
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

5-1-1990

Importance Sampling Simulation of the Stack
Algorithm with Application to Sequential
Decoding
Khaled Ben Letaief
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Letaief, Khaled Ben, "Importance Sampling Simulation of the Stack Algorithm with Application to Sequential Decoding" (1990).
Department of Electrical and Computer Engineering Technical Reports. Paper 723.
https://docs.lib.purdue.edu/ecetr/723

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages

ImportanGe Sampling
Simulation of the Stack
Algorithm with Application
to Sequential Decoding

Khaled Ben Letaief

TR-EE 90-37
May 1990

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

IMPORTANCE SAMPLING SIMULATION OF THE STACK ALGORITHM

WITH APPLICATION TO SEQUENTIAL DECODING

A Thesis

Submitted to the Faculty

of

Purdue University

by

Khaled Ben Letaief

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 1990

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Professor John Sadowsky for
providing the guidance that made this work possible. I thank him for all his support,
financial and otherwise. I would also like to thank Professors Edward Delp, Saul Gel-
fand, and Steve Lalley for serving on my advisory committee. I acknowledge their
help and suggestions. Special thanks goes to Professor Delp for all the help he pro­
vided me during graduate school.

My wife, Selma, has been a constant support to me throughout my undergraduate
and graduate schools. I cannot sufficiently thank her for her support and understand­
ing.

Special thanks to all the members of my family for their moral support.
Finally, I would like to thank all the friends that I have had the opportunity to

meet at Purdue University.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES.......................-...vii

LIST OF HGURES.......................... .. xi

ABSTRACT.. xiv

CHAPTER I - INTRODUCTION..-.... I

CHAPTER 2 - IMPORTANCE SAMPLING................ 9

2.1 Introduction... 9
2.2 General Theory Behind Importance Sampling...................... ..10

2.2.1 Importance Sampling................................ 10
2.2.2 BiasandVariance... 11

CHAPTER 3 - TREE SEARCHING AND THE STACK ALGORITHM................15

3.1 TreeSearching.. 15
3.1.1 Introduction................̂.....................15
3.1.2 Tree Searching....................... 16

3.2 TheStackAlgorithm............ ... 17
3.2.1 Algorithm Description....... 17
3.2.2 The Path Metric... ...25

3.3 The Fano Algorithm and Variations of the Stack Algorithm.,....................... 25
3.4 A Format for the Simulation of the Stack Algorithm......................................28

3.4.1 TerminologyandDefinitions... 28
3.4.2 The Fundamental Theorem....................... ...29

3.5 The Modified Stack Algorithm Simulation................................. 37

CHAPTER 4 - IMPORTANCE SAMPLING APPLIED TO
SEQUENTIAL DECODING.............................. 39

4.1 Introduction... 39

4.2 Channel Model and Convolutional Codes...41
4.2.1 Channel Model...........41
4.2.2 TreeCodes.....44
4.2.3 Convolutional Codes................................ ..47

4.3 Error Events and Remerging....................................52
4.4 The Reference Path Method..........53
4.5 The Partitioning Method Analysis.................. ..60

4.5.1 Preliminaries and Definitions.... ...61
4.5.2 The Partitioning Method Results................ .63
4.5.3 The Partitioning Method Applied to the BSC........... 74
4.5.4 The Partitioning Method Applied to the AWGN Channel....................78

4.6 The Partitioning Method in the Markov Case........... 84
4.6.1 Markov Additive Processes......... ...84
4.6.2 The Partitioning Method Results..................87

4.7 The M-method.....89

CHAPTER 5 - SEQUENTIAL DECODERS SIMULATION USING
IMPORTANCE SAMPLING................ 95

5.1 Introduction.. 95
5.2 Importance Sampling... 100
5.3 SimulationResults.. 107

5.3.1 The Binary Symmetric Channel Case.......... ..107
5.3.2 TheAWGNChannelCase.................. ...132

5.4 Discussion and Conclusion.............................144

CHAPTER 6 - SEQUENTIAL DECODERS ERROR EVENTS
SIMULATIONS....... 154

6.1 Introduction.......154
6.2 ErrorEventsandPerformanceParameters..................... 155
6.3 The Error Event Simulation Method........................ 158
6.4 Importance Sampling and Error Event Simulation......161
6.5 Numerical Examples............... 162

CHAPTER 7 - SEQUENTIAL EDGE LINKING SIMULATION....176

7.1 Introduction....176
7.2 The Edge Detection Problem..................... '................177

7.2.1 Introduction............... ...177
7.2.2 Digital Images and Random Fields178

Page

7.2.3 Image Paths.....179
7.3 Sequential Edge Detection181
7.4 Sequential Edge Linking....................... ...185
7.5 EirorSegmentsandRemerging....... ...187
7.6 Sequential Edge Linking Simulation.................................193

7.6.1 Preliminaries........193
7.6.2 The Importance Sampling Estimator..................... 194
7.6.3 Termination ofthe Simulation..... ...197
7.6.4 ExamplesandDiscussions............................-................198

CHAPTER 8 - CONCLUSIONS............................. ..2G7

LIST OF REFERENCES........210

VITA .218

vii

LIST OF TABLES

Table

5.1 The distribution of computation estimates for the constraint length 5
code operating on the BSC with e = .01. L = 250,000
for the RPM and L = 1,000,000 for M C..... ..

5.2 The distribution of computation estimates for the constraint length 5
code operating on the BSC with e — .005. L = 250,000
for the RPM and L = 1,000,000 for M C.................

5.3 The distribution of computation estimates for the constraint length 14
code operating on the BSC with e = .01. L = 250,000
for the RPM and L = 1,000,000 for M C..................

5.4 The distribution of computation estimates for the constraint length 14
code operating on the BSC with e = .005. L = 500,000
for the RPM and L = 1,000,000 for M C...............

5.5 The distribution of computation estimates for the constraint length 21
code operating on the BSC with e = .005. L = 300,000
for the RPM and L = 1,000,000 for M C...............

5.6 The distribution of computation estimates for the constraint length 5
code operating on the BSC with e = .01. L = 300,000
for PM Model I and L = 1,000,000 for M C..............

5.7 e£ for the constraint length 5 code operating on the
BSC with e - .01............. ...

5.8 The distribution of computation estimates for the constraint length 5
code operating on the BSC with £= .01. L = 300,000
for PM Model 2 and PM Model 3

Page

111

112

113

114

115

123

124

125

viii

5.9 The distribution of computation estimates for the constraint length 5
code operating on the BSC with E = .005. L = 300,000
for the PM and L =1,000,000 for MC..............,..........126

5.10 The distribution of computation estimates for the constraint length 14
code operating on the BSC with e = .01. L = 300,000
for the PM and L = 1,000,000 for MC ______ _______ 127

5.11 The distribution of computation estimates for the constraint length 14
code operating on the BSC with e = .01. L = 250,000
for the MM and L =1,000,000 for MC..... ,...... ...130

5.12 The distribution of computation estimates for the constraint length 14
code operating on the BSC with e = .005. L = 250,000
for the MM and L = 1,000,000 for MC...................................131

5.13 The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with a = .6. L = 500,000
for the RPM and L = 1,000,000 for M C _____....................................___........134

5.14 The distribution of computation estimates for the constraint length 5
code operating on the AWGN channel with c = .55. L = 600,000
for the RPM and L =1,000,000 for M C

5.15 The distribution of computation estimates for the constraint length 5
code operating on the AWGN channel with a = .6. L = 600,000
for the PM and L = 1,000,000 for MC.............................138

5.16 The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with a = .6. L = 600,000
for the PM and L =1,000,000 for MC...139

5.17 The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with o = .6. L = 300,000
for the MM and L = 1,000,000 for MC.................. ..141

5.18 The distribution of computation estimates for the constraint length 5
code operating on the AWGN channel with o = .55. L = 300,000
for the MM and L = 1,000,000 for MC........,..,......,......................i..........i-.,.......142

Table Page

ix

5.19 The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with o = .55. L = 100,000
for the MM and L = 1,000,000 for MC....... 143

5.20 Comparison of the RPM, the PM and the MM for the constraint length 5
code operating on the BSC with £ = .005. L = 300,000
for all schemes. A= relative accuracy estimates...................................149

5.21 Comparison of the modified stack algorithm simulation (MSAS) and the
stack algorithm (SA) results for the constraint length 5 code operating
on the BSC with e = .005 using the reference path method and
L = 300,000.....................152

5.22 Comparison of the modified stack algorithm simulation (MSAS) and the
stack algorithm (SA) results for the constraint length 14 code operating
on the AWGN channel with a = .6. L = 500,000 and the reference
path method was used.....................152

6.1 A list of all the error bursts with hamming distances less than 10 for
code I166

6.2 A list of all the error bursts with hamming distances less than 10 for
code 2...........167

6.3 A list of all the error bursts with hamming distances less than 10 for
code 3...168

6.4 Bit error probability estimates for code I with e = .04, and
L = 1000 simulation runs per error events. W= information weight,
D= hamming distance, A= relative accuracy estimates, and reg= relative
efficiency gain estimates............170

6.5 Bit error probability estimates for code 2 with e = .04, and
L = 1000 simulation runs per error events. W= information weight,
D= hamming distance, A= relative accuracy estimates, and reg= relative
efficiency gain estimates.......171

Table Page

6.6 Bit error probability estimates for code 3 with e = .04, and
L = 1000 simulation runs per error events. W= information weight,
D= hamming distance, A= relative accuracy estimates, and reg= relative
efficiency gain estimates.........—172

6.7 Bit error probability estimates for code I using the Viterbi decoder
with e = .04, and L = 1000 simulation runs
per error events. W= information weight, D= hamming distance,
A= relative accuracy estimates... 173

6.8 The expected number of bit errors per correct decode estimates for code I,
code 2, and code 3 with e = .04, and L = 1000 simulation runs
per error events. A= relative accuracy estimates......----- ------------ ------------- 174

6.9 Theexpectednumberofbiterrorspercorrectdecode estimates forcode I,
code 2, and code 3 with e = .04, and L = 1000 simulation runs
per error events. A= relative accuracy estimates, SA denotes stack
algorithm, and VD denotes Viterbi Decoder........................... 174

7.1 The probability of error estimate for the binary image example........205

Table Page

xi

LIST OF FIGURES

Figure Page

3.1 An example of the stack algorithm search18

3.2 An illustration of the subsets Xj for a binary tree.......... 20

3.3 An illustration of the conclusions of Lemma 3.1...... ...24

3.4 An example of the sets Z i..........36

4.1 The channel model.............—42

4.2 Binary symmetric channel............................. 43

4.3 Additive white gaussian noise channel........44

4.4 An example of a binary tree code of rate 1/2...................... 45

4.5 A rate 1/2 and constraint length 3 convolutional encoder.....49

4.6 Trellis diagram for the encoder of Figure 4.5..... 50

4.7 State diagram for the encoder of Figure 4.5...........................51

4.8 An illustration of error events and the remerging phenomenon. The bold
line is the correct path and the dashed line is a remerged path.........53

4.9 The stack algorithm searching history in (a) Q> = 9, (b) Cq = 13,
and (b) Cq = 17.. 56

4.10 The stack algorithm searching history in 9fa. (a) Co = 19, (b) Co = 23,
and (b) C0 - 3 157

4.11 The stack algorithm Searching history in (a) Co = 43,
and (b) C0 = 45..............................58

4.12 The partitioning method simulation density for the AWGN channel
with a = .5, q- = .63, and q+ = .37......83

5.1 A rate 1/2 convolutional encoder with constraint length 597

5.2 A rate 1/2 convolutional encoder with constraint length 14 98

5.3 A rate 1/2 convolutional encoder with constraint length 2 1„99

5.4 Tree code for the rate 1/2 and constraint length 14 convolutional encoder 116

5.5 The relative efficiency gains (reg) for the PM estimates of
T(Cj > M ; N* = 9) as a function of the simulation crossover probability......... 119

5.6 The relative efficiency gains (reg) for the PM estimates of
fP(Cj > M ; N* = 11) as a function of the simulation crossover probability120

5.7 The relative efficiency gains (reg) for the PM estimates of
<P(Cj > M ; N* = 20) as a function of the simulation crossover probability121

5.8 The distribution of computation estimates for the constraint length 5
code operating on the BSC with e = .005........144

5.9 The distribution of computation estimates for the constraint length 14
code operating on the BSC with e = .005.........145

5.10 The distribution of computation estimates for the constraint length 5
code operating on the AWGN channel with a = .6 146

5.11 The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with a = .6................147

6.1 An illustration of a burst of length 5. The bold line is the correct path.......... 156

xii

Figure Page

xiii

6.2 The convolutional encoder for code 2 164

6.3 The convolutional encoder for code 3 165

7.1 The general edge detection problem.............. 178

7.2 An example of an image path.......180

7.3 (a) an edge in 6 x 6 noiseless image; (b) the corresponding tree
representation of the edge in Figure 7.3 (a).......... ... 184

7.4 An illustration of the remerging phenomenon: (a) a remerging image path
which terminates at the edge and (b) a remerging image path which eventually
diverges from the edge................. ...188

7.5 An illustration of the relationship between a node yin the tree and
its corresponding image path, (a) shows node y, and (b) shows its
corresponding image path................... ...189

7.6 An illustration of an error burst of length 3 assuming k=K+2 where
K is the order of SEL Markov model (K=2): (a) shows the error burst and
(b) shows its corresponding error segment on the digital image.......192

7.7 An example which shows the pixel locations visited by the SEL algorithm
when (a) the simulation density fy(.;.) is a non-stationary
density which decays to fy(.;.) as the search gets farther and farther
f r o m a n d (b) the simulation density fy(.;.) is stationary..........200

7.8 An illustration of an actual simulation of the SEL algorithm using a
stationary model for the binary image example.........203

7.9 An illustration of an actual simulation of the SEL algorithm using a
non-stationary model for the binary image example.................204

Figure Page

xiv

ABSTRACT

Ben Letaief, Khaled. Ph.D., Purdue University. May 1990. Importance Sampling
Simulation of the Stack Algorithm with Application to Sequential Decoding. Major
Professor: J. S. Sadowsky.

Importance sampling is a Monte Carlo variance reduction technique which in

many applications has resulted in a significant reduction in computational cost

required to obtain accurate Monte Carlo estimates. The basic idea is to generate the

random inputs using a biased simulation distribution. That is, one that differs from

the true underlying probability model. Simulation data is then weighted by an

appropriate likelihood ratio in order to obtain an unbiased estimate of the desired

parameter.

This thesis presents new importance sampling techniques for the simulation of

systems that employ the stack algorithm. The stack algorithm is primarily used in

digital communications to decode convolutional codes, but there are also other appli­

cations. For example, sequential edge linking is a method of finding edges in images

that employs the stack algorithm. In brief, the stack algorithm is an algorithm that

attempts to find the maximum metric path through a large decision tree. There are

two quantities that characterize its performance. First there is the probability of a

branching error. The second quantity is the distribution of computation. It turns out

that the number of tree nodes examined in order to make a specific branching decision

is a random variable. The distribution of computation is the distribution of this ran­

dom variable. The estimation of the distribution of computation, and parameters

derived from this distribution, is the main goal of this work.

We present two new importance sampling schemes (including some variations)

for estimating the distribution of computation of the stack algorithm. The first general

method is called the reference path method. This method biases noise inputs using the

weight distribution of the associated convolutional code. The second method is the

partitioning method. This method uses a stationary biasing of noise inputs that alters

the drift of the node metric process in an ensemble average sense. The biasing is

applied only up to a certain point in time; the point where the correct path node metric

minimum occurs. This method is inspired by both information theory and large devia­

tions theory.

This thesis also presents another two importance sampling techniques. The first

is called the error events simulation method. This scheme will be used to estimate the

error probabilities of stack algorithm decoders. The second method that we shall

present is a new importance sampling technique for simulating the sequential edge

linking algorithm. The main goal of this presentation will be the development of the

basic theory that is relevant to this simulation problem, and to discuss some of the key

issues that are related to the sequential edge linking simulation.

CHAPTER I

INTRODUCTION

It is often the case that the complexity of the problems associated with many of

todays communications systems discourages analytical solutions. Furthermore, even

though there is a vast body of knowledge about these systems. Nontheless, when it

comes down to evaluation of System performance, the present state of the art often

requires some idealistic assumptions. As a result, it has long been recognized that

Monte Carlo simulation is effectively the only practical way to evaluate the

performance of many of todays communications systems. A typical example is the

calculation of error probabilities for digital communications systems. If the parameters

of interest are events of rare probabilities, then simulating such events using a brute

force Monte Carlo approach might be intractable, if not impractical. The reason being

that one has to generate a very large number L of independent random samples in order

to obtain good estimates of the probability of these rare events. To appreciate the

magnitude of this problem, suppose that we wish to estimate an error probability Pe.

To evaluate Pe based on Monte Carlo simulation techniques, we estimate Pe using the

maximum likelihood estimator .

Pe = f E I e (X (0))
■ ■ 0=1

where IeQ denotes the indicator random variable of the error event aid

X ^ ,X ^ ,. . . ,X ^ are independent random samples which are identically distributed. If

2

Pe is small, then we would not expect to "hit" the error event very often during the L

simulations. This then would require that L must be very large to insure that Pe is

close to Pe with high probability. In fact, it is easy to show that for any e > 0

(Chebychev inequality)

2{|Pe - P e | >e) <
var[Pe]

Varge(XW)]
L e2

P e d - P e)
L e 2 ‘

For such an estimator to be meaningful, e must be chosen to be some fraction of Pe.

For example, we may choose e =

2<|Pe - P e | >e) <

<

P1
1 0 '

100
L

100
L

In this case, we will have

I - P e
Pe

I
’ Pe

(recall that 0 < Pe < I.) Consequently, the number of simulation runs L must be greater
A

than 100/Pe in order for Pe to have any significance. Therefore, for sufficiently small

values of Pe (requirements in the range of IO-6 to 10-9 are not unusual,) the

corresponding Monte Carlo estimates can be difficult, if not impossible, even for the

most powerful computers. For example, to estimate a probability on the order IO-7,

we would need IO9 = 230 independent simulation runs. If the system is complex,

computer run times may be prohibitive. Furthermore, the period of a typical random

number generator is anywhere from 215 to 232 [15]. In order for these random number

generators to approximate true "randomfiess," it is necessary that the total simulation

3

utilize only a fraction of this period. Thus MOnte Carlo estimation of probabilities

smaller than IO-6 is difficult because of the questionable quality of the computer

generated random numbers. Of course, the advantage of Monte Carlo simulation is

that it is often the only way to evaluate the performance of complex systems.

Consequently, it is highly desirable to develop simulation techniques which retain the

ability to simulate complex systems, yet require substantially fewer simulation runs to

estimate small probabilities.

Importance sampling (IS) is a modified Monte Carlo simulation technique which,

in comparison to ordinary Monte Carlo, may reduce by orders of magnitude the

number of simulation runs required to obtain a specified estimator accuracy [1-31].

This technique arises from the observations that the events of importance, namely

errors, typically occur very rarely by the underlying noise processes. The simulation

efficiency can be improved if errors can be made artificially to occur more often in

such a way that true error events probabilities can be estimated from the inflated ones.

The basic principle behind importance sampling is to simulate noisier conditions than

the actual operating conditions, so that the simulation of these events can be made

without needing a very large number of samples. This is done by simulating using a

distribution that generates the random inputs in the simulation which is different that

the true distribution. Simulating a high noise environment, of course, produces more

errors. In order to properly estimate the relative frequency of these error events for the

actual low noise operating conditions, the simulation outputs are weighted by the ratio

of the actual probability distribution to the simulation distribution. The end result is an

unbiased estimator with a substantially lower variance in comparison to the ordinary

Monte Carlo estimator using the same number of simulation runs, or what is usually

sought, the number of importance sampling simulation runs can be made much less

4

than the ordinary Monte Carlo ones for a given variance or accuracy.

Importance sampling seems to have first appeared at a conference in 1949 [1],

and it has found wide spread applications in many diverse fields. Recently, importance

sampling has become quite popular in digital communications [5-6], [10-21], [16],

[21], [23-24], [30], detection [12], [20], [31], Network simulation and queueing

systems [9], [15], [17], [20], [27]. There has been substantial success in applying this

technique to nonlinear and/or non-gaussian channels. In particular, optical and satellite

communication channels. Most of this work, however, was ad hoc and has mainly

been revolved around choosing various stretched and shifted versions of the true

distribution in order to achieve improvements in the importance sampling estimator

performance. Such methods, have been referred to as conventional importance

sampling (CIS) techniques in the communications literature [21], [24], [29]. Many of

these CIS methods are based on optimized variance scaling schemes operating on the

true distribution. It turns out that when CIS was first implemented, good performance

has been obtained (for simple channel models). However, when CIS was applied to

more realistic channel models and with coding, the computational efficiencies were not

appreciably reduced [29]. A more recent importance sampling technique which we

shall refer to as the mean translation biasing method, has been proposed in the

communication literature. This new method was first proposed by D. Lu and K. Yao

[21]1, and further refined by Sadowsky and Bucklew [26]. In addition, it was shown

that this technique is more powerful and more efficient than the CIS approach [21],

[26], In particular, under certain conditions, Sadowsky and Bucklew [26] showed that

the mean translation biasing method is the unique asymptotically optimal scheme.

I. In [21], this method was referred to as the improved importance sampling (HS) technique.

In this thesis, we consider the application of importance sampling to the

simulation of systems that employ the stack algorithm [44], [57]. The stack algorithm

or Z-J algorithm of Zigangirov and Jelinek is a sequential tree searching algorithm

whose goal is to find the maximum metric path through a decision tree with random

node metrics. Our main application is to the sequential decoding of a general class of

error control codes that are called convolutional codes [57]. Specifically, we consider

the simulation of stack algorithm sequential decoders decision processes.

Sequential decoding was introduced by Wozencraft [35] as the first efficient and

practical scheme for decoding convolutional codes. This scheme is independent of the

decoder memory, and hence arbitrary low error probabilities can be achieved provided

operating under cutoff rate [57]. Its main drawback is its inherent inability to deal

effectively with severe bursts of noise. Specifically, severe noisy frames may

occasionally take a large amounts of computation, causing information to be lost.

A key characteristic of the stack algorithm is that the number of computations per

correct decision is a random variable [38], [45], [57]. we denote this random variable

C. Thus in order to assess the performance of stack algorithm sequential decoders, the

probability distribution of C must be determined. A great deal of work has gone into

the statistical analysis of the distribution of C. The bulk of this work is the classical

information theoretic analysis of sequential decoding. This analysis indicates that the

distribution of C which we shall refer to as the distribution o f computation has a

Pareto tail, a function of the channel, but independent of the code constraint length

[41], [45], [54], [57]. The main drawback of this analysis is that it is based on random

coding arguments. Such arguments, by their very nature, are not tied directly to the

properties of specific codes. As a consequence, the classical analysis cannot predict

the distribution of computation for a specific convolutional code. It turns out that there

6

is abundant experimental evidence that shows that the distribution of computation has

indeed a Pareto tail for any code. However, it has been noticed and demonstrated that

the distribution of computation depends also on the distance property of the

convolutional code [57], [59]. Note that the classical analysis exhibits no such

dependence.

One could continue the above discussion of the statistical analysis of the

distribution of computation for sequential decoders, but the point should now be clear.

There are no analytical results expressing the distribution of computation explicitly in

terms of specific code parameters. Hence for performance evaluation of sequential

decoders, it is necessary to use computer simulations. It turns out that simulating

sequential decoders using a brute force Monte Carlo approach could prove to be

extremely difficult, if not impossible, especially for low noise conditions.

This thesis presents new efficient importance sampling techniques for estimating

the distribution of computation of stack algorithm decoders. The first method is called

the reference path method. The reference path method is based on the distance

structure of the code being simulated. The second method is the partitioning method.

This method is motivated by the asymptotics of large deviations theory [26] and an

information theoretic ensemble averaging argument. Finally the third method is called

the M-method. This technique is basically a variation of the partitioning method. We

note that in all of the above schemes, we do not consider branching errors probabilities.

In other words, we assume that the decoder ultimately chooses the correct transmitted

path after the search is terminated.

The error probability of sequential decoders is also known as a random coding

average only [57], [59]. That is, as in the case of the distribution of computation, it is

obtained in the form of averages over the ensemble of random convolutional codes.

7

Based on this random coding analysis, it is known that the error probability of

sequential decoders is a function of only the code constraint length, the transmission

channel, and the code rate [57]. It has been noticed, however, that this error

probability does depend on the distance structure of the convolutional code. But as in

the case of the distribution of computation there are no analytical results that express

this probability in terms of the code distance properties, nor in terms of specific code

parameters. Hence, in order to evaluate the error probabilities of sequential decoders,

it is necessary to use computer simulations. In this thesis, we shall present another

importance sampling technique which we will refer to as the error event simulation

method. The error event simulation method will be used to estimate bit error rates for

stack algorithm decoders.

The organization of this thesis is as follows. In Chapter 2, a general background

on importance sampling is presented. In particular, we shall derive the expression of

the unconstrained optimal importance sampling simulation distribution.

Chapter 3 presents some background on tree searching and the stack algorithm.

In addition, it will present a new theorem which we shall refer to as the fundamental

theorem. This theorem forms the structural foundation for the simulation of the stack

algorithm.

In Chapter 4, we shall present our new importance sampling simulation schemes

for estimating the distribution of computation.

Chapter 5 demonstrates the power and accuracy of the above simulation

techniques by presenting some simulation results for the rate 1/2 and constraint lengths

5, 14, and 21 convolutional codes operating on the binary symmetric channel and the

additive white gaussian noise channel.

Chapter 6 presents the error event simulation method and demonstrates its

potential by presenting some simulation results.

In Chapter 7, we shift our focus to a different application. In this chapter, we will

present a new importance sampling technique for simulating the Sequential Edge

Linking (SEL) algorithm. The SEL algorithm is a stack algorithm technique for

detecting edges in images. Our main objective in this chapter is to develop some of the

basic theory relevant to this application, and to discuss the key issues that are related to

the SEL simulation via importance sampling.

Finally, Chapter 7 concludes the thesis by commenting on the results of this work

and discussing possible future research topics.

8

9

CHAPTER 2

IMPORTANCE SAMPLING

2.1 Introduction

Importance sampling is a Monte Carlo simulation technique in which the

simulation data is generated using a simulation distribution which is different from the

true underlying distribution. The importance sampling estimator then weights the

simulation data by an appropriate likelihood ratio in order to form an unbiased estimate

of the desired parameter. This method is called importance sampling because the

simulation distributions which minimize the estimator variance also tend to increase

the relative frequency of the "important events."

The goal of importance sampling is to select a simulation density which tends to

minimize the number of simulation runs (and hence, less computations) to obtain a

specified accuracy. The unconstrained optimal simulation distribution is well known,

and in fact, under certain conditions this distribution yields to a perfect estimator. That

is, an estimator with a zero variance. However, the unconstrained optimal solution is

not practical because it assumes knowledge of precisely the parameter that we wish to

estimate. Thus the practical problem of importance sampling is to obtain the most

efficient simulation distribution from a suitably large class of candidate distributions

that are determined by implementation constraints.

10

In this chapter, we shall present a brief overview of the basic theory behind

importance sampling. In addition, we will also derive the expression of the

unconstrained optimal importance sampling distribution. This distribution will

indicate some of the key properties that good importance sampling distributions should

have.

2.2 General Theory Behind Importance Sampling

2.2.1 Importance Sampling

Let (Q,J,P) be a probability space, X be an Q-valued random element and g(.)

be a real valued function of X. We shall consider the problem of estimating

a = E[g(X)] (2.1)

= J g(co) P(dco)

Let P*(.) be a probability distribution such that P(.) is absolutely continuous with

respect to P*(.); that is, P(A) >0 implies P*(A)>0 for every A e % Importance

sampling involves choosing the proability distribution P*(.) and observing that a can

be written as

a = Jg(co) ~ r (®) P*(dco) (2.2)

where dP/dP* (.) is the radon-Nikodym derivative of P(.) with respect to P*(.). The

name importance sampling derives from the fact that one can choose P* to be large in

the regions that axe most important, namely where | g(co) | is large. We shall call P*

the importance sampling distribution.

A standard simulation formula for estimating an expected value is to use a sample

mean expression. In this case, the importance sampling estimator is obtained as a

11

"empirical evaluation" of the integral (2.2) instead of (2.1). For $ = 1,...,L, one

generates independent random samples X ^ , . . . , using the importance sampling

distribution P*(.) instead of the true distribution P(.). The importance sampling

estimator is

a = i j g (#) w (X ' ,>) (2.3)
L 0=1

where

w(co) = (co). (2.4)
dP

The likelihood ratio w(co) is called the importance sampling weight at CO. Note that if

P*(.) = P(.), then W(co) = I and the sample mean estimator (2.3) is reduced to the

ordinary Monte Carlo estimator.

2.2.2 Bias and Variance

Let var*[.J and E*[.] denote the variance and expectation operations for the

importance sampling distribution P*(.). Because the simulation data X ^ , . . . , X^L)

are independent random samples generated using P* (.), it follows from (2.3) and (2.4)

that

E*[a] = T- £ Jg (cO) -^-(co)P*(dco)I- j=i dP

= a.

