .110x107% | 1.66% | .114x102 | 296%
RC;215) | 391x1023 | 219% | .39 102 | 502%
AC;218) | 237x10° | 3.12% | 2331073 6.55 %
H(C;230) 387x10% | 352% || 330x10% | 17.41%
BC242) | 103x107% | 3.03% | .100x107* | 31.62%
H(Cj251) S68x10° | 399% | 700x10° | 37.79 % | |
HC;j272) | .127x107° | 529% | 200x107° | 70.72%
AC;281) | 946x10° | 560% | .100x107 | 100 %
AC;284) | 765x10° | 6.19% | .100x10° | 100% . |
AC;290) | 591x107C | 7.19% | ** k-




Table 5.19:

the MM and L=1, “0 000 for MC.

- Accuracy

| Accuracy |

| .'P(cJ >12)

| 346 x1073

8.50.%

333 x1073

5.48 %

1 ?(CJEIS);."

213107 |

35%

233 %107

6.55%

1’(cJ 18) |

109 x107% |

460 %

128 1073 |

884 %

'.P(q 24)

568 x107¢ |

T.18 %

660 x1074

1231 %

'.P(q 36):.

262x107% |

6.93 %

330 x10° |

17.41 %

- 372x107 |

5.26: %

700x10°5 |

37.79 %

| 7C;266)

- 284x10°5 |

573%.

500 %1075

- 4472%

T(CJZ72)

| 219107 |

6.77 %

| 100 x107°

- 100%

G2 81):

1701075 |

792 %

vk

116 x10°

8.57 %

Aok
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- The distribution of computation estimates for the constrami length 14
code operating on the AWGN channel with ¢ =.55. L =100,000 for
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54 Dlscussmn and Conclusion

In this section, we shall further discuss and compare the performance of the new
,1mportance samplmg schemes that we have presented here We begm by presentmg‘
some sunulatlon results for the rate 1/2 and constraint lengths 5 and 14 convolutlonal

codes operating on the BSC and the AWGN channel.

10" 2,
10° 3
~ 10°44
= 3
N ]
<) I
T .
'10'53
+ M-Method
10"6'5 ——®—  Ensemble Average
1 —*— Partitioning Method
=& Reference Path Method
10'7_ M . p ey T —— 7 i
06 08 1.0 1.2 1.4 1.6 1.8 20
log(M)
Figure 5.8: . The distribution of computation estimates for the constramt length 5

- code operating on the BSC with £ = .005.
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'Figure 5.9; The distribution of computation estimates for the constraint length 14
~code operating on the BSC with £ =.005.
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: The data in figure 5.8-5.11 was obtained empirically using a total of 300,000
simulation runs for all the simulation schemes in the BSC case. In the AWGN case, a
total of 600,000 simulation runs were used for the constraint length 5 convolutional
~code. For the constraint length 14 convolutional code, however, a total ‘o‘f'500,000>
were used: for .the reference path method. For the partitioning mcthcd and the M-
rnethod simulation schemes a total of 300,000 simulation runs wereused for both
schemes This is far more simulation runs than is requlred for estlmatmg AC2M )b

for M = 1,..90; however, it was our des1re to ensure accurate answers.

, Recall that the information theoretic ensemble average analysis indicates that the

'dis'tribution AC; 2 M) should have a Pareto tail with exponent p. That is,
HC;2M) - M'P RERCR .(5~37)
or;equivalently,
log(®(C; 2 M)) ~ —p log(M). o o k('5.3‘8)

“ It tums out that for the BSC of Flgures 5.8 and 5.9, the ensemble average '
exponent 1s p=3.5and for the AWGN channel of Figures 5.10 and 5. 11 the ‘exponent
is p= 23 For companson Figures 5.8-5.11 also plot curves labeled "Ensemble
Average. These curves are just ¢ M ‘where the constant ¢ is. ﬁt for the tail of our
1mp0rtance sampling estlmates We note that the curves appear as stralght hnes
because these ﬁgures are logarithmic scale plots of the probablhty estimates agamst
log(M). . -

,Table_ 5.20 compares the power and accuracy of the new importance sampling
schemes that we have presented here. This table give some of theestinrates of the
dxsmbuuon of computation for the constraint length 5 convolutional code operatlng on

‘the BSC w1th £ =.005.. Table 5.20 also lists estimates of the relative accuracy
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Comparison of the RPM, the PM and the MM for the constraint length

5 code operating on the BSC with £=.005. L=300,000 for all
schemes, and A= relative accuracy estimates.

7 RPM A PM A MM A
AC;26) | .15x107° | 1.92% | .16x107 | 086 % | .16x107 | 1.19%
HC;212) | .14 X107 | 1.98% || .14x107 | 093 % | .14x107 | 1.22%
AC;221) | 34x10% | 230% | 36 x10% | 1.03% | .35x10% | 1.58 %

[2C230) | 27x10% | 126% || 28x10* | 1.06% || 28x10* | 1.05%
AC233) | 27x107* | 1.26% | 27x107* | 1.06% | .28 x10™* | 1.05%
AC;272) | 30x10° | 3.33% | 37x10° | 201% | 33x10° | 384 %

| HC;284) | 284x107° | 3.42% | 32x107° | 1.98% | .30x107° | 3.97 %
HC;290) | 28x10° | 345% || 30x10° | 1.98% | 29x10° | 3.99 %
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better than the other two schemes. In other words, it was found that the reference path
method usually take less CPU time than the partitioning method and the M-method
- This is reasonable because the partltlomng method and the M- method w1ll tend to
grow ' big 1ncorrect subtrees As an example, we note that for the BSC example of
’l‘able 5.20, the reference path method took 11 minutes, the M-method took about 12
minutes, while the partitioning method took about 21 minutes. On the other hand, for
the AWGN channel data of Figure 5.10, we note that the reference path method took
84 mimites, the partitioning method took 135 minutes, while the ‘M-metho'dtook 486
minutes. |
We conclude this section by comparing the modified stack algorithm simulation

(MSAS) with the stack algorithm simulation. Recall that because we are only.
interested in estimating & Cj >M) for ai given M, it follows that_"onl:y the search ,
performed .by the stack algorithm in the j’th incorrect subtree Aj is of interest to us.
Keepmg thrs in mind, we have designed the MSAS (see Chapter 3) Wthh operates' -
exactly like the stack algorithm simulation except that it 1) extends only the Jth _

1ncorrect subtree and 2) replaces every top- of-stack node which is on the correct path -

by only its direct descendent which is on the correct path Because the searchv o

performed by the stack algorithm in 4 can be affected by the search performed by the
stack algorithm in.other incorrect subtrees, it is possible that the estimates obtained
using the MSAS might be incorrect. It turns out, hoWever, that this lastv'Statement is -
apparently not’ true' In other words, the MSAS gives estimates Wthh are very close to ‘
the ones obtained when the stack algorlthm is actually used Tables 5 21 and 5. 22 :
1llustrate th1s by listing some simulation results which were obtamed us1ng the MSAS

and the stack algonthm
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o Table 5.21: Comparison of the modified stack algorithm simulation (MSAS) and

the stack algorithm (SA) results for the constraint™ length 5
convolutional code operating on the BSC with € =.005 using the
reference path method. L =300,000.
- MSAS | Accuracy | SA Accﬁracy
| ®C23) | 540x102 | 052% | 541x102 | 057%
1 7c230) | 267x107% | 125% | 272x10* | 1419
| aC245) | 148x10° | 648% | .148x10°5 | 651%
| &c275) | 297%10° | 334% | 295x10° | 336%
Table 5.22:  Comparison of the modified stack algorithm simulation (MSAS) and
FRTE the stack algorithm (SA) results for the constraint length 14
convolutional code operating on the AWGN channel with ¢=.6.
L = 500,000 and the reference path method was used.
MSAS A_ccuracy‘ SA | Accuracy
| 7C26) | 526%107% | 0.68% | 523x102 | 0.68% .
[ me22n) | 346x107° | 302% | 345x10° | 3.07%
AC248) | 115x107 | 467% | 112x107 | 3.93%
AC278) | 369x107% | 7.60% | 366x107 | 6.95%
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By comparing the data in Tables 5.21 and 5.22, it does }_appear-that both the
‘MSAS and thé sfack algoﬂthm simulation give very close estimates and accuracy. In
‘terms of CPU time we have found out that our simulation methods take about twice

less CPU time whenever the MSA is used instead of the stack algorithm.
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CHAPTER 6
SEQUENTIAL DECODERS
ERROR EVENTS SIMULATION

"6 1 Introduction

In the previous chapters we have discussed and presented new 1mportance
samphng technxques for simulating (stack algorithm) sequential ,deco_ders tdec1s1on'
proce‘ss'es | Recall that in these schemes, we did not consider decision error .
_probabihties In other words, we have assumed that the decoder ultimately chooses the 4
correct transmitted path. In this chapter we shall consider the sxmulation of the error
events associated with the stack algorithm sequential decoders. In particular we w111
use the error event simulation method to estimate bit error rates for such decoders.
~ The error event Simulation method is an importance sampling technique-which has
been .developed by Sadowsky [24] to »sirnulate the Viterbi,'decoder. In this section we
shall apply this technique to the simulation of the stack algorithm Sequential decoders.
The basic ideas here are the same, however, there is one significant difference between
the stack algorithm and the Viterbi algorithm operation which complicates the
* simulation issue: In contrast to the Viterbi algorithm, the time of a correct decode for
:_the' stack algorithm is not a stopping time. In this application, we avoid this problem

by using:a termination strategy which we shall refer to as the A—stopping rule.
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In this chapter, we will only consider the problem of estimating bit error rates
associated with (stack algorithm) sequential decoders. However, we shall note that the
error event s1mulat10n technique can be used to estimate many key performance

parameters such as error burst length, error burst length distribution, and so on [24].

‘We shall begin this chapter by briefly reviewing the concept of error events or

bursts of decoding erTors.