Consequently, the importance sampling estimator (2.3) is unbiased.

Likewise, since the simulation data is independent and identically distributed

(i.i.d.), it follows that the variance of the importance sampling estimator a is

12

var* (a)

Consequently, we have

var (CO = Y [tI(P+) - a 2] (2.5)

where

dp
tj(P*(.)> = J S (° >) - jp r (c o) P*(dco). (2.6)

Note that the impact of the choice of the importance sampling distribution P*(.) is

completely represented by the functional T]Q. Consequently, our objective is to

minimize t|(.). Furthermore, notice that (2.6) clearly indicates that good choices of

P*(.) will tend to be large relative to P(.) in the region of "importance", namely where
A

I g(co) I is large, hence diminishing the variance of a for a fixed L, or equivalently,

reducing the number of simulation runs L for a given variance or accuracy.

The next theorem shows how to choose P*(.) in order to minimize (2.6). This

result is well known [7], but we shall include its proof for completeness.

Theorem 2.1: Assume E[| g(X) |]< °°.

dp
il(P*(.)) = J g(©) -^p-(co) P*(dco) > E[| g(X) |]2 (2.7)

and equality holds if and only if

(2.8)

13

We shall call Pq(.) the unconstrained optimal importance sampling distribution.

Proof: First observe that (2.7) follows directly if (2.8) is substituted into the left

hand side of (2.7). Next by the Jensen’s inequality

%

P*(dco)

> f Ig(CO)I (CO)P* (dco)
dP

= E [Ig (X)I f

and equality holds if and only if

I g(co) I - ^ r (co) = c
dP

a.s. P*(.),

where c is some constant.

□

a ^ ife

Observe that, by (2.6) and (2.7) it follows that var0 (a) < var (a) where var0(.)

denotes variance operation for the unconstrained optimal importance sampling

distribution Pq (.).

Corollary 2.1: If g(co) > 0, then the optimal importance sampling distribution is

Po(dco) = P(dco) (2.9)
OC

Furthermore, if PqO is used then Tj(PoO) = a 2, and hence by (2.5) the importance
* *estimator (2.3) is perfect; that is, var0 (a) = 0.

14

As we have mentioned earlier, the unconstrained optimal importance sampling

distribution Pq(.) is well known. Unfortunately, PqO) is not a practical solution as it

assumes knowledge of precisely the parameter which we wish to estimate. However,

Po(.) indicates certain features which good importance sampling distributions should

have. For example, the simulation relative frequency of the event {Co e dco}, which is

just Pq (dco), is directly proportional to the true relative frequency P(dco). The intuition

behind this is that the "important" differential events are those events for which P(dco)

is relatively large. These are precisely the most likely events to be observed under the

true distribution. Consequently, good importance sampling distribution should tend to

maximize the relative frequency of these important "differential" events. Such

distributions should be selected so that (2.6) is minimized. Hence, good importance

sampling distributions should inflate the probability mass assigned by P(.) where

I g(Co) I is large, and deflate it where |g(co)| is small. The choice of good importance

sampling distributions is the key issue in importance sampling. Further discussions of

this important subject will be considered later.

As a final remark in this chapter, we note that when g(co) = Ie (co); that is, g(.) is

the indicator function of an event E then a is simply the probability of that event.

Thus, if E is an error event, then by Corollary 2.1 note that Pq(.) produces errors with

probability I. Hence, when used to estimate error probabilities, good importance

sampling distributions should tend to produce a lot of errors.

15

CHAPTER 3

TREE SEARCHING AND THE

STACK ALGORITHM

3.1 Tree Searching

3.1.1 Introduction

Consider the problem of finding the maximum metric path through a large

decision tree with random node metrics. Because the computational complexity grows

exponentially with the tree depth, it is often not possible to determine the maximum

metric path in the tree using either an exhaustive search or an optimal dynamic

programming algorithm. A practical alternative is provided by a class of algorithms

called sequential tree searching algorithms. These algorithms have been developed

primarily in the coding theory literature with early contributions of Wozencraft, Fano,

Zigangirov and Jelinek. These algorithms were originally developed for decoding

convolutional codes based upon the inherent tree structure possessed by this class of

codes. We shall define a sequential tree searching algorithm as an algorithm which

computes the metric of paths by extending, by one branch only, a path which has been

already examined, and which bases the decision on which path to extend only on the

metrics of examined paths. The reader is referred to [33-61] for more background and

in depth discussions of sequential tree searching algorithms.

16

3.1.2 Tree Searching

We are interested in finding the maximum metric path through a tree with random

node metrics. In this context, a tree, is a directed graph consisting of nodes which are

connected by branches. Starting from the unique root node, a path is a sequence of

successively connected nodes. For each node there is a unique path which connects

that node to the root node. The depth of a node shall refer to the number Of branches

on the path connecting that node to the root node. A path may be identified by its first

node and the sequence of branches which connect the path nodes. The descendent

nodes of, say node y at depth j, are those nodes at depth j+1 which are connected to

node Y by a single branch. We shall consider trees for which each node has b branches

emanating from it. Hence, ln(b) is the exponential growth rate of the tree.

Each branch in the tree will have a random weight called the branch metric. For

each node, the path metric is the sum of branch metrics along the path which starts at

the root node and terminates at that node. The metric of the root node is zero. In

particular, there is a unique correct path, and on this correct path the sequence of path

metrics should tend on the average to increase. That is, the correct path metric process

should have a "positive drift." Conversely, as we follow any path disjoint from the

correct path the path metrics should tend to decrease. That is, the node metric process

on paths disjoint from the correct path should have a "negative drift." In this

application, we will assume that the average behavior o f the path metric is to increase

along the correct path and to decrease otherwise. Our goal is to identify the correct

path. Given the observation of the path metrics, the path most likely to be correct is

the one which terminates with the maximum path metric value. Thus, we shall

consider algorithms which attempt to find the maximum metric path.

17

3.2 The Stack Algorithm

3.2.1 Algorithm Description

There are many algorithms which fall under the heading of sequential tree

searching algorithms, most notably, the Fano algorithm [36] and the stack or Z-/

algorithm of Zigangirov and Jelinek [37], [44]. However, probably the most basic

algorithm in this class, and certainly the easiest to understand and describe is the stack

algorithm. In this algorithm, the stack is a list of previously examined nodes and their

associated node metrics. The stack is ordered by the node metric values, the node with

the largest metric is placed on top, and the others are listed in order of decreasing

metric. The top-of-stack node is the maximum metric node on the stack. rITie stack

algorithm consists of the following steps:

1. Initialize the stack with the root node.

2. Compute the node metrics for each direct descendent of the top-of-stack node.

3. Remove the top-of-stack node from the stack and replace it with its direct

descendents.

4. Reorder the stack according to node metric values.

5. Stop if the top-of-stack node in the stack is at the end of the tree. Otherwise

return to step 2 and continue.

An example of the stack algorithm search is illustrated in Figure 3.1. This figure

shows a binary tree and the path metrics up to depth 3. In addition, it shows the first

few steps of the search, indicating the path and their associated metrics after each new

pair of nodes have been examined and the stack reordered.

18

correct path

History of ordered stack

Search index Ordered stack

0 a
I b, c
2 e, c, d
3 c, f, g, d

Figure 3.1: An example of the stack algorithm search.

Because the correct path metric process has a positive drift, and since all incorrect

paths have a negative drift, the correct path will tend to "float" to the top of the stack.

However, because long paths are built up node by node, it is entirely possible that the

19

random metrics might become too noisy and as a consequence the algorithm can from

time to time mistakenly follow an incorrect path for some depth in the tree. When

followed far enough, these incorrect paths should eventually be halted by the resulting

decrease in metric. From this, it can be seen that the algorithm is forced to waste

computation time on the exploration of incorrect paths which are eventually

abandoned. This brings out a key characteristic of sequential tree searching

algorithms, namely the number of incorrectly hypothesized branching decisions per

correct decision is a random variable.

The correct node j, shall refer to the unique node on the correct path at depth j.

Next consider the j ’th incorrect subtree 9^, that is, the subtree of incorrect nodes on

paths diverging from the correct path precisely at node j. Xj shall denote the subset of

9(j which is actually hypothesized (that is, nodes which were on the stack at least once)

by the stack algorithm. Xj is called the j ’th incorrect subset. Xj is a random set, and

Cj .4l the number of nodes in Xj

is a random variable. As a consequence, it follows that

the expected number of
^ ^ - computations per correct node

and

Cj > M) for M >1

are obviously the relevant indicators of the algorithm’s computational requirement.

20

correct path

root node

Figure 3.2: An illustration of the subsets Xi for a binary tree.

21

A great deal of work has gone into the statistical analysis of the probability

distribution of Cj and its average value [38], [41], [45], [49] , [53], [61]. The bulk of

this work is the classical "information theoretic" analysis of sequential decoding. This

previous work assumes two strong conditions: I) the path metric processes have i.i.d.

increments; and 2) only a special "maximum likelihood - like" metric known as the

Fano metric has been considered. We should note that real codes actually violates

condition I). However, the information theoretic analysis avoids this problem by using

an ensemble of time varying convolutional codes and then proceeds with a

probabilistic "ensemble average" performance analysis. Under the above assumptions,

it has been demonstrated that the distribution of Cj has a Pareto tail [57]. That is,

2<Cj > M) ~ NTp where p is called the pareto exponent. In addition, it has been shown

that as some parameter (such as code rate or noise variance) is varied there exists a

critical operating point which we shall call the point of computational cutoff.

Operating below the cutoff point ensures E[Cj] < °°, while E[Cj] = °° above cutoff. We

refer the reader to [57, chapter 6] for further discussion of this work.

The main problem associated with the above work is that the analysis has been

developed in the context of "ensemble average" techniques, and thus cannot predict

E[Cj] or the distribution of Cj for specific cases. In a recent work, we have

investigated computational cutoff conditions which determine whether E[Cj] is finite

or infinite [61]. This analysis differs from the previous analysis in several aspects.

Out analysis was developed using large deviations theory1 and is more closely

associated with methods of sequential decision theory. We do not require the Fano

metric assumption and hence, our analysis is more readily applied to problems which

do not relate well to the coding problem. In place of i.i.d. branch metrics we have

I. Large deviations theory is a general probability theory o f exponential convergence of small
probabilities [26].

22

considered stationary branch metric processes which are governed by an underlying

Markov chain. The Markov chain state space may be infinite dimensional, hence, this

model provides a rich class of stationary branch metric process distributions. Of

course, the cost of this expanded generality is that we obtain a weaker result: we do not

obtain the Pareto tail result. Instead, two disjoint conditions have been derived: the

first implies E[Cj] = oo and the second implies that E[Cj] < <». These conditions, in

effect, provide an upper and a lower bound on the point of computational cutoff. It

turns out that these bounds are tight under the classical i.i.d. Fano metric assumption.

We should note here that the basic idea behind this analysis was based on the

following observations: I) the probability of searching an incorrect path in the tree

decreases exponentially with depth; and 2) the number of paths in the tree grows

exponentially with depth. It turns out that the point of computational cutoff

corresponds to the case when the rate of decrease of the probability of searching an

incorrect path in the tree is equal to the tree growth rate.

Now consider the stack algorithm, and suppose that the correct node j has been

hypothesized. Next consider a fixed incorrect node 8, which has depth j+n and is on an

incorrect path diverging from the correct path at depth j. 8 is a candidate node for Xy

Define

metric of metric of n
Sn = correct node - correct node = £ Z£ (3.1)

n + j j k=i

where Z£ is the k+j’th branch metric on the correct path. Likewise, considering a fixed

incorrect path in the j ’th incorrect subtree, define

23

metric of metric of n .
SJ1 = incorrect - correct = X Zjc (3.2)

node n + j nodej fc=i

where ZJc is the k+j’th branch metric on the incorrect path.

Define T to be the minimum metric value along the correct path metric after time

j:

r 4 mm 5c
n > 0 5n‘ (3.3)

We shall also define

NJ- min { n : SJv^ T }. (3.4)

Lemma 3.1: Consider a fixed incorrect path in the j ’th incorrect subtree and let

8, Sn, and be defined as above. Then

(i) 8 is always hypothesized when SJn > SJJ1 for all m = 1,2,...,n; and

(ii) 8 is never hypothesized if SJn < T for some m < n.

Proof: The proof of part (i) of Lemma 3.1 is trivial; the incorrect nodes will

always occupy a higher position on the stack than the correct nodes, at least until both

the correct and incorrect paths are searched to the point where the correct path metrics

are larger. Part (ii) is a standard result which has been proven by several authors (see

Lemma 6.2.1 in [57].)

□

We note that Lemma 3.1 provides the structural foundation for the analysis of the

partitioning method, an importance sampling scheme to be discussed in the next

chapter. The conclusions of Lemma 3.1 are illustrated in Figure 3.3.

24

incorrect path is
always searched up

to this point

node j

incorrect path is
never searched past

this point

Figure 3.3: An illustration of the conclusions of Lemma 3.1.

25

3.2.2 The Path Metric

Recall that one of the key elements in the stack algorithm, or any sequential tree

searching algorithm, is the concept of path or node metric. The path metric provides a

means of comparing all paths hypothesized and reflects in a sense the "closeness" of a

given path to the correct path. In order for the stack algorithm to proceed correctly, the

path metrics should exhibit certain desirable qualities. First, path metrics should tend

to increase along the correct path and decrease elsewhere. More specifically, the

correct path metric should have a slight positive drift and incorrect paths should have a

large negative drift. It turns out that these drifts can be adjusted using a bias term (a

constant substructed from all branch metrics.) Second, because the stack is ordered

according to metric values only, successive nodes on the stack may have different tree

depths. Thus, the stack algorithm compares nodes of different lengths in its decision

process. Algorithms of this type are called metric first algorithms [60]. It is therefore

essential that the path metrics should not be biased by path length. That is, the metric

should not favor longer paths over shorter ones and vice versa. Third, path metrics

should exhibit a recursive computational efficiency, namely the path metric of a newly

hypothesized node should be obtained from the metric of its parent node by adding a

correction value which depends only on the new node.

3.3 The Fano Algorithm and Variations of the Stack Algorithm

The stack algorithm is a simplification of a number of successively discovered

sequential tree searching algorithms, each of which was progressively simpler to

analyze and describe. Perhaps, one of the best features of the stack algorithm is that it

requires few metric computations, but this computational savings is offset to a large

extent by the computations involved in reordering the stack after every iteration. In an

26

attempt to alleviate this problem, few variations of the stack algorithm have been

developed in the literature. The first is the stack bucket algorithm which has been

introduced by Jelinek in 1969 [44]. In this algorithm, the stack is divided into smaller

stacks which are called buckets, with each bucket corresponding to an interval of

possible metric values. At each iteration, the paths are placed in the bucket appropriate

to their metrics. In contrast to the stack algorithm, in this algorithm no ordering of the

metrics in the bucket takes place. Furthermore, the path to be extended is taken from

the top of the highest non-empty bucket.

In 1975, Haccoun and Ferguson [55] have introduced the generalized stack

algorithm. In this algorithm, the paths are ordered and extended as in the stack

algorithm, but more than one path can be extended at the same time. The remerging

phenomenon (see Chapter 4) is also exploited in this algorithm. When two paths

remerge, the path with the lower metric is deleted from the stack, thereby eliminating

redundant paths in the stack.

The multiple stack algorithm is another variation of the stack algorithm

introduced by Chevilat and Costello in 1977 [56]. This algorithm eliminates the

problem of buffer overflow which is usually associated with the stack algorithm. The

manner in which this is done involves the introduction of additional smaller stacks to

which the generalized stack algorithm turns when the main stack fills up. The first of

these stacks is made large enough so that only very noisy cases force the use of

additional stacks. In contrast to the stack algorithm which advances slowly in these

noisy situations because it is forced to search many incorrect subtrees before extending

the correct path, the multiple stack algorithm penetrates quickly through the tree and

finds "reasonably good" paths. Thus, this algorithm trades away some performance, as

its search space becomes smaller, for a substantial improvement in speed.

27

We conclude this section by briefly describing the Fano algorithm, which is

generally considered to be the most practical sequential tree searching algorithm to

implement. The Fano algorithm was actually the first algorithm to be developed for

sequential tree searching. This algorithm was first proposed by Wozencraft [35], and

subsequently modified by Fano [36]. One of the best features of the Fano algorithm is

that it examines only one path at a time, thereby eliminating the storage of all but one

path and its metric. Basically, the Fano algorithm continues to search the most

probable (largest metric) path as long as its metric is growing. If the metric begins to

drop significantly, the algorithm backs up and extends other paths stemming from

previous nodes on the already searched path. This is accomplished by varying a

running threshold T which changes by multiples of some constant A. This threshold is

raised by A if the metric is growing on a forward search and lowered by A during

backward searches. The decision structure in this algorithm is done in such a way that

no node is ever searched forward twice with the same threshold.

The Fano algorithm has been the subject of extensive treatments in the coding

literature [43]. Its analysis, as well as, its performance is essentially the same as the

stack algorithm. In fact, Giest (1973) has shown that the Fano algorithm always

chooses the same path through the tree as the stack algorithm [53]. The only

difference is that in the Fano algorithm a path may be searched several times, while in

the stack algorithm it is searched only once. This disadvantage is usually offset by the

substantial reduction in storage requirement.

28

3.4 A Format for the Simulation of the Stack Algorithm

3.4.1 Terminology and Definitions

We begin this section by developing various definitions which are needed for the

discussions to follow. Let,

<x, P, y, 8 = tree nodes

Mg = node metric at node 8

Dg = { die direct descendent nodes of node 8 }

Sy = subtree emanating from node y (y and its descendents)

TOS node = the top-of- stack node

F = the terminal path (i.e. the final hypothesized path in the ttee)

Ey = the event { node Y is on F }

§y = c(Ig : 8 e Sy) where,

I§ 4= indicator random variable for node 8

_ J I if 8 is searched
I O if 8 is not searched

Now, for any event A, we shall let

Ia 4= indicator random variable for A

_ J I if event A occurs
Y o if event A does not occur

Next for our purposes the terms "reached", "searched", and "extended", will be defined

as follows:

(I) We will say that a node has been reached by the algorithm, if it becomes the TOS

node.

29

(2) We will say that a node has been searched by the algorithm if it is on the stack

but not necessarily extended, and

(3) Extending a node 5 will refer to the process of deleting 5 from the stack and

replacing it with its direct descendents.

Note that all nodes that are "reached" are subsequently extended.

In the sequel, we shall let Q denotes the underlying probability space and co be an

event in £2. A typical example of an event CO in the sample space Q. can be defined as

follows: Assuming that the branch metrics are independent, then CO can be defined to

be the collection of all the branch metric values associated with the tree. That is, the

event co specifies all the values of the branch metrics in the tree. It turns out that for

the proof of the main result of this chapter, namely Theorem 3.1, it is not necessary to

specify the underlying probability space. Consequently, in the sequel we shall assume

that Q is given.

3.4.2 The Fundamental Theorem

We are interested in estimating some key parameters which are associated with

the stack algorithm. A typical example is the estimation of the distribution of

computation:

Cj > M) for M > I (3.5)

where j is the correct node at depth j. In general, however, we shall consider the

following problem.

30

The Basic Problem: Given the event Ey, estimate

E t X I E y]

where X is a (^-measurable random variable.

In other words, given the event that node y is on the terminal path F, we are interested

in estimating expectations o f random variables that are functions o f only the algorithm

searching history in the subtree Sy. To motivate this problem and illustrate its

significance consider the following examples:

(i) Suppose that y is a given node on the correct path and let,

cti 4 direct descendent node of y which is also on the correct path; and

Pi 4 direct descendent node of y which lies on the terminal path F.

Next let E denotes the event { Pi * cti }, which is the basic error event, and Ec

its complement. Then

4 the indicator random variable for the event E

is Q-f-measurable and

E[X I Ey] = the probability of error following

the correct decision at node y.

(ii) Let y, cti, P i, and Ec be defined as above. Next let

X = Ie (3.6)

(3.7)

where

Sy 4 S jv
. ScDt-P1 ' ; ..

Then Cy is $y-measurable, and

E[Cy I Ey] = expected number of metric

computations per correct decision.

As pointed out earlier, E[Cy | Ey J is one of the relevant indicators of the

algorithm’s computational performance.

(iii) Let Cy be defined as above, and let M be some positive integer. Next let

A f I if Ct > M
X M (3.8)[0 if Cy < M v ■

Then X is £y-measurable and

E[X I Ey] = 2<Cy>M I Ey).

Thus, the above expectation will allow us to estimate the distribution of

computation for the stack algorithm.

(iv) Let Y be defined as above and let

Ly = IengthofbranGhingerrorsfollpwing

the correct decision at node y.

That is, Ly is the length of an error burst. Then Ly is ^y-measurable and

E[Ly I Ey] = the expected number of branching

errors per correct decision.

(v) LetLy be defined as above, and let 0 > 0. Next let

X 4
if Ly > d
if Ly <0 (3.9)

*v

Then X is (^—measurable and

E[X I Ey] = ^ L y > « I Ey).

Consequently, the error burst length distribution can be also written as an

'-expectation of a (^-measurable random variable '̂

These examples and others indicate that the problem of estimating most of the

key parameters associated with the stack algorithm can indeed be formulated as in the

basic problem.

Now recall that we are interested in estimating expectations of random variables

which are (^-measurable. Next observe that if one needs to generate the data

associated with the whole tree in order to estimate such expectations, it follows that the

simulation complexity is an exponential function of the depth of y. Thus the

simulation of such problems will be much simpler and more efficient if only the data

associated with nodes in Sy is generated.

SjnCe die stack is ordered according to metric values only, the stack algorithm

compares nodes of different tree depths in its decision process. Thus, at a given instant,

the stack may contain nodes in both Sy and Sy2. Consequently, the search performed

by the algorithm in Sy will be affected by the search performed by the algorithm in Sy

before and/or after node y has been reached, and therefore, to estimate expectations of

^,-measurable random variables knowledge of the entire history of the stack is

required. However^ if conditioned on the event Ey (i.e., that y is on the terminal path),

then this last statement is no longer true. In other wdids, given the event Ey, then the

search performed by the stack algorithm in Sy is not affected by the search outside Sy I

I In this context, Sy will denote the complement of Sy.

-,-I.:

33

before and/or after reaching node y.

The next theorem proves this statement and thus provides the structural

foundation for the simulation of the stack algorithm.

Supposethatnodegammaisontheterminalpathandlet

Observe that the Z;'s are disjoint and the Zi is simply the collection of all the

nodes searched in Sy.

We are now ready to state our main result (Theorem 3.1.) The basic idea in the

proof of this result is to show that given Ey, then for any node 8 e Sy, the event {

I8(W) = O or I } does not depend on the stack algorithm searching history outside Sy

for any w e Ey. Because this hold for any node S e Sy, it follows that given Ey, then

for any event E in (Jy, the event { IE(W) = Oor I } does not depend on the stack

algorithm searching history outside Sy for any w e Ey. The proof of Theorem 3.1 will

then follow from this last statement.

Theorem 3.1 (The Fundamental Theorem): Let X be any ^-measurable

random variable, and let Ey be defined as in Section 3.4.1. Then,

Fy = the terminal path in Sy given the entire history of the stack

4(Y,Pi,p2,fc, •••)• (3.10)

Next let Zq = { y } and for i > I define,

Zi 4 { S e Sy which are searched before

Pi is extended, and S £ Zj for j < i }

E[X I Ey] = Ef X I yis the root node]. (3.11)

Proof: Let Ey be defined as above and let us consider a fixed CO e Ey. Note that

in this case, the terminal path in Sy is Fy as specified by (3.10). Furthermore, notice

that since co is fixed, it follows that Fy is determined.

Now let 8 be a candidate node for Zj with j > I ; that is, 6 e Sy and 8 4 Zi for

i=0, • • • , j-1. Consequently, it follows that there exists some node a e Zi for some

i < j such that Cx has not been extended before (3j; and furthermore, there exists a path

(TJi, TJ2, * ’ * , TJn, 8)

which connects node a to 8. Note that if 8 e Da , then this path is just (a , 8).

Furthermore, observe that Tj1, Tj2 , * • * , Tin* ahd 8 are all candidates for Zj.

- Now ■

S e Zj if and onlyif Tjk are extended before Pj for all k=l,

It follows that for all j > I,

Se Zj if M11k >Mp. for k= I, • • • , n,

and

V1

8 e Zj only if Mrik > Mpj for k= I, • • • , n.

(3.12a)

(3.12b)

Note that (3.12b) establishes only necessity and not sufficiency as in (3.12a). The

reason is that whenever Mpj -M tlk for some I and some I ^ k < n , then whether

the algorithm extends Pj or Tik will simply depend on I) the way the direct descendent

nodes are inserted into the stack, 2) the rule by which the stack is ordered when metric

ties occur between the direct descendent nodes, and 3) the rule by which the stack is

reordered when metric ties occur between the direct descendent nodes and prior

examined nodes. Thus, the sets Z1 for all i > I are characterized by (3.12a), (3.12b),

and the tie handling rule. As a consequence, it follows that whether a node S e Sy has

been examined or not by the stack algorithm is determined once Ey is given.

Furthermore, this fact does not depend on the stack algorithm searching history in Sy.

In other words, when we condition on the event that node y is on the terminal path,

then for any node S in Sy, the events { Ig(O)) = I } and { Ig (co) = 0 } are (conditionally)

independent from the stack algorithm searching history in Sy. Consequently, for any

fixed co e Ey, we conclude that

T(Ig(O)) = I I E y) = Ig(O)) = I I Yis the root node) for any 8 e Sy. (3.13)

Since this is true for any node 8 in Sy, we conclude that given Ey , then the entire

search performed by the stack algorithm in Sy does not depend on the search

performed by the stack algorithm outside Sy before and/or after reaching node y. As a

result, it follows that given Ey, then for any event E in Qy, the event { Ig(O)) = Oor I)

does not depend on the stack algorithm searching history outside Sy for any 0) e Ey.

As a consequence, we get our desired result.

. □ ■

As a result of the above theorem, we may estimate E[X | Ey] using multiple

independent simulations, observing X (with y being the root node) for each simulation,

and then estimating E[X | y is the root node] using the sample mean estimator.

If Mti > Then 5 is in Z 5

candidate n od es for Z

node Y

terminal path

Figure 3.4: AnexampleofthesetsZi

37

We conclude this section by noting two important issues. First, for practical

reasons a termination strategy for the stack algorithm is always needed. For example,

one might delete any node from the stack if its metric is less than the TOS node metric

minus some threshold A. The second issue is the "remerging phenomenon" which

occurs in practical applications and ultimately results in branching errors [57]. This

phenomenon adds additional complexity to the simulation of the stack algorithm as it

corresponds to incorrect paths in the tree which behave exactly like the correct path

after the point of remerging. These issues will be addressed in full details in the next

chapters.

3.5 The Modified Stack Algorithm Simulation

Recall that we are interested in applying importance sampling in order to estimate

some key performance parameters that are associated with the stack algorithm. It turns

out that in order to estimate most of these parameters, only the search performed by the

stack algorithm in the j ’th incorrect subtree ^ is required. For example, to estimate

E[Cj] or T(Cj > M) for some M > I, it is apparent that only the search performed by the

stack algorithm in 9^ is needed. Keeping this in mind, we conclude that any

simulation scheme which modifies the stack algorithm so that only the incorrect nodes

in are extended will most likely be more efficient than any other simulation scheme

which uses the stack algorithm. In other words, using a modified stack algorithm

which operates exactly like the stack algorithm except that it

1) extends only the j'th incorrect subtree and

2) replaces every top-of-stack node which is on the correct path by only its direct

descendent which is on the correct path,

will lead to a substantial improvement in speed and thus increases the efficiency of the

importance sampling simulations. In the sequel, we will refer to such algorithm as the

modified stack algorithm simulation (MSAS).

Because the search performed by the stack algorithm in can be affected by the

search performed by the stack algorithm in other incorrect subtrees* Wj+i , iVj+2 ,

estimates obtained using the modified stack algorithm simulation might be incorrect.

We shall see in Chapter 5 that the difference between the results obtained using the

stack algorithm and the modified stack algorithm simulation is apparently insignificant.

In other word, it does appear that the modified stack algorithm simulation gives

estimates which are very close to the ones obtained when the stack algorithm is

actually used.

■s :':V. - /. Vc

39

CHAPTER 4

IMPORTANCE SAMPLING

APPLIED TO

SEQUENTIAL DECODING

4.1 Introduction

In 1955, Elias has introduced a general class of error control codes called

convolutional codes as an alternative to block codes [32}.. Shortly thereafter (1957),

Wozencraft [33] introduced an efficient scheme for decoding convolutional codes

which is called sequential decoding. Then in 1967, Viterbi [39] introduced an

algorithm for decoding convolutional codes which has since become known as the

Viterbi Algorithm [52]. This scheme, together with improved versions of sequential

decoding led to the application of convolutional codes to practical communication

channels such as satellite and deep-space communication channels [40], [48], [59].

In contrast to sequential decoding schemes, the Viterbi algorithm performs a full

maximum likelihood search. This algorithm is known to be optimum in the sense that

it minimizes the probability of error in decoding the entire transmitted sequence of

information bits [57], [59]. In addition, it is more "robust" with respect to the model

variations. The main difficulty with the Viterbi algorithm is that in practice arbitrary

small error probabilities are not achievable. This is due to the fact that only small

constraint lengths can be used because of the limitations on the decoder memory.