6.2 Error Events and Performance Parameters

Let uf = (ug,ug,..) ‘denotes the final path hypothesized by the stack algorithm
decoder. Likewise let u® = (u§,us, ... uﬁ) denotes the correct ’-(:that. is, the
transmitted) oath. ‘In the error event simulation technique, the index k.is associated
with the operation of the encoder. That is, k is the time index on the trellis diagram,
not for the input bit stream. Thus for a rate b/n convolutionald code, the passage from
time k to k+1 corresponds to b information bits input into the encoder:and n bits being
‘shifted: out. Now recall that decoding errors occur when the decoder output sequence
diverges from the correct path. That is, when uf diverges from u®. We call such a ‘
djvergent path an error event, or a burst of decoding errors or simply; a burst.
' Speclﬁcally, a burst i isa partial sequence of all incorrect decodes which is 1mmed1ately
preceded by and nnmedlately followed by correct decodes. The burst length 1s s1mp1y'
the number of incorrect decodes in a burst. Note that the minimum burst length is K 1
(recall that Kb is the code constraint length for a rate b/n convoluuonal code ) Th1s is
true because once an incorrect state is entered into the encoder 1t takes K-l
consecutlve correct mformauon symbols to flush out the encoder Shlft reglster For
example, Figure 6.1 shows a burst of length 5. Notice that the hamrmng dlstance

between the 'code“_sequences of the error c_yent and the correct path in Flgure 6.1 is 7;
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Furthermore, note that this error event differs in only one input bit fvromvthe’ corr-cctv
| ‘path._v Hen'ce, the ‘niumber of bit errors that will be caused by de@:oding thé error burst
Vs_hoWn-_in Figure 6.1 instead of the correct path wil'lb be 1 (recall that a do}tté}d line
dc‘;noii:e; the output generated by the information bit 1 and a solid line dénofés the

: output generated by the information bit 0.) -

‘State ‘
‘ Ov‘ 00

‘Figure 6.1 : - An illustration of a burst of length 5. The bold line is the éorréci path.
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Now, suppdse that the decoder has made a correct decode at a given time j. That
is, the decoded branch ujf+1 emanates from the correct path node at time j on the trellis
diagram‘ On this event, define the random variable '

N A the total number of bit errors due the error event -
No() = immediately following the correct decode at time j - ©.1)
In the above déﬁnition, we must allow the possibility of a correct decode at time j+1.
In this case, the burst is said to be trivial, and causes no bit erros. That is, Ny, () = 0.
Next consider the expectation
Ny & E[ Ny(j) | u® transmitted and correct decode attimej1. ~ (6.2)
In the case of binary input-output chahhels, it turns out that -ﬁb does not dépend_ onj
And’ u® [57, Chaptef 4). Thus, hereafter we can arbitrarily set u® to be the all-éero
path, and time j=0. In addition, notice that since N does not depend on j and u°, it
follows that |
ﬁb A thé expected number of bit errors per»cdrrect decode. - (6.3)
Since each transition from time k to time k+1 ‘Tepresents the e'nc;ociiing Y,‘qf'b bits, it
~ follows that
Ny

P, A — N i’:-;"';:"‘ 4)
*= ' PR

is the average number of bit errors per correct decode. Py is the key parameter which
we 'shalylbcsbtimate via importance sampling using the error event simulation technique.
"~ 'We shall now define

the collection of all error events emanating

To 2 from a correct node at time j = 0 6.5



158

That 1s, zg is 1he «collection of all bursts 1mmed1ately followmg the correct decode at

tlme j =0 (mcludmg the trivial burst.) An error event in % will be represented by its

dJ rgent branches u'=(uf Tser .,ul ) where m is the burst length Let nb(u u) denote

rthe ,umber of bit errors caused by decodmg u’ instead of u® when u® was transrmtted

¥'s =

: '°) shall denote the conditional probability of decodlng u’ mstead of u gwen

~that u® is transmltted and given that the decoder has made a correct decode at time -

J OThen

M= ¥ m@a)P@le®). (66
e, o o e

6 3 The Error Event Snnulatlon Method

The etror event simulation ‘technique is an 1mportance samplmg techmque whrch'_ '
1s based on the sum (6.6). Our desire is to estimate the average number of bit errors '

'per correct decode, Py, via importance samphng From (6.4) we can see- that thrs is

equlvalent to the problem of estimating Nb It turns out that only few terms dornmate
the sum :.(:6.‘@, Thus the error event. simulation ‘method must emphasize those error
events ‘ibeeau:se these are precisely the "'lim;portant"' A.errqr .events in 'L‘o | |

- The basic prlifnciple of the error event simulation »tevchm'-que is that each 'Simulati'on
run will - produce precisely one. simulated error event. The data sequence
VO= :(VS”,“V 50)"”) for the {’th simulation run is generated by sseQuentially-encoding _. ‘
the data sequencc to produce a sequence of branchmg decisions u’= (v’ 1,u 2yee)s Each._
o sunulatlon is conditioned on a correct decision at time j=0. As soon as the encoded_- |
path o’ me-rges with the correct path on the trellis diagram at some time‘J > 0, the
simulation is terminated. Consequently, the length of an error event sixnulation is a

random uariable. 'D.eﬁne
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T A time of the first correct decode. ' ; (6.7)

That is, T® is the first time that the decoded path remerges with correct path on the
trellis diagram (after the correct decode at time j=0.) Then each simulation run needs
to generate the simulation data V® only up to time T. As a result T) is the length

of the simulation data V.

Now recall that in the previous chapter,- we have presented the DELTA stopping
rule for the stack algorithm simulation. Recall that the basic idea behind this ‘stopping
rule is to discard the inactive subtrees as the search progresses and concentrate on only
the active ones which contain the TOS node. In this chapter, we slightly modify this
rule in order to apply it to the error event simulation scheme. We shall refer to the
términation strategy in the error event simulation téchnique as the A-stopping rule.

This rule is given below.
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The A-‘fS"tdppin;g Rule (For one simulation):

Imtlahze Start the search ét node J-
DO 1, . |
A_ Simulate until only one subtree is active, call it Sg,.
- IFBiisa .é’orrcct node THEN |
sTop
ELSE
; ~ ‘:: Delete inactive subtrcés from the stack.
B *::f‘ - 5Re£1’ssociatc :thc ‘i'cmaining stack nodes to subtrccs‘ S5 with § € ’DB; .
” ’ ”Corﬁputé ﬁs(t)_'for d e Dg..
 ENDIF |
CONTINUE

Observe that by following the above tefnlinaﬁon. sé‘tegy, the terminal path that
| the stack algorithm ﬁnally:choos“e's is simply (j,B1.B32,...). Thus for the 'Q'th sirnulaﬁon,
’I«’) is simply the time when the simulation stops. In other words, it is the first time
tha-t ‘one of the node :Bi foriz1 is found to be a correct node. As a consequence, the
;s'imu:latiobn t‘cmﬁ:na?tion time ’I(") is .aSitoppi:nfg time. That is, giVén the infinite chuence
of channel outputs V®= (V{,VE), ), the event (T® =1} is determined to be true or

false by only the data up to time t, that is, (V{", .. ., O
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6.4 Importance Sampljng and' Error Event Simulation
Il,et‘ Iy (v) be the indicator function for decoding the error enent n’. That is,
Iy(m)=1 if the channel output sequence V causes u’ to 'b be detected; 6tnerwise,
Iy (v) =0. Then the importance samplirig estimator for P(u’|u®) is |
P@’|u’) = {— >Ii wiVO ) L (V@) x 68

- where

T c ' ’ :
W(V(O)luc)_—_n_fé(.vll_u_kl. SRRE (6.9)

k=1 fi(vi [ug)
The likelihood (6.9) is the importance sampling weight. Notice that (6.9) impliesvthat
the importance sampling model is memoryless, but possibly non-statzfonarj{," with
transition prdbability fi (vi |ug) at time k. Furthermore, note that we must have =
fr(viluf) > 0  whenever fi(vluf) >0 = (6.10)
so that the importance sampling weight (6.9) is well defined.
A similar computations. to the ones used in ‘[24] indicates that the importance

_sarnphng estunator P(u |u) as spemﬁed by (6. 8) s unblased Indeed if we let

L (V (°)) be the 1nd1cator of the event
{ T® =t and path u’ decoded )

Then ‘because T is a stoppmg time, it follows that I, (V(o)) depends on only

(V SO) V(")) Asa result we can write I, (V(o)) as
(V) = ¥ It,»..'<vi°>, VD).
=1

Consequently, we get
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E' [W(VIU°)I W] = ZE [w(VIu) L w(Vi,..., V) ]

t=1

ot t fie(vg [ug)

= LT )

577 v lug)

t
x [T fx(vic lug) dvy, . .. ,dv,
k=1 .

oo t
= Y [ [ Luw s v TT i luf) dvy, .oy
t=1 k:l

= 3 E[Ly]
t=1

= E[Iy]
= P(u’|u°).

Thusft,hc importance sampling estimator (6.8) is unbiased (recall that the simulation

data is i.i.d. and thus, 13(u’ | u®) is unbiased if and only if it is unbiased for L =1.)

Finally, notice that because P(u’|u®) is unbiased, it follows that importance

sampling estimators for Ny, and P, are also unbiased.

6.5 Numerical Exampies

Ih this section, we shall present some simulatibn results that illustrate the power
and accuracy of the error event simulatidn method. Throughout this section, we shall
consider rate 1/2 convolutional codes that operate on the binary symmetric channel.
All of thcse codes will have the same constraint length 5. However, the generators for
thesé codes will be different. The first of these codcsv is the constraint length 5 code
prescntcd'in the previous chapters. This code will be referred to as code 1. The-

second and third codes will be refered to as code 2 and code 3 respectively. The
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convolutional encoders that generate these codes are shown in Figures 6.2 and 6.3.

Now for a given error burst u’, we shall let'd(ué,u’) denote ihe hamming distance
, between u and u’. Furthermore, we shall define the mformatlon welght of a glven
error burst u’ as the number of information b1t errors np(u,u’). ‘Tables 6 1 6.3 show
all the error events with hammmg distances that are smaller than 10 that are assoc1ated
- with code Al , code 2,}a}nd code 3. These tables also list the hamming d1stances and- thei |

information weights associated with these codes.
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information | o output
—_— ; v .

bit

g 1'= 31 (octal)
g,= 27 (octal)

# states =16

Figure 6.2:  The convolutional encoder for code 2.
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output -
information \ \ ZK——tp——v
—_—
bit

p
/

g,= 23 (octal)
g,=35 (octal) -

# stétcs =16

Figure 6.3:  The convolutional encoder for code 3.
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Table 6.1: A list of all the error bursts with hamming distances less than 10 for
. “code 1. ,

‘Weight | Distance | . Error Bursts
7 - | 1110100111
| 1101000000010111
| 110100111011
| 111001000001001011
| 110160000010000001001011
{ 11011101001011
| 11010000110001001011
| 11100100001010001011 - - -
| 11010000001000001010001011
| 11100111010111
| 1110101001100111
| 1101111010001011
| 111010010010100111
1 11100100110000010111
{ 11010000001011010111
1 1101000011001010001011
1 1110101010000000010111
| 1101000000011001100111
| 1110010000100110001011
] 111010010001000000010111
1 110100000001010010100111
1 11010000001000110000010111
1 1101000000100000100110001011
1 1101000000011010000000010111
| 110100000001010001000000010111

B G O O % 66 60~

NN 8N RS R EAEER BN R WSRO W
pak
(=]
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"Table 6.2: A list of all the error bursts with hamming distances less than 10 for
code 2. ’
Weight Distaﬁcc Error bursts
1 7 1110010111
3. 7 1110100000001011
2 8 110111001011
4 8 110100100000100111
6 8 110100100000010000001011
3 9 11010010111011 '
5 9 11010001010000100111
5 9 11010010001100001011
7 9 11010001010000010000001011
2 10 11101011100111
2 10 1110011001010111
4 10 1101000101111011
2 10 111001010010010111
4 10 11101000001100100111
4 10 11101011010000001011
6 10 1101000101001100001011
4 10 1110100000000101010111
4 10 1110011001100000001011
6 10 1101000110010000100111
4 10 111010000000100010010111
4. 10 111001010010100000001011
6 10 11101000001100010000001011
8 10 1101000110010000010000001011
6 10 1110100000000101100000001011 |
6 10 111010000000100010100000001011 |
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Table 6.3: A list of all the error bursts with hamming distances less than 10 for
: code 3.
| Weight | Distance “Error bursts
1 7 | 1101011011
3 7 | 1110000000101011
2 8 111000110111
4 8 110110000010000111 - |
6 8 - | 111000000001000010000111
AR 3 9 11101110000111 :
-5 9 11100000110010000111
5 9 * | 11011000000101000111 .
7 9 11100000000100000101000111°
2 10 11011011101011 -
2 10 1101010110011011
4 10 1110110101000111
2 10 110101100001011011
4 10 ' 11011000110000101011
4 - .10 11100000000111101011
6 10 1110000011000101000111
4 10 | 1101010101000000101011
4 10 1110000000100110011011
6 10 1101100000011001000111
4 10 110101100010000000101011
4 10 | 111000000010100001011011
6 10 11100000000100110000101011
8 10 1110000000010000011001000111
6 10 1110000000100101000000101011
6 10 111000000010100010000000101011
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Tables 6.4-6.6 show some simulation results for code 1, code 2 and code 3,
rcspectivcly. The first two columns of these tables give the code’s ‘information weights
and hamming distances. The third column gives the importance sampling estimates
ls(u’ | u®). Finall'y,b columns 4 and 5 giv\c the accuracy of thé estimates lg(u':l u°) and the -
relative efficiency gains (reg) respectively. The estimates given in LTables 6.4-6.6 are
‘based on 9,000 simulation runs. Specifically, we use L =1000 simulation runs per
error burst. For each of the codes that were simulated in this ohapter, the “
: corresponding error bursts used in the simulation are the first 9 error evcnss listed in

Tables 6.1-6.3.

The simulation model that we have used to obtam the mmulanon s1mu1at10n
rcsults in thlS chapter was a non-stationary memoryless BSC model w1th a time

‘ arymg CTOSSOver probablhty €y fori=1or2. Specifically,

172 ifug; # uid e
e = : i = oo (6.11)
€ lfuﬁi = Uy . T

fori=1or2. It is noted that in this context, the indcx- k corresponds to the codo symbol
. transmission time and the index i corresponds to the code symbol bit. . .. |
- We shoold ﬁnally mention that we have also included in 'stle 6.7 some.
simulation results which list some 1mportance sampling simulation estxmates that were
obtamed using the V1terb1 decodcr instead of the stack algorithm sequentlal dccodcr
Thcse simulation results use the same error bursts and the same number of simulation
runs as in table 6.4. It is noted that in this case, the performance of the stack algonthm

1. We are grateful to J. C. Chen for providing the Viterbi decoder simulation results Mr Chen is
a Research Assistant of Professor Sadowsky at Purdue University. :
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“decoder and the Viterbi decoder should be very similar. Consequently, the Viterbi

decoder simulation results can be used as a verification of the accuracy of the estimates

obtained using the stack algorithm decoder.

 Table 6.4: Bit error probability estimates for code 1 with €=.04, and L =1000 "
; simulation runs per error burst. W= information weight, D= hamming

distance, A= relative accuracy estimates, and reg= relative efficiency
gain estimates. o ‘ o

W D : .ls(u’l,uc) A~ | reg

{1 {7 ] 951x10% | 489% | 4x108

|3 ] 7] 841x10% | 533% | 4x108

12| 8 | 895x10°8 | 7.85% | 2x10°

14 {8 870x10% | 7.98% | 2x108 |

1618 961x10% | 753% | 2x10° |

13 9] 113x10° | 5959 | 3x101°

s | 9 | 135x100 | 529% | 3x10°

1519 |.119%x10° | 5779% | 3x101°

{7 19| .115x10° | 588% | 3x10"°
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Table 6.5: Bit error probability estimates for code 1 with €=.04, and L = 1000
‘ " simulation runs per error burst. W= information weight, D= hamming
distance, A= relative accuracy estimates, and reg= relative efficiency

gain estimates. - '

WD lS(u’lu?) A reg

1 |7 ] .812x10% | 546% | .4x108

3 |7 867x10% | 518% | .4x108

2 |8 895%10°% | 7.85% | 2x10°

4 | 8|.793x10°% | 841% | 2x10°

6 | 8| 883x10°% | 7.91% | 2x108

319 |.106x10° | 622% | 2x101°

519 |.129%10° | 546% | .3x10%°

519 |.125%x107° | 559% 3x1010 |

7 19| .241x10° | 532% | 2x108
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Table 6.6: Bit error probability estimates for code 1 with € =.04, and L = 1000
, * - simulation runs per error burst. W= information weight, D= hamming
distance, A= relative accuracy estimates, and reg= relative efficiency

- gain estimates. ’

W {D | Pwiu) | A reg

[1 (7| 964x108 | 485% | 4x108

3 |7 ].928x10°8 | 498% | .4x10°

{2 | 8| 870x10°8 | 797% | 2x10®

la | 8] 876x10® | 795% | 2x10°

16 [ 8] .805x10® | 834% | 2x10°

3|9 |.103x10° | 634% | 2x10°

[5s |9 .122x10° | 567% | .3x10'°

15 19| 113x10° | 597% | 3x10°

17 | 9] 121x10° | 572% | 3x100
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Table 6.7: Bit error probability estimates for code 1 using the Viterbi decoder .
with €=.04 and L=1000 simulation runs per error event. W=
information weight, D= hamming distance, and A= relatlvc accuracy
estimates.

w|[D | Pwiu) A

1|7 | 808x10°% | 547%

3 17 |.786x10° | 558%

2 18] .876x10°% | 7.95%

4 | 8 | 967x1078 7.50 %

6 |8 | .735x10% | 877%

3 19| .114%x107° | 591 %

5 19 | .132x107° | 537%

5 | 9| .110x10° | 6.07%

7o | 123x10° | 566% |

Now recall that given thev estimates of P(u’|u®), then the estimates of the
. expected number of bit érrors per correct dccode Ny, can be also estimated using the
- sum (6. 6) Tablc 6.8 below llStS the estimates of Nb for the thrce convolutlonal codes
dJSCUSSCd carhcr by using the simulation data listed in Tables 6.4-6.7, along with the

sum (6.6).
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The expected number of bit errors per correct decode estrmates for
code 1, code 2, and code 3 with € = .04, L = 1000 srmulatron runs per
error event. A= relative accuracy estimates.

P
Ny,

1 Codel | A | Code2 | A | Code3 | A

15x10° | 37% | 14x10°° | 39% | .14x10° | 38% |

Table 6.9 below compares. the expected number per correct decode estimaies for

code 1 that were obtained from the simulation of the stack algorithm and the Viterbi

decoders. Note that the difference between both estimates is insignificant. -

The expected number of bit errors per correct decode estimates for

code 1 with € =.04, and L = 1000 simulation runs per error event. A=

relative: accuracy estimates, SA denotes stack algonthm and VD
- denotes Vrterbr Decoder.

SA AVD A

15x10° | 37% | 13x10°5 | 39% |

En= conclusion, this chapter has demonstrated ‘that the error event Simulation

method used in conjection with importance sampling could prove to be an extremely

powerful tool for performance evaluation of sequential decoders. This presentanon has

'_ conS_I_dered only the estimation of the bit error probabilities. However, as stated earlier,

~we should note that the error event simulation model can actually efficiently estimate
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key parameters such as the error burst length, the error burst length diStribution and so

on.
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CHAPTER 7
SEQUENTIAL EDGE LINKING
'SIMULATION

: 7 1 Introductlon

In the prev1ous chapters we have demonstrated that the unportance sarnplmg
» techmques Wthh we have presented were very efﬁcxent for est1mat1ng the key
v quantmes that charactenze the stack algorithm sequennal decoders In th1s chapter we
k shall consxder the application of 1rnportance sampling to a dlfferent problem
Specxﬁcally,, we consider - the simulation of the sequential edge linking (SEL)
algorithm. This is a stack alg‘orithrn technique for detecting edges in images that has
been proposed by Eichel and Delp [84-86]. |
We shall begin this chapter by presenting. some background on sequential edge

| detection. We shall then. dex}elop various definitions which are needed for the
diséussions to follow. This development 1s then followed by the presentation of our
Vimportance samplian.g technique for simulating the SEL algorithm. The concluding
sectionf in this chapter discusses sbrne of the key issues which are related to this
“application and the potential application of our technique to perfonnance evaluation of

the SEL algorithm.
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7.2 The Edge DeteCtion Problem
| 7.2.1 Introduction

Edge detection represents one of the first processing steps in image prOcessing ‘
and computer vision. Research into methods of finding edges in noisy images has been
| an -active field of investigation for many years, Reflecting this‘ 'importaripce, the
literature devoted to this problem is enormous [67-86] and'many’ different approaches :
have been proposed. |

The general edge detectioh problem is illustrated in Figure 7.1. Here the input is
a two-dimensional digital image. By digital, we mean -that,‘ the image intensity function
is not continuous, but rather, defined on an array of points. The values of the 1ntens1ty
functlon at these points represent the bnghtness or gray level of the dlgrtal image.
These 1mage elements are called pzxels (for "picture elements"). Edges of 1nterest in
real scenes are intuitively defined as picture elements wh1ch lie on the boundary |
between reglons of dlfferent 1intensities or gray levels, that is, edges are represented 1n
an 1mage as a d1scont1nu1ty in mtens1ty Hence the task of an edge detector becomes
one of 1dent1fy1ng 1ntenVS1ty discontinuities. Because edge elements are assomated thh }
a rapid change 1n gray level'as a function of the spatial domaln the ed’gedetectOr is
usually implemented as some form of differential operator’ or high-pass 'ﬁltervvv'vhi»Ch -
emphasues high spatial frequency components and suppresses areas w1th lxttle change
in 1ntensny “The mterested reader is referred to [71], [78] [82] and references therem’

' for in depth discussion of edge operators and the general edge detectlon problem ‘:
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- Digital image

Edge | | Bdee
_operator ’ o tracing:
' : - algorithm
] v
Edge
,Figure/7.1"§ . The general edge detection problem.