40

Another difficulty with the Viterbi algorithm is that its computational complexity

grows exponentially with codes constraint length. Sequential decoding, on the other

hand, is a very powerful technique for decoding convolutional codes which appears as

a natural method of reducing the amount of computations per decoded information

block by a trial-and-error rather than an exhaustive search. In contrast to the Viterbi

algorithm, sequential decoding is essentially independent of the encoder memory, and

hence arbitrary low error probabilities can be achieved provided operation under cutoff

rate. Its major drawback is its inherent inability to deal effectively with severe noisy

bursts which sometimes take large amounts of computations, and occasionally cause

information to be lost or erased.

As stated earlier, sequential decoding was first proposed and analyzed in 1957 by

Wozencraft [33] as a practical means of decoding convolutional codes. In 1963, Fano

[36] introduced a new version of sequential decoding, subsequently referred to as the

Fano algorithm. Various minor modifications of the Fano algorithm have been

analyzed by Yudkin (1964), Wozencraft and Jacobs (1965), and Gallager (1968). A

few years later, another version of sequential decoding, called the stack algorithm (also

called the Z-J algorithm), was independently discovered by Zigangirov [37] and

Jelinek [44]. In this Chapter, we will consider the stack algorithm exclusively We

should note, however, that most our results and conclusions can be applied to the other

sequential decoding schemes. The reader is referred to [33-61] and references therein

for more discussions about sequential decoding.

In this chapter, we apply importance sampling to the problem of simulating the

sequential decoders decision process, in particular, ones that use the stack algorithm.

We shall present three importance sampling techniques which We shall refer to as the

reference path method, the partitioning method, and the M-method. The reference path

v.

method and the M-method are ad hoc importance sampling techniques. However, we

should note that the reference path method is based on the distance properties of the

code being simulated. The partitioning method, On the other hand, is motivated by

large deviations theory and an information theoretic ensemble averaging argument

similar to the one used in [26]. It is noted that in all of the above techniques, we do not

consider decision error probabilities. In other words, we assume that the decoder

ultimately chooses the correct transmitted path. In Chapter 6, we shall present an other

importance sampling technique which we will refer to as the error event simulation

method. In contrast to the above importance sampling methods, the error event

simulation method deals specifically with the problem of simulating the error events

associated with stack algorithm sequential decoders. In particular, we shall Use this

method to estimate bit error rates for such decoders.

4.2 Channel Model and Convolutional Codes

Because of the inherent tree structure of convolutional codes, we shall start this

section by briefly describing tree codes. However, before doing so, we will first

describe our channel model.

4.2.1 Channel Model

Let us assume that we desire to communicate over a memoryless coding channel.

At each time instant k, a channel symbol input Ujc is transmitted over the channel to

produce the channel output symbol Vjc. Given Ujc transmitted, Vlc is a random quantity

with conditional density1 fk(Vjc I Ujc)- Since the channel is memoryless, the sequence of

output symbols V- (V j , V^,...,VnX is a sequence of independent random channel

output symbols with joint density

I. We will use the term "density" to mean probability density function or probability mass
function depending on whether the channel outputs are continuous or discrete.

f (v |u) FI fk(vk I uk)
k=l

(4.1)

for the transmission of n channel symbols. We should note that if fk(vk I Un does not

depend on k, then the channel is also stationary. We shall see later that it is

worthwhile to think of fk(vk I Ok) as a function of k.

' --V-V

. ■ ■■ ■" '• ■
■ ' ' - ' . ■' ’ ••

1 information Encoder U . . ^ Memoryless V----- --—̂
- v ; V . - " — ►

symbols
---- -—:—!—- - W1 channel

Figure 4.1: The channel model.

Throughout this chapter, we will consider convolutional codes which operates on

the binary symmetric channel (BSC) and the additive white gaussian noise (AWGN)

Channel. Assuming that the input alphabet and the output alphabet of the channel are

both equal to (-1,1). Then the BSC can be characterized as follows:

Uk
-Uk

with probability I - e
with probability e

e is called the crossover probability. The BSC is shown in Figure 4.2

(4.2)

43

In a similar fashion, we can define the AWGN channel to be a continuous channel

for which the channel output symbol density is given by

(Vk - uk); '
fk(vk|uk) = *—_ e 2°J (4.3)

V2na2

where ■ ■

■ No
. ~ T ' V;

and No is the one sided power spectral density of the noise which is assumed to be

white. The AWGN channel is represented in Figure 4.3 with (Nk) k= 1,2,.. being a

Gaussian random sequence with zero mean and variance a2.

Figure 4.3: Additiye white gaussian noise channel.

4.2.2 T ree Codes

For brevity, we shall restrict our attention to binary tree codes of rate R = 1/2.

Generalizations for rate b/n Codes is straightforward.

'Â binary tree code of Rate R = 1/2 is formed by assigning two channel input

symbols to each branch of a rooted binary tree. Depending on whether the information

bit symbol is 0 or I, the encoder follows the upper or lower branch and transmits

through the channel the code sequence associated with the branch which whs followed.

In this way a sequence of information bits traces a path through the tree and the code

sequence corresponding to that path is then transmitted. Thus in Figure 4.4, the

information bit sequence OlOO determines the path indicated by the bold line and

causes the code sequence OOl 11011 to be transmitted through the channel.

45

Figure 4.4: An example of a binary tree code of rate 1/2.

For a given sequence of information bits, let u = (ui,U2 ,...) denotes the sequence

of encoder output symbols. Given the sequence of channel output symbols

V= (V1 the job of the decoder is to determine the informatioh bit sequence

which was most likely to have been transmitted, or equivalently, its corresponding path

on the nee. Note that because the code rate is 1/2, it follows that the encoder and

channel output symbols Ujc and Vk are symbols which consist of 2 bits. That is,

Vk= (VkIvVjd:) and Uk = (ukl ,uj&X

For each branch on the tree, the decoder computes a branch metric
2 ■ -

Jn(Uk5 Vk)= 2 IH(UkijVki) which is an indicator of the likelihood that uk was indeed the

channelinput symbol which produced the channel output symbol Vk. The Fano metric

is a Maximum likelihood like metric which is commonly used in sequential decoding.

The Fano metric is defined as

Ih (U k i jVk i) = log[fki(vkiluki)
fv (Vki)

] - R

In the above equation, R is denotes the rate of the code, Fk i(Vki Iuki) is the channel

transition density, and Fv(Vki) the channel output symbol density. The metric of (4.4)

was first introduced by Fano on intuitive grounds [34], and hence the name Fano

metric In 1972, Massey [51] has given analytical justification for using the FanO

metric in sequential decoding. It is noted that the average behavior of the Fano metric

is to increase along the correct path and to decrease otherwise as long as R < Ro where

Ro is called the computational cutoff rate of the channel [57].

47

4.2.3 Convolutional Codes

Convolutional codes are tree codes that are generated by passing the information

bit sequence to be transmitted through a linear finite state shift register. At each

operation of the encoder, b information bits are shifted into the shift register which

contains a total of Kb bits. We shall refer to these b bits as information symbols.

Hence, the shift register contains K information symbols. The output of the encoder is

a block of n bits which we refer to as a code symbol. Consequently the code rate is

defined as

— bits per output symbol
n

(4.5)

For a convolutional encoder of rate b/n, the shift register consists of Kb stages

and n linear algebraic function generators, or simply, n modulo-2 adders which are

often implemented as exclusive-or gates. As in block codes, convolutional codes can

be described by giving their generator matrices [57]. An equivalent representation

which is commonly used consists of specifying a set of n vectors gi,g2 , • . . ,gn> one

for each of the n modulo-2 adders is used. Each vector has Kb dimensions. That is, for

each i=l,..n, gi - [gii(gi2 , . . . ,ga*] (with gy =Oor I, for i= I,...,n and j= I ,...,Kb.) A

I in the jth position of the vector gi indicates that the corresponding stage in the shift

register is connected to the modulo-2 adder and a O in a given position indicates that no

connection exists between that stage and the modulo-2 adder. For example, the

generators for the convolutional codes shown in Figure 4.5 are

[101]

and

Si

g2 = H U]

In octal form, these vectors are (5,7)

The complexity of the code is determined by its constraint length Kb which is the

total number of bits used to compute the output code symbol. In this context K-I is

simply the number of information bits stored in the encoder shift register, not counting

the most fecent information bit input. In a similar fashion, the encoder state is defined

to be the last K-I information symbols in the shift register with the last most recent bit

being the last bit in the state. Since there are (K-l)b bits which determine the state, the

total number of states is 2*K-1*b. For each state at time k there are 2b possible

predecessor states, one corresponding to each of the 2b information symbols that could

have been shifted out of the shift register during the state transition from time k to time

k+ I. The encoder output at time k is thus a function of the encoder states at time k

and k - I .

Convolutional codes are often described using three alternative methods. These

are the tree diagram, the trellis diagram, and the state diagram [57]. To demonstrate

the use and insight provided by such diagrams we consider the convolutional encoder

ofFigure4,5.

49

outputinformation

A rate 1/2 and constraint length 3 convolutional encoder.Figure 4.5

The tree code representation (or tree diagram) for the encoder of Figure 4.5 is

shown in Figure 4.4. Assuming that the encoder is in the all-zero state initially, the

diagram shows that, if the first input information bit is a I , the code symbol is 11 and,

if the first bit is a 0, the output sequence is 00. In other words, an input I specifies the

lower branch, and an input 0 specifies the upper one. For example, the information bit

sequence 0100 traces the thick path shown in Figure 4.4 and produces the code symbol

sequence which is indicated along the branches traversed: 00, 11,10,11.

Close observation of the tree in Figure 4.4 reveals that after the first three

branches, the structure repeats itself. This behavior is obvious from examination of the

50

encoder and is consistent with the fact that the constraint length is 3. When the third

information bit is shifted into the encoder, the first information bit (i.e., the bit in die

last stage of the shift register) is shifted out at the right and thereafter no longer affects

the code symbols. Thus we may say that the 2-bit code symbol is determined by the

information bit and the four possible states of the shift register: OO, Olv 10, and 11.

This leads to redrawing the tree diagram as shown in Figure 4.6. This new

representation, which is more compact, is called the trellis diagram. In drawing this

diagram, we use the convention that a dotted line denotes the output generated by the

information bit I and a solid line denotes the output generated by the information bit 0 .

Figure 4.6: Trellis diagram for the encoder of Figure 4.5.

51

Since the output is determined by the information bit and the encoder states and

because of the repetitive structure of the trellis diagram, an even more compact

representation than the trellis diagram has been suggested. This new representation is

called the state diagram. The state diagram is simply a graph of all possible states of

the encoder and the possible transition from one state to another. For example, the

state digram of the convolutional encoder shown in Figure 4.5 is illustrated in Figure

4.7. Again, in drawing this diagram, we use the convention that a dotted line denotes

the output generated by j the information b it. I and a solid line denotes the output

generated by the information bit 0 .

Figure 4.7: State diagram for the encoder of Figure 4.5.

I

4,3 Error Events and Remerging

Close pbservation of the trellis diagram reveals that it is possible for incorrect

paths in the tree to merge with the correct path. This is known as the -remerging

phenornendn" [57], These remerged paths correspond to incorrect paths in the tree

which behave exaCdy like the correct path after the point of remerging. That is, the

remerged paths are incorrect paths in the tree Which briefly exhibit a negative metric

drift, and then begin to exactly parallel the behavior of the correct path after the point

of remerging. On the trellis diagram however, a remerged path corresponds to a trellis

path which briefly diverges from the correct trellis path. The divergent path of the

incorrect path is called an error event. Specifically, if we let Uf = (ui,u£,..) denotes

the final path hypothesized by the sequential decoder, and uc = (ui,u |,..) denotes the

correct (that is, the transmitted) path, then decoding errors Occur when u diverges

from ue. More precisely, an error event is a partial sequence of u which begins at a

correct path node, ends at a correct path node, and has no correct path nodes in

between the correct beginning and ending nodes. The error event length is the humber

of branches in the error event. For example, Figure 4.8 shows that u f coincides with

the correct path Uc up to some depth m in the trellis, branches off at depth m, arid then

remerges with uc iat depth m + 3. fit this case, Uf contains an error event of length 3.

53

V--' . ■. .v r

Figure 4.8: An illustration of error events and the remerging phenomenon. The
bold line is the correct path and the dashed line is a remerged path.

4.4 The Reference Path Method

In this section, we propose a simulation model design which directly exploits the

distance information of convolutional codes. Our goal is to apply this scheme to

simulate (stack algorithm) sequential decoders for convolutional codes.

Let uc = (ui ,Ut5•••) be the encoder output sequence associated with the correct

path. That is, the transmitted tree path. Likewise, let u]m = (U11 ,U2 , . . . ,ufo) be the

encoder output sequence associated with any incorrect path of depth N that diverges

from the correct path at the root node. Next suppose that Un differs from u c in exactly

% positions. The number d^ is then said to be the Hamming distance [57] between u c

and ujsj. The reason for our interest in this distance is that the "important" branching

error events are precisely those with low to moderate distance d^. In other words, it is

more likely for the stack algorithm to search incorrect paths with low distances than

those with large distances even if the lengths of the paths are quite long. In fact, the

distance of a path is a direct indicator of its likelihood of being searched. The path

length for the most part is irrelevant, except to the extent that long paths are more

likely to have higher distances. To properly understand this consider the following

example.

Suppose that the channel is a binary symmetric channel with crossover

probability e. Furthermore, assume that the Fano metric is used. In this case, the path

metric of the incorrect path associated with Un is given by

f (v [u c)Sn Iogt-
fv(v)

-] - n N R (4.6)

where R is the rate of the code (b/n,) f(v | u9) is the conditional probability of receiving

V= (V ijV i,. . . , Vn) given that uc was transmitted and fv(v) is the probability of

receiving the sequence V, A straightforward computation indicates that

f (v |u c) edN (1_ (4.7)

and

f(v)
I

2nN (4.8)

Consequently, the path metric in (4.6) can then be written as

Sn = —a dN + b N (4.9)

55

and

b 4 log(2 (l-e))

Without loss of generality, we may assume that 0 < e < 1/2 (for if this is not the ease,

we can make it such by just interchanging the indices on vt and .v* in Figure 4.2.) In

this case, we have a > 0, and thus from (4.9) we conclude that it is more likely for the

stack algorithm to search incorrect paths with low distances than those with large

distances. In fact, close observation of (4.9) indicates that any incorrect path will be

rejected by the stack algorithm if its distance from the received sequence V is

sufficiently large.

To further illustrate the relationship between the distance properties of the code

and the search performed by the stack algorithm, consider Figures 4.9-4.11. These

figures show the actual search performed by the stack algorithm in the Oth incorrect

subtree (the all zero path is assumed to be the transmitted path.) In this case,

ordinary Monte Carlo was used to simulate the stack algorithm decoder for a rate 1/2

and constraint length 14 convolutional code operating on an AWGN channel with

variance equal to .36.

56

Figure 4.9: The stack algorithm searching history in ftyo- (a) Q = 9, (b) Q = 13,
and (c) Q = 17.

57

IQ

11\

Figure 4.10: The stack algorithm searching history in cnfo. (a) Co = 19, (b) Co = 23,
and (c) Co = 31.

58

01/ id

Figure 4.11: The stack algorithm searching history in (a) Co = 43, and (b)
. " .C0 = 45. . . . ■

Figures 4.9-4.11 indicate that the search performed by the stack algorithm in an

incorrect subtree is done in such away that I) if the algorithm searches an incorrect

path for some depth in the tree, then this path is most likely an incorrect path with a

low distance from the correct path, and 2) most of the incorrect paths extended by the

stack algorithm are short paths (i.e. with few branches) which emanates from the low

distance paths. Thus we can see that the "important" branching error events are

precisely those associated with incorrect paths with low to moderate distances from the

correct path. Consequently, a good importance sampling scheme must be designed in

such a way that the relative frequency of these events is increased. Close observation

of Figure 4.9-4.11 indicates that this can be done by "forcing" the stack algorithm to

follow a reference path with a low distance, and hence the name reference path

method.

Let iifsf = (uri,U2 ,.v.,uisj) be the encoder output sequence associated with a

reference path of depth N. Such a path is chosen in such a way that its hamming

distance from the correct path is minimized over all incorrect paths of depth N. These

reference paths can be found by an exhaustive search for various depths N. :

Now for a given reference path, our basic principle is to design an importance

Sampling channel model which will tend to "trick" the stack algorithm into decoding

the reference path instead of the correct path. Specifically, each simulation run will

produce a randomly generated channel output sequence V = (Vi,V2 ,—) to produce a

sequence of branching decisions which are biased toward the reference path. That is,

branching decisions which attempt to follow the reference path instead of the correct

transmitted path. This importance sampling channel model however must be chosen in

such a way that the stack algorithm will ultimately make a correct decision at depth

j+1 , even though the data is biased towards producing the reference path (note that we

do not need to do this when we are interested in decision errors.) This can be done, for

instance, by switching the importance sampling simulation channel model to the

original channel model at depth N. As an example, consider the binary symmetric

channel with crossover probability e. Then the following non-stationary model is an

example of a reference path simulation model. This IS simulation model is

characterized by a time varying crossover probability

*
ek

1 /2 if u£ ^ Uk
e if uk = Uk

for k < N. For k > N we use = e. It should be clear that with roughly probability 1/2

the reference path will be examined up to depth N.

4.5 The Partitioning Method Analysis

The reference path method is an ad hoc importance sampling Scheme which leads

to substantial efficiency in comparison to ordinary Monte Carlo. In this section, we

shall discuss another importance sampling scheme which is inspired by the

asymptotics of large deviations theory, and an "ensemble average" variance-Chemoff

bound argument (similar to that used in [26].)

We begin by developing few definitions which are needed for the discussion to

follow.

■ ;.

T ;

r

61

4.5.1 Preliminaries and Definitions

Consider the memoryless coding channel discussed previously in section 4.2.1.

Next let (Uk), k= 1 ,2 ,.. denote the encoder output sequence associated with the

correct path. Likewise, let (UIc), k= 1 ,2 ,.. denote the encoder output sequence

corresponding to an incorrect path. In the analysis of the partitioning method, (Uk)

and (Uk) are both assumed to be independent Mtd i.i.d. random processes with the

same univariate density q(.). Next let { Xk : k—1,2,...) be an i.i.d. sequence Of

random variables with univariate density g(x) such that

’ X k i(U L V k)

where Vk is the channel output symbol. Consequently,

: : g(xk) = fk(vk|uk)q(iik) (4.10)

Now consider the stack algorithm and suppose that the correct node j has been

hypothesized. Next let Zk and Zk denote the k+j’th branch metric on the correct path

and on any incorrect path which diverges from the correct path at node j. Likewise, let

SS - £ Z L (4.11)
k=l '

and

Sj1 = £ Zjc (4.12)
k=l

denote the correct and incorrect node metric processes respectively.

We shall also define

Ny i inf { n : SJ1 < y } (4.13)

and

N$ 4 inf { n : S£ < y } (4.14)

In the sequel we shall assume the following hypothesis:

Hypothesis H:

The branch metric processes are bounded. That is, there exists some A < «> such

that IZkI < A and [Zl\ <A.

Define

/ i o (X o , X lv ..). (4.15)

Then note that because Xk4(Uk,Vk), it follows that given the entire history of (Xk),

"sFi (Zk) and (Zk) are conditionally independent2. In other words, we have

J U M M I xk) — .Fc(dzk I Xk) FiCdzjc I xk) (4.16)

where Fc(.|.) and F,(,|) are respectively the conditional distributions of Zk and Zk

given xk. ;

It is now convenient to define the following exponential transformation:

F^fdzLlxk) = eaizL_Ai(ai|Xk) FiCdzHxk) (4.17)

where

U A V |x k)4 ln [E [e a,Zi]] (4.18)

- I n

Likewise, we can also define

2. This is true because Zk and Zk depend on only (Uk j Vk) and (UJc, Vk), respectively.

63

(4.19)

We should note, however, that since Xjc = (Wf11Vjt) and since Zf is only a function of

Uf and Vk, it follows that

Ac (. |.) and A1 (. | .) are respectively the conditional log-moment generating

are analytic and strictly convex on R. 5

4.5.2 The Partitioning Method Results

Consider the stack algorithm, and suppose that the correct node j' has been

hypothesized. Next consider a fixed incorrect node 8 , which has depth j+n and is on an

incorrect path diverging from the correct path at depth j. 5 is a candidate node for the

incorrect subset Xy The kernel of our analysis is to consider the probability that 8 is

hypothesized by the stack algorithm; that is, !P(8 e Aj). The analysis is then

simplified by comparing the correct path metric process with the metric process along

a single fixed incorrect path emanating from node j. Specifically, we compare an

incorrect path in theJ5Ih incorrect subtreeto? the correct path.

Let ff denotes the joint density of Uc = (Uf,Uf,...,Uf), Ui = (Ui1 ,U^, ...,Uj1), and

V =(V l 5V2 t^ V n). Then ■

Ac(Otc Ixk) =s GfZf (4.20)

functions associated with the correct path and incorrect path metric processes. It turns

out that Ac(. I.) and A1 (. | .) have very nice smoothness properties. In particular they

f(uc,u',v) = f(v|uc) q(uc) q(u') (4.21)

q(u) = I I q W (4.22)
k=l.

is the channel input symbols joint density.

It is now convenient to define

Pg = T{ 8 hypothesized) (4.23)

= i (8 e Xi)

= E [Is l

where

Is = Indicator random variable for node 8 .

The basic idea behind the partitioning method is to consider the problem of
' A

estimating Ps using importance sampling. Thus, if we let P5 be the importance

sampling estimator for P5 . Then

P5 = r 2 Is(UC,U\V(0)) w(UMJi5V ^) (4.24)
L 0=1

where

w (u c , u \ v) &-
I (U c 5Ui vV)

j f (IIc 5U15V)
(4.25)

a f(v|uc) q(uc) q(u*)
” f (VlU0)Q(Uc)Q(Ui)

f (v I u c)

f (v | u c)

" fk(vk|Uk)
* n (4.26)

k=l fk(Vfc I Ufc)

The likelihood function (4.25) is the importance sampling weight, and the joint density

f* is fa t importance sampling simulation joint density from which the random samples

V(1)5V(2)5...5V(L) are generated.

A straightforward computation indicates that the weight function specified by

(4.25) does indeed produce an unbiased estimator. That is,

E*[P8] =*. f l X I J-J h (Uc 5Ui 5V) W(Uc 5Ui 5V)
L 0=1 uc Ui

x f (v I u c) dv Cj(Ui) q (u c)

(4.27)

* r x Ea6(Uc5Ui5V)]
I.. ^ 9=1

= P6-

A similar computation indicates that the variance of P6 is given by

* rAvar [P6J Hn5-p8I (4.28)

whete

Tl6 = E’ [I6(Uc5Ui5V) (W(Uc5U15V))Hc fii (4.29)

Notice that the impact of the choice of the IS distribution is completely represented by

the functional T)5 . Consequently, our objective is to minimizeTig.

Now from part (ii) of Lemma 3.1, it is apparent that

2f8 hypothesized) = 5 (8 e J*j) < 2<Nj'>n). (4.30)

Recall that T is the correct path metric minimum defined by (3.3), and note that

Np is the point where the incorrect path metric process crosses T (see Figure 3.3.) In a

recent work [61], we have shown that asymptotically (under certain conditions,) the

probabilities !ZfN1r > n) decay exponentially. By letting r be the rate of decrease of

these probabilities and p be the exponential growth rate of the tree (which is ln(b)

when the tree has b branches per node,) then it is apparent that the critical point which

we have called the point of computational cutoff (recall section 3 .2 .1) corresponds to

the case when p - f. Thus simulating the stack algorithm using a simulation data

which is generated from an importance sampling distribution that makes r < p will

make die operating condition of the stack algorithm very noisy and hence, ensures a

high percentage of error events. This last observation together with the fact that one of

the key performance criterion of the stack algorithm, namely the average number of

Trietric computations per correct decision, is direcdy related to P5 , led us to consider

the problem of estimating P§. Indeed, if we let ^ n be the set of candidate nodes for

the incorrect subset Xj at depth j+n, then

Ci - = i x is
. n = lS e%

and consequently,

E[Cj] X £ p5.
n= I 8 € 9̂ n

(4.31)

67

Therefore, it follows that the problem of estimating E[Cj] is equivalent to the problem

of estimating Pg.

Now notice that (4.30) implies that

ns ^ ns

where

Tl6 = E*[I{N}.>n) (Uc5Ui5V) (W(UcvUi5V).)2]

1JL.,, fk(vk I Uk)

(432^

(4.33)

X X | - . |W , u \ v)
Uf U i 2 (fk(Vfc|Uk)

f fk(vk I Uk) dv q fu1) q (uc)

and 3s the indicator random variable: of Ihe; event (N|* >

Define N to be the depth at which F, the minimum value along; the correct path

(atfier depth j) occurs. Then we can partition the underlying probability space by the

events { N* =m }, m = 0,1,2,..., and hence,

ns = X n< 5; N* = m)
m=Q/

(434)

where

n(5 ;N* = m) 4 E*[!,N^njN-=H1J (UcjUijVXw(UcjUijV)) 2]

= X n«i (5; n * = m)
n'=n+l

and

(4.35)

(4.36)

nn'(8 ; N* = m) 4 e *[I{Nj.=„';N*=m) (Uc5UijV) (W(UcjUijV)) 2] (4.37)

The next theorem identifies the importance sampling density which minimizes

t)n'(8 ; N* = m) for all n '>m. The key complication in the proof of this theorem is

68

that Np is not a stopping time [63] because the correct path metric minimum is

determined by the entire history of the correct path metric process. In the proof of

Theorem 4.1, we avoid this difficulty by utilizing the following facts: I) for a fixed y,

Niy is a stopping time; and 2) given the entire history of the {Xk}, ^x , the correct and

incorrect branch metric processes are conditionally independent. These facts are

applied to an integration by parts which upper bounds SfNp = n '; N*= m | ^x), and

then we use Jensen’s inequality to minimize Tin' (8 ; N*■ — m) for all n' Sf tnl

We should note here that in the proof of Theorem 4.1, we do not consider the

problem of estimating the distribution of computation directly. Instead, we only

consider the problem of estimating the probability that a given node 8 at depth n on an

incorrect path that diverges from the correct path at depth j is hypothesized by the

stack algorithm. That is, we only consider the estimation of Pg. As a result, the
: .. V/..') , :V 'V: f > "■,

optimal importance sampling density that is given in Theorem 4.1 is not an qptimal

simulation density for estimating Gj- > M) for a given M. Furthermore, we? should

note that the partitioning method simulation density does not minimize rig (and hence

the variance of Pg.) Specifically, the results of Theorem 4.1 are based on the

minimization of Tjg which is an upper bound of rjg. Nontheless, when the partitioning

method simulation model was used to estimate the distribution of computation, the

resulting computational efficiency gains were very high in comparison to conventional

Monte Carlo.

Lemma 4.1: Let T, N*, and ^x be defined as above. Then for any a e < 0,

A: ' !P(r < y ; N* = m I Tx) < exp
m

-Otc(Y -X Zk)
k=l

(4.38)

69

Proof: Let Ie be the indicator of the event { T N* = m | ^x }. Then for any

a 0 £ 0 ,

Ie ^ exp [-a c(y - n]

- a c(y - £ Z D

The proof of Lemma 4.1 now follows because

2<r<Y ;N *= m I Tx) = E[Ie].

Lemma 4.2: Let T, N*, Np, A’(. |) and ^x be defined as above. Then for all

a 1 > 0 , '

a'
N 1J- = n ' ; N* = m | ^ x , T = y) ^ exp -Ot1(Y -A)+ X A 1(W1Ixk)

k=l
(4.39)

Proof: Let In',y(zi ,...,Zn) be the indicator of the event {Ny = n'j. We have

5<N}- = n, ;N *=m I ^x j T = Y) = 2<Nh = n ';N *= m I ^x)

- T{ N1r = n' I Tx)

= j - j l l ' M ’ ■ • • » 4 0 F i(dz\ IX1)...Fj(dzji' IXn')

= J-j ̂ (z i »• • •»40 exp(- a 1 2 z^ + XA 1̂ a1 1 xk))
k=l k=l

x F(ai^(dz\ IX1) • • • F[a (̂dz},' I x„ 0

rf . N*,
XAiXaiIxk) Ki Xzi

= ek=i p(a‘)[e l̂ 1 ; Ny = n' | Jk]

70

< exp -CXi (Y - A) + £ A i (Cxi Ix k)

The first line above exploits the conditional independence of Zk and Zk given The

last line above follows from the bounded branch metric assumption (Hypothesis H)

and from definition (4.13) which together imply that y - A < Sfy < y. The upper bound

in this equation holds only if a 1 > 0 .

□

Lemma 4.3: Let N*, A'(.), Np, and Tx be defined as above. Then there exists

some constant K < 0 such that for all n' > m,

N'r = n '; N* =m | Tx) < K exp(T Ai(CXiJxk) + OCc Y z£) (4.40)
k=l Ic=I

whenever

0 < a 1 < - a c (4.41)

Proof : From Lemma 4.1 and Lemma 4.2, we have

o
2{N fy= n ';N *= m) = J 2< = n '; N* = m | Tx ,T = y) d2<r<y; N* = m | ^x)

Z Ai(Wi Ixk) 0
< ea‘A Ck=1 J e " ^ d2(T <y; N* = m | Tx) dy

ZAiCaiIxk)
< ea‘A e*=1

0

I + a 1 J x r <y; N* =m I Tx)e~a^ dy

Z AiCai I xk)
< ea‘A ek=1

OcZzl o
!+ C i e « . J e - (aC + a^ d y

71

(by Lemma 4.1.) Consequently, we have

I aV W (EAttfixkH tf f z j)
5* Nf = n '; N* = m) < K1 ew + K2 e w

where

K1 4 ea'A

and

o
K2 4 ea A a ' J e"(aC +a^ d y

_ gtx‘A
a c + a*

whenever a c and a 1 satisfy

0 < a 1 < - a c

Next note that the fact that a c <0 which together with the fact that £ zk==r
k=l

imply that

m
a c I z t

k=l
> 0 .

Consequently

n' , n' . m
exp(X A1Ca1 Jxk)) < exp(^ A(al I Xlc) + a c 2 Zk)

k=l k=l k=l

and thus

N f = n '; N* = m |) <: K exp(£ AiCai Jxk) + a c £ zk)
k=l k=l

□
We should note that the proof of Lemma 4.3 indicates that (4.40) holds for any n'

and m. However, for the proof of the next theorem, we only need that n' > m.

where K= K1 +-K .̂

Theorem 4.1: Assume the conditions of Lemma 4.3 and let tv (5 ; N = m) be

defined as in (4.37). Then the importance sampling simulation density f£ that

minimizes tv(8 ; N* = m) for all n '> m is given by

■ ■ . n' . ' :■ ■
f-PM n fk (vk iuD (4.42)

where

fk(VklUk)
fk(VklUk)

Cjc exp

dk exp

.5 (acZck + Ai(OCi IXk))]

.5 Ai(Ctfxk)

if k < m
otherwise

(4.43)

and Ck and dk are constants which are chosen so that fk(.|.) is a probability density

function. The optimal values of ̂ j aSand a are chosen so that v

[{ E[exp(.5(dcZg + Ai(tti xk))) }m (E fexp(.5(Ai(^lxk))) }ri'-m] 2 (4.43)

is minimized.

Proof: Using successive conditioning along with (4.40), we get

73

n„'(5; N* = m) 4 E*[I{Ni. ^ ;^ sml (Uc5UijV) (W(UcjUijV)) 2 I

= E*[E[I{N|.^ ^=Hll (UMJi1V)Cw(Uc1Ui1V)) 2 I Tx]

^ = E*[N{- = n '; N* = m Kw(Uc1Ui1V)) 2 | ^x I

' . ITl . : Ilfi -' . . . '■ . \ ' ^ ■■■

< K E [exp(CXe X Zk + E A1Ca1 |xk) Kw(Uc1U11V)) 2]
k=l k=l

= K E [f j exp(a cZk + A1Ca1 1 xk)) J J Cxp(A1CaIxk))
k=l k=m+l

x (W(Uc1Ui1V)) 2 I.

Next by Jensen’s inequality,

E*[f l exp(a cZ£ + AiCai |xk)) f l exp(Ai(OcIxk) Xw(Uc1Ui1V)) 2]
k=l k=m+l

EE f t exp(.5(a cZk + AiCai |xk))) fl exp(.5(AiCaIxk) >)]
k=m+l

I i EE expC .SC OcZg + AiCai |xk))) }m { E|exp(.SC AiCafxk)))] '

with equality if and only if

■ m ■■■■' .- V-- n'
XlexpCacZ^-I-A1Ca1 Ixk)) n expCA1CaIXk)J(WCUc1U11V)) = C (4.44)
k=l k=m+l

almost surely with respect to the importance sampling density fj*M (c in the above

equation is simply a constant.) Theorem 4.1 now follows because

4 n' fk(vk I u k)
H(UMJ1jV) 4 J 1 >

k=l fk(V k|U k)

□

It turns out that for the practical implementation of the importance sampling

model (4.43), one should choose a = 0. In this case, the partitioning method

simulation model becomes

fk(VklUk)

fk(VklUk)
== « ck exp

I

.5 (occZk + A1Ca11 xk))J if k < m (4 .4 5)
otherwise

For this simulation model, the optimal values of a c and tx1 must be chosen so that

EL exp(.5(a cZ£ + AiCai |xk)))] (4.46)

is minimized.

Notice that letting a = 0 insures that the importance sampling weight will

converge to I. Furthermore, note that if we continue the simulation of the stack

algorithm using a * 0 (that is, with a noisy channel,) then the resulting simulations will

tend to produce a lot of errors and the incorrect subtrees may become excessively

large. This is the justification for choosing a = 0.

4.5.3 The Partitioning Method Applied to the BSC

In this section we will apply the results of the partitioning method to the special

case when the channel is a binary symmetric channel. As in the previous section, let

{Uk}, and {Uk}, k= 1,2,... denote the encoder output sequences associated with the

correct path and any incorrect path, respectively. Recall that (Uk) and (Uk) are both

assumed to be independent and i.i.d. random processes with the same univariate

density q(.). We shall assume that both the input alphabet and the output alphabet of

the chanriel are { -1 , 1 } with

q(u)
1/2
1/2

if u = I
if U = - I (4.47)

I

75

Now let Zk and Zjc be the correct and the incorrect branch metrics. Furthermore,

let Ac(.].) and A1C | .) be the conditional log-moment generating functions associated

with the correct and incorrect branch metric processes. In order to make our notation

for these parameters as simple as possible, we will assume in the reminder of this

chapter that there is only I use of the channel for each information symbol input to the

convolutional encoder. In other words, we shall assume that the rate of the code is I

bit per output symbol. Generalization of the above expressions for rate b/n codes is

Straightforward. Thus, assuming a Fano metric. Then

ln(2(l - e» - R if Uk = Vk
ln(2p) - R if U£ * Vk

(4.48)

and

ln(2(l - e» - R if Ujc = Vk
ln(2p) - R if Ujc * Vk

(4.49)

where E is the crossover probability, Vk is the channel output symbol, and R is the

code rate.

A straightforward computation indicates that

ln(2(l - e)) - R with probability I — e
ln(2p) - R with probability £ (4.50)

and

Zi
_ f ln(2(l - £)) - R

k “ I ln(2p) - R
with probability 1 /2

with probability 1 /2
(4.51)

Consequently, when conditioned on Xk^(U kjVjc), Zk becomes a deterministic

Ac(ac |xk) = a c z£ (4.52)

Close observation of (4.51) shows that Zk is independent of Xk iri this special

case. Consequently for any oc' < 0,

A1(U1 Ixk) = A1 (ot1) (4.53)

4 ln(E[ea‘7L])

quantity, and thus for any Otc e R

! (e ^ + e ^ h) - O t 1 R

where a and b are defined as

and

a 4 l n (2 (l - e))

b 4 -ln(2 e)

(4.54)

(4.55a)

(4.55b)

Now recall that the partitioning method model (with ot * 0) is given by

fk(vk m
A(Vk Iuk)

ck exp .5 (otcZ | + A1 (a 11 xk)) j

dk exp .5 A1(Ot) xk) j
if k < m
otherwise (4.56)

For a given Ot1 and oc, notice that exp(A1(a |x k)) = exp(A1(oc)). Consequently, the

simulation model (4.56) is automatically reduced to the simulation model (4.45).

Thus, the pardoning method simulation model in the BSC case is given by

fk(vkluk) (ck exp(.5acZ^ if k < m
fk(vk I uk) [I otherwise

(4.57)

Solving for ek, we get

77

ck = e_AC(5aC) (4.58)

where

Ac(OCc) 4 InCHI ea‘zS J)

= ln((l-e)ea‘a + ee-“Cb) - a cR (4.59)

and a and b are defined as in (4.55a) and (4.55b). Consequently, for the BSC case the

partitioning method simulation model is given by

fk(vk |Uk) = *
fk(vk |uk)

if k < m
otherwise

(4.60)

or equivalently, it is based on a non-stationary memoryless BSC model which is

characterized by a time varying crossover probability

e* = I e '5 < l Z k A(a/2)e if k; < m (4.61)
[e otherwise

where Ac (ac) is given in (4.59).

Finally note that from (4.46), it follows that the optimal value of cc° < 0 for the

partitioning method simulation model must be chosen

E[exp(.5(a cZk + Ai(a* | xk)))]

is minimized. Since Zk is independent of Xk in die BSC case, we have

A1(OC1 Ixk) m A1 (Ce1). Consequently,

E[exp(.5(a cZk + A^a11 xk)))] = e‘5A‘(ai) E[exp(.5acZ^]

and thus the optimal Otc should be chosen so that

E[exp(.5acZk] 4. eAC(“c/2)

is minimized.

4.5.4 The Partitioning Method Applied to the AWGN Channel

We shall now apply the partitioning method to the additive white gaussian noise

channel case. Without loss of generality, we shall assume that the all zero path is the

transmitted path. Consequently, Uk = - I . Since the channel is assumed to be an

AWGN channel, then the output channel symbols Vjc can be written as follows:

. Vk = - I + Nt

where Nfc is the white gaussian random process which is assumed to have zero mean

and variance O2 (recall section 4.2.1.) As in the previous section, we shall assume that

for any incorrect path the corresponding encoder output symbols {Uk} fork= 1 ,2 ,.. are

mutually independent, with univariate density q(.). Thus on any incorrect path, we

have Uk =J-I with probability 1/2.

Assuming a Fano metric, then the incorrect and the correct branch metrics are

given by .-P

Zk = -Vfc-0 2 [ln(cosh(—5-) + R] (4.62)

and

zL
- V jc - o 2 [ln(cosh(—̂ -) + R]

.. <r . ■
Vk -G 2I lnCcoshCvfcG2) + R]

if l 'l = I (4.63,
if Ui - -I

Consequently, we have

Ac (ac I Xk) = OCcZk (4.64)

where Zk is given by (4.62). Likewise, the incorrect branch metric conditional log-

moment generating function is given by

Ai(Ui Ixk) = In ^E[eaizi |xkl] (4.65)

= In ̂ + a(Vk) + b̂V|t̂ + ea (Vk + + b(Vk))]

or equivalently,

A1Ca11 xk) = ln(cosh(a‘vk)) - O1Ca(Vk) + b(vk» (4.65)

where

and

H(Vk) tAnCcoshC—y >

b(vk) 4 O2R.

(4.66a)

(4.66b)

Define

^(Uk,uk, vk) 4 a czk +A 1Ca11 xk). (4.67)

Then for any O < a 1 < - a c, the partitioning method importance sampling density is

given by

fk(vk |u k) ~ -
exp]:5 ¥(u|,, UfcVk)] fk(vk |ug)

fk(Vk |Uk)

if k < m
otherwise

(4.68)

Thus if we approximate ln(x) by |x| - ln(2), it follows that

'F (uk,u k,vk) = -OtcVk — (a c + a 1) ©2 [ln(cosh(—^-) + R] + ln (cosh (a 'vk))
Cr

80

I Vv I
-CXc Vk - (ac + a ') a2 [~ ~ - ln(2) + R] + a* jvk | - ln(2)

a c(vk + |vk I)+ (ac + a 1) a2(ln(2) - R) - ln(2).

Consequently,

W « i Y - I + i f V k S 0 11 AO*,
(U k . U k , v k) I -JacVl - 1 (a' - a ' I <r dm2) - R) ln(2) if Vk > O

and thus by substituting the above equation in (4.68), we can see that for all k <, m

fk(vk l4)
Cfk(vk |uD

Ce_txVk fk(vk |uD

if Vk < 0
if vk > O (4.70)

where C is some constant for a given ac and a 1. Since fk(. | .) is a probability density

function, it follows that

0 (Vk + D 2 (Vk + (I + CCcCT2)) 2

C r , . . , „ „ _ r (I + CXcO2)2 — I 1 - - ------

^ rc a 2

Consequently,

J e 202 dvk + exp[• • I J e
L ; 2 a 2 4

2a dvk = I.

C - (I - Q I - D +■ exp[] Q | i ± £ H L ,
o 2 c r <r

-i
(4.71)

where

Q W A j - ^ e - ^ d y
t y 2 n

It is now convenient to define the following density functions:

(y+l)2
1 - e 202

T (y) 4
vSa2

1 -Q l± l
(4.72)

81

and

(y + (I + a co 2))2
2 a 2

f * (y) 4 HtWGz

Q [1 + g C g 2]
(4.73)

r (y) is simply the conditional density of y given that y < 0 and y is a gaussian random

variable with mean -I and standard deviation o. Similarly, f*(y) is the conditional

density of y given that y > 0 and y is a gaussian random variable with mean

= - (I + OLcO z) and standard deviation a.

A close observation of (4.70)-(4.73) indicates that the importance sampling

density fk(vk | uk) in (4.70) can be rewritten as

fk(vk I ttk) — “
q f"(vk)

Q+^(Vk)

if vk < 0

if vk > 0
I (4.74)

where F(.) and f^O) are defined in (4.72) and (4.73). The constants q and q+ are

given by ■

q" = C (I - Q[—])
0

(4.75)

Enci

q + w ^ r (I + CLcO2)2 - I 1 r tl I + CtcO2 ,Cexp[------] Ql----------- 3 (4.76)

with C being the constant given by (4.71). Consequently, for a given N* =m, it

follows that Ute random observations needed in the partitioning method simulations for

all k S m can be realized by sampling from fk(vk I uk) as follows: with probability q“,

the random samples will be generated from the density f (.) and with probability

82

q+ = I - q , the random samples will be generated from the density f%). The optimal

q_ and q+ should be chosen so that (4.46) is minimized.

Figure 4.12 shows the simulation density f£(vk | uk) for a = .5, q~ = .63, and

q+ = .37 (assuming k < N*.)

83

■S 0.3

Figure 4.12: The partitioning method simulation density for the AWGN channel
with c = .5, q~ = .63, and q+ = .37.

84

4.6 The Partitioning Method in the Markov Case

In this section we shall extend the partitioning method analysis to the Markov

case. That is, instead of the i.i.d branch metric process assumption we consider

stationary branch metrics arising from a uniformly recurrent Markov-Additive (MA)

process. This model assumes that the branch metric process distributions are governed

by an underlying Markov chain. The uniform recurrence hypothesis is very strong, but

it allows us to present our results with a minimal amount of preliminaries. Ruffly

speaking, uniformly recurrent chains are those chains which behave like chains on a

finite state space in the sense that they admit a strong Perron-Frobenius theory. We

should note that the uniform recurrence model does include two important cases: the

i.i.d. case and the finite state space Markov chain case.

We shall begin this section by presenting the required background on MA

/processes.-''

4.6.1 Markov Additive Processes

Let {Xk ; k=0, l,..} be a Markov chain taking values in a measurable space (E, 1E).

We associate with (Xk) the following additive components

n
SS Z Z k and SJ1

k=l
XZlc
k=l

where (Zk) and (Zk) are real valued processes associated with (Xk) as follows: For

any x e E, A e £ and BcXB1 e S21

85

P ((X n f i »Zn+i) e A x B cX B 1 | X n= x , J n)

= P ((X „+1 Z ^ + i ,ZJh. ,) e A x B cX B i | X n= x)

^ P (X 5A x B cX B i) (4.77)

where iFn4:G(X<),...,Xn,Zi,...,Z}i,Zi,...,Zn) and « is the Borel field on R. In this

context, the superscripts c and i will denote "correct" and "incorrect" paths. The triple

((Xn5ScnrS1n)J is a two dimensional Markov additive (MA) process and

P : E x (IXBcXB1) —» [0,1] is its MA transition Kernel [64-66]. We shall further

restrict our Markov model so that when conditioned on = o(Xo5X1,...)5 (ZkJ and

(ZJcJ are conditionally independent. Specifically, we assume that

P(X^yxBcXBi) = Q(x,dy) FC(BC | x,y) Fi(B1 | x,y) (4.78)

where Q(x,dy) is the transition probability of the Markov chain {XjcJ F j (. | x,y) and

Fc (. I x,y) are respectively the conditional distributions of ZJc and Zk given

(Xk_i,Xk) = (x,y). An MA process of the form (4.78) is called a separable MA

Process.

In the sequel we will assume Hypothesis I below, in particular, condition (4.79) is

what we call the uniform recurrence condition.

Hypothesis I:

(I) The triple ((Xn5Scn5S1n)J is a separable MA process with transition probability of

the form (4.78), which is uniformly recurrent. That is, there exists a probability

measure von £ x !P25 and real numbers 0 < c < c < «>, such that for some integer

; no <00>

cv(A xF) < Pno (x ,A xr) < cv(AxF) (4.79)

86

for all x e E, A s % and T e S2.

(ii) The increments processes Z f -and Zf are bounded, that is, | ZcJc | < A and

I Z‘k I < A for some A < «>; and

(iii) V(ExT) > 0 for T= (0,oo)xR, (^o,0)xR, Rx(0,~) and Rx(-oo,0).

Note that part (iii) of hypothesis I insures that neither (Sf) nor (SJ1) are

monotone increasing or decreasing processes. For example, if v(Ex(—oo,0)xBc) = 0

then from (4.79) it is apparent that P (x, Ax(-°o,0)xBc) = Ofor all x e E and A e % and

hence Zf ^ 0 almost surely.

Now for each oce R2, define the following non-negative Kernel

P (a) : E x eE [0,oo] as

P(x,A;a) 4. exp(az) P(x,Axdz) (4.80)

for any x e E and A e £. { P (a) :a e R } is called the family of transformkernels

[64]. Part (ii) of hypothesis I implies that J expaz v(Exdz) < ©©, and this in turn implies

that P(a) is a bounded operator (P(a)f(x) = J f(y)P(x,dy;a)) on the Banach space of

bounded real valued Borel measurable functions. Hence, the spectral radius of P(a) is

well defined and finite for all a e R2. The following Lemmas are taken from [66]. In

particular, Lemma I is a generalized Perron Frobenius result originally due to T.

Harris which states that the spectral radius Of P(a) is actually obtained by a non­

negative eigenvalue.

87

Lemma 4.4: Assume hypothesis I. Then for each ote R2, P(Ot) has a maximal

simple real eigenvalue 0 < A,(a) < » , and an essentially unique Mght eigenfunction

r(x;a). Furthermore, the eigenfunction is uniformly positive and bounded; that is,

there exist constants Iq (a) and k2 (a) such that

0 < kj(a) < r(x;a) < k2 (oc) < 00 (4.81)

for all x e E.

Define

A(a) = ln(X(oc)) for ot e R2 (4.82)

Lemma 4.5: Assume hypothesis I. Then (i) A(Ot) is analytic and stnctly convex

on®2 , and (ii) A(a) T 00 as I j Ot 11 —> o®.

4.6.2 The Partitioning Method Results

Let Sn and SJ1 denote the correct and incorrect path metnc processes. We shall

assume that the tnple ((XnrSn5SJ1)] is a separable MA process with transition

probability of the form (4.78). Furthermore, we shall assume that hypothesis I is

satisfied.

Define

Ac(Otc) 4 A(otc,0) (4.83)

and.’

Ai(Oti) 4 A(OjCti). (4.84)

These are the log-eigenvalue functions for the one dimensional MA processes

f(Xn,Sn)} and ((XnjSn)] respectively. We shall assume the following drift condition:

88

A A i(O) < 0 and A a c(O) > 0. (4.85)

We note that from a large deviations theorem for uniformly recurrent MA processes

(see Theorem 5.1 in [64]), Scrt/n and S‘n/n converge to dAc(0)/dp and (IA1(O)MP at an

exponential rate. Consequently, the derivatives in (4.85) determine the drift of the

additive processes {S„] and [SJ1). Recall that the stack algorithm will not work if the

incorrect nodes tend to increase faster than the correct ones. Thus, (4.85) is intuitively

a minimal drift condition.

Now recall that in section 4.5.1, we assumed that (Xk) is art i.i.d. sequence. In

this section, however, we shall let {Xk: k=0,1,...} be a Markov chain taking values in a

measurable (E, 1E) with transition probability Q(x,dy) and recurrence measure |X. This

Markov chain state space may be infinite dimensional, hence, this model provides a

rich class of stationary branch metric process distribution.

As in the section 4.5.2 we consider the problem of estimating Pg (recall (4,23))

via importance sampling. We shall restrict our attention to importance sampling

simulation with uniformly recurrent Markov chains generated by a transition

probability Q*(x,dy). Furthermore, we shall assume that Q(x,dy) is absolutely

continuous with respect to Q*(x,dy) (This is required to get an unbiased importance

sampling estimator.) In this case, the importance sampling weight (4.26) becomes

w(u c,u ‘,v)
^ Q(xk-i,xk)
k=l Q (X k - I 5Xk)

The next theorem is basically an extension of Theorem 4,1 to the Markov case.

(4.86)

89

IPfeedreitl 4.2: Assume the conditions of Lemma 4.3 and Hypothesis I.
■ * _ ■ *

Furthermore, let Q(x,dy), Q (x,dy) be defined as above, and rjn' (8; N = m) be

defined as in (4.37). Then the importance sampling model that minimizes

Tjn' (8 ; N* = m) is characterized by

Q (*k-I’)
Q(xk_i,xk) I

rk exp £5 (GtcZk + A1 (fit11 xk))j
sk exp .̂5 AiCaIxk)]

if k < m
otherwise

(4.87)

where rk and sk are constants which are chosen so that Q*(x,dy) is a valid transition

probability. The optimal values of a c, a 1, and a are chosen so that

{ E[exp(.5(a cZk + AiCai Ixk))) Jm { E[exp(:5(AiCa| xk))) }n'-m] 2 (4.89)

is minimized.

Proof: First notice that under the assumptions of Theorem 4.2, Lemmas 4.1-4.3

are still valid. Consequently, the proof of Theorem 4.2 can be done by simply

following the same steps used in the proof of Theorem 4.1. The main difference

between the proofs of both of these theorems is the importance sampling weight. In

the proof of Theorem 4.1, the IS weight is given by (4.26). In the proof of Theorem

4.2, however, the IS weight is given by (4.86).

■>/ - V-V.; O -■ □

4.7 The M-methpd

In this section, we propose another importance sampling technique which we

shall refer So as the M-method. The M-method is an importance sampling simulation

model which is inspired by the partitioning method. Our goal is is to apply this

90

scheme to simulate (stack algorithm) sequential decoders.

We shall begin our discussion of the M-method by developing various definitions

which are needed for the discussions to follow.

Let X be a random variable with probability density function fx (x) and let g(.) be

a real valued function of X. As in Section 2.2.1, we shall consider the problem of

estimating

a = E[g(X)] (4.90)

= Jg(x)fx (x)dx

Now let M be a discrete random variable with a probability mass function pm.

That is,

2<M = m) = pm for m= 1,2,...,J. (4.91)

We shall assume that the random variables M and X are statistically independent so

that their joint density fxM(x>m) is given by

fXM(x,m) = fx(x)pm (4.92)

Next let fxM (x,m) be the importance sampling density which we shall use in

order to estimate a. Note that this density can be written as

f ^ (4.93)

with pm and fx[M(I -) being respectively the conditional and marginal importance

sampling densities.

The basic idea behind the M-method is to write a in (4.90) as

a = E*f g(X) w(X,M)] (4.94)

where

w(x,m) 4 (4.95)
fXM(x,m)

is the joint importance sampling weight and E*[.] is the expectation with respect to

f* (x,m). Notice here that the basic importance sampling principles developed in

Section 2.2.1 apply directly to the joint sampling of the pair (X,M). However, observe

that we can rewrite the joint weight (4.95) as

w(x,m) = wX|M(x|m) wM(m) (4.96)

where

wXIM(x Im) 4
fxOO

fx | M (x Im)
(4.97)

Wm (HI) = ^ T - (4.98)

The importance sampling estimator for a is given by

■ „ i L
a - - X g(Xw)W(Xw IMw)W(Mw) (4.99)

L 0=1

where the simulation data X ^ \ . . . ,X ^ and . . . ,X ^ are i.i.d. random samples

being respectively generated from fX|M(x|m) and p„. Notice here that the estimator

(4,99) is implemented as follows: For 0=1,2,...,L, the samples are generated from

the marginal density Pm- For each of these samples, the samples X(0) are then

generated from the conditional density fx [M (x I m).

Because the simulation data is i.i.d., it follows that the importance sampling
A ' '

estimator «, is unbiased if and only if it is unbiased for L = L Thus, it is sufficient to

show tW 1*1 g(X) wX|m(X IM) Wm(M)] = a. By considering (4.94)-(4.98), we have

92

E * [g (X) wX |m (X |M) w m (M)]

X E*[g(X) wX|M(X|m) I M=m] wm(M)pm
m=l

E Jg (X)
m=l

fx (x)

fx|M(x lm)
fX|M(x lm)dx Pm

*
Pm

Pm

= E Jg(X) fx(x)dxpm
m=l

J
« E

m=l

= a.

T his com p letes the proof.

A similar computation indicates that the variance of the estimator (4.99) is

var*[oc] = [T] - a 2] (4.100)
J-/

where

I) = E*[g2(X) w x | M(X |M) w m (M) J (4.101)

= E*[E*[g2(X)w ||M(X|m) I M==m] Wg1(M)]

= E E*[g2(X) w x |M (X |m) I M =TOlwg1M P m
m=l

= X E*Lg2(X) wX|M(X|m) I M=m] 4 " Pm
m=l Pm

I I 2
“* S l̂m * Pm

m=l Pm

where

Ilm ^ E*lg2(X)w|,M(X|m) I M=ml.

Now note that if we define

Sm % —
Pm

(4.102)

(4.103)

Then for a given m, am is simply a constant. However, notice that pm is independent

of the simulation densities fx|M(x l m) and pm- Thus, by writing rj as

Tl = Z am Pm- (4.104)
' m=1 :

Then for a given simulation densities fx|M(x lm) and Pm» one can select pm in such a

way that the variance of the estimator (4.99) is minimized. Thus, for a given

fx |m(x |m) and Pm, we may consider the following minimization problem:

: .V. - ̂ " '' " J " '' ' ̂ ■ ' ? "
Minimize TJ = £ am Pm (4.105)

subject to

T pm = I and Pm — 0 for m = 1,2,...,J.
m=l

(4.106)

A straightforward computation (using Lagrange multipliers) indicates that the solution

to the above (constrained) minimization problem is given by

L *
i=l Pi

- I *
Pm (4.107)

In this cm&, T is given by

T W* Pm
Z —

m=l 1Im

J TJ;z 4
i=i Pi

-2
(4.108)

where Tjm is defined in (4.102).

As a final remark in this section, we notice that in the special case where

Pm =Pm, it follows that wm(ih) = I, and hence the importance sampling estimator

(4.99) reduces to

a = — X g(x((,)) w(x(0) I M(0)). (4.109)
L 0=1 ■'

The variance for the above estimator is still given by (4.100). However, in this case t|

is given by

Tl = £ E*[g2(X) W^iM(XIm) I M=m] pm. (4.110)

CHAPTERS

SEQUENTIAL DECODERS SIMULATION

USING-

IMPORTANCE SAMPLING

5.1 Introduction

In this chapter, we shall discuss and demonstrate the potential of the importance

sampling techniques which we have developed in the previous chapter. Our main

objective is to verify and demonstrate the power and accuracy of these importance

sampling schemes. Throughout this chapter, we will consider convolutional codes

with rate 1/2 and constraint lengths 5,14 and 21. These codes are sufficiently complex

that their simulations via ordinary Monte Carlo is quite difficult, if not impossible, for

low noise conditions. The convolutional encoders that generate these codes are shown

in Figures 5.1-5.3. Because the communications channels on which the convolutional

codes are going to operate are assumed to be discrete memoryless binary input-output

ehannels, it follows that we can arbitrarily set the correct path to be the all-zero path.

Let j denotes d>e node on the correct path at depth j and let

Cj ?= die number of nodes in Xj

where Xi is the j ’th incorrect subset (recall Section 3.2.1.) Recall that Cj is simply the

number of tree nodes examined by the stack algorithm in order to make a correct

branching decision at depth j. Furthermore, recall that Cj is a random variable and that

96

its distribution is one of the key quantities that characterize the performance of the

stack algorithm. In this chapter, our main goal is to estimate the distribution of

computation. That is, the distribution of Cj. It is noted that the techniques which we

shall discuss here can be used to estimate other key parameters such as the average

number of metric computations per correct decision. That is, E[Cj].

The organization of this chapter is as follows. In Section 5.2. we shall briefly

review the importance sampling background for coded communications systems.

Specifically, we will present the required importance sampling background that is

needed to estimate the distribution of computation. This presentation also includes a

discussion of some of the issues which are relevant to the estimation of the distribution

of computation. The presentation of our simulation results will be considered next.

For simplicity and in order to gain valuable insight about our importance sampling

techniques, we will first consider the binary symmetric channel (BSC) case

exclusively. Once this case is fully presented, we will then consider the additive white

gaussian noise (AWGN) channel case. As we have mentioned previously, we are not

interested in decision errors (we shall consider that in Chapter 7.) Specifically, all of

our estimates throughout this chapter Will be conditioned on the event Ej where Ej is

the event that correct decisions at both depth j and j+1 have been made once the search

is terminated. For notational simplicity, we shall drop the conditioning on Ej in our

notation. Hence, for a given M > I, we will write fKCi > M) instead of T(Cj > M |E j).