- 722 Dig.ital-, Images and Random fields
'A digital image shall refer to a sample'functio_n of a two-dimension.al discrete
random ,’ﬁéldr[7i].. “Such samplc functions will consist of a rectangular arréy of
humbérs. called pixels. Thesc pixels may réprés_enrt, the brightness or the gray level at
'each point‘ of the digital image. The points of the rectangular lattice at which the
plxels are defined are called pLer locations or pixel indices, their spacmg is umform
' :and equal in both directions; furthermore they are indexed by N? where N i is the set of
vlmtegers Due to the rectangular nature of the lattice, each pixel has a unique set of
E elght nezghbors For a given. random field, we shall let Y;; denotes the pxxel or

obscrva__txon at the pixel location i4(i , j). Furthermore, we shall assume the existence
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of two conditional densities on the random field. The first is the conditional density for

the pixels on the edge, namely
’p'l'(Yaj =y)&P(Yy=y|iisonanedge). : | @.1) . :

The second is the conditional density for the pixels not on the edge,na‘rnely‘
Po (Yij =y) LP(Y; =yl iis not on an edge ). o ’, | (7'.‘2).

Agaln we note that the term ”denszty" whenever used will 1 mean elther a probablhty‘

‘dlstrlbutxon functxon ora probablhty mass functlon dependmg on the context.

'7 2.3 image Paths
An lmage path will be deﬁned as a sequence of success1vely connected nlxel
'locatlons such that for any subset of three pixel locatlons in th1s sequence, the"'yv
directions defined by the first two p1xe1 locatlons and the second two pixel locations - |

differ by /4 or less.
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An image path

\

\

Figure 7.2: An example of an image path.

An image path m of length n can be specified in one of two ways. The first is

simply ;t‘_he‘ ordered sequence of pixel locations comprising the 'image path: |

i .

m = (i i, 0

. . 3 . 4 . . —)
The second is by specifying a root pixel location 1> a start direction dg, and an
ordered set of letters a;, a5, -~ -, a,:

m=i xdyx[aya, -, 2] ; ae (LSR) (71.3)

~where the letters L,S, and R stand for left, straight, and right respectively.
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The ldcation of each observation irr the rectangular lattice can be obtained in a
| re'cursiVe fetshion from 'the letters a;, namely each pixel location lﬁl in a giyen image
path can be obtained from the pixel location %1_ 1.’ by rnoving in the irnage array in the '
direction d:,.j.y The direction to the n+ 1 pixel location is then obtained from d)'n é.nd |

a,41 according to the following rule:

-

d, +7/4 ;¢ g =L
- -
dpy1 =4 dy : if ans1 =S

[ &, —ns4 if any =R

\

7.3 Sequential Edge Detection

~The edge detection problem can be formulated as a tree searchirig ‘pr_oblern.
o Given a sequence of turns (aj, az, * -+ ) on the digital image, then these‘ relative.
duectrons are equivalent to branching poss1b111t1es in.a temary tree with each tree

branch bemg anL, S, or R (see Figure 7.3.)

In real apphcatrons the size of a typical digital image is large and hence the
resulting decision tree is enormous. Consequently, an exhaustive search approach

- which examines every possible candidate edge} coutour. and chooses the "best"
accordirrg to some predetermined criterion is not possible. -iS'equential‘ tree
searchmg algonthms provide a practical alternative through a structured search -
strategy in which the paths are extended sequentlally, w1th the current ‘most

. probable path extended by one observation at each iteration.

For thlS approach to succeed in ﬁndrng edges a means of companng all paths |

.hypothes1zed must be provided. Th1s companson is accomphshed by associating
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'w1th each path a statistic called a path metrzc which is an 1nd1cator of the hkel1hood
that the correspondmg path comc1des with the true edge. Consequently, only the ‘

‘Vmost probable paths which presumably should include the true edge path are

o ,extended by the searchmg algonthm

There are many . sequential edge detectron algonthms whrch have been '
proposed in the 11terature Examples include the work of Chlen and Fu [70] and
Martelh [68] [72] Spemﬁcally, Ch1en and Fu -proposed the use of what is known
as depth ﬁrst tree search to extract the heart boundary from d1g1t1zed chest X rays.
In a similar fashlon Martelli formulated the edge detectlon problem as a graph
search and uses the A* algorithm described by Nllson [67] to m1n1mlze a cost
funcuon determmed by the heunstlcs of the problem at hand Both of the above
:methods use a cost function which is hlghly specialized to the type of i 1mage under

cons1deratron and thus limit the1r apphcatlons

- Many other investigators have attempted to employ sequentlal tree or graph
searchmg algonthms in the context of edge detectlon Ashkar and Modestmo [74]
seem to have come the closest to a t:ruly sequential search However, thexr metric '
suffers from two problems. Actually, the metnc used in their search techmque is
purely ad hoc and hence no analytlcal treatment of the search dynarmcs can be |
g undertaken; More seriously, their technique makes explicit use of ,expenmentally
= determined parameters and look-up tables and requires a nominal or a "prototype"
con-tour to guide thev search. This represent very’ high ‘quality a-priori information
" and thus hrmt the applicability of this technique. | | o
; The interested reader is referred to [71], [82] and references therein for more

“background and in depth discussions of sequential edge detection.
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| Now notice that in. order to- relate the edge detection_“pfdbvlcm to _tx;:e_, .
scarchiné W'¢ must first model the cqllection >of pbssible edges as a tree. Given
o two successive edge pixel locations, then the edge can be expressed asa scq_'uencé B
f'of relative diréction changes, and the relative directions are cquivalcht _'tb_ bfaﬁching
p'o'ssibi_lvitiesb in a tree. For example, Figure 7.3a illustrates,‘aiﬁ' edgcm a6x6
" noiseless digital image for which all changes of directions areof 1t/4 or les)s,' &

' narr')'ely“the relative directions are 45 degrees to the left, straight, or 45 degre'es to

‘the right (recall section 7.2.3). Figure 7.3b is a tree for which the starting pointis =

the first two pixel locations in the lower left cdmér_ of V‘Figure 7.3a. Thé bol,d line in
Figure 7.3b representé the edge in Figufe 7.3a. O_bservé that l_;ho\#)ing_ two.
successive pixel locations is equivalent to knowihg the 2'nd pixel“vlb‘éra"ti"(_):h and’ thé
direction from the 1’st to the 2'nd pixel location, i.e, two successiye‘p'i){éi 'locatid‘h;s' -

on the edge define a "from-to" direction.
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@ D )

* Figure 7.3: (a) an edge in 6 x 6 noiseless image; (b) the correspondmg tree
R representatlon of the edge in Figure 7.3 (a).

v With this baékground on scquentlal edge detection, it bccomes clear that one of
the critical issues in this problem is the selection of a good initial point; as well as, a
good initiat direction. The performance of the entire technique will depend upon the
idéﬁtiﬁcation of both of these quantities. Since edges are associated with a rapid -
changcm intensity or gray level as a function of the spatial domain, it folld_ws that the
; langqn»the. fnag_ni:mdc- of the gradient at a given point in the image, the higher the -
'_ probability that such a point actually lies on an édge,. Thusrooi pixel iocations,capi be

easily Q;btgined.. by imposin’g_v a high threshold on the gradient magnitude output of the
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pre-processing stage which 'proceeds the search in general. Likewise, because edges'

are searched in a direction perpendlcular to the gradient direction, the root direction do

at the root p1xel location i - can be also obtained from the output of the g’radxent o

—0

~ operator atthe pre-processing phase. In summary, the pre-processmg of the image L

_provides i, and do. The interested reader is referred to [85] and refe're'nces therein for

~more discussion about the root pixel location and the start direction selection problem.

7.4 Sequential Edge Linking

In this section we shall describe a sequential edge detection scheme known as

sequential édge linking or SEL which has been proposed by Eichel and Delp '[84-86].

‘The SEL algorithm is a sequential tree searching technique which is inspired by the

sequential decoding of convolutional codes. The maindiffer‘ence,betWeen the-:SEL -

algorithm and the other set;uential techniques discussed earlier is that the SEL path -

* memc used is'basedon a dynarmc model of the edge behavior.

The SEL algonthm is based on the stack algorlthm Due to the random ﬁeld '

model on which paths are based a slight modlﬁcatlon of the stack algonthm must be-'

accomrnodated Actually, the root pixel location i i

spec1ﬁed before startmg the stack algorithm search. Th1s modlﬁcatlon s needed in o

, order to specify the initial search direction. As noted earher these quantmes can be '

. prov1ded by the pre-processmg phase which proceeds the search.

. In the SEL algonthm the edge sequence {-aj,az, -+ }in the d1g1ta1 1mage 1s' '
| modeled as:a K'th order Markov Chain [63] In this model, the state of the: process X |

for n2 > 0 is deﬁned to be the last K transition letters. That is,

xn=(an,c~,an-x+1)- L as

i and the root d1rect10n do must be "
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50 that when the process enters the state at n+1 from that at n, it outputs a letter

a,,+1 ¢ {L,S,R }. In this model the initial state XO is assumed to be fixed and ngen

‘By lettlng Fa —O'(XO, Xl AR n), then by the Markov assumption it follows that”
X = Xt | X=X, ) = Xt = S | Xy = xn) as)
or equivalently,

ﬂaml I fn) = ﬂanﬂ l X )

Consequently, it follows that the a-priori probablhty of an edge path m of length nis
ﬂm I XO) = Jﬂal’ az, . T an)

q HX; | Xip). e
i= : , R SR
- As has been pomted outcarher -most of the sequentlal edge- detectlon schemes
proposed to date mvolve nodes metrics wh1ch tend to be heunstrc As stated
5 ‘prgylously', the SEL algorithm path metric is based ona dynaml(_:.model of the edge
behavior. This path metric is defined as follows‘: if we let 'y’ be some node at depth nin

: the tree and m=[i

, _1, s ,_i'11 '] be its cotresponding image path on the image, then

~ the metnc at node Yis

P‘(y“)>+1<f<xk|xk.1))1 o am
o( k) _ .

tg

Wh'ere,yj( is the pixelvvalue or observation at i, pd(.) and p;(.) are the conditional
densities defined on the random field, and Xy is the state in the SEL Markov model.
Observe that this metric ’inv‘olve two different components which play differen’t roles.
Theﬁrst is a function of the data in the real image, and the second component is just

* the a-priori probability of the hypothesized path.
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7.5 Error Segments and Remerging

Because of the two- d1mens1ona1 lattice structure of the random ﬁeld it is poss1b1e -
for incotrect 1mage paths to merge with the correct edge path These "remerged paths"
correspond to 1ncorrect paths 1n the tree which behave exactly like the correct path
after the point of remergmg ‘On the image, however, a remerged path corresponds toa _' B
hypothesized edge Wthh bneﬂy diverges from the correct edge path Consequently,v
the hypothesued image path contains an error segment of some length n (Recall that‘

‘Athe same phenomenon occurs in the sequential decodmg of convolutlonal codes. ) For |
example Flgure 7.4a below shows a hypothesued 1mage path m Wthh comc1des with _Z
the edge path e up to some pixel locatxon branches off at L and then rernerges w1th e

at some p1xel location J In this case, m contains an error segment of length 3 S
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edge
yA—
\o N
edge
Flgure 7.4: “An illustration of the remerging phenomenon: (a) a re‘rner.ainn’i‘mage

path ‘which terminates at the edge and (b) a remerging 1mage path
Wthh eventually diverges from the edge

Recall that the rerner,ging» ,phenomenon corresponds to incorrect paths in the tree
which behave exactly like the correct path after the point of remerging. It follows that
‘the notion of anode in the tree being "correct” becomes somewhat ambiguous. Thus, a
,pre_ci:se definition of "correctness" in this context is needed. |

| 'Let 'y‘ihe some node at depth n in the corresponding tree of a digitel ”imagc
'Because of the many to one correspondence between nodes in the tree and nodes in the

1mage it follows that node Y is umque]y represented by an 1mage path of depth n

' m=2[‘ig,i'{, e ’lﬁ ]. For such a node, we define
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i¥ 4 leading pixel location of node ¥,

1
v 1)
and_
.'Y . .'Y . A- . . . . p :
i, s 1_n_ ji1 = k leading pxxel locations of node . ,
2 ’leading pixel locations of nodeY
e
L' ¥
‘r00t node
. i
L‘do
@ o L ®
Figure 7.5 An illustration of the relationship between a node Yin thvebtree, and its

‘corresponding image path. (a) shows node ¥, and (b) shows its .
corresponding image path. - - : ‘

" Observe that for the node shown in Figure 7.5, the corresponding SELMarkov_
‘state model is simply the last two turns or transition letters; i.e, (R,R) (as's'u‘rniﬁg_a 2'nd

~order Markov modél).‘ This is determined by the 4 leading pixel locations of nodc Y.
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In gereral, the SEL Markov state model which corresponds to a given node is
determined by its K+2 leading pixel locations where K is the Markov Chain order.
We are now ready to define the notion of "correctness" in' the context of

sequential edge detection.

- Déefinition: Letybe a given node in the tree. Then node 7 is said to be krc_'o‘rre'ct B

if its k leading pixel locations are on the edge.

Now: Iet ¥ be a k-correct node at depth: n in the tree. Next suppose that a correct
decision at node y has been made. | |
Defirie

4 The terminal path emanating node Y (final selected path)

and
by & min { i : B; is k—correct }.
Then,

¢y=(k=~1)  if By is k—~correct

. 0 if By is not k—correct 7.8)

A Jength of branching errors foﬁowiin’g :
the cotrect decision at node .
C%Sri@séqﬁemla‘y, & Brs - [31,' ) is an error burst of l?én:gth Ly, or simply aburst of Ly

'branchmg errors which is immediately proceeded by a k- correct ‘node and

edlafely followed by the detection of a k-correct node. Of course, we must allow
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the possibility of a correct branch decode immediately following the correct decode at
node Y. In this case, we say the error event is frivial, and hence Ly =0. Fmally, if we

define
L, = E[Ly | yism—comect] . (19)

“then, L, is precisely the expected number of branching errors per correct decision.



nodeY o€

@ ®

Figgﬁfc 7.6:  An itlﬁérratiaen of an error burst of length 3 assuming k = K+2 where K |
: ’ _ is the order of SEL Markov model (K =2): (a) shows the error burst
and (b) shows its corresponding error segment on the digital image.
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16 Sequentlal Edge Lmkmg Simulation

- Our. mam ObJeCtIVC in this section is to develop a s1mu1atlon techmque for

. s1mulat1ng the SEL algonthm wh1ch CXPIOItS the 1mportance samplmg pnnc1ple We -

S begm by developmg various deﬁmtxons Wthh are needed for the d15cusslons to follow

7 6 l Prehmmarles

Consider the random ﬁeld deﬁned in sectlon 7.2.2 and let. YIJ denotes the pixel. .

“value or observatlon at a glven pixel locatlon (i,j) in the ﬁeld Next let

D(°) = pixel index set for the ¢ 'th simulation. (a random set)

Y(°) = { Y(°) (1,]) € D(") } (1 e., the data record for the ('th srmulatron) :

In the sequel ‘we shall cons1der the problem of estlmatmg expectatlons of random:
, vanables that are gy—measurable for some node Y. That i 1s, we shall cons1der the basic

’ problem dJscussed in Section 3.4.2. Recall that such a problem can be stated as

e follows: =~

. The Basic Problem: Given the event E,, estimate

E[X | E/]

o Where X isva Gy-measurable random variable.

Notlce that because the SEL algonthm is based on the stack algonthm it follows 3

that the problem of estlmatlng most of the key parameters assocrated w1th the SEL

o algonthm can be formulated as in the basrc problem In addmon note that from

- _Theorem 41, 1t follows that for any gy—measurable random vanable whrch 1s..

- -assocrated w1th the SEL algonthm we have,
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E[X|E,] = E[X |yistherootnode]

7 6 2 The Importance Samplmg Estlmator |

L t'D(o) Y(°), and Yi; be deﬁned as in secuon 7 6. 1. L1kew1se let po and M be '

| fthe two condmonal densmes deﬁned on the. random ﬁeld Recall that these densmes o

- were deﬁned as follows »
| | 0( y) = K YlJ y | (1,_1) is not on an edge ) | - (710)
Cad | B

L P(y) = ff(Yu =y (1,3) is on an edge) e
. Next for any ﬁmte st:t of plxel locatlons D deﬁne el

 fy(yiD) = H f,,(Y,J) iy

f( )_ PI(Y) 1f(1,3)1sonedge |
4 Po(}') lf(l,J)ls notonanedge

and Y is the srmulatlon data record assocrated W1th the p1xe1 locatmns in D. Observe

| that fy'( Dis snnply a ﬁnlte order chstnbuuon on the random ﬁeld Furthermore note o

| that conceptually fy( Y D) 1s _]llSt the _]Olnt probablhty that the random vanables
o -Ylj € dylJ for all (1,3) mD ' |
Now let us cons1der the problem of esnmatmg

«=EX] S NG 14)'

' fil For srmplncnty, we shall drop the. condmomng on the event EY in our notauon Hence, hereafter ‘
: wewﬂlwmeE[X]msteadofE[XIEy] : . , :
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Where X is Gy-measurable. As,we have seen previously, importance 'sarrtpling is’
' applied by simulating using a different joint density fy(;.) insteé'd of fy(.;.). By
: Iettmg Po and p1 be the lmportance sampling densmes deﬁned on. the random ﬁeld

| then for any finite set of p1xe1 locatlons D,

 fy(y;D)= T £(Yy) e, (15)
. G.j)e D A
SEE
.o piy) 1f(1,)1sonanede*

ey, ! 8 - @16)

Po(y ) if (1,1) is not on an edge : 5
b’y-lctti,ng k'
OUN 5(Ys) SLean

Gpe o f(Yi)
be the importance sampling weight for the ¢'th simulation, then- the imt)er;.tance
: S?mpling estimator for (‘x"i‘s: ' o ' _— g

| ;

=_}:Z (O)W(O) - o aas)

‘where X0, X(L) are mdependent simulation data records. Wthh are generated ’

from the 81mu1at10n dens1ty fy( .

o Claim 41: E'[XO WO = E[X].

Proof Let D be the set of all plxel locations, D be some subset of D and Y be_
the 31mulat10n data record whlch is assocmted with D Next note that on the event"

DO =D, there exists some function g(;D) such that X® = g(Y(f);D).’ Consequently,
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fort=12, oo 12

E [X(O)W(O)] - E E [g(Y D)W(O) D(O)_D}
be o

=3 ﬁfg@;i‘nw@” I % <Y1,)Im<«> D](y)dy

Dep IR ¢ & J)GD -
I fi(Ys) g SRR
ijjed e
Y L —— iy S )I[D<°>—D}( g ) dy ;
DE D H fl_]( Yl_] ) (l ])GD ‘ o
<8 .I)ED 7
Z H g(§:D) H fii( Yy ) [po=py(y) dy
DG@ @, j)ED ) :

.7 Claim4.2: o is an unbiased estimator of &.

» Nouce that the proof of Clalm 4. 2 follows from Clalm 4 1 because the 51mulat10n
data X(l) » XU are 1ndependent random data records that are generated from the

| importance samplmg,.dlsmbutmn fy(.,..,).

Z The doubIe mtegral sxgn H in the next equauons and eIscwhere 1nd1cates a muln—dlmensmnal ‘
mtegratron : :
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7 .6.3 Termination of the Simulation

The SEL simulation termination rule which we shall use for the SEL algonthm .
‘snnulatlon is baswally the A—stoppmg rule presented in the prev1ous chapter. The
A—stoppmg rule was shghtly modified here in order to. take into account the new-
definition of "correctness that we have 1ntroduced in the sequennal edge detectlon

context. Our new termination strategy is called the A'—stoppmg rule

Assume that v is the root node and suppose that the {’th simulation starts at t =0. o

Then, the A’—stopping rule is
The A’—St_opping Rule (For the ¢’th simulation):

Imtxah& Start the search at node ¥.
DO J-— '
- inmulate until only one subuee is acnve call it Sg,- 7
 IF B; is kecorrect THEN
STOP |
. ELSE
’Delete inactive subtrees from the stack.
Reassociate the remaining stack nodes to subtrees S5 with 8 € Dg,
Compute M;(t) for 8 e DB |

v END IF
CONTINUE



Note that the basxc 1dea behmd the. above rule is agam to dlscard the 1nact1ve trees.
- as the search p progresses and concentra'te on only the active ones Wthh contam the , S

| V‘TQS node

' be used to efﬁc1ently estrmate most of the key parameters whtch are assocmted the
P SEL algortthm In fact m addltlon to the bas1c estlmatlon of error probabthtles IhlS

- t«echmque xcan be applled to esumate

L :1) The expected _'number of memc computatlons

Esttmatmg these parameters usmg conventtonal Monte Carlo 81mulat1ons would’
most ik ely mqulre a l@t of sunulatlon runs, espe01a11y when the nnage is not t00 n01sy