We should finally mention that all of the simulation results that we shall present in this

chapter were obtained using the modified stack algorithm simulation (MSAS.) The

only exception is at the end of Section 5.3.3 where we compare the performance of the

MSAS with the stack algorithm.

97

outputinformation

g J= 35 (octal)

g2= 23 (octal)

states = 16

Figure 5.1: A rate 1/2 convolutional encoder with constraint length 5.

98

g. = 21675 (octal)

g 2 = 27123 (octal)

states = 8192

Figure 5.2: A rate 1/2 Convolutional encoder with constraint length 14.

information

g =6567413 (octal)

g = 5322305 (octal)

states = 1048576

A rate 1/2 Conyoltitional encoder with constraint length 21.Figure 5.3

100

5.2 Importance Sampling

Consider the memoryless coding channel of Section 4.2. Recall that foragiven

sequence of channel input symbols uc=.(uf ,u§,...,u£), the sequence of output symbols

V= (Vi,V2,..„Vn) consist of independent random samples with joint density

f(v|uc) = F I fk(Vk IuI) (5.1)
k=l

where fk(vk | uk) is the channel transition density function.

Now for any M > I, let

Pm 4 ^ Cj > M)

and

ImC)' = the indicator of the event { Cj M }.

Then the important sampling estimator of Pm - E[Im (•)] is

Pm = -rX lM (V (<,))w (V ^ |uc) (5.2)

where

w(v I uc) f(v|uc)
f* (v I uc)

(5.3)

_ JL fk(VklUk)

iLi f k (v k | u k)

and V(1\ . . . ,V ^ are independent random samples from the importance sampling

distribution f*(.| .). The likelihood ratio w(.|.) is the importance sampling weight.

Again note that if fk(v |uc) = fk(v |uc) then w(v|uc) = l and the sample mean

estimator (5.2) is reduced to the ordinary Monte Carlo relative frequency estimator.

Let E [.] and var [.] denote the expectation and variance operations for the

simulation density. Then because the simulation data Vw , . , . , are independent

random samples from the simulation density f* (v |uc), it follows that

E*[PM I = E*[Im(Vw) w(Vw |uc)J

= JJ Im (v) w (v I uc) f* (v I uc) dv

- ' / J 1M(V) C tv I Uc Id v

; ̂ = Pm* ' .* : . ; ’

Consequently, the importance sampling estimator (5.2) is unbiased.

A similar computation indicates that the variance of Pm is

var*[Pm] = var* [Im(V) w(V|uc)]

L JJ Im(v)
f(v I uc)
? (v |uc)

f (v I uc) dv - (Pm)2 (5.4)

Expression (5.4) indicates that a good choice of the simulation density f*(v|uc)

will tend to be large relative to f(v |uc). This will tend to minimize (5.4), and hence,

diminish the estimator’s variance for a fixed L, or equivalently, reduce the number of

simulation runs L for a given variance or accuracy.

On a first exposure, it may seem reasonable to deduce that the best importance

sampling models will be stationary and memoryless, especially if the true channel

model is stationary and memoryless. However, our experience indicates that this is not

the case. To properly understand this, first note that a good importance sampling

simulation model tend to increase the relative frequency of the "important" events.

102

Thus, it should "bias" or force the stack algorithm to search nodes in the j'th incorrect

subtree iA/j. This suggests that we should begin our importance sampling simulations

with a very noisy operating condition to ensure a high percentage of error events.

However, if we continue the simulation runs with a noisy channel, then these

simulations will tend to produce a lot of errors in other incorrect subtrees and the

desired incorrect subset may become excessively large. Our desire is to emphasize

only the "important events," that is, those error events which tend to hypothesize paths

in the j'th incorrect subtree Thus, it is clear that the simulation channel model

should start out with a high noise operating condition in order to initiate the error

events of interest, and then in some fashion be programmed to become less noisy as

time progresses.

Now consider the importance sampling estimator (5.2) and let

V*(V00Iuc) 4 — I (W(VW luc)2 IM(V(0>)
L [o=i

because the simulation data are independent, it follows that

-p (X (w(VW | uc)2 im(v W)) is an unbiased
L ,=1
E*[(w(Vw I uc) Im(VW))2] and hence,

V*(VW|uc)
; v M = — T ——

estimator for

(5.6)

jj, A
is a good empirical estimate of var [Pm].

The nominal variance; that is, the variance for the ordinary Monte Carlo

estimator can be also estimated using good estimates of Pm . Noting that Im (VW) is a

0-1 Bernoulli random variable, it follows that the appropriate estimator for

var(Im(VW) is given by

103

V(Vw Iuc) = Pm (I - P m).

Consequently, the estimator for the nominal variance is

v, V(Vw Iuc)

(5.7)

(5.8)

Now given expression (5.6), we can then estimate the accuracy that is, the

estimator standard deviation as a percentage of Pm- The estimates for the accuracy can

be computed using both Pm and the sample variance estimator (5.6) as follows:

Accuracy estimate \ (5.9)

It is now convenient to let Lmc and Lis denote the numbers of simulation runs

required to estimate Pm to a specified accuracy, respectively for ordinary Mpnte Carlo

and with importance sampling. Then the relative efficiency gain (reg) can be defined

as:

■ A Lmc
r e g = -——. (5.10)

The relative efficiency gains can be estimated using the sample variance estimates

(5.6) and (5.8) as follows. Suppose that an accuracy is specified by a variance v.
* *

Then, for Ljs simulations the importance sampling variance is VM/LiS. Hence, to

obtain a given variance v, the required number of importance sampling simulation runs
/v * •

is Lis = V m / v . Likewise, the number of ordinary Monte Carlo simulation runs which

are required to obtain a given variance v is Lmc = VM/v. Consequently, from (5.10)

we conclude that

reg estimate
Vm

(5.11)

104

We should mention that the relative efficiency gains can sometimes be misleading

because they do not take into account a number of factors. For example, recall that

efficient importance sampling schemes should cause errors to occur more often.

Consequently, it follows that the same number of simulation runs will require more

metric computations with importance sampling than with ordinary Monte Carlo. Thus,

a comparison based on required number of simulations runs will be biased toward

importance sampling. As a consequence, it is sometimes appropriate to take as a basic

figure of merit the importance sampling efficiency (fTiisy)

Gmc

Cis

Lmc E [T]
Lis E* [T*]

(5.12)

(5.13)

where, E[T] and E* [T*] are respectively the average number of metric computations

for ordinary Monte Carlo and with importance sampling. Likewise, Cmc arid Cis
V . ' ■ ■ ' .■

denote the expected number of metric computations required to estimate Pm to a

specified accuracy with ordinary Monte Carlo and importance sampling respectively.

By letting be the total number of nodes examined in the 0'th simulation, it

follows that a good estimate for E[T] is

i - XT<0) W(VW)|uc).
L 1=1

(5.14)

Likewise, for the importance sampling simulation model, the estimate of E [T] is

easily computed as

L 0=1
(5.15)

Observe that an identical computation to that given in the proof of the unbiasedness of

105

■ a •

Pm proves that T is an unbiased estimator of E[T].

Finally by recalling (5.12) we conclude that the appropriate estimator for the

importance sampling efficiency as defined in (5.13) is

Tlis
V m T
/V * ' . •

V m T

We conclude this section by discussing the termination of the simulation issue.

Recall that for practical implementation of the stack algorithm, a termination strategy

is always needed. To properly understand our termination strategy, recall that because

of the randomness of the node metrics in the tree, it is entirely possible that the stack

algorithm can mistakenly follow an incorrect path for some depth in the tree.

However, because of the average behavior of the node metrics, incorrect paths will

eventually become inactive as they get longer and longer. Consequently, discarding

any node whose metric is very small compared to the TOS node metric would probably

have a negligible effect on the stack algorithm performance. Understanding this is the

key to our termination strategy. To state this strategy, few definitions are needed.

Assume that node j is the root node and suppose that a given simulation starts at

t = 0. Nextlet

Mtos = TOS node metric.

Furthermore, for any S e Dj (recall that Dj is the collection of all the direct descendent

nodes of node j) let

Ms(t) 4 max { M11 : Ti € Sg }

where S1 is the collection of all nodes in the stack at time t. Finally for a given A > 0,

we will say that the subtree S§ is inactive if

106

Ms(t) < Mxos (0 - A.

Now recall that we are not interested in decision errors. Specifically, all of our

estimates will be conditioned on the event Ej. That is, on the event that correct

decisions at both depth j and j+1. Keeping that in mind,, we have adopted the

following stopping rule:

The DELTA-Stopping Rule (For the H'th simulation):

Initialize: Start the search at node j.

Simulate until only one subtree is active, call it Sp1.

IF Pi is a correct node THEN

IF Cj > M THEN

; Im (V (0) I Uc) = I.

■ Stop.

ELSE

Im (V w Iu c) = O.

Stop.

ENDIF

. ■ ELSE

I m (V w Iu c) = O.

Stop.

END IF

107

5.3 Simulation Results

We are now ready to present our importance sampling simulation results for

estimating the distribution of computation. That is, T(Cj >M) for M> I. As we

mentioned earlier, we will consider rate 1/2 convolutional codes with constraint

lengths 5, 14 and 21 which operate on the binary symmetric channel and the AWGN

channel. In addition to the importance sampling results, we shall also give some

ordinary Monte Carlo estimates (MC). Throughout this chapter, the Monte Carlo

simulation data were obtained using a total of 1,000,000 simulation runs. There are

two main reasons for presenting these Monte Carlo simulation results. First we would

like to show that for small values for M, ordinary Monte Carlo simulation of the

2<Cj £ M) works just fine. Hence, for such values, the ordinary Monte Carlo

simulation estimates can be used as a verification of the accuracy of our importance

sampling estimates. On the other hand, for large values of M, we will show that Monte

Carlo simulations are simply not efficient enough to obtain any meaningful estimates.

However, for such large values we shall see that by using our importance sampling

schemes, we will achieve high computational efficiency gains along with accurate

estimates.

We begin our presentation by considering the binary symmetric channel case.

5,3.1 The Binary Symmetric Chaiinel Case

A. The Reference Path Method

In this section, we present some importance sampling simulation results which we

have obtained via the reference path method (RPM). Recall that the basic idea behind

the reference path method is is to design an importance sampling channel model which

will tend to "force" or "trick" the stack algorithm into decoding a given reference path

108

u N “■ (u ti ,U 2 , . . . u n) instead of the correct path uc = (uf.ul,...). As indicated in the

previous chapter, reference paths of a given depth N can be found by an exhaustive

search in such a way that their hamming distances from the correct path are minimized

over all incorrect paths of depth N. For example, Figure 5.4 shows part of the tree

code generated by the constraint length 14 convolutional code. A close observation to

Figure 5.4 indicates that at depth 5; for instance, we have two minimum distance paths

u1= (10 001) and U2= (IO O l l). Hence at depth 5, there are two candidate

reference paths: u and u .

109

Minimum hamming distance paths
from the all zero path J1

at depth 5

10

10

10

01

1011

00 __
■ ii ..

01

Tree code for the rate 1/2 and constraint length 14 convolutional
encoder.

n o

Let Uk and Ujc denote respectively the code symbols associated with the correct

path and a given reference path. Note that u£ and Ujc are actually two-dimensional

because the convolutional code rate is 1/2. That is, u£= (Uki.Uj^) and u£= (Ufci,uja).

Since the correct path is assumed to be the all-zero path, it follows that ufcs (-1,-1).

On the other hand, all incorrect paths (which include the reference paths) are of the

form Uk= (+Icfl)- Now recall that the main objective of the reference path method is

to "force" the stack algorithm into decoding the reference path instead of the correct

path. To do so, we have designed the reference path simulation scheme in such a way

that I) we do not bias the channel when ufci = ufcj; and 2) we use a uniform biasing for

the remaining instances when ufci * ufcj (i=l or 2.) Specifically, we use a crossover

probability of efci = 1/2 at the instances when ufci * ufci (i=l,2.) Once the data is

generated up to N, the depth of the reference path, no more biasing is done. Thus, the

reference path method is based on a non-stationary memoryless BSC model which is

characterized by a time varying crossover probability

Eki
1/2 if ufc * Uki

£ if Uy = Uy
(5.17)

for i=l or2 and k < N. For k> N we use efcj = £. It should be clear that with roughly

probability 1/2 the reference path will be examined up to depth N.

Some of the simulation results for the reference path method are summarized in

Tables 5.1-5.5. The first two columns give the estimates of the distribution of

computation and the accuracy using the reference path method. The last two columns

give the estimates of the distribution of computation and the accuracy using ordinary

Monte Carlo.

Table 5.1: The distribution of computation estimates for the constraint length 5
code operating on the BSC with E = .01. L = 250,000 for the RPM
and L = 1,000,000 for MC

RPM Accuracy ' MC v : Accuracy

2<Cj>3) .116 xlO-1 .70% .115 xlO"1 .93%

®[Cj>15) .369 XlO"3 I 2.42 % I .42 xlO-3 0.05 %

JPCCj>24) .318 xlO"3 1.84 % .352 xlO"3 : 5 .3 3 % ;

2<Cj>30) .117 xlO"3 1.48 % .131 xlO"3 8.73 %

®(Cj>33) .116 xlO"3 1.46 % .13 xlO"3 8.77 %

i<Cj>42) .187 xlO"4 6.86 % .16 xlO"4 25.00 %

®(Cj>63) .723 xlO"5 : 2.48 % Jx K T 5 35.36 %

2<Cj>69) .687 xlO"5 I 2.51 % : .8 xlO"5 35.36 %

4<Cj£78) .304 xlO"5 3.57% .2 xlO"5 70.72 %

2<Cj>90) .278 xlO”5 3.67 % .2 xlO"5 70.72 %

Table 5.2: The distribution of computation estimates for the constraint length 5
code operating on the BSC with e = .005. L = 250,000 for the RPM
and L = 1,000,000 for MC.

RPM Accuracy MC Accuracy

2<Cj>3) .540 xlO-2 0.60% .547 xlO'2 1.35 %

ifCj>6) .147 XlO'3 2.10 % .149 xlO'3 8.19%

2fCj>12) .136 xKT3 2.16% .136 xlO'3 8.58 %

2fCj>30) .266x10 1.35 % .230 xlO-4 20.96 %

®CCj>45) .150 XlO'5 7.64% .300 xlO'5 57.80 %

^Cj>54) .784 xlO '6 2.25 % .100 xlO'5 100.0 %

SfCj>72) ,296 xlO'6 3.67 % .100 xlO"5 100.0 %

ifCj>78) .288 xlO '6 3.72 % .100 xlO'5 100.0 %

T(CiZM) ,278 xlO'6 3.79 % .100 xlO"5 100.0 %

T(Cj>90) .273 xlO '6 3.82 % .100 xlO"6 100.0 %

Table 5.3; The distribution of computation estimates for the constraint length 14
code operating on the BSG with £ = .01. L = 250,000 for the RPM
and L = 1,000,000 for MC.

RPM j Accuracy ; ■ MC
- ■ V .

Accuracy

®(Cj>3) ; .116 xlO-1 0.70% .115 xlO"1 j 0,93 % jv ' - ’ . ■ ' ' i
^Cj^l8) j .172 xlO"3 j 2.36 % .197 xlO"3 i 7.12 %]

2*Cj>24) : .157 XlO"3 : 2.29 % j .167 xlO"3 I 7.74 % :

®(Cj>33) 1 .393 xlO"4 j 6.26 % I .39 xlO"4 J 16.02 % I

!F(Cj>42) .242 xlO"4 6.63 % .24 xHT* 20.41 %

2*Cj£51) I' ̂' ! .209 xlO"4 j\ ' . . I 6.75 % j .19 xlO-4 I 22.93 %
- ■ " ' i
2<Cj^66) j .138 xlO"4 } 7.31 % j .12 xlO"4 v J 28.93 %

®(Cj>75) ; .109 xlO"4 ; 7.74 % j JOxlOr5 J 37.74 %
■■■ ' j
!fl(Cj>81) j .887 xlO"5 j ' 7.26 % .60 xlO"5 40.82 %

^Cj>87) j .711 xlO"5 ! 7.98 % j .50 xlO"5 44.64%

Table 5.4: The distribution of computation estimates for the constraint length 14
code operating on the BSC with e = .005. L = 500,000 for the RPM
and L = 1,000,000 for MC.

.. . RPM Accuracy MC Accuracy

2<Cj>3) .537 XlO"2 0.35% .553 xlO"2 1.34 %

^Cj>6) .204 XlO-3 1.56% .203 xlO"3 7.02 %

fP(Cj>12) .825 xlO"4 1.01 % .155 XlO"3 8.03 %

2XCj>18) .319 xlO-4 1.92% .400 xlO-4 15.82 %

2<Cj>30) .419 xlO-5 8.26 % .500 xlO*5 44.72 %

2<Cj>48) .240 XKT5 7.46 % .200 xlO"5 71.43%

2XCj>57) .180 xlO-6 6.36 % .100 xlO"5 100%

2(Cj>66) .995 xlO"6 8.16 % .IOOxlO"5 100%

fP(Cj>87) .622 xlO"6 2.25 % .100 xlO"5 100%

i<Cj^90) .495 xlO"6 2.44% .100 xlO"5 100%

115

Table 5.5: The distribution of computation estimates for the constraint length 21
code operating on the BSC with e = .005. L = 300,000 for the RPM
and L = 1,000,000 for MC.

. ''
RPM Accuracy MC

. - . V - . ■ i
Accuracy

®(Cj>3) j .539 XlO"2 ; 0.34 % .542 xlO"2 ; 1.35 %

J q > 9) : .151 XlO"3 1.47 % .141 xlO"3 { ' 8.42 %

<^Cj> 12) I
.

.133 xKT3 j 1.54 % .13 xlO"3 8.77 %

®(Cj>21) I .319 xlO"4 ; 1.65 % I . 2 6 x 1 0 j 19.61 %

2<Cj>33) : .174 XlO"5 j 2.53 % .10 xlO"5 : 100%

2<Cj>48) .120 xlO"5 2.92 % i .10 xlO"5 100%

2<Cj^57) I .796 xlO"6 j 3.33 % .10 xlO"5 I 100%

®(Cj^69) .516 xlO"6 I 4.28 % .10 xlO"5 100%

2*Cj>81) .360 xlO"6 i 4.69 % > .10 xlO"5 ; 100%

2<Cj>90) : .336 xlO"6 1 4.77 % .IOxlO"5 :i 100%

B. The Partitioning Method

We shall know present and demonstrate the power and accuracy of the

partitioning method (PM) for the rate 1/2 and constraint lengths 5 and 14 convolutional

codes operating on a binary symmetric channel that is characterized by a crossover

probability e.

Define N* to be the depth at which the minimum value along the correct path

(after depth j) occurs. Then from the partitioning method analysis in Section 4.5.3,

recall that the basic idea behind the partitioning scheme is to partition the underlying

probability space by the events {N* = m}, m= 0,1,2,..., and hence

IXCj > M) = £ ^ M ; N = m). (5.18)

For m= 0,1,2.., we bias the simulation model to estimate the terms in (5.18) separately.

The simulation model is given by

.5acZ£ - A c (OLcI Z) „

ek
e
e

if k < m
otherwise

(5.19)

where

Ac (ac) ln((l-e)e“Ca + ee““Cb) - a cR (5.20)

and Zk is the correct path (fano) branch metric. Recall that the constants a and b in the

above equation were defined in the previous chapter as

a 4= ln(2(l - e)) and b 4 -ln(2e). (5.21)

^ _ . • ■■ ■ . . .

Furthermore, recall that the optimal value of Ctc that is predicted by the

partitioning method analysis should be chosen so that

Ef exp(.SacZk] = eAC(otC/2) (5.22)

m

is minimized.

Few comments on this scheme are in order here. First, notice that for k < m the

simulation model basically uses a uniform biasing, Speciicail^ for k < m, ef; = E0

where E0 = exp (-ac(b + R) — Ac(ac/2) >£. Second,, recall that for a given m, each

simulation should "force" the minimum value along the correct path after depth j, to

occur at depth m. Keeping that in mind, we may conclude that by biasing the

simulation model when m = 0, we may force the correct path minimum to occur at

depth m * 0. Hence, it seems reasonable to deduce that for m = 0 it is. better to set

Efc = £. That is„ when m = 0 we should not bias the channel. Finally,, recall that the

simulation model (5.19) is not an optimal simulation scheme for estimating the

distribution of computation. Specifically,, the partitioning model was derived by

minimi zing an upper bound of the variances of P§, = $f: node § hypothesized;) Hence, it

is not necessarily true that the partitioning simulation model is the optimal1 simulation
L- ’

scheme for estimating the distribution: of computation. More importantly,, it is

reasonable to deduce that by using values of Ef which are different from the ones

predicted by the partitioning method analysis may lead to better computational

efficiencies. It turns out that this Ikst statement is in feet true. Specifically,, suppose

that instead of using ef as specified by the simulation model (5.19), we use another

crossover probability ef*. The value of ef* is obtained in such a way that the

computational efficiency for estimating Ti Cj > M ;; N* = k) is maximized. By doing

that, we have found that for small values of k, Ejc and Ef are not equal in general.

However,, it turns; out that as k T the optimal values of ef* seem to be converging to

Ef. Thus, it does appear that the partitioning method is in a sense an asymptotically

optimal simulation scheme for estimating the distribution of computation. Figures

5.5-5.7 illustrate this by showing the relative efficiency gains (erg) for the PM

118

estimates of 2<Cj > M ; N* = m) as a function of the simulation crossover probability

e* . In each of these figures m is kept fixed and the erg plots correspond to the

estimates of Cj > M ; N* = m) for various values of M. In all of these figures,

£ = .01 and the code is the constraint length 5 code. Notice that as m increases, the

optimal values of the crossover probabilities that maximize the reg tend to converge to

E0 which is equal to .1373 in this case.

crossover probability

The relative efficiency gains (reg) for the PM estimates of
T(Cj > M ; N* = 9) as a function of the simulation crossover
probability.

reg

120

M = 6
M = 18
M = 30
M = 42

0.1

crossover probability

Figure 5.6: The relative efficiency gains (reg) for the PM estimates of
2(6 > M ; N* = 11) as a function of the simulation; crossover
probability.

121

M = 15

crossover probability

Figure 5.7: The relative efficiency
T(Ci > M ; N* = 20) as
probability.

gains (reg) for the PM estimates of
a function of the simulation crossover

122

We are now ready to present the partitioning method simulation data. These

results show that the partitioning method simulation technique is indeed an extremely

efficient scheme for estimating the distribution of computation. We begin by

considering the case where £=.01. In this case, for a given { N = m}, e£ = .1373 for

all k < m. The following table shows the distribution of computation for the constraint

length 5 convolutional code. Again as in the reference path method, Monte Carlo

simulation results are also included. We shall refer to the simulation model used to

compute the estimates in Table 5.6 as the partitioning method model I (PM Model I.)

Thismodelischaracterizedby

e m = O
.1373 if k < m
e otherwise

(5.23)

The partitioning method estimates in Tables 5.6 and 5.8-5.10 are based on

L = 300,000 simulation runs. Specifically, we use 20,000 simulation runs for each

value of m (m = 0 ,1,..,,15.) On the other hand, recall that the Monte Carlo estimates

are based on a I million simulation runs.

123

Table 5.6: The distribution of computation estimates for die constraint length 5
code operating on the BSC with £ = .01. L = 300,000 for PM Model I
and L = 1,000,000 for MC.

PM Model I Accuracy MC Accuracy

I 2*Cj>6) .689 XlO"3 : 1.79 % ; .762 xlO-3 3.62% j

210^12) .589 xlO-3 2.05 % .644 xlO-3 3.93 %

2 ^ 2 1) i .346 XlOr3 2.67 % .388 XlO"3 5.08 %

2<Cj^42) .206 xlO"4 ; 3.86 % .16 XlOT4 25.00 %

2XCj>57) .924 XlOr5 5.10% .8 x i r 5 35.33 %

V(CjZ66) ; .822 xlO-5 5.63 % .7 x i r 5 37.80 %

T(CjZll) .579 xlO-5 6.23 % .3 Xior5 ; 57.74 %

®(Cj£81> .405 xlO-5 5.81 % .2 xlO'5 70.72 %

V(CiZSl) .374 x i r 5 6.12% .2 xlO-5 70.72 %

2<Cj>90) .352 X i r 5 6.42 % .2 xlO-5 70.72 %

124

We shall now present some simulation results that have been obtained using

another partitioning method simulation models. We shall refer to these models as the

partitioning method model 2 (PM Model 2) and the partitioning method model 3 (PM

Model s.) These models are characterized in the following table.

Table 5.7: ejj for the constraint length 5 code operating on the BSC with e = .01.

*

k PM Model 2 PM Model 3
0 £ e

: . '' I .9 .55
2 .6 .55

3 .5 .5
4 .35 A

/ 5 .3 .3
6 .275 .3

7 .25 .3

8 ,225 .2 ;
9,10,11 ■ . 2 . .2

12 .175 .18
13 .15 .18
14 .14 .15

1.5 .1373 .15

,Je
The values Of ejc in the above simulation models were obtained by trial an error in

such a way that computational efficiency is maximized. It turns out that the

performances of both of these models were very similar as seen from Table 5.8.

However, we have found that overall the PM Model 3 yielded the most efficient

simulation in terms of computational efficiency gains.

Table 5.8: The distribution of computation estimates for the constraint length 5
code operating on the BSC with e = .01. L = 300,000 for PM Model 2
and PM Model 3.

7 1 ' '
PM Model 2 Accuracy PM Model 3 Accuracy

2fCj>6) .696 XlO"3 ; 0.84 % .705 xlO”3 6.83%

2fCj>12) .591 xKT3 0.91 % .597 xl0~3 0.89 %

2fCj>21) J S O x ir 3 I 1.14% .344 xlO”3 1.15%

^q^42> .201xlO-4
r...\ ' ■'
: 2.52 % .209 xlO-4 2.58 %

!PCCj >57) .936 xlO"5 \ 3.29 % .897 xlO”5 3.21 %

2fCj>66) .811 xlO-5 j 3.60 % .780 xlO-5 3.52 %

5fCj>72) .530 xlO-5 I- 4.12 % .502 xlO"5 3.86 %

S<Cj>81) .369 XlOr5 2.32 % ; .372 xlO"5 2.19 %

2<Cj>87) .341 x i r 5 I 2.33 % .339 xlO-5 2.09%

2<Cj^90) J H x i r 5 I 2.03 % .338 xlO"5 2.08 %

Tables 5.9 and 5.10 also show some partitioning method simulation results for the

constraints length 5 and 14 convolutional codes.

126

Table 5.9: The distribution of computation estimates for the constraint length 5
code operating on the BSC with e = .005. L = 300,000 for the PM and
L = 1,000,000 for MC.

PM Accuracy MC Accuracy

2*Cj>3) .533 xl0~2 1.14% .547 xlO'2 1.35 %

2<Cj>6) .156 xl0~3 0.86% .149 xlO'3 8.19%

XCj>12) .138 xl0~3 0.93 % .136 xlO'3 8.58 %

>30) .277 xlO-4 1.06% .230 x HT4 20.96 %

2<Cj>45) .174 XlO'5 3.74% .300 xlO'5 57.80 %

2<Cj>54) .976 xlO'6 4.07 % .IOOxlO'5 100.0 %

!P(Cj>72) .367 xlO'6 2.01 % .100 xlO"5 100.0 %

^Cj>78) .338 xlO'6 1.99% .100 xlO-5 100.0 %

2 ^ 8 4) .316 xlO-6 1.98 % .IOOxlO'5 100.0 %

2<q>90) .301 xlO'6 1.98 % .IOOxlO'5 100.0 %

Table 5.10: The distribution of computation estimates for the constraint length 14
code operating on the BSC with e = .01. L = 300,000 for the PM and
L =1,000,000 for MC

:: ^ PM Accuracy ; ; ■ MC Accuracy

^Cj>3) . 1 1 3 xio-1 ; 1.86 % . I i S x i r 1 0.93 %

2<Cj^l8) .173 xlO"3 0.86 % ,197 XlO"3 7.12 % ?

m ^ 2 A) .152 xlO'3 0.82 % .167 XltT3 7.74 %

!P(Cj>33) .397 XKT4 2.27 % .39 xlO-4 16.02 %

^ q ^ 4 2) : .245 xlO"4 2.49 % .24 XlO^ ! 20.41 %

2<Cj>51) .210 xlO"4 2.86 % .19 xlO"4 22.93 %

^Cj^66) .148 xlO"4 3.62 % : .12 xlO"4 28.93%

®(Cj>75) .IOtixlOr4 3.62 % i .70 xlO"5 37.74 %

!P(Cj>81) : .844 x10"5 3.57 % I .60 xlO"5 40.82 %

2<Cj>87) .666 xlO"5 ; 3.82 % \ .50 xlO"5 44.64%

128

C. The M-Method

We shall now present and demonstrate the power and accuracy of the M-method

(MM) for the rate 1/2 and constraint lengths 5 and 14 convolutional codes Operating on

the binary symmetric channel.
• ■■ • / . ' ; ..