Certam]_‘_ '“the most tmportant 1ssue in th1s 1mportance samphng techmque 1s the’

- demgn of nmportance samphng s1mulat10n models Actually, as 1t should be clear from

- ‘the prevxous chapters the crmcal element of 1mportance samphng is the cho1ce of the

' lamportance samphng dens1ty fy (s .). Thls densny should be selected in such a way that

; "prommate the unconstramed optlmal 1mportance samplmg densny (2 8), and-

- ait the same tlme ’oe the optlmal densuy w1thm the class of all cand1date snnulatlon -

e ‘fdensrttes ‘whrch' »can be pracucally 1mp1emented The knowledge of the system 10 be
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51mu1ated shall also be exp101ted when the selection of a suitable candldate simulation
: dens1ty is to be rnade In fact importance samphng works because it allows the
"s1mulat10n des1gner to apply his knowledge of the system to be s1mu1ated in order to

emphasne the 1mportant events 1n the 51mulatron

In th1s application, our knowledge of the algonthm behavror and the ' 1mportant" :
events to be simulated supports the use of a non-statzonary s1mulatlon model In fact,
our expenence 1nd1cates that whenever incorrect paths are hypothes1zed e1ther they - |
-~ will eventually become 1nact1ve as their lengths get longer and longer or their |

correspondrng image paths eventually merge_w1th the edge path and once they do, they
»start,behav‘ing like the corr_ect.path. The practical irnplication of this is that ,as‘we get
| far away from the root node, large excursions from the edge path become scarce. In
other words, large excurswns from the correct path w1ll probably occur around the root'
Nnode ‘As these excursions get larger and larger, more opportunlttes for the 1ncorrect
1mage paths to merge w1th the edge path are created and agam once they do, the
» excursmns from the edge path become smaller as. we get far away ~from the root node
"As a consequence if we assume that  is the root node and let X be a gy—measurable
| random vanable, then 1t follows that most the pixels Wthh w1ll determme X w1ll be
| around the root pixel l_ocauon I Consequently, a non—,stat:lonaxydenslty fy () which
1) makes the image- around i more noisy than the actual operating'-conditions; ‘and 2)
decays to the true. dlstnbutron fy( .)in.some fashlon as . we get farther and farther from
;0 would be more efﬁc1ent than a statronary density whrch wﬂl end up S1mulat1ng
ummportant events Flgure 7.8 1llustrate this- by show1ng an example of the plxel
locations v1s1ted by the SEL algonthm ‘when (a) the s1mu1atlon densny fy( )isa
. non- stauonary densrty ‘which decays to fy( ) as the search gets farther and farther .

from 10, and (b) the simulation density- fY (:;)1s stat1onary.



. Root p1xc1 locatxon
. P:xcl locauon searched

| Flgure 77 : :An example ‘which shows thc pixel locatlgns v1sned by the SEL -

algorithm when (a) the simulation density fy(.;.) is a non-stationary

o dcnsxty which decays to fy(;.) as the search gets farther and farther- a

‘-from 10, and (b) the smulatlon dens1ty fy( ) is statmnary

To furthcr undcrstand thlS problem, ons;der the followmg bmary 1mage R

R example That is, the d1g1ta1 1mage under cons1deranon is: an unage for whlch the p1xe1 "

: valucs are clther 0 or 1 For tlus 1magc the random ﬁeld condmonal dcnsmes Po() o
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and p1 () are defined as follows: For some ag and a; € [0, 11,

ag ify; =1 e
A S 7.19)
pO(yU)‘ = { (1 ——a()) | if yij = 0 o | : ( )
and
v . ay . ify; =1 " .: - :
(v ) A o 7.20
p,l(‘y,“v)v‘-{ (-a)  ifyy=0 7

i, and some p1xe1 locatlon (1, ]) on the image.

Now, let dj; denotes the distance between i

Next, for some bO and b1 e [0, 1] and for some o > 0, deﬁne
- POy & Polyi) € 1-¢” f‘f’-”_),+']bo e ;,,,d?'; o @2
and ) | | |
- PTGijj s P10y (1= )pb ™, (1.22)
That is, the 1mportance samphng dens1t1es po( ) and pl( ) decay exponennally to po( )
andpl()as d1J T oo,

To 111ustrate the dlfferences between this non-statlonary model and a stationary

‘51mu1at10n model cons1der the following simple statlonary s1mu1at10n model -

‘and -
e e ify=1 SR
pli,ylj (1 _ Cl) 1fy1.1= 0 2 7 ( )

where a0 <c0 <1 and 0<c1 <a1 Next’ consider the»‘problem cf’lve's'tirnating‘ the
'expected number of metric computauons per correct decmon i.e., we are interested in

esnmatlng E[ CY ]. In ,thls case,.recall that the set of p1xel»11ndlces which deterrmne CY
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: ‘consequence 1t follom' s that the- statlonary smulanon rnodel w1ll most hkely end up

' sunulatmg n "mponant events because thxs ‘model makes grrors eceur everywhere and

hence, it w1ll extend a lot of i mcerrect <subtrees Wthh are not needed In other words if

such model is used en--the algonthm wﬂl be foreed to waste eemputatlon tlme on the‘

exploratien of meorrect paths whlch do not determne CY @n the other hand the non-_" L

:statwnary samzuﬂatmn model ean be selected ) that only the plxels of mterest are

o '_searched mest ef the ﬂme Spe01ﬁcally, the mn stanonary sunulatlon model can be

_ ehosen $O t‘hai the 1mage around m s n01sler than the actual opera{mg cendmons As

| consequenee., 1he algonthm wﬂl be ferced most of the nme 10 search the i 1mage paths :
'whose pixei flocatlens are in B(o) N S In nt:he-r -wonds. 1he non-_sftauonany -srmulatlon

. mdel makes the nnpnrtant even-ts nccur very often w1th0ut forcmg the algonthm to

waste . lm 0f compmanon txme as in the case ef the statlenary s1mulat10n model |

: Flgure 7. 8 and Flgure 7 9 show actual smmlanons of the SEL algonthm w1th the

| stauonary snnuﬂanen medel spec1ﬁed by (7 23) (7 24); as well as, the non- stat10nary =

o model that as kspemﬁed by a. 20 .22,
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- Figure 7.8:  ~ An illustration of an actual simulation of the SEL algorithm using a
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Figure 7.9: An 111ustranon of an actual sunulatlon of the SEL algonthm usmg a
B non stanonary sunulatlon modcl for thc bmaJy 1rnagc cxample
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" To further illustrate the potential ‘of applying importance sampling to the

N sirnulation of the SEL algOnthm, consider' the’binary' image example and suppose that -
C pa(vi) = 4 (2
Polyy) ° { 992 1fyu—0 e

99 lfy,J—l - ,
pl(yU) —{ 01 : lfle _0 o “ s (7 6) .

: Next Suppose that we -are mterested in estlmatmg the probablllty of error
followmg the correct dec1sron at node y That 1s, we would hke to estimate
. aA E[ IE I’YIS on the termmal path] ':',j._ o '(7.27)

where E =event {[31 # al } In th1s example we _note that the correct path and the

| . terrmnal path in SY are respectlvely denoted by (y,al ,0t2, ) and ('y,Bl . Bz,

Let oc be the 1mportance samplmg estlmator for the above probablhty of error

» Table 7 1 hst some sunulanon results whxch ‘were. obtamed usmg the non- statlonary B

.s1mu1atlon model spec1ﬁed by (7 21) and (7 22) w1th bo = 2 bl = 85 and a= 5

Table7.1:  The probability of error estimate for the binary image example.

A%

o vFreque’nc'y' ;Accuracy_;] Teg

1596% 10 | 182517 | 31% | 1208

We note that a total of L= 500 OOO s1mulat10n runs were. used to compute the" .

‘ .above estlmates Furthermore, we note that the second column in the above table hsts .



' the relatlve frequenCy of the error event E dur1ng the L s1mulat10ns Thesubstantlal
mcrease of the erTor - event relatlve frequency under the smlulatlon model (in
' vcompanson to ordlnary Monte Carlo) 1nd1cates one of the key charactenstlcs of "
._1mportance samphng Flnally, we note’ that the last two columns in ‘the above table |
. g1ve respectlvely the estxmates of the accuracy and the relatlve efﬁcrency gam These
' _quantmes were esumated usmg sample variances estrmates as in the prev1ous ‘chapters.

‘ We omit the details for brev1ty

In conclus1on 1t is clear that the 1dea of applylng 1mportance samphng to the '

’ s1mulat10n of the SEL algonthm is st111 1n 1ts 1nfancy It is also true that th1s‘

B prehmmary work has clearly posed more questlons than answers However 1t has

v"'certalnly presented several challenges for future research “The problem of selectmg

- surtable 1mportance samphng densmes 1n the context of sequennal edge lmkmg will

o obv1ously be the maJor empha81s in th1s work The extremely good accuracy and h1gh'

i ».relatlve efﬁaency garn obtalned by usmg the s1mp1e ad hoc non- statronary model in-

e ,the s1mple blnary 1mage example 1nd1cate that there 1s 1ndeed a great potentlal for

vapplylng the pnnclples of 1mportance samphng to the SEL algonthm srmulatlon and

- -that substannal efﬁc1ency 1ncreases in’ companson to ordlnary Monte Carlo snnulatlons ’

are pos31b1e By applymg the 1deas discussed in this section, along w1th the leverage
obtamed from the 1mportance sampling 51mu1at10n of sequentlal decoders we feel that :

it is poss1ble to des1gn efﬁclent 1mpoxtance samphng models for s1mulat1ng the SEL_ -

algonthm
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CHAPTER 8
CON CLUSIONS

ThlS thes1s has demonstrated that when properly 1mplemented 1mportance
- samphng could prove to be an extremely powerful technlque for 1mprov1ng the‘
"computanonal efﬁclency gams of conventlonal Monte Carlo sunulatlons The
presentatlon in the ﬁrst few chapters of thls thesis has consu:lered marnly the esttmanon“ '
of the drstnbutlon of computatlon of stack algonthm decoders However it is noted
' that the new srmulatlon methods that we' have presented here, can be also used tov _
esttmate other key parameters that charactenze the performance of the stack algonthm :

"' A typtcal example of such parameters 1s the average number of metnc computatlons. -

. per correct decrsron Another key quantlty ‘that' charactenze the stack algonthm

| performance 1s the b1t error probablhty In Chapter 6 we have shown that the error |
‘probabrhnes assoc1ated w1th stack algonthm decoders can be efﬁc1ently estlmated .
‘usmg unportance samphng Fmally 1n Chapter 7 recall that we have shtfted our

: attentxon to the s:lmulatlon of the SEL algorlthm The presentatlon in thlS chapter has

| "mamly con51dered the development of a new importance- samphng technlque for,

- s1mulat1ng the SEL algonthm as well as, the basm theory Wthh is relevant to th1s -
o appllcanon | o | | »
| To demonstrate the power and accuracy of our new s1mu1at10n techmques we. |

: ‘,'have presented in Chapter 5 and 6 numencal results for some convolutlonal codes that '
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are opev_r'atingon( the,hinary symmetric c_hannel and the addjtive white - gauSSian noise
channel. ’,':‘Ihes_ev'simulation results indicate that very good accuracies, along with
' astronomicalfcomputational" efficiency gains can be achieved when our simulation -
v »techn‘»iques vare used. In Chapter 7, we have illustrated the po_tential of - applying
' 'i‘m'portance vsampling to the ‘simulation of the SEL algorithm by presenting some *

_;s1mulat10n results for a bmary image. These results’ 1ndlcate that importance samphng

. holds the promise of offering substantial unprovements in computatlonal cost in this

. partlcular apphcatlon

~ The design of efficient and practicalzimportance sampling simulationdrstributions k_
is often ad hoc. Most of the important sampling analys1s begms by proposmg a fam11y
of candldate smlulatlon distributions and then optlrmzmg .some parameters of the
. 'fanuly, “For:example, in this thesis the reference path method‘vs'{as _an ad hoc s1mu1atron
 technique obtained by an application of a specific know1edg¢_.abogt the stack algorithm
dec‘oderv operation.. The partit‘ioningv : method on "the‘ otherj {_handuwas’_ivnspir_ed_.,b_y a.
= jbbr'anchy» of ‘probab,ilityftheory, known as large .vdevi:ation:s‘ theory._ B‘ecause. large

“deviations theory is not lir’nited to-ideal channels, the,partitioni_ng method pvrom‘ises to
~ bea powerful tool for performance evaluation of sequential decoders for non-idealb

. chann_e,ls.,__ | ‘ |
There are many aspects of the work presented here that offer avenues for future
research Indeed usmg the leverage obtamed from the S1mu1at10n techmques
presented in this thes1s 1t is. expected that efficient 1mportance samphng can be
’developed for _the performance evaluatlon -and des1gn venﬁcatlon of coded
commumcatlon systems In partlcular the sunulatlon of commumcatmn channels
: »Wthh are corrupted by - one or more non- 1dea1 charactenstlcs such as 1ntersymbol

1nterference, nonlmeanty, synchronization errors, etc, w1ll prov1de a large class of '
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i ‘mprove’rneﬁts in: cofnputan@nal cost in: c@mpa?ﬁson to the ordmary Montc ‘

s ama_fo*rffa‘rea for both pra tica %:and theoreucal research



 LISTOFREFERENCES




s
-~ for the evaluation of error rate in digital communication systems," IEEE Trans
~on Commumcauon, VOL COM 28 PP 1016-1924 (198()) o ,

m

" LISTOFREFERENCES

-Kahn H ‘and A' W. Marshall "Methods of reducmg sample size in Monte Carlo :

. computations;"- Journal of the operattons research soczezy of amenca VOL 1
- vpp 263 278 (1953) ‘ BEE ‘ -

B
Bl

ROR.
: stattsncs," IEEE Trans Aerospace Electron. Syst VOL AES 17 pp 15-24

':J M Hammersley and D C Handscomb "Monte Carlo methods," New York
-,__v_-'Chapman and Hall (1964) R BNES , ’ _

' P Balaban, "Stansueal evaluatton of the erTor rate of the ﬁbergulde repeater usmg
- importance* samphng," Bell System Techmcal .Iournal VOL 55 No 6 PP

745~766 ( 1976)

'D Slegmund "Importance sampllng in’ the Monte Carlo study of sequentlal
u -tests " Ann Statts VOL 4, pp 673 684 (1976) A A

K S Shanmugan and P Balaban "A modxﬁed Monte Carlo s:mulatlon techmque _

R. L M:tchel "Importance samphng apphed to slmulatlon of false alarm '

i{‘(1981)

81
. the study of stochastic algonthms," IEEE Trans. Automatic Control VOL AC—"_ S

;R Y. Rubmstem "Slmulauon and the Monte Carlo method " New York they, '
'_7(1981) S : R |

G W Lan_k "Theoretlcal aspects of 1mportance samplmg apphed to false

»--alarms " ]EEE Trans Informatzon Theory, IT-29, pp: 73-82 (1983)

M Cottrell 1. C Fort and G Malgouyres,, Large dev1attons and rare events in

28, PP- 907 92()(1983)

[10] M C Jeruchlm "Techmques for est1mat1ng the bit error rate in the S1mulat10n of :

d1g1ta1 communications systems," IEEE Journal Select Areas Commumcatzon, -
VOL SAC 2 pp 153-170 (1984) ' o : S



211

[11] M. C Jeruchim, "On the application of importance samphng to the simulation of
digital satelhtc and muluhop links," IEEE Trans Commumcatzon VOL. COM-32
( 1984)

+."[12]1 B. R. Dav1s ""An 1mproved importance sampling = method for d1g1ta1
~.communications - system simulations," IEEE Trans Commumcatton VOL.
- COM-34, Pp- 715-719 (1986) : L : :

» ;'[13] G. Orsak and B. Aazhang, "On the apphcatlon of 1mportance samplmg to the
~ analysis of detection systems,” Proc. 25th Annual Allerton Conf. on
- Communication, Control, and Computing, Un1vers1ty of 1111n01s Montlcello, IL,
pp 135 144(1987) :

[14] P W. Glynn and D. L Iglehart, "Importancc samphng for stochastic 31mulat10ns
Technical Report No. 49, Dept of Operations Research, Stanford University,
Stanford CA (1987)

, '[15] Rlpley, "Stochastlc s1mu1at10ns," thley, New York (1987)

- [16] Wong, Q and V. Bhargava,v "On- thc apphcatlon of 1mportance samphng to BER _
. estimation in the simulation of digital communication’ systems," IEEE Trans.
Commumcanon VOL COM 35, pp 1231-1233 (1987)

f [17] K K Parhl and R S Berkow1tz F'On optnmzmg unportancc samphng_
simulations," IEEE Trans. Circuit & Systems, VOL CAS-34 pp 1558- 1563
(1987) b, _ .

[18] P Hahn and M Jcruchlm "Developments in thc theory and apphcatlons of :
‘ importance sampling," IEEE Trans. Commumcatton VOL. COM- 35 Pp- 706-714
(1987) '

[19] D. Lu and K. Yao, "Bounds on the variances of 1mportance samplmg s1mulat10ns
in - digital communication systems," Proc. 25th Annual Allerton Conf. on
Commumcatzon Control, and Computzng, Umvcrsny of Ilhn01s Monticello, IL
pp 135 144 (1987) L .

[20] P. Bratley, B. L. Fox and L. E. Schrag, A Gulde to, Slmulatlon New York
‘ Sprtnger (1987) e BRI L FE ,
"[21] D Lu and K Yao ' "Improved 1mportance samphng technlque for efﬁc1ent

. simulation of digital communications systems," IEEE Journal Select Areas
Commumcatzon VOL. SAC—6 pp. 67 75 (1988) po S .




212

[22] G. Orsak and B: Aazhang, ‘A companson of two 1mportance samphng methods
for the analysis of detection systems," Proc. 22nd Annual Conf. on Informanon
Saences & Systems Pnnceton Umversrty, Prmceton NI, pp. 314—318 (1988) '

| [23] J.S. Sadowsky and J. A Bucklew, "Importance samphng and Viterbi decoder
- simulation,” Proc. 22nd Annual Conf. on Informaaon Sczences & Systems,
Pnnceton Umversuy, Prmceton NJ pp. 319-324 (1988) :

[24] J S. Sadowsky "A new method for V1terb1 decoder s1mulatlon usmg 1mportance
samphng, To appear as a regular paper in IEEE Trans. on Commumcatlon

'v[25] V Hunkel and J Bucklew "Fast sunulatlon for functlonals of rnarkov chains,"
" Proc. 22nd Annual Conf. on Information ‘Saence & - Systems, Prmceton
v Umversuy, Pnnceton NJ PP- 330—335 (1988) ‘

[26] .S Sadowsky and ' J. A Bucklew "On - large dev1at10ns theory and
asymptotrcally efficient Monte Carlo’ estimation," To appear as a regular paper
‘in IEEE Trans on Information Theory, . o

[27] S. Parekh and J Wa]rand "A qulck s1mulatlon method for excessrve backlogs in
" networks of queues " IEEE Trans. Automatlc Control VOL AC-34, pp 54-66
(1989) : , :

[28] K B. Letaref and J S Sadowsky, "Some new methods for s1mu1at1ng sequentral‘ |

- decoders using importance sampling," Proc. 27th Annual Allerton Conf. on
" Communication, Control and Computmg, Un1vers1ty of Illmms Monticello, IL -
(1989) Py :

”_[29] M. C. Jeruchim, P. M. Hahn K. P. Smyntek and R. T. Ray, "An expenmental-
investigation of conventional and efficient importance samphng," IEEE Trans.
Commumcatzan, VOL. COM-37, pp. 578 587 (1989)

[30] K. B. Letaief and J. S. Sadowsky, "New 1mportance sampling methods for
“estimating sequential decoders performance Submitted to IEEE Trans. on
Informaaon Theory (1990) _ ! '

[31] J. A Eucklew, P Ney, and J. 8. Sadowsky, "Monte Carlo srmulatxon and large |
deviations for uniformly recurrent markov chams To appear asa regular paper
m Joum Advanc Appl Probab. (1990)

| [32]?'P. Elias, "Codlng for noisy channels,” IRE"C‘anv.‘Rec. pi. 4, ﬁp.'v,é‘7-46 (1955)'

[331 1. M Wozencraft "Sequentlal decoding for reliable communlcatlon " IRE Natl
' ~Conv. Rec., VOL 5,pt. 2, Dp- 11- 25 (1957’) gt .