Recall that the M-method is basically a variation of the partitioning method

discussed earlier. Specifically, in the M-method scheme we consider a discrete random

variable M with probability mass function pm = !P(M = m) for m = 1,2,...,J. For

{ = 1,2,..., the random samples M(0) are generated from another probability mass

function p^ = T (M = m) for m = 1,2,...,J. For each of these samples, the samples

V(0̂ are then generated from the conditional density f (v |uc,m). Specifically, for a

given m the samples are generated from the density f^(v|uc,m) as in the

partitioning simulation model. That is, for a given m, we will bias the channel model

only up to depth m using a time varying biasing. As in the simulation model (5.19),

recall that the MM simulation model also switches to the original channel density for

depths k > m. In the sequel, we shall assume that p^ = pm. Then for any N > I, the

M-method estimator for T(C > N) is

Pn = J - X In(Vw) w(V(0) I uc,M(0)) (5.24)
L 0=1

where In (.) 4= the indicator of the event { Cj > N } and

w(v|uc,m) f(v|uc)
f (v I uc, m)

" fk(Vk I Uk)
k=l fk(vk luk>m)

129

Obstrve that an identical computation to that given in the proof of the
*

unbiasedness of the estimator (5.2) indicates that Pn is an unbiased estimator of

Pn = !FtCj > N).

The following simulation results demonstrate the potential of the MM simulation

technique. Throughout this chapter, we shall assume that the random variable M has

the following probability mass function

Pm = e-0"1 for m ~ 1,2,...,J V(5.26)

where c is a positive constant that should be selected so that (5.26) is a valid

probability mass function. The value of J was equal to 10 in all of the MM simulation

results that are listed in this chapter (hence c w .6229.) The MM simulation model that

we have used in the BSC case is characterized by the following crossover probability

* .225
e

for k < m
otherwise (5.27)

Tables 5.11 and 5.12 indicate that the above simulation model does indeed yield

to accurate estimates of the distribution of computation along with high computational

efficiency gains. Notice that only 250,000 simulation runs were used to obtain the MM

estimates. The Monte Carlo simulation are based on 1,000,000 simulation runs and yet

notice that for values of N (say greater than 30,) the Monte Carlo estimates of the

2<Cj > n) are simply meaningless.

"4'<

130

Table 5.11: The distribution of computation estimates for the constraint length 14
code operating on the BSC with e = .01. L = 250,000 for the MM and
L =1,000,000 for MC

■
MM Accuracy MC Accuracy

2<Cj>3) .113 XlO'1 0.30 % .115 xlO"1 0.93 %

2<Cj>18) .163 XlO"3 1.39 % .197 xlO"3 7.12 %

^Cj>24) .148 XlO"3 1.35% .167 xlO"3 7.74 %

^Cj>33) .373 xlO"4 3.79% ,39 xlO"4 16.02 %

^Cj>42) .234x10 4.58% .24 xlO"4 20.41 %

^Cj>51) .202 xlO"4 4.94 % .19 xlO"4 22.93 % .

2<Cj>66) .150 xlO"4 5.73 % .12 xlO"4 28.93 %

2^Cj>75) .108 xlO"4 5.94 % JOxlO"5 37.74 %

!P(Cj>81) .959 xlO"5 6.47 % .60 xlO"5 40.82 %

2fCj>87) .774 xlO"5 6.53 % .50 xlO"5 44.64%

131

Table 5.12 The distribution of computation estimates for the constraint length 5
code operating on the BSC with £=.005. L = 250,000 for the MM
and L = 1,000,000 for MC,

i . . MM I Accuracy ; MC . i Accuracy

.547 X i r 2
■■■ ■ . ■■....

0.32 % I .547 XlCT2 j 1.35 %

i TiCj >6) i .157 xlO-3 I 1.30% I .149 xlO"3 j 8.19%

I 2*Cj>12) ; .142 X i o -3 1.33 % I .136 xlO"3 8.58 %

!P(Cj^O) .280 X ltr4 I 1.20% f .230 Xicr4 20196%

!P(Cj>45) : .197 XlO"5 i 8.37 % I ,s o o x i r 5 i 57.80 %

2<Cj>72) : .330 XlO-6 I 4.19% I .100 XlOr6 100.0 %

j 2*Cj>78) ! .315 XlO"6 \ 4.27 % ; .IO O xir6 100.0 %

I ^Cj>81) ; . 3 1 1 xio"6
i

j 4.30 % .100 XlO"6
i

I 100.0 %

2<Cj^84) .304 xlO"6 (4.34 % .100 xlO"6 100.0 %

: 2<Cj >90) .297 XlO"6 j 4.37 % I .100 xlO"6 ; ioo.o %

132

5.3.2 The AWGN Channel Case

We shall now present our importance sampling simulation results for the AWGN

channel case. Recall that the correct path is assumed to be the all-zero path. That is,

Uk - (uki>Uk2) = (—1,-1), and thus, if we define

g(v) = _ i _ e 202. (5.28)
ĥncs2

Thenthechanneloutputsymboldensityis

fk(vk I Uk) = n fki(vid I Uki) (5.29)
i=l

where- ■■

fk i(v ki I Uki) = g (v ki - I) for i =1 or 2. (5.30)

We begin by presenting the simulation results for the reference path method.

A. The Reference Path Method

The biasing in the reference path method (RPM) for the AWGN channel and the

BSC cases are essentially the same. In other words, for a given reference path of depth

N, Un .= (u i,U2 ,..„un), I) we do not bias the channel when u& = ufc; and 2) we use a

uniform biasing for the remaining instances when u^i> Uy (i—I or 2.) Specifically, for

the AWGN channel case, we use a channel output symbol simulation density which is

normal with zero mean and variance a 2 at the instances when u£i * uy (i=l,2.) Once

the data is generated up to N, the depth of the reference path, no more biasing is done.

Thus, the reference path method is based on a non-stationary memoryless model which

is characterized by a non-stationary simulation density

fki(Vki I Ufci) =
g(Vki)
fki(Vki I Uki)

if Uki

if Uy
* Uki
= Ufci

(5.31)

133

for i=l or 2 and k<N. For k > N we use fk(vjc|u|) = ^(vit |u |) . Again, it should be

clear that with roughly probability 1/2 the reference path will be examined up to depth

N. ■

Some of the simulation results for the reference path method are summarized in

Tables 5.13 and 5.14, The first two columns give the estimates of the distribution of

computation and the accuracy using the reference path method (RPM). The last two

columns give the estimates of the distribution of computation and the accuracy using

ordinary Monte Carlo.

Table 5.13: The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with a = .6. L = 500,000 for
the RPM and L = 1,000,000 for MC.

RPM Accuracy MC Accuracy

2<Cj>3) .129 xlO '1 0.42 % .130 xlO '1 0.87 %

*(Cj>9) .250 xlO'2 0.68 % .252 xlO'2 1.99 %

4<Cj>15> .101 xlO'2 1.70 % .102 xlO'2 3.13 %

2*Cj>30) .277 xlO'3 3.58 % .274 xlO"3 6.04 %

2<Cj>48) .118 xlO"3 3.86 % .116 xlO"3 9.29 %

^Cj >60) .711 xlO”4 4.76 % JlOxlO-4 11.86 %

^Cj>72) .446 XlO-4 4.73 % .500 xlO-4 14.14 %

2<Cj>78) .357 XlQT4 4.32 % ,400 xlO-4 15.82 %

2<Cj>81) .334 XlO"4 4.51 % .380 xlO"4 16.23 %

2<Cj>90) .244 xlO"4 5.02 % .350 xlO"4 16.90 %

Table 5.14: The distribution of computation estimates for the constraint length 5
code operating on the AWGN channel with G = .55. L = 600,000 for
the RPM and L = 1,000,000 for MC.

R P M : A ccu racy MC A c c u ra c y

2<Cj>3) .648 XlO-2 0.47 % .638 xlO"2 1.25%

2<Cj>9) .114 XlO"2 1.04% .114 xlO"2 2.96%

!F(Cj>15) .415 XlO"3 1.24% .396 xlO"3 5.02 %

l^ q > 1 8) .240 XlO"3 1.36% .233 xlO"3 6.55 %

^Cj>21) .167 XlO"3 1.59 % .161 xlO"3 7.88 %

!P(Cj>24) .917 xlO"4 2.07 % .850 xlO"4 10.84 %

® (C j> 30) .424 XlO"4 3.22% .33 xlO"4 17.39 %

0 C j> 3 9) .192 XlO"4 5.01 % ,140 XlOr4 26.74 %

tP(Cj>45) .117 xlO"4 7.01 % .900 xlO"5 33.33 %

2*Cj>87) .828 xlO"6 7.28 % * * * *

Notice that Table 5.14 indicates that the event { Cj ^ 87 } has not been observed

during the one million Monte Carlo simulation runs. We note that for 10 % accuracy,

ordinary MC would require more than 120 Million simulation runs to estimate

!PCCj > 87).

B. The Partitioning Method

Let N* be the depth at which the correct path minimum (after depth j) occurs.

Recall that in Section 4.5.4, we have shown that Given N* = m, the partitioning

method simulation model is

fk(vk l uk)
exp'|.5 ̂ (ug,Uk,vk)j fk(vkluD

fk(VklUk)

if k < m
otherwise

(5.32)

where xPC.,.,.) is an optimized twisting function which is given by (4.67).

Furthermore, recall that we have also shown that for k <m, the above simulation

model can be expressed as

fk(VklUfc)
q C (vk) if Vk < 0
q+ff (Vk) if Vk > 0

(5.33)

where r (.) , f - (.) , q" and q+ are defined in (4.72), (4.73), (4.75) and (4.76),

respectively. A close observation of equations (4.72), (4.73), (4.75) and (4.76)

indicates that the densities F(.), F(.) and the constants q" and q+ depend on only occ.

As in the BSC case, it turns out that for small values of m, the optimal value of a c
' I ' ; r ' ' - ; ' ' - - ; ■ ■ ■■ ’ . • . V - ■ ■ 'V- V V- ■ -

which is predicted by the partitioning method analysis does not lead to the most

efficient simulation model. Hence, in order to optimize the computational efficiencies,

it Was necessary to find the optimal values of occ by a trial and error.

137

Tables 5.15 and 5.16 show some partitioning method simulation results for the

constraint lengths 5 and 14 convolutional codes. For both of these codes a total of

600,000 simulation runs were used. The values of a c which we have used for the

constraint length 5 convolutional code are shown below (the maximum values of m

used in this case was 15.)

(5.34)

0 if k = 0
-4.25 if k = I
-4.65 if k = 2
-4.55 if 3 < k < 15

Likewise, the values of Ctc which we have used for the constraint length 14

convolutional code are shown below (the maximum values of m used in this case was

12.)

0 if k = 0
-4.25 if k = 1
-4.65 if k = 2

- -4.00 if k = 3
-3.5 if 4 < k < 5
-3.25 if 6 < k < 7
-3.00 if 8 < k < 12

(5.35)

Table 5.15: The distribution of computation estimates for the constraint length 5
code operating on the AWGN channel with c = .6. L = 600,000 for
the PM and L = 1,000,000 for MC.

PM Accuracy MC Accuracy

«<Cj>3) .127 XlO-1 2.10 % .131 xlO '1 0.87 %

' k Cj>9) ,300 x IO-2 3.39 % .303 xlO'2 1.81 %

®(Cj>15) .144 xlO-2 4.39 % .146 xlO'2 2.61%

T(Cj>21) .334 x HT3 6.42% .338 xlO"3 5.44 %

^Cj>33) .206 xlO-3 7.73% .207 xlO"3 6.95 %

2{Cj>54) 399 XlQ T4 7.47% .590 xlO-4 13.02 %

2<Cj>60) .290 xlO-4 7.06 % .390 xlO-4 16.03 %

2{Cj>66) .212 xlO"4 7.87 % .340 xlO"4 17.15 %

2<Cj>87) .899 xlO"5 8.08 % .170 xlO"4 24.25 %

2XCj>90) .826 xlO"5 8.64 % .140 xlO"4 26.72 %

139

Table 5.16: The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with a = .6. L = 600,000 for
the PM and L - 1,000,000 for MG

: PM Accuracy MC Accuracy

2<Cj>3) .124 XlO-1 1.97% .BOxlO"1 0.87 %

^Cj>9) .234 xl0~2 2.99 % .252 xlO"2 1.99 %

^(Cj >24) .369 xl0~3 5.88 % .398 xlO"3 5.01 %

!P(Cj>30) .252 xlO"3 6.61 % .274 xlO"3 6.04 %

2<Cj>48) .105 xl0~3 6.87 % .116 xlO"3 9.29 %

2<Cj>57) .704 xlO"4 6.92 % .860 xlO*4 10.78 %

^Cj>63) .584 xlO"4 7.69 % .670 xlO-4 12.22 %

2{Cj>78) ,281 xlO"4 7.40 % .400 xlO"4 15.82 %

fP(Cj>81) .271 xlO"4 7.60 % ,380 xlO"4 16.23%

®(Cj>90) .207 xlO"4 8.14 % .350 xlO"4 16.90%

140

c . The M-Method

We shall now present and demonstrate the power and accuracy of the M-Method

(MM) by showing some simulation results for the rate 1/2 and constraint length 5 Ethd

14 convolutional codes operating on the AWGN channel.

As in the BSC case, the MM estimator is given by (5.24) and die probability mass

function of the random variable M is given by (5.26). The MM simulation model that

we have used in the AWGN channel case is given by

fk(vklu£,m)
g(Vk) if k = m
fk(vk I Uk) otherwise

(5.36)

In other words, for a given m, the simulation density is normal with zero mean

and variance O2 for all k < m. for k > m, the MM simulation model switches to the

original channel model.

Some of the MM simulation results which we have obtained using the simulation

model (5.36) are shown in Tables 5.17-5.19.

Table 5.17: The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with a = .6. L = 300, TOO for
the MM and L = I,TOO,OTO for MC

I-''-' " ■' ■ : MM Accuracy MC Accuracy

2 ^ 3) 118 xlO_i 1.43 % .130 xlO-1 0.87 %

.243 xlO"2 2.45 % .252 XlQT2 1.99 %

2(Cj>18) .627 XlO"3 2.70 % .637 xlO-3 3.96 %

2<Cj>30) .258 xlOr3 3.45 % .274 xlO-3 6.04%

2<Cj>48) .109 x i r 3 4.38 % .116 xlO'3 9.29 %

!P(Cj>60) .658 XllT4 4.71 % .710 xlO-4 11.86 %

m c^66) .509 xlO-4 5.86 % .650 xlO-4 12.40 %

2<Cj>72) .395 xlO-4 5.79% .SOOxlO-4 14.14 %

^Cj>87) .233 xlO’4 5.35 % .350 xlO-4 16.90 %

IB(Cj^O) .217 xlO"4 5.86 % .350 XHT4 16.90 %

142

Table 5.18: The distribution of computation estimates for the constraint length 5
code operating on the AWGN channel with a = .55. L = 300,000 for
the MM and L = 1,000,000 for MC

MM Accuracy MC Accuracy

^Cj>9) .110 XlO-2 1.66 % .114 xlO"2 2.96 %

T(Cj>15) .391 xlO-3 2.19% .396 xlO'3 5.02 %

5<Cj>18) .237 xlO"3 3.12% .233 xlO"3 6.55%

2^Cj>30) .387 xlO"4 3.52% .330 xlO"4 17.41 %

2<q^42) .103 xlO"4 3.03 % .100 xlO-4 31.62 %

2 ^ 5 1) .568 xlO"5 3.99 % .700 xlO"5 37.79 %

^C j >72) .127 xlO"5 5.29% .200 xlO"5 70.72 %

2<Cj>81) .946 xlO"6 5.60 % .100 xlO"5 100 %

®(Cj>84) .765 xlO"6 6.19 % .100 xlO"5 100 %

!P(Cj>90) .591 xlO"6 7.19 % ** **

Table 5.19: The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with a = .55. L = 100,000 for
the MM and L = 1,000,000 for MG.

I MM . ! Accuracy MG--' ; Accuracy

; TiCj>12) .346 xlO"3 8.50 % .333 xlO"3 I 5.48 %

T(Ci> 15). .213 xlO-3 I 3.75 % .233 xlO"3 i 6.55 %

2<Cj>18) .109 xlO"3 ! 4.60%i ■
.128 xlO"3 ; 8.84 %

^Cj>24) .568 XlOr-4 I 7.18; % ; .660 xlO"4 12.31 %

®(Cj^36) ; .262 XlO^ 6.93 % : .330 xlO"4 17.41 %

! 2<Cj>60) • .372 xlO"5 j 5.26 % I JOOxlO"5 37.79%

2<Cj>66) .284 XlOr-5
\

5.73% .500 xlO"5 j 44.72 %
;■ . . .

I !P(Cj>72) ; .219 xlO-5 ! 6.77 % ; .100 xlO"5 ; ioo%

^Cj>81) .170 xlO-5 j 7.92 % ' i ** I ■ ‘ '■' sfe sjc . /

: 5<Cj>90) : .116 xlO"5
E ' ;
I 8.57 % i **

i ; '
**

144

5.4 Discussion and Conclusion

In this section, we shall further discuss and compare the performance of the new

importance sampling schemes that we have presented here. We begin by presenting

some simulation results for the rate 1/2 and constraint lengths 5 and 14 convolutional

codes operating on the BSC and the AWGN channel.

M-Method

EnsembleAverage
Partitioning Method

ReferencePathMethod

Rgure 5.8: The distribution of computation estimates for the constraint length 5
code operating on the BSC with e = .005.

ICT31

M-Meihod
Ensemble Average

Partitioning Method
Reference Path Method

Iog(M)

Figure 5.9: The distribution of computation estimates for the constraint length 14
code operating on the BSC with e = .005.

M-Mcihod
EnsembleAverage

Pariiiioning Method

Reference Paih Method

Figure 5,10: The distribution of computation estimates for the constraint length 5
code operating on the AWGN channel with o = .6.

(W
 < -D

U

Figure 5.11:
• ■ f

M-Meihod

Ensemble A verage

Partiiioning Method;

Reference Path Method

0 8 1.2 1.6

IOg(M)

The distribution of computation estimates for the constraint length 14
code operating on the AWGN channel with a = .6.

'■ 148'

The data in figure 5.8-5.11 was obtained empirically using a total of 300,000

simulation runs for all the simulation schemes in the BSC case. In the AWGN case, a

total of 600,000 simulation runs were used for the constraint length 5 convolutional

code. For the constraint length 14 convolutional code, however, a total of 500,000

were used for the reference path method. For the partitioning method and the M-

method simulation schemes a total of 300,000 simulation runs were used for both

schemes. This is far more simulation runs than is required for estimating !F(Cj > M)

for M = I,..90; however, it was our desire to ensure accurate answers.

Recall that the information theoretic ensemble average analysis indicates that the

distribution !P(Cj ^ M) should have a Pareto tail with exponent p. That is,

iPCCj > M) - M~P ; (5.37)

or equivalently,

log^C j Si M)) ~ -p Iog(M). (5.38)

It turns out that for the BSC of Figures 5.8 and 5.9, the ensemble average

exponent is p = 3.5 and for the AWGN channel of Figures 5.10 and 5.11 , the exponent

is p = 2.3. For comparison, Figures 5.8-5.11 also plot curves labeled "Ensemble

Average." These curves are just c M-p where the constant c is fit for the tail of our

importance sampling estimates. We note that the curves appear as straight lines

because these figures are logarithmic scale plots of the probability estimates against

Iog(M)

Table 5.20 compares the power and accuracy of the new importance sampling

schemes that we have presented here. This table give some of the estimates of the

distribution of computation for the constraint length 5 convolutional code operating on

the BSC with £ = ,005. Table 5.20 also lists estimates of the relative accuracy.

Table 5.20: Comparison of the RPM, the PM and the MM for the constraint length
5 code operating on the BSC with e=.005. L =300,000 for all
schemes, and A= relative accuracy estimates.

RPM A PM A MM A
*(Cj>6) .15 x IO-3 1.92 % .16 xlO-3 0.86 % .16 xlO"3 1.19 %
^CCj >12) .14 XlO-3 1.98 % .14 xlO-3 0.93% .14 xlO"3 1.22 %
2<Cj>21) .34 xlO"4 2.30 % .36 xlO"4 1.03 % .35 xlO"4 1.58%
!P(Cj^O) .27 XlQT4 1.26 % .28 x 10-4 1.06 % .28 xlO"4 1.05 %
2<Cj>33) .27x10 1.26 % .27 xlO"4 1.06 % .28 xlO"4 1.05 %
fP(Cj^72) .30 xlO-6 3.33 % .37 xlO"6 2.01 % .33 xlO"6 3.84 %
<P(Cĵ 84) .284 xlO-6 3.42 % .32 xlO"6 1.98 % .30 xlO"6 3.97 %
2<Cj>90) .28 xlO-6 3.45 % .30 xlO"6 1.98 % .29 xlO"6 3.99 %

151

better than the other two schemes. In other words, it was found that the reference path

method usually take less CPU time than the partitioning method and the M-method.

This is reasonable because the partitioning method and the M-method will tend to

"grow" big incorrect subtrees. As an example, we note that for the BSC example of

Table 5.20, the reference path method took 11 minutes, the M-method took about 12

minutes, while the partitioning method took about 21 minutes. On the other hand, for

the AWGN channel data of Figure 5.10, we note that the reference path method took

84 minutes, the partitioning method took 135 minutes, while the M-method took 486

minutes.

We conclude this section by comparing the modified stack algorithm simulation

(MSAS) with the stack algorithm simulation. Recall that because we are only

interested in estimating T{ Cj > M) for a given M, it follows that only the search

performed by the stack algorithm in the j'th incorrect subtree ^ is of interest to us.

Keeping this in mind, we have designed the MSAS (see Chapter 3) which operates

exactly like the stack algorithm simulation except that it I) extends only the j'th

incorrect subtree and 2) replaces every top-of-stack node which is on the correct path

by only its direct descendent which is on the correct path. Because the search

performed by the stack algorithm in can be affected by the search performed by the

stack algorithm in other incorrect subtrees, it is possible that the estimates obtained

using the MSAS might be incorrect. It turns out, however, that this last statement is

apparently not true! In other words, the MSAS gives estimates which are very close to

the ones obtained when the stack algorithm is actually used. Tables 5.21 and 5.22

illustrate this by listing some simulation results which were obtained using the MSAS

and the stack algorithm.

152

Table 5.21: Gomparison of the modified stack algorithm simulation (MSAS) and
the stack algorithm (SA) results for the constraint length 5
convolutional code operating on the BSC with e = .005 using the J
reference path method. L = 300,000.

MSAS Accuracy SA Accuracy

^Cj>3) .540 XlO-2 0.52 % .541 xlO"2 0.57 % i
. . . .

2*Cj>30) .267 XlO"4 1.25% .272 xlO"4 1.41 %

!fl(Cj>45) .148 xlO"5 6.48 % .148 x l O"5 6.51 %

2<Cj>75) ,297 xlO"6 3.34 % .295 xlO"6 3.36 %

Table 5.22: Comparison of the modified stack algorithm simulation (MSAS) and
the stack algorithm (SA) results for the constraint length 14
convolutional code operating on the AWGN channel with G = . 6.
L = 500,000 and the reference path method was used.

MSAS Accuracy SA Accuracy

^Cj^6) .526 xlO"2 0.68 % ,523 xlO"2 0.68% ,

2<Cj>27) .346 X i r 5 3.02 % .345 xlO"3 3.07 %

2{Cj>48) .115 xlO"3 4.67 % .112 xlO"3 3.93 %

2<Cj>78) .369 xlO"4 7.60 % .366 xlO"4 6.95 %

153

By comparing the data in Tables 5.21 and 5.22, it does appear that both the

MSAS and the stack algorithm simulation give very close estimates and accuracy. In

terms of CPU time we have found out that our simulation methods take about twice

less CPU time whenever the MSA is used instead of the stack algorithm.

154

CHAPTER 6

SEQUENTIAL DECODERS

ERROR EVENTS SIMULATION

6.1 Introduction

In the previous chapters, we have discussed and presented new importance

sampling techniques for simulating (stack algorithm) sequential decoders decision

processes. Recall that in these schemes, we did not consider decision error

probabilities. In other words, we have assumed that the decoder ultimately chooses the

correct transmitted path. In this chapter, we shall consider the simulation of the error

events associated with the stack algorithm sequential decoders. In particular, we will

use the error event simulation method to estimate bit error rates for such decoders.

The error event simulation method is an importance sampling technique which has

been developed by Sadowsky [24] to simulate the Viterbi decoder. In this section we

shall apply this technique to the simulation of the stack algorithm sequential decoders.

The basic ideas here are the same, however, there is one significant difference between

the stack algorithm and the Viterbi algorithm operation which complicates the

simulation issue: In contrast to the Viterbi algorithm, the time of a correct decode for

the stack algorithm is not a stopping time. In this application, we avoid this problem

by using a termination strategy which we shall refer to as the A-stopping rule.

155

In this chapter, we will only consider the problem of estimating bit error rates

associated with (stack algorithm) sequential decoders. However, we shall note that the

error event simulation technique can be used to estimate many key performance

parameters such as error burst length, error burst length distribution, and so on [24].

We shall begin this chapter by briefly reviewing the concept of error events or

bursts of decoding errors.

6.2 Error Events and Performance Parameters

Let u f = (u i,U 2 ,..) denotes the final path hypothesized by the stack algorithm

decoder. Likewise let uc = (uf,U 2 , . . . , u£,...) denotes the correct (that is, the

transmitted) path. In the error event simulation technique, the index k is associated

with the operation of the encoder. That is, k is the time index on the trellis diagram,

not for the input bit stream. Thus for a rate b/n convolutional code, the passage from

time k to k+1 corresponds to b information bits input into the encoder and n bits being

shifted out. Now recall that decoding errors occur when the decoder output sequence

diverges from the correct path. That is, when u f diverges from u c. We call such a

divergent path an error event, or a burst of decoding errors, or simply, a burst.

Specifically, a burst is a partial sequence of all incorrect decodes which is immediately

preceded by and immediately followed by correct decodes. The burst length is simply

the number of incorrect decodes in a burst. Note that the minimum burst length is K-I

(recall that Kb is the code constraint length for a rate b/n convolutional code.) This is

true because once an incorrect state is entered into the encoder, it takes K-I

consecutive correct information symbols to flush out the encoder shift register. For

example, Figure 6.1 shows a burst of length 5. Notice that the hamming distance

between the code sequences of the error event and the correct path in Figure 6.1 is 7.

Furthermore, note that this error event differs in only one input bit from the correct

path. Hence, the number of bit errors that will be caused by decoding the error burst

shown in Figure 6.1 instead of the correct path will be I (recall that a dotted line

denotes the output generated by the information bit I and a solid line denotes the

output generated by the information bit 0.)

156

State

0 00 00 00 00 00

I 11 . . . I

2 1 0 \ /
• * - sX • • / • *

■ ; . ;:.3. ■

4

• • • N. • » I » •

10\ V

. . 5

6

\ /11
• • • • \ • / • •

7

8

01 \ /• • • • \ */ • *

Figure 6.1: An illustration of a burst of length 5. The bold line is the correct path.

Now, suppose that the decoder has made a correct decode at a given time j. That

is, the decoded branch uj+i emanates from the correct path node at time j on the trellis

diagram. On this event, define the random variable

Nb(J) £
the total number of bit errors due the error event

(6 .1)immediately following the correct decode at time j

In the above definition, we must allow the possibility of a correct decode at time j+1.

In this case, the burst is said to be trivial, and causes no bit erros. That is, Nb(J) = 0.

Nextconsidertheexpectation

Nb,4s E[Nb(J) I uc transmitted and correct decode at time j]. (6.2)

In the case of binary input-output channels, it turns out that Nb does not depend on j

and uc [57, Chapter 4]. Thus, hereafter we can arbitrarily set uc to be the all-zero

path, and time j = 0. In addition, notice that since Nb does not depend on J and Uc , it

follows that

Nb 4: the expected number of bit errors per correct decode. (6.3)

Since each transition from time k to time k+1 represents the encoding of b bits, it

follows that

Pb £ (6.4)

is the average number of bit errors per correct decode. Pb is the key parameter which

we shall estimate via importance sampling using the error event simulation technique.

We shall now define

the collection of all error events emanating
^ - from a correct node at time j = O (6,5)

Ijhat is, <Eq is the collection of all bursts immediately following the correct decode at

time j = 0 (including the trivial burst.) An error event in T0 will be represented by its

divergent branches u'= (ui,...,Um) where m is the burst length. Let nb(uc,u') denote

,the number of bit errors caused by decoding u' instead of uc when uc was transmitted.

P(u '|uc) shall denote the conditional probability of decoding u' instead of uc given

that uc is transmitted and given that the decoder has made a correct decode at time

j = 0. Then

Nb = 2 nb(uc,u') P(u '|uc). (6.6)
i u'elEo .

6.3 The Error Event Simulation Method

The error event simulation technique is an importance sampling technique which

is based on the sum (6.6). Our desire is to estimate the average number of bit errors

per correct decode, Pb, via importance sampling. From (6.4) we can see that this is

equivalent to the problem of estimating Nb. It turns out that only few terms dominate

the sum (6.6). Thus the error event simulation method must emphasize those error

events because these are precisely the "important" error events in

The basic princ ip le of the error event simulation technique is that each sim ulation

nap will produce precisely one simulated error event. The data sequence

V(c)= (V ^.V ^,...) for the 0'th simulation run is generated by sequentially encoding

the data sequence to produce a sequence of branching decisions U = (u'i ,u'2 ,...). Each

simulation is conditioned on a correct decision at time j = 0. As soon as the encoded

path u' merges with the correct path on the trellis diagram at some time J > 0, the

simulation is terminated. Consequently, the length of an error event simulation is a

random variable. Define

159

T(0 ̂ 4= time of the first correct decode. (6.7)

That is, T(0) is the first time that the decoded path remerges with correct path on the

trellis diagram (after the correct decode at time j = 0.) Then each simulation run needs

to generate the simulation data only up to time T^\ As a result T ^ is the length

of the simulation data V ^.

Now recall that in the previous chapter, we have presented the DELTA stopping

rule for the stack algorithm simulation. Recall that the basic idea behind this stopping

rule is to discard the inactive subtrees as the search progresses and concentrate on only

the active ones which contain the TOS node. In this chapter, we slightly modify this

rule in order to apply it to the error event simulation scheme. We shall refer to the

termination strategy in the error event simulation technique as the A-stopping rule.

This rule is given below.

160

The A-Stopping Rule (For one simulation):

Initialize: Start the search at node j.

DOi= I,... ;■■■■”

Simulate until only one subtree is active, call it Sp..

IF Pj is a correct node THEN

STOP. v .

ELSE

Delete inactive subtrees from the stack.

Reassociate the remaining stack nodes to subtrees Sg with S e Dp. .

Compute Mg(t) for Se Dp..

■: ENDIF

CONTINUE

Observe that by following the above termination strategy, the terminal path that

the stack algorithm finally chooses is simply (j*Pi>p2>—)• Thus for the 0'th simulation,

T ^ is simply the time when the simulation stops. In other words, it is the first time

that one of the node p{ for i ;> I is found to be a correct node. As a consequence, the

simulation termination time T ^ is a stopping time. That is, given the infinite sequence

of channel outputs V ^= (V ^.V ^,...), the event {T(0) = t) is determined to be true or

false by only the data up to time t, that is, (V ^\ . . . , V(0)).

161

6.4 Importance Sampling and Error Event Simulation

Let I11' (v) be the indicator function for decoding the error event u'. That is,

I11. (v) = I if the channel output sequence V causes u' to be detected, otherwise,

Iu' (v) = 0. Then the importance sampling estimator for P(u' |uc) is

where

P(u'|uc) =-!- £ W(VwjIuc)V (V wj)
L 0=1

. (0) . c, K fk(Vk l UD
. W(VibjIuc) = n

(6.8)

(6.9)
k=l fk(VklUk)

The likelihood (6.9) is the importance sampling weight. Notice that (6.9) implies that

the importance sampling model is memory less, but possibly non-stationary with

transition probability f£(vk | u |) at time k. Furthermore, note that we must have

fk(vk |uD > 0 whenever . fk.(Vkl-u|) > 6 (6.10)

so that the importance sampling weight (6.9) is well defined.

A similar computations to the ones used in [24] indicates that the importance
A

sampling estimator P(UrIuc) as specified by (6.8) is unbiased. Indeed, if we let

I111'(Vwj) be the indicator of the event

{ Twj = t and path u' decoded }.

Then because Twj is a stopping time, it follows that I^u'(Vwj) depends on only

(V̂ oj, . . . ,V[0J). As a result, we can write V(Vwj) as
• ■ ■ ■■ ■. • VO ... ̂ v... • .. ■

' '• - ' . • ' . ■ , _ ' ' :

V (V wj) = L V M oj, . . . , vWJ).
t=i

Consequently, we get

162

E* [w(V I uc) Iu- (V)] = £ e *[W(VIuc)I t̂ V 1,...,Vt)]
t=i

“ r rJL fk(VklUk)
S ' i fk(vk |uD

V O l , . - . , V t)

x n IkOk I uk) dvi, . . . , dvt
k=l

£ J../ ItlU-Oi,- ,v t) n fk0k Ok) dv1(. . . , dvt
t=l k=l

= I E [V]
t=l

= E[Iu-]

= P(u '|uc). . . .

Thus the importance sampling estimator (6.8) is unbiased (recall that the simulation

data is i.i.d. and thus, P(u' | uc) is unbiased if and only if it is unbiased for L — I.)
A

Finally, notice that because P(u' | uc) is unbiased, it follows that importance

sampling estimators for Nb and Pb are also unbiased.

6.5 Numerical Examples

In this section, we shall present some simulation results that illustrate the power

and accuracy of the error event simulation method. Throughout this section, we shall

consider rate 1/2 convolutional codes that operate on the binary symmetric channel.

All of these codes will have the same constraint length 5. However, the generators for

these codes will be different. The first of these codes is the constraint length 5 code

presented in the previous chapters. This code will be referred to as code I. The

second and third codes will be refered to as code 2 and code 3 respectively. The

163

convolutional encoders that generate these codes are shown in Figures 6.2 and 6.3.

Now for a given error burst u', we shall let d(uc,u') denote the hamming distance

between Uc and u'. Furthermore, we shall define the information weight of a given

error burst u' as the number of information bit errors nb(uc,u')- Tables 6.1-6.3 show

all the error events with hamming distances that are smaller than 10 that are associated

with code I , code 2, and code 3. These tables also list the hamming distances and the

information weights associated with these codes.

g } = 31 (octal)

g2= 27 (octal)

states = 16

Figure 6.2: The ConvoliUtional encoder for code 2.

165

output
information

g = 23 (octal)
-

g2=35 (octal)

states = 16

Figure 6.3: The convolutional encoder for code 3.

166

Table 6.1: A list of all the error bursts with hamming distances less than 10 for
code I .

Weight Distance Error Bursts
I , 7 1110100111
3'"' J ... T . 1101000000010111

- 2 8 110100111011
4 ■ .j 8 111001000001001011

. • 6 8 110100000010000001001011
3.7 ' ■« 9 :■ ■ 11011101001011

. 5 "' I 9 11O1OO00110001001011
5 I 9 11100100001010001011
7 : 9 11010000001000001010001011 j

' 2".'.- ; 10 I 11100111010111
2 .; io 1110101001100111
4 ‘ 10 1101111010001011
2 10 111010010010100111 :
« : ' 10 11100100110000010111 i

4 J 10 11010000001011010111
6 :i io 5 1101000011001010001011

■ 4 10 1110101010000000010111
4 ■ • ■■ 10 1101000000011001100111 ;
6 10 I 1110010000100110001011
4 ; 1 io ..i 111010010001000000010111

:■ 4 ■ 10 I 101000000010100101001II
6 . io I 10100000010001100000101II
8 i 10 1101000000100000100110001011
6 ; i 10 1101000000011010000000010111
6 :j i o ■■ I 110100000001010001000000010111

.-I

167

Table 6.2: A list of all the error bursts with hamming distances less than 10 for
code 2.

Weight Distance Errorbursts
I 7 1110010111
3 7 1110100000001011
2 8 110111001011
4 8 110100100000100111
6 8 110100100000010000001011
3 9 11010010111011
5 9 11010001010000100111
5 9 11010010001100001011
7 9 11010001010000010000001011
2 10 11101011100111
2 10 1110011001010111
4 10 1101000101111011
2 10 111001010010010111
4 10 IIIOIOOOOOIIOOIOOIII
4 10 11101011010000001011
6 10 1101000101001100001011
4 10 T 110100000000101010111
4 10 1110011001100000001011
6 10 1101000110010000100111
4 10 I I 1010000000100010010111
4 10 111001010010100000001011
6 10 11101000001100010000001011
8 10 1101000110010000010000001011
6 10 1110100000000101100000001011
6 10 111010000000100010100000001011

168

Table 6.3: A list of all the error bursts with hamming distances less than 10 for
code 3.

Weight Distance Errorbursts

I 7 1101011011
3 7 1110000000101011
2 8 111000110111
4 8 110110000010000111
6 8 111000000001000010000111
3 . 9 11101110000111

- 5 . 9 11100000110010000111
5 9 11011000000101000111
7 9 11100000000100000101000111

■; 2 10 11011011101011
2 10 1101010110011011
4 10 1110110101000111
2 10 11010110000101101I
4 10 11011000110000101011
4 10 11100000000111101011
6 10 1110000011000101000111
4 10 1101010101000000101011
4 10 1110000000100110011011
6 10 1101100000011001000111
4 10 110101100010000000101011
4 10 111000000010100001011011
6 10 11100000000100110000101011
8 10 1110000000010000011001000111
6 10 1110000000100101000000101011
6 10 I 1100000001010001000000010101I

169

Tables 6.4-6.6 show some simulation results for code I, code 2 and code 3,

respectively. The first two columns of these tables give the code’s information weights

and hamming distances. The third column gives the importance sampling estimates

P(u' I uc). Finally, columns 4 and 5 give the accuracy of the estimates P(u '|uc) and the

relative efficiency gains (reg) respectively. The estimates given in Tables 6.4-6.6 are

based on 9,000 simulation runs. Specifically, we use L = IOOO simulation runs per

error burst. For each of the codes that were simulated in this chapter, the

corresponding error bursts used in the simulation are the first 9 error events listed in

Tables 6.1-6.3.

The simulation model that we have used to obtain the simulation simulation

results in this chapter was a non-stationary memoryless BSC model with a time

varying crossover probability eJd for i = I or 2. Specifically,

if Ufc * Ufc

if Ufc = Ufc
^ (6. 11)

fpr i=l or 2. It is noted that in this context, the index k corresponds to the code symbol

transmission time and the index i corresponds to the code symbol bit.

We should finally mention that we have also included in Table 6.7 some

simulation results which list some importance sampling simulation estimates that were

obtained using the Viterbi decoder instead of the stack algorithm sequential decoder1.

These simulation results use the same error bursts and the same number of simulation

runs as in table 6.4. It is noted that in this case, the performance of the stack algorithm

I. W e are grateful to J. C. Chen for providing the Viterbi decoder simulation results. Mr. Chen is
a Research Assistant o f Professor Sadowsky at Purdue University.

170

decoder and the Viterbi decoder should be very similar. Consequently, the Viterbi

decoder simulation results can be used as a verification of the accuracy of the estimates

obtained using the stack algorithm decoder.

Table 6.4: Bit error probability estimates for code I with e - .04, and L= 1000
simulation runs per error burst. W= information weight, D= hamming
distance, A= relative accuracy estimates, and reg= relative efficiency
gain estimates.

W J m ’ P(u'|uc) A reg

I i
j

.951 x IO"8 4.89 %
I

.4 x IO8

3 j 7 J .841 x 10~8 5.33 % : .4 x IO8 j

2 ' I 8 j .895 x 10~8 I 7.85 % j .2 x IO8 ;

4 I 8 j .870 x 10"8 ; 7.98% .2 x IO8
i

6 : 8 ; .961 x 10"8 i 7.53 % ; .2 x IO8 ;

' 3 i
i

9 5 . 1 1 3 x io"9 ; 5.95 % .3 x IO10 ;

. 5 ■ j 9 .135 x 10"9 ; 5.29 % .3 x Ip10.:

5 9 j .119 x IO"9 5.77 % .3 x IO10 ;

7 ■ j 9 : 5.88 % .3 x IO10

171

Table 6.5: Bit error probability estimates for code I with E = .04, and L = 1000
simulation runs per error burst. W= information weight, D= hamming
distance, A= relative accuracy estimates, and reg= relative efficiency
gain estimates.

W D P(u'|uc) A reg

I 7 .812 x IO-8 5.46 % .4 x IO8

3 7 .867 x 10~8 5.18% .4 x IO8

2 8 .895 x IO'8 7.85 % .2 x IO8

4 8 .793 x 10"8 8.41 % .2 x IO8

6 8 .883 x HT8 7.91 % .2 x IO8

3 9 .106 x IO"9 6.22% .2 x IO10

5 9 .129 x IO-9 5.46 % .3 x IO10

5 9 .125 x IO-9
■ v \

5.59 % .3 x IO10

7 9 .241 x IO-9 53.2 % .2 x IO8

Table 6.6: Bit error probability estimates for code I with e = .04, and L= 1000
simulation runs per error burst. W= information weight, D= hamming
distance, A= relative accuracy estimates, and reg= relative efficiency
gain estimates.

W D P(u'|uc) A reg

I 7 .964 x IO"8 4.85 % ,4 x IO8

3 7 .928 x 10"8 4.98 % .4 X IO8

2 8 .870 x 10"8 7.97 % .2 x IO8

4 8 .876 x 10“8 7.95 % .2 x IO8

6 8 .805 x 10"8 8.34 % .2 x IO8

3 9 .103 x 10"9 6.34 % .2 x IO10

5 9 .122 x IO"9 5.67 % .3 x IO10

5 9 .113 x IO"9 5.97 % .3 x IO10

7 9 .121 x IO"9 5.72 % .3 x IO10

173

Table 6.7: Bit error probability estimates for code I using the Viterbi decoder
with e = .04 and L = 1000 simulation runs per error event. W=
information weight, D= hamming distance, and A= relative accuracy
estimates.

W D P(u'|uc) A

I 7 .808 x IO"8 5.47 %

3 7 .786 x IO'8 5.58 %

2 8 .876 X 10"8 7.95 %

4 8 .967 x 10"8 7.50 %

6 8 ,735 x IO"8 8.77 %

3 9 .114 x IO"9 5.91 %

5 9 .132 x 10"9 5.37 %

5 9 .IlOx IO"9 6.07 %

7 9 .123 x IO"9 5.66 %

Now recall that given the estimates of P(u'|uc), then the estimates of the

expected number of bit errors per correct decode Nb can be also estimated using the

sum (6.6). Table 6.8 below lists the estimates of Nb for the three convolutional codes

discussed earlier by using the simulation data listed in Tables 6.4-6.7, along with the

sum (6.6).

174

Table 6.8: The expected number of bit errors per correct decode estimates for
code I, code 2, and code 3 with e = .04, L = IO(K) simulation runs per
error event. A= relative accuracy estimates.

^ : : .
■ Nb • ,v ,--V.;

S Code I ’ A - Code 2 ■ a ■S Code 3 A

.15 x IO-6 : 3 .7 % ,14 X i r 6 3.9% .14 x i r 6 3.8%

Table 6.9 below compares the expected number per correct decode estimates for

code I that were obtained from the simulation of the stack algorithm and the Viterbi

decoders. Note that the difference between both estimates is insignificant.

Table 6.9: The expected number of bit errors per correct decode estimates for
code I with e = ,04, and L = 1000 simulation runs per error event. A=
relative accuracy estimates, SA denotes stack algorithm, and VD
denotes Viterbi Decoder.

'..... Cs
Nb ..

SA A VD ■; A

.15 x IO-6 3.7% .13 x i r 6 : 3.9%

In conclusion, this chapter has demonstrated that the error event simulation

method used in conjection with importance sampling could prove to be an extremely

powerful tool for performance evaluation of sequential decoders. This presentation has

considered only the estimation of the bit error probabilities. However, as stated earlier,

we should note that the error event simulation model can actually efficiently estimate

key parameters such as the error burst length, the error burst length distribution and so

176

CHAPTER 7

SEQUENTIAL EDGE LINKING

SIMULATION

7.1 Introduction

In the previous chapters, we have demonstrated that the importance sampling

techniques which we have presented were very efficient for estimating the key

quantities that characterize the stack algorithm sequential decoders. In this chapter, we

shall consider the application of importance sampling to a different problem.

Specifically, we consider the simulation of the sequential edge linking (SEL)

algorithm. This is a stack algorithm technique for detecting edges in images that has

been proposed by Eichel and Delp [84-86].

We shall begin this chapter by presenting some background on sequential edge

detection. We shall then develop various definitions which are needed for the

discussions to follow. This development is then followed by the presentation of our

importance sampling technique for simulating the SEL algorithm. The concluding

section in this chapter discusses some of the key issues which are related to this

application and the potential application of our technique to performance evaluation of

the SEL algorithm.

177

7.2 The Edge Detection Problem

7.2.1 Introduction

Edge detection represents one of the first processing steps in image processing

and computer vision. Research into methods of finding edges in noisy images has been

an active field of investigation for many years. Reflecting this importance, the

literature devoted to this problem is enormous [67-86] and many different approaches

have been proposed.

The general edge detection problem is illustrated in Figure 7.1. Here the input is

a two-dimensional digital image. By digital, we mean that the image intensity function

is not continuous, but rather, defined on an array of points. The values of the intensity

function at these points represent the brightness or gray level of the digital image.

These image elements are called pixels (for "picture elements"). Edges of interest in

real scenes are intuitively defined as picture elements which lie on the boundary

between regions of different intensities or gray levels; that is, edges are represented in

an image as a discontinuity in intensity. Hence the task of an edge detector becomes

one of identifying intensity discontinuities. Because edge elements are associated with

a rapid change in gray level as a function of the spatial domain the edge detector is

usually implemented as some form of differential operator or high-pass filter which

emphasizes high spatial frequency components and suppresses areas with little change

in intensity. The interested reader is referred to [71], [78], [82] and references therein

for in depth discussion of edge operators and the general edge detection problem.
: ■ V , ' - N j

Digital image

:■■■■_ ' ... ; =■'. : - •.. ■ ■ \ . -■ • . - '
. ;. ■■ -' . ■

Edge Edge

■ .
—:— --■—■—

operator
W tracing

algorithm

-

Edge

Figure 7.1: The general edge detection problem.

7.2.2 Digital Images and Random fields

A digital image shall refer to a sample function of a two-dimensional discrete

random field [71]. Such sample functions will consist of a rectangular array of

numbers called pixels. These pixels may represent the brightness or the gray level at

each point of the digital image. The points of the rectangular lattice at which the

pixels are defined are called pixel locations or pixel indices, their spacing is uniform

and equal in both directions; furthermore, they are indexed by N2 where N is the set of

integers. Due to the rectangular nature of the lattice, each pixel has a unique set of

eight neighbors. For a given random field, we shall let Yy denotes the pixel or

observation at the pixel location , j). Furthermore, we shall assume the existence

179

of two conditional densities on the random field. The first is the conditional density for

the pixels on the edge, namely

Pi (Yy = y) = i >(Yij=y | Hs on an edge). (7.1)

The second is the conditional density for the pixels not on the edge, namely

Po (Yy = y) = 2*(Yij = y I n s not on an edge). (7.2)

Again, we note that the term "density" whenever used will mean either a probability

distribution function or a probability mass function depending on the context.

7.2.3 Image Paths

An image path will be defined as a sequence of successively connected pixel

locations such that for any subset of three pixel locations in this sequence, the

directions defined by the first two pixel locations and the second two pixel locations

differ by jc/4 or less.

1,80

An image path

Figure 7.2: An example of an image path.

An image path m of length n can fee specified in one of two ways. The first is

simply the ordered sequence of pixel locations comprising the image path:

m = fV V • " - U -

The second is by specifying a root pixel location J0, a start direction do, and an

ordered set of letters a j, a2 , • • •, an:

m = J0 x d0 x [ai, a2, • • -, an] ; a, e {L,S,R} (7.3)

where the letters L,S, and R stand for left, straight, and right respectively.

181

The location of each observation in the rectangular lattice can be obtained in a

recursive fashion from the letters aj, namely each pixel location Jn in a given image

path can be obtained from the pixel location by moving in the image array in the
-4 - —>

direction dn_i. The direction to the n + I pixel location is then obtained from dn and

an+i according to the following rule:

dfi+i = ■«
dn + It/4 if an+! =L

dn if 3-n+l = S

dn - Jt/4 if a^ i = R

7.3 Sequential Edge Detection

The edge detection problem can be formulated as a tree searching problem.

Given a sequence of turns Ca1, z.2 , • • •) on the digital image, then these relative

directions are equivalent to branching possibilities in a ternary tree with each tree

branch being an L, S, or R (see Figure 7.3.)

In real applications, the size of a typical digital image is large and hence the

resulting decision tree is enormous. Consequently, an exhaustive search approach

which examines every possible candidate edge contour Mid chooses the "best"

according to some predetermined criterion is not possible. Sequential tree

searching algorithms provide a practical alternative through a structured search

strategy in which the paths are extended sequentially, with the current most

probable path extended by one observation at each iteration.

For this approach to succeed in finding edges, a means of comparing all paths

hypothesized must be provided. This comparison is accomplished by associating

182

with each path a statistic called a path metric which is an indicator of the likelihood

that the corresponding path coincides with the true edge. Consequently, only the

most probable paths which presumably should include the true edge path are

extended by the searching algorithm.

There are many sequential edge detection algorithms which have been

proposed in the literature. Examples include the work of Chien and Fu [70] and

Martelli [68], [72]. Specifically, Chien and Fu proposed the use of what is known

as depth-first tree search to extract the heart boundary from digitized chest X rays.

In a similar fashion, Martelli formulated the edge detection problem as a graph
£

search and uses the A algorithm described by Nilson [67] to minimize a cost

function determined by the heuristics of the problem at hand. Both of the above

methods use a cost function which is highly specialized to the type of image under

consideration and thus limit their applications.

Many other investigators have attempted to employ sequential tree or graph

searching algorithms in the context of edge detection. Ashkar and Modestino [74]

seem to have come the closest to a truly sequential search. However, their metric

suffers from two problems. Actually, the metric Used in their search technique is

purely ad hoc and hence no analytical treatment of the search dynamics can be

undertaken. More seriously, their technique makes explicit use of experimentally

determined parameters and look-up tables and requires a nominal or a "prototype"

contour to guide the search. This represent very high quality a-priori information

and thus limit the applicability of this technique.

The interested reader is referred to [71], [82] and references therein for more

background and in depth discussions of sequential edge detection.

Now notice that in order to relate the edge detection problem to tree

searching, we must first model the collection of possible edges as a tree. Given

two successive edge pixel locations, then the edge can be expressed as a sequence

of relative direction changes, and the relative directions are equivalent to branching

possibilities in a tree. For example, Figme 7.3a illustrates an edge in a 6 x 6

noiseless digital image for which all changes Of directions are of Jt/4 or less,

namely the relative directions are 45 degrees to the left, straight, or 45 degrees to

the right (recall section 7.2.3). Figure 7.3b is a tree for which the starting point is

the first two pixel locations in the lower left comer of Figure 7.3a. The bold line in

Figure 7.3b represents the edge in Figure 7.3a. Observe that knowing two

successive pixel locations is equivalent to knowing the 2'nd pixel location and the

direction from the l'st to the 2'nd pixel location, i.e, two successive pixel locations

on the edge define a "from-to" direction.
iv”.

ft : M f t w

Figure 7.3: (a) an edge in 6 x 6 noiseless image; (b) the corresponding tree
representation of the edge in Figure 7.3 (a). " ■>

With this background on sequential edge detection, it becomes clear that one of

the critical issues in this problem is the selection of a good initial point; as well as, a

good initial direction. The performance of the entire technique will depend upon the

identification of both of these quantities. Since edges are associated with a rapid

change in intensity or gray level as a function of the spatial domain, it follows that the

larger the magnitude of the gradient at a given point in the image, the higher the

probability that such a point actually lies on an edge. Thus root pixel locations can be

easily obtained by imposing a high threshold on the gradient magnitude output of the

pre-processing stage which proceeds the search in general. Likewise, because edges

are searched in a direction perpendicular to the gradient direction, the root direction do

at the root pixel location J0 can be also obtained from the output of the gradient

operator at the pre-processing phase. In summary, the pre-processing of the image
■— > -

provides J0, and do- The interested reader is referred to [85] and references therein for

more discussion about the root pixel location and the start direction selection problem.

7.4 Sequential Edge Linking

In this section we shall describe a sequential edge detection scheme known as

sequential edge linking or SEL which has been proposed by Eichel and Delp [84-86].

The SEL algorithm is a sequential tree searching technique which is inspired by the

sequential decoding of convolutional codes. The main difference between the SEL

algorithm and the other sequential techniques discussed earlier is that the SEL path

metric used is based on a dynamic model of the edge behavior.

The SEL algorithm is based on the stack algorithm. Due to the random field

model on which paths are based, a slight modification of the stack algorithm must be
■ — ^

accommodated. Actually, the root pixel location J0 and the root direction do must be

specified before starting the stack algorithm search. This modification is needed in

order to specify the initial search direction. As noted earlier, these quantities can be

provided by the pre-processing phase which proceeds the search.

In the SEL algorithm, the edge sequence { aj, a2 , • • • } in the digital image is

modeled as a K'th order Markov Chain [63]. In this model, the state of the process Xn

for n > 0 is defined to be the last K transition letters. That is,

so that when the process enters the state at n + 1 from that at n, it outputs a letter

an+i e { L,S,R }. In this model, the initial state Xq is assumed to be fixed and given.

By letting J„4:C(Xo, Xi , .* ‘ • * Xn), then by the Markov assumption it follows that

WX-m-i — xm-i I Xn =XnjĴJ1) = KXn+j = xn+1 j Xn = xn) (7.5)

or equivalently,

W&n+l I ^n) ~ W&n+\ I ^ n).

Consequently, it follows that the a-priori probability of an edge path m of length n is

Wm I X0) = 2foi, a2, • • •, a„)

= f t !K X i I X j_ !). (7 .6)

As has been pointed out earlier, most of the sequential edge detection schemes
' <• ' . - ' ■

proposed to date involve nodes metrics which tend to be heuristic. As stated

previously, the SEL algorithm path metric is based on a dynamic model of the edge

behavior. This path metric is defined as follows: if we let y be some node at depth n in

the tree, and m = f JqjI1, • • •, L] be its corresponding image path on the image, then

the metric at node y is

My 4 £ [ln() + ln(WXk I Xk̂ i))]
r k=i Po(Yk)

(7.7)

where yk is the pixel value or observation at Jfc, po(.) and pi(.) are the conditional

densities defined on the random field, and Xk is the state in the SEL Markov model.

Observe that this metric involve two different components which play different roles.

The first is a function of the data in the real image, and the second component is just

the a-priori probability of the hypothesized path.

187

7.5 Error Segments and Remerging

Because of the two-dimensional lattice structure of the random field, it is possible

fbf incorrect image paths to merge with the correct edge path. These "rertterged paths"

correspond to incorrect paths in the tree which behave exactly like the correct path

after the point of remerging. On the image, however, a remerged path corresponds to a

hypothesized edge which briefly diverges from the correct edge path. Consequently,

the hypothesized image path contains an error segment of some length n (Recall that

the same phenomenon occurs in the sequential decoding of convolutional codes.) For

example, Figure 7.4a below shows a hypothesized image path m which coincides with

the edge path e up to some pixel location j, branches off at J j and then remerges with e

at some pixel location j. In this case, m contains an error segment of length 3.

edge
A

/-r: --; ^ V ■

\ ; \
'• ' I

' I ■ >
' I

/
- \

1 ;

* 7
. . , : ; i :

/

\
■ .

:
\ ‘ ■ ■ ■

edge

(b)

Figure 7.4: An illustration of the remerging phenomenon: (a) a remerging image
path which terminates at the edge and (b) a remerging image path
which eventually diverges fromthe edge.

Recall that the remerging phenomenon corresponds to incorrect paths in the tree

which behave exactly like the correct path after the point of remerging. It follows that

the notion of a node in the bee being "correct" becomes somewhat ambiguous. Thus, a

precise definition of "correctness" in this context is needed.

Let Y be some node at depth n in the corresponding tree of a digital image.

Because of the many to one correspondence between nodes in the tree and nodes in the

image, it follows that node y is uniquely represented by an image path of depth n

m =]• For such amode, we define

189

iY leading pixel location of nodey,

and

i^, • • •, j^_k+1 = k leading pixel locations of node y.

root node node Y

2 leading pixel locations of node Y

(a) (b)

Figure 7.5: An illustration of the relationship between a node y in the tree and its
corresponding image path, (a) shows node y, and .(b). shows its
corresponding image path.

Observe that for the node shown in Figure 7.5, the corresponding SEL Markov

state model is simply the last two turns or transition letters; i.e, (R,R) (assuming a 2'nd

order Markov model). This is determined by the 4 leading pixel locations of node y.

In general, the SEL Markov state model which corresponds to a given node is

determined by* its K+2 leading pixel locations where K is the Markov Ghain order.

We are now ready to define the notion of "correctness" in the context of

sequential edge detection.

Definition: Lef ̂ be ^ given node in ihetmet Then node y is said to be k-correct

if its k leading pixel locations are on: the edge.

Now let y be a k-correct node at depth n in the tree. Next suppose that a correct

decision at node y has been made.

Define

; PY = (Y> Pi , p2, *■'' •)

4b H e Iefflainri path emanating node f (final selected path)

Then,

I j % min {i : Pj is k-correct} .

h
M r
I o

if Pi is k—correct
if Pf isnot k-correct

length of branching errors following

(7.8)

the correct decision at node %

Consequently, (y, p i, • • •, Ply) is an error burst of length Ly, or simply a burst o f Ly

branching errors which is immediately proceeded by a k-correct node and

immediately followed by the detection of a k-correct node. Of course, we must allow

191

the possibility of a correct branch decode immediately following the correct decode at

node y. In this case, we say the error event is trivial, and hence Ly = 0. Finally, if we

define

Lb = E[Ly I Y is m-correct] (7.9)

then, Lb is precisely the expected number of branching errors per correct decision.