213

f,. [34] B Relffen "Sequent1a1 encodmg and decodmg for the drscrete memoryless .
S channel " MIT ResearchLab of Electromcs Tech Rept 374 (1960) - :

r}.‘v[35] J. M Wozencraft and B Rerffen ‘ "Sequennal decodmg," MIT Press Cambndge, '
i Mass (1961) . , N T

[36] RM Fano. "A huenstlc d1scussmn of probablhstlc decodlng," IEEE T rans*j_i ’,
Informatlon Theory, IT-9, pp. 64 74. (Apnl 1963) : , '

[37] K Zlganglrov "Some sequenual decodmg procedures,v problemy Peredachl o
R mformatsu VOL 2 pp: 13- 25 (1966) , e Tl S :

' "‘, [38] J E Savage, "Sequentlal decodlng-the computatronal problem," ’Bell System o

Techmcal Journal, VOL 45, pp. 149-175 (Jan 1966)

R j;‘ ,,[39] AL Viterbi,” "Error bounds for convolutlonal codes and an’ asymptotrcally; R

- optimum decodmg algonthm," IEEE Trans Informatzon theory, IT-I3 pp '
260-269 (1967) : : e i

[40] 1 M Jacobs, "Sequentral decodmg for efﬁcrent commumcatlon from deep space,
IEEE Trans Commumcatzon Technology, VOL. COM-15 pp 492 501 (1967)

[41] IM Jacobs and E R. Berlekamp "A lower bound to the d1stnbut10n of o
. ‘Computation for sequentral decodmg," IEEE Trans Informaaon Theory, IT-13 :
pp-167- 174 (Apnl 1967) , 4 - »

“";'[42] P. Hart,: N NllSSOIl and B raphael "'A formal basrs for the heurlstlc
determination” -of minimum “cost paths, IEEE Trans Systems Sc1 Cybernet :
VOL SSC-4, pp 100-107 @uly 1968) :

' . [43] R G. Gallagerv "Informatlon theory and rellable commumcauon " MCGraw-Hle _
| New York (1968) - Sl . |

-;‘[44] F. Jelmek "A fast sequentlal decodmg algorrthm us1ng a stack " IBM Journ Res -
B andDev VOL 13 pp 675-685 (Nov 1969) ] _ '

' "7'"[45] F Jehnek "An upper bound on moments, of sequentlal decodmg effort ! IEEE |
' Trans ]nformauon Theory, IT -15 PP- 140-149 (Jan 1969) 5 e

- ':5",“:[46] D J Costello, "Constructlon of convolutlonal codes for sequentlal decodmg
. PhD Dzssertatton Dept Elec Eng Umv Notre Dame, Not:re Dame, IN (1969)

" '5[47] A J V1terb1' "Convolutlonal codes and the1r performance in commumcatlon'
o systems," IEEE T rans. Commun Technology, VOL COM 19 pp 75 1 772 (1971)



214

ﬁ.d ‘E K. Bewer "A Hl;a vd“sequenual decoder Prototype‘ =
vIEEE Trans Commun Technol 'VOL. C@M 19, pp 821 835'

,ey_;jr | "The Vnerbl algorlthm," Proc IEEE, voL z61 PP: 268- 278

1 [58, R. J@hannesson “On the dlsmbutwn of computatlon for sequentlal decodmg'i-
- the stack alg@nthm," IEEE T rans Jnformanon Theory, VOL IT-25 No 3

| ‘estello, "Error e@muol codmg ‘Fundamentals and apphcauons,
,,_Englew Chffs New Jersey (983) - - o BT

{J SM h: xd 1. l Anderson "Computanonally opmmal metnc-ﬁrst code tree '_
v orithms,"” IEEE Trans Commw»ucanon VOL COM 32 pp 710 717(
, June 1984) | . S |



215

o '.1[61] K. B Letalef and J S Sadowsky "A Large dev1at10ns ana]y51s of the Stack -

EEE R Algorlthm Proc. 22nd Annual Conf. on Information Sczence & System Prmceton.
o : unlver51ty, Prmceton NJ PP 1027 1032 (March 1988) o '

L [62] E Wong, "Stochastlc processes in 1nformatlon and dynamrcal systems,
' Huntmgton,N Y Kneger (1971) » A e o

: :"*:_{[63] E. C1nlar, "Introductlon to stochastlc processes," Prennce-Hall Englewood Cllﬁ‘s, |
- NLa9TS) F o e -

1::*{5*’[64] I Iscoe, P. Ney, and E Nummelm "Large dev1at10ns of unlformly recurrent‘ , |
Markov addlnve processes," Adv in Appl Math 6 pp 373 412 (1985) -

o [65] P. Ney and E. Nummehn "Some limit theorems for Markov addmve processes
‘ m seml-Markov Models, ed. Janssen, Plenum, (1986) ,

[66] P. Ney and E. Nummelm "Markov add1t1ve processes I elgenvalue propertlesb '
and 11m1t theorems, pans I and II a Ann Probab.',;,.f15 pp 561 609 (1987) '

| v[67] N N11son "Problem-Solvmg Methods in Art1ﬁc1al Intelhgence," N Y McGraw- .
Hzll (1971) :

| "’,'_”[68] A Martelh "Edge detectlon usmg heurlstlc search method " CGIP 1 pp 169 182*
(197) : ERRER -

fii[69] M Hueckel "A Local v1sua1 operator wh1ch recogmzes edges and hnes," J ACM _
' VOL 20 pp 634-647 (1973) R .

L [70] Y. Chien and K. Fu, "A decision funcnon method for boundary detectlon " CGIP |
VOL.3, pp. 125- 140 (1974) | R

g .“‘_[71] A Rosenfeld and A Kak‘ "Dlgltal P1cture Proce551ng," NY Acadermc Press,
ave - S o

| l:'[72] A Manelh, ."An appllcatlon of heunstrc search methods to edge and contour-' -
: detectlon ! Commun ACM ‘VOL.. 19, pp. 73 83 (1976) . .

’[73] W Pratt "D1g1tal 1mage processmg,"N Y. Wlley, (1978) AR .

L :‘[74] G Ashkar and J Modestmo, "The contour extractlon problem w1th blomedtcal -
apphcatlons," CGIP VOL 7, pp 331 355 (1978) B . _



216

- [75} L. Addou, "Quantltatlvc methods of edge. detcctlon Los Angeles CA Image
Processtng Inst Un1v Southcm Callforma (1978) '

[76] L Addou and W Pratt, Quantltanvc design and cvaluatlon of
: cnhancemcnt/thrcsholdmg cdgc detcctors " Proc of IEEE VOL 67 pp 753-763:
(1979) i v :

: [77] D. Cooper 'Max1mum likelihood cstlmatlon of Markov- -process boundanes in
‘- ‘noisy images," IEEE Trans. Pattern Anal Machtne Intell VOL. PAMI 1, pp.
372 384 (1979) AN : : , .

" [78] D. Marr and E. Hlldreth "Thcory of edgt, detectlon ¢ Proc R. Soc Lond., VOL.
' B207 pp 187 217 (1980) o

[79] R. Machuca and A. lebcrt "Fmdmg edgesin no:sy scenes,’ IEEE Trans Pattern :
Anal ‘Machine Intell., VOL. PAMI-3, pp. 103-111 (1981) -

- {80] M. Bassevﬂle B. Bsplau ‘and J.- Gasmer "Edge detection usmg sequcntlal
‘methods for change in level - part I: a sequential edge detection algorithm,” IEEE
T rans. Acousttcs “Speech & Slg Proc., ASSP-29 pp. 24-31, (1981)

[81] R Sucm and A. Recvcs,‘ " A’ comparison of differential and. moment based cdge
© detectors,” Proc IEEE Comp Soc Conf on Pattern Recog and Image Proc., pp:
97-102 (1982) ‘

{821 M. Kunt, "Edge detcctlon a tutonal rcv1ew " Proc IEEE Intern Conf on
’ Acoustzcs Speech and Stgnal Proc., VOL. 2 (1982) R

'-[83] J. Canny,' "Fmdmg edges and hncs in images," MITAI-TR 720 (1983)

' E84] P.» H Exchc-l.,, "Sequcnnal dctccuon- of linear features in two—dnnensxonal random
fields," Ph.D dissertation, Computer, Information, and Control Engineering
Program, University of Michigan, Ann Arbor, MI 48109 (May 1985)

[85] P. H. Eichel and E.J. Delp, "Sequential edge detection in cortelatcd random
fields," Proc. IEEE Computer Vision and Pattern Recognztton Conf San
Franc1sco, CA, pp 14- 21 (June 1985) ‘

' -[86] P. H ElChCl E. J Dclp, K. Koral, and J. Buda, "A mcthod for a fully automatic
- definition of coronary arterial edges from cineangiograms," IEEE . Trans on
Medtcal Imaging, ‘VOL. 7, NO. 4, PP- 313- 320 (December 1988)



217

-[87] S. D Persomck "RCCCIVCI' de51gn for d1g1tal ﬁber opt1ca1 ‘communication
systems L" Bell System Technical Journal VOL 52, pp 843-874 (1973)

[88] W. Hauk F. Bross and M. Ottka, "The calculation of error Tates for optlcal fiber -
: systems "IEEE Trans. Commumcatlon VOL. COM-26, No. 7 (1978)

[89] N. ‘Sorenson and R. Gaghardl "Performance of optlcal receivers w1th avalanche
photodetectlon " 1EEE Trans. Commumcatzon, VOL COM-27 No 9 (1979)

‘[90] R. Doghottl A Luv1son and G Pirani, "Error probablhty in opUCal ﬁber
R transrmssxon systems " IEEE Trans Informatlon Theory, VOL IT-25 No. 2
a9 | ey

’ [91] R. GaghardJ and G:. Prati, "On Gauss1an error probablhtles in optlcal receivers,’
- IEEE Trans. Commumcatlon VOL. COM 28, No 9 (1980)



. VITA




218

" VITA

‘Khaled Ben Letaief was bom in Nabeul, Tunisia on January 7, 1962. He attended
Ecole Reussite Primary School from 1968 to 1974 and Lycee Technique High School

from 1974 10 1981 in Nabeul, Turﬁsia ‘He received' the Béc’c‘al’aureét degrée with-_'_

distinction from Lyccc Technlque in June 1981 He recelved his BS with dxstmctlon in

Electncal Engmcermg from Purdue Umversnty, ‘West Lafayette Indlana USA in .
December 1-984. He has - also recelved his MS_and Ph.D degrees in - Electrical |
Engin_céxi'ng from Purdue Uhiv.crsit_y, in August 1986, and May 1990, fcspéctively. |
‘Sinc-e January, 1985 hc b‘has ‘,been émploycd as a teachibngl assist_ant and a researéh
assistant in the ;Sc.:hool of Electrical Engineevring at Purdﬁc Urii\-'crsity; | |

| _‘ His reseaféh ihter@stg inélﬁde stétistical commu'nications; inform‘ati()n & cdding
" theory; digital corhmuriications‘, digit_al signal aridyirr_xagc processing. B ‘

Khaled is a member of the Tunisian Scientific Society and IEEE.



	Purdue University
	Purdue e-Pubs
	5-1-1990

	Importance Sampling Simulation of the Stack Algorithm with Application to Sequential Decoding
	Khaled Ben Letaief

	tmp.1542052450.pdf.Ye8J5