An illustration of an enror burst of length 3 assuming k = K+2 where K
is the order of SEL Markov model (K = 2): (a) shows the error burst
and (b) shows its corresponding error segment on the digital image.

7.6 Sequential Edge Linking Simulation

Out main objective in this section is to develop a simulation technique for

simulating the SEL algorithm which exploits the importance sampling principle. We

begin by developing various definitions which are needed for the discussions to follow.

7.6.1 Preliminaries

Consider the random field defined in section 7.2.2 and let Yjj denotes the pixel

value or observation at a given pixel location (i,j) in the field. Next let

D(0* - pixel index set for the 1'th simulation (a random set)

Y(°) = { Yfj5 : (ij) e) (i.e., the data record for the d'th simulation)

In the sequel, we shall consider the problem of estimating expectations of random

variables that are ^ “measurable for some node y. That is, we shall consider die basic

problem discussed in Section 3.4.2. Recall that such a problem can be stated as

follows: .

The Basic Problem: Given the event Ey, estimate

E t X j E y]

where X is a f^-measurable random variable.

Notice that because the SEL algorithm is based on the stack algorithm, it follows

that the problem of estimating most of the key parameters associated with the SEL

algorithm can be formulated as in the basic problem. In addition, note that from

Theorem 4.1, it follows that for any ^-measurable random variable which is

associated with the SEL algorithm we have,

194

E[X I Ey] =? E[X I yis the root node]

7.6.2 The Importance Sampling Estimator

Let D ^ , and Yy be defined as in section 7.6.1. Likewise, let po and pi be

the two conditional densities defined on the random field. Recall that these densities

were defined as follows:

Po(y) = tK Yij =y I (i,j) is not on an edge)

and

P i (y) = Y iJ = y I (i,j) is on an edge).

Next for any finite set of pixel locations D, define

where

f y (y ; D) = n %(Yij)
(i.j)eD

- I p i^y ̂ if (i,j) is on edge
lj I po(y) if (i,j) is noton an edge

(7.10)

(7.11)

(7.12)

(7.13)

and Y is the simulation data record associated with the pixel locations in D. Observe

that fy (.;.) is simply a finite order distribution on the random field. Furthermore, note

that conceptually f y (y ; D) is just the joint probability that the random variables

Yy e dyy for all (i,j) in D.

Now let us consider the problem of estimating1

a = E[X] (7.14)

I. For simplicity, we shall drop the conditioning on the event E y in our notation. Hence, hereafter
we will write E[X] instead of E[X | Ey].

195

where X is ^-measurable. As we have seen previously, importance sampling is

applied by simulating using a different joint density fy (.;.) instead of fy (.; .)• By

letting po and p* be the importance sampling densities defined on the random field,

then for any finite set of pixel locations D,

where

fv(y;D) = n fJ(Yij) (7.15)
(U) e D

fj(y > 4
Pt (y) if (i,j) is on an edge
Po(y) if (Uj) is not on an edge

(7.16)

by letting

W(O)^ n y ^ .
(U)Vdw fij(Yy)

(7.17)

be the importance sampling weight for the 0'th simulation, then the importance

sampling estimator for a is

a* = j - X X(0) W(0) (7.18)
. ■ 0=1

where X ^ , . . . , are independent simulation data records which are generated

from the simulation density fy(.;.).

Claim 4.1: E*[X(0)W(0)] = E[X].

A /V

Proof: Let 2) be the set of all pixel locations, D be some subset of 2>, and Y be

the simulation data record which is associated with D. Next note that on the event

= D, there exists some function g(.;D) such that X(0̂ = g(Y^;D). Consequently,

196

for { = 1,2, • , V . JL

E* [X(0)W(0)] = £ E* [g(Y(0);D) W(0); D((,) = D]
D e *D

= Z j / g (y ; D) W ^
De ® ■ (i, j)e D

\n m y m

X JJ g(y;E> >
- . f . . (i,j)e D

De © T i
(MleD

I T

= E JJg(y;D) T l M Yij) i {D<”=D}(y)dy
De © (i,j)eD

= Ef X]. '

»*■
Claim 4.2: a is an unbiased estimator of a.

Ifetiee that the proof of Claim 4.2 follows from Claim 4.1 because the simulation

data X ^ ’"’’ X ^ are independent random data records that are generated from the

ImportaneesamptingdistributionfYt

2. The double integral sign JJ in the next equations and elsewhere indicates a multi-dimensional
integration.

197

7.6.3 Termination of the Simulation

The SEL simulation termination rule which we shall use for the SEL algorithm

Simulation is basically the A-stopping rule presented in the previous CHajptety The

A-stopping rule was slightly modified here in order to take into account the new

definition of "correctness" that we have introduced in the sequential edge detection

context. Out new termination strategy is called the A'-stopping rule.

Assume that y is the root node and suppose that the (I Th simulation starts at t = 0.

Then, the A-stopping rule is

The A-Stopping Rule (For the 0'th simulation):

Initialize: Start the search at node y.

j=i, • ■ .

Simulate until only one subtree is active, call it Sp..

IF Pj is k-correct THEN

’..'' STOP' ;

ELSE

Delete inactive subtrees from the stack.

Reassociate the remaining stack nodes to subtrees Sg with 8 e Dpj-.

Compute Mg (t) for 8 e Dp.,

ENDIF

CONTINUE ; . :

198

Note that the basic idea behind the above rule is again to discard the inactive trees

as the search progresses and concentrate on only the active ones which contain the

-"!CS Mode/-. ‘

7.6.4 Examples and Discussions

In this chapter, we have presented a new technique for the simulation of the SEL

algorithm using importance sampling, when properly implemented, this technique can

be used to efficiently estimate most of the key parameters which are associated the

SEL algorithm. In fact, in addition to the basic estimation of error probabilities, this

technique can be applied to estimate

1) The expected number of metric computations;

2) The distribution of computation;

3) The number of branching errors caused by an error burst;

4) The eiTor burst length; and

5) The error burst length distribution, etc.

Estimating these parameters using conventional Monte Carlo simulations would

most likely require a lot of simulation runs, especially when the image is not too noisy.

Certainly, the most important issue in this importance sampling technique is the

design of importance sampling simulation models. Actually, as it should be clear from

the previous chapters the critical element of importance sampling is the choice of the

importance sampling density fy (.;.)• This density should be selected in such a way that

it will approximate the unconstrained optimal importance sampling density (2.8), and

at the same time, be the optimal density within the class of all candidate simulation

densities which can be practically implemented. The knowledge of the system to be

199

simulated shall also be exploited when the selection of a suitable candidate simulation

density is to be made. In fact, importance sampling works because it allows the

simulation designer to apply his knowledge of the system to be simulated in order to

emphasize the "important" events in the simulation.

In this application, our knowledge of the algorithm behavior and the "important"

events to be simulated supports the use of a non-stationary simulation model. In fact,

our experience indicates that whenever incorrect paths are hypothesized, either they

will eventually become inactive as their lengths get longer and longer, or their

corresponding image paths eventually merge with the edge path and once they do, they

start behaving like the correct path. The practical implication of this is that as we get

far away from the root node, large excursions from the edge path become scarce. In

Other words, large excursions from the correct path will probably occur around the root

node. As these excursions get larger and larger, more opportunities for the incorrect

image paths to merge with the edge path are created and again once they do, the

excursions from the edge path become smaller as we get far away from the root node.

As a consequence, if we assume that y is the root node and let X be a ^ —measurable

random variable, then it follows that most the pixels which will determine X will be

around the root pixel location Iq. Consequently, a non-stationary density fy(.;.) which

I) makes the image around L more noisy than the actual operating conditions; and 2)
.... •. U '-Vv;. -V

decays to the tree distribution fy(.;.)insome fashion as we get farther and farther from

J0 would be more efficient than a stationary density which will end up simulating

unimportant events. Figure 7.8 illustrate this by showing an example of the pixel

locations visited by the SEL algorithm when (a) the simulation density fyO;.) is a

non-stationary density which decays to fy(.;.) as the search gets farther and farther

from Jq; and (b) the simulation density fy(.;.) is stationary.

<g Root pixel location
•

• Pixel location searched
• ■ t ■ •., '■:r

• . • .. ; ; • i • ; • • ;

: . ■ . ; ; , • t * • • ..
: ■ . ' • ■ ■■ • • ; . V: .v • • ; ■ • ■ * vi

■ 'i1- ♦ : . t • ■

; ’ ■ . • • ■f ■>;-
• • . ■ ■ • \ i . f • • , • ; •

; - ■ r - • • #
' ■; \ - / • ■ . ;

• • ♦ • ■ • • • ■ -■« ■'
’ - • t •• • : ' ♦ •■■ • . • • . ■ ' f' • « ;

' • •■■■ *■ ■ • ♦ . . • - ' • ’ •

X ; : #■ ' • • ' ■ • ■ ■■■■■■■ •••." , .• , •

:■ ■ • ■. • • - • . -• ♦
■ ' ; . ' -• • vV" . ;■ ■

: • ■ ■. • • . • - - « - • • • •' • :

• t ■ ■ • • . • V • ;■ V : • ■ ■ • • '' ♦ • •

•
; V:; :■ < . • ♦ V t

■
•

■ ■ . i ■ ■' •'.

* , - • ' ♦ * • . • . •

■ • '■ ■ • ■' • ■■ . ; ■ , ■ t , • • U '7 } ? } »■ . ' •

: • . • ' • ■. • ■ ; ■■ W .

Figure 7.7: An example which shows the pixel locations visited by the SEL
algorithm when (a) the simulation density fy(.;.) is a non-stationary
density which decays to fy(.;.) as the search gets farther and farther
from and (b)the simulation density fy(,;.) is stationary.

To further understand this problem, consider the following binary image

example. That is, the digital image under consideration is an image for which the pixel

values are either 0 or I. For this image, the random field conditional densities po(.)

201

and pi (.) are defined as follows: For some ao and ai e [0, 1],

Po(yij) = «
ao if yjj = I
(I - ao) if Yij = 0 (7.19)

and

Pi(Yij) A J aI if Yij = I
(I - A 1) if Yjj = 0

(7.20)

Now, let dij denotes the distance between J0 and some pixel location (i,j) on the image.

Next, for some bo and e [0, 1] and for some a > 0, define

Po(Yij) Po(Yij) (I - e"0̂) + b0 ̂ (7.21)

and;

Pi(Yij) = Pi(Yij) (I - ^ xdij H b 1 e ^ . (7.22)

That is, the importance sampling densities po(.) and p*(.) decay exponentially to po(.)

and P1 (.) as djj T «*».

To illustrate the differences between this non-stationary model and a stationary

simulation model, consider the following simple stationary simulation model

Co if Yij = I
Po(Yij) (! -C o) if Yij = 0

(7.23)

and

Pi(Yij) = (7.24)i f yy = 1
(I - C 1) if Yij=O

where ao < Cq < T and 0 < C1 C a1. Next consider the problem of estimating the

expected number of metric computations per correct decision; i.e., we are interested in

estimating E[Cy]. In this case, recall that the set of pixel indices which determine C y

202

is S7 where

S7 % \ j % ,
SeD7-P1

and pi is the direct descendent node of y which lies on the terminal path. As a

consequence, it follows that the stationary simulation model will most likely end up

simulating unimportant events because this model makes errors occur everywhere and

hence, it will extend a lot of incorrect subtrees which are not needed. In other words, if

such model is used then the algorithm will be forced to waste computation time on the

exploration of incorrect paths which do not determine C7. On the other hand, the non­

stationary simulation model can be selected so that only the pixels of interest are

searched most of the time. Specifically, the non-stationary simulation model can be

chosen so that the image around I0 is noisier than the actual operating conditions. As

consequence, the algorithm will be forced, most of the time, to search the image paths

whose pixel locations are in P 1 S7. In other words, the non-stationary simulation

model makes the "important events" occur very often without forcing the algorithm to

waste a lot of computation time as in the case of the stationary simulation model.

Figure 7.8 and Figure 7.9 show actual simulations of the SEL algorithm with the

stationary simulation model specified by (7.23)-(7.24); as well as, the non-stationary

model that as specified by (7.21)-(7.22).

203

X X X

; ; X X
X X X X X X
X X X X X X X

x x x x x x x
X X X X

X X X X X X
X X X X X X

X X X X
XXX X XXX
X X X X X X X

XXX XXX X X

XX X X X XX X
XXXXX

■ X
X

■ ■■ X
x
I

XX
X X
X

X
X

X X X
X X X
X X X

x x
X
X
X
X

pixel ip^atioB searched

edge

i»= (50,50)

Figure 7.8. An illustration of an actual simulation of the SEL algorithm using a
Stationary simulation model for the binary image example.

204

I

pixel location searched

Figure 7.9: An illustration of an actual simulation of the SEL algorithm using a
non-stationary simulation model for the binary image example.

205

To further illustrate the potential of applying importance sampling to the

simulation of the SEL algorithm, consider the binary image example and suppose that

Potyij)
.008
992

and

Pi(Yij)
.99
.01

if Yij = I
if Yij = P

i f Yij = 0

(7.25)

(7.26)

Next Suppose that we are interested in estimating the probability of error

following the correct decision at node y. That is, we would like to estimate

a = E[Ie I Yis on the terminal path] (7.27)

where E = event (Pi # a i J. In this example, we note that die correct path and the

terminal path in Sy are respectively denoted by (y,<Xi,a2 ,...) and t ypi , p 2 ,...).
A , *

Let a be the importance sampling estimator for the above probability of error.

Table 7.1 list some simulation results which were obtained using the non-stationary

simulation model specified by (7.21) and (7.22) with bo = .2, bj = .85 and a = .5.

Table 7.1: The probability of error estimate for the binary image example.

/V *
a Frequency Accuracy reg

.1596 x IO"3 182517 .31 % 1298

We note that a total of L = 500,000 simulation runs were used to compute the

above estimates. Furthermore, we note that the second column in the above table lists

the relative frequency of the error event E during the L simulations. The substantial

increase of the error event relative frequency under the simulation model (in

comparison to ordinary Monte Carlo) indicates one of the key characteristic s of

importance sampling. Finally, we note that the last two columns in the above table

give respectively the estimates of the accuracy and the relative efficiency gain. These

quantities were estimated using sample variances estimates as in the previous chapters.

We omit the details for brevity.

In conclusion, it is clear that the idea of applying importance sampling to the

simulation of the SEL algorithm is still in its infancy. It is also true that this

preliminary work has clearly posed more questions than answers. However, it has

certainly presented several challenges for future research. The problem of selecting

suitable importance sampling densities in the context of sequential edge linking will

obviously be the major emphasis in this work. The extremely good accuracy and high

relative efficiency gain obtained by using the simple ad hoc non-stationary model in

the simple binary image example indicate that there is indeed a great potential for

applying the principles of importance sampling to the SEL algorithm simulation and

that substantial efficiency increases in comparison to ordinary Monte Carlo simulations

are possible. By applying the ideas discussed in this section, along with the leverage

obtained from the importance sampling simulation of sequential decoders, we feel that

it is possible to design efficient importance sampling models for simulating the SEL

algorithm.

CHAPTERS

CONCLUSIONS

This thesis has demonstrated that when properly implemented, importance

sampling could prove to be an extremely powerful technique for improving the

computational efficiency gains of conventional Monte Carlo simulations. The

presentation in the first few chapters of this thesis has considered mainly the estimation

of the distribution of computation of stack algorithm decoders. However, it is noted

that the new simulation methods that we have presented here, can be also used to

estimate other key parameters that characterize the performance of the stack algorithm.

A typical example of such parameters is the average number of metric computations

per correct decision. Another key quantity that characterize the stack algorithm

performance is the bit error probability. In Chapter 6, we have shown that the error

probabilities associated with stack algorithm decoders can be efficiently estimated

using importance sampling. Finally in Chapter 7, recall that we have shifted our

attention to the simulation of the SEL algorithm. The presentation in this chapter has

mainly considered the development of a new importance sampling technique for

simulating the SEL algorithm; as well as, the basic theory which is relevant to this

application.

To demonstrate the power and accuracy of our new simulation techniques, we

have presented in Chapter 5 and 6 numerical results for some convolutional codes that

208

are operating on the binary symmetric channel and the additive white gaussian noise

channel. These simulation results indicate that very good accuracies, along with

astronomical computational efficiency gains can be achieved when our simulation

techniques are used. In Chapter 7, we have illustrated the potential of applying

importance sampling to the simulation of the SEL algorithm by presenting some

simulation results for a binary image. These results indicate that importance sampling

holds the promise of offering substantial improvements in computational cost in this

particular application.

The design of efficient and practical importance sampling simulation distributions

is often ad hoc. Most of the important sampling analysis begins by proposing a family

of candidate simulation distributions and then optimizing some parameters of the

family. For example, in this thesis the reference path method was an ad hoc simulation

technique obtained by an application of a specific knowledge about the stack algorithm

decoder operation. The partitioning method on the other hand was inspired by a

branch of probability theory known as large deviations theory. Because large

deviations theory is not limited to ideal channels, the partitioning method promises to

be a powerful tool for performance evaluation of sequential decoders for non-ideal

channels.

There are many aspects of the work presented here that offer avenues for future

research. Indeed, using the leverage obtained from the simulation techniques

presented in this thesis, it is expected that efficient importance sampling can be

developed for the performance evaluation and design verification of coded

communication systems. In particular, the simulation of communication channels

which are corrupted by one or more non-ideal characteristics such as intersymbol

interference, nonlinearity, synchronization errors, etc, will provide a large class of

challenging and practical problems. As an example, consider the simulation of optical

communication systems. Por such systems, a typical receiver consists of a

photodetector, ah amplifier, and some signal processing circuitry [87-91]. It turns out

that die noise at the output of an optical receiver can be modeled as a filtered doubly

stochastic Poisson process [90]. As a consequence, the probability density function of

an optical receiver output signal is exceedingly complex [90], [91]. This makes a

general analytical performance analysis of optical communication systems very

difficult, if not impossible [3], {91]. It is noted that in many previous work, the error

probabilities of optical systems were derived assuming limiting hypothesis on the

statistics of the receiver noise [87]. Nontheless, for performance evaluation of optical

communication systems, computer simulation are often used because of the analytical

intractability associated with such systems [3]. Consequently, importance sampling

could prove to be an texttremely powerful and appealing tool for performance

evaluation of optical communication systems. This technique holds the promise of

offering vast improvements in computational cost in comparison to the ordinary Monte

Carlo method. We should note that the idea of applying importance to the simulation

of optical communication systems is not new. Indeed, Balaban [3] has successfully

developed an importance sampling scheme to evaluate the error rate for the fiberguide

repeaters, i t is noted, however, that the application Of importance sampling to the

simulation Of Optical communication systems is still in its infancy. Consequently, this

is a major area for both practical and theoretical research.

LIST QF REFERENCES

210

LIST OF REFERENCES

[1] Kahn, H. and A. W. Marshall, "Methods of reducing sample size in Monte Carlo
computations,” Journal of the operations research society of america, VOL. I,
pp. 263-278 (1953)

[2] J. M. Hammersley and D. C. Handscomb, "Monte Carlo methods," New York:
Chapman and Hall (1964)

[3] P. Balaban, "Statistical evaluation of the error rate of the fiberguide repeater using
importance sampling," Bell System Technical Journal, VOL. 55, No. 6, pp.
745-766(1976)

[4] D. Siegmund, "Importance sampling in the Monte Carlo study of sequential
tests," Ann. Statis., VOL. 4, pp. 673-684 (1976)

[5] K. S. Shanmugan and P. Balaban, "A modified Monte Carlo simulation technique
for the evaluation of error rate in digital communication systems," IEEE Trans,
on Communication, VOL. COM-28, pp. 1916-1924 (1980)

[6] R. L. Mitchel, "Importance sampling applied to simulation of false alarm
statistics," IEEE Trans. Aerospace Electron. Syst., VOL. AES-17, pp. 15-24
(1981)

[7] R. Y. Rubinstein, "Simulation and the Monte Carlo method," New York: Wiley,
(1981)

[8] G. W. Lank, "Theoretical aspects of importance sampling applied to false
alarms," IEEE Trans, Information Theory, IT-29, pp. 73-82 (1983)

[9] M. Cottrell, J. C. Fort, and G. Malgouyres,, "Large deviations and rare events in
the study of stochastic algorithms," IEEE Trans. Automatic Control, VOL. AC-
28, pp. 907-920 (1983)

[10] M. C. Jeruchim, "Techniques for estimating the bit error rate in the simulation of
digital communications systems," IEEE Journal Select, Areas Communication,
VOL. SAC-2, pp. 153-170 (1984)

211

[11] M. C. Jeruchim, "On the application of importance sampling to the simulation of
digital satellite and multihop links," IEEE Trans. Communication, VOL. COM-32
(1984) ;

[12] B. R. Davis, "An improved importance sampling method for digital
communications system simulations," IEEE Trans. Communication, VOL.
COM-34, pp. 715-719(1986)

[13] G. Orsak and B. Aazhang, "On the application of importance sampling to the
analysis of detection systems," Proc. 25th Annual Allerton Conf. on
Communication, Control, and Computing, University of Illinois, Monticello, IL,
pp. 135-144(1987)

[14] P. W. Glynn and D. L. Iglehart, "Importance sampling for stochastic simulations,"
Technical Report No. 49, Dept, of Operations Research, Stanford University,
Stanford, CA (1987)

[15] Ripley, "Stochastic simulations," Willey, New York, (1987)

[16] Wong, Q and V. Bhargava, "On the application of importance sampling to BER
estimation in the simulation of digital communication systems," IEEE Trans.
Communication, VOL. COM-35, pp. 1231-1233 (1987)

[17] K. K. Parhi and R. S. Berkowitz, "On optimizing importance sampling
simulations," IEEE Trans. Circuit & Systems, VOL. CAS-34, pp. 1558-1563
(1987)

[18] P. Hahn and M. Jeruchim, "Developments in the theory and applications of
importance sampling," IEEE Trans. Communication, VOL. COM-35, pp. 706-714

'• (!987)

[19] D. Lu and K. Yao, "Bounds on the variances of importance sampling simulations
in digital communication systems," Proc. 25th Annual Allerton Conf. on
Communication, Control, and Computing, University of Illinois, Monticello, IL,
pp. 135-144(1987)

[20] P. Bradey, B. L. Fox and L. E. Schrag, A Guide to Simulation. New York:
Springer, (1987)

[21] D. Lu and K. Yao, "Improved importance sampling technique for efficient
simulation of digital communications systems," IEEE Journal Select. Areas
Communication, VOL. SAC-6, pip. 67-75 (1988)

[22] G .-Qrsak and B. Aazhang, "A comparison of two importance sampling methods
for the analysis of detection systems," Proc. 22nd Annual Conf . on Information
Sciences & Systems, Princeton University, Princeton, NJ, pp. 314-318 (1988)

[23] J. S. Sadowsky and J. A. Bucklew, "Importance sampling and Viterbi decoder
simulation," Proc. 22nd Annual Conf on Information Sciences & Systems,
Princeton University, Princeton, NJ, pp. 319-324 (1988)

[24] J. S. Sadowsky "A new method for Viterbi decoder simulation using importance
sampling, " To appear as a regular paper in IEEE Trans, on Communication

[25] V. Hunkel and J. Bucklew, "Fast simulation for functionals of markov chains,"
Proc. 22nd Annual Conf on Information Science & Systems, Princeton
University, Princeton, NJ, pp. 330-335 (1988) ‘

[26] J. S. Sadowsky and J. A. Bucklew, "On large deviations theory and
asymptotically efficient Monte Carlo estimation," To appear as d regular paper
in IEEE Trans, on Information Theory,

[27] S. Parekh and J. Walrand, "A quick simulation method for excessive backlogs in
networks of queues," IEEE Trans. Automatic Control, VOL. AC-34, pp. 54-66
(1989)

[28] K. B. Letaief and J. S. Sadowsky, "Some new methods for simulating sequential
decoders using importance sampling," Proc. 27th Annual Allerton Cpnf on
Communication, Control, and Computing, University of Illinois, Monticello, IL
(1989)

[29] M. C. Jeruchim, P. M. Hahn, K. P. Smyntek and R. T. Ray, ''An experimental
investigation of conventional and efficient importance sampling," IEEE Trans.
Comrnimicatidn, YOL. COM-37, pp. 578-587 (1989)

[30] K. B. Letaief and J. S. Sadowsky, "New importance sampling methods for
estimating sequential decoders performance," Submitted to IEEE Trans, on
Information Theory (1990) 3; ■

[31] J. A. Bucklew, P, Ney, and J. S, Sadowsky, "Monte Carlo simulation and large
deviations for uniformly recurrent markov chains," To appear as a regular paper
in Journ. Advanc. Appl Probah, (1990)

[32] P. Elias, "Coding for noisy channels," IRE Conv. Rec., pt. 4, pp. 37-46 (1955)

[33] J.M. Wozencraft, "Sequential decoding for reliable communication," IRE Natl.
Conv. Rec,, VOL. 5, pt. 2, pp. 11-25 (1957)

[34] B. Reiffen, "Sequential encoding and decoding for the discrete memoryless
channel," MIT Research Lab. o f Electronics, Tech. Rept. 374 (1960)

[35] J.M. Wozencraft and B. Reiffen. "Sequential decoding," M U Press., Cambridge,
Mass. (1961) / ■ ■

[36] R.M Fano. "A hueristic discussion of probabilistic decoding," IEEE Trans.
Information Theory, IT-9, pp. 64-74 (April 1963).

[37] K. Zigangirov. "Some sequential decoding procedures," problemy Peredachi
informatsii, VOL. 2, pp. 13-25 (1966).

[38] J.E. Savage, "Sequential decoding-the computational problem," Bell System
Technical Journal, VOL. 45, pp. 149-175 (Jan. 1966)

[39] A. I. Viterbi, "Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm," IEEE Trans. Information theory, IT-13, pp.
260-269 (1967)

[40] I. M. Jacobs, "Sequential decoding for efficient communication from deep space,"
IEEE Trans. Communication Technology, VOL. COM-15, pp. 492-501 (1967)

[41] I.M. Jacobs and E. R. Berlekamp. "A lower bound to the distribution of
Computation for sequential decoding," IEEE Trans. Information Theory, IT-13,
pp. 167-174 (April 1967).

[42] P. Hart, N. Nilsson, and B. raphael. "A formal basis for the heuristic
determination of minimum cost paths," IEEE Trans. Systems Sci: Cybernet.,
VOL. SSC-4, pp. 100-107 (July 1968).

[43] R. G. Gallager, "Information theory and reliable cOnmiunication," AJCGraw-Z/i//,
New York (1968)

[44] F. Jelinek. "A fast sequential decoding algorithm using a stack," IBM Journ. Res.
and Dev., VOL. 13, pp. 675-685 (Nov. 1969).

[45] F. Jelinek. "An upper bound on moments of sequential decoding effort," IEEE
Trans. Information Theory, IT-15, pp. 140-149 (Jan. 1969).

[46] D. J. Costello, "Construction of convolutional codes for sequential decoding,"
PhD Dissertation, Dept. Elec. Eng., Univ. Notre Dame, Notre Dame, IN (1969)

[47] A. J. Viterbi, "Convolutional codes and their performance in communication
systems," IEEE Trans. Commun. Technology, VOL. COM-19, pp. 751-772 (1971)

:VwV'~- - -iV.s'

214

[48] J. L. Massey and D. J. Costello, "Nonsystematic convolutional codes for
sequential decoding in space applications," IEEE Trans. Commun. Technol.,
COM-19, pp. 806-813(1971)

[49] J. W. Layland and W. A. Lushbaugh, "A flexible high-speed sequential decoder
for deep space channels," IEEE Trans. Commun. Technol., VOL. COM-19, No. 5
(1971) '

[50] G. JX Fomey and E. K. Bower, "A High speed sequential decoder: Prototype
design and test," IEEE Trans. Commun. Technol., VOL. COM-19, pp. 821-835
(1971)

[51] J. L. Massey. "Variable-length codes and the Fano metric," IEEE Trans.
Information Theory, IT-18, pp. 196-198 (January 1972)

[52] G. D. Forney, Jr. "The Viterbi algorithm," Proc. IEEE, VOL. 61, pp. 268-278
(March 1973)

[53] J. M. Geist, "Search properties of some sequential decoding algorithms," IEEE
Trans. Information Theory, IT-19, pp. 519-526 (July 1973)

:[54] G. Dl Forney, Jr. "Convolutional codes HI: Sequential decoding," Inf. Control,
VOL. 25, pp. 267-297 (July 1974).

[55] D.. Haccoun and M. J. Ferguson. "Generalized stack algorithms for decoding
convolutional codes," IEEE Trans. Information Theory, IT-21, pp. 638-651 (Nov.
.1975):, VVv..--.-

[56] P. R. Chevillat and D. J. Costello, Jr. "A multiple stack algorithm for erasurefree
decoding of convolutional codes," IEEE Trans. Communication, COM-25, pp.
1460-1470 (Dec. 1977),

[57] A. J. Viterbi and.J. K. Omura. "Principles of digital communication and coding,"
McGraw Hill, New York, (1979).

[58] R. Johannesson, "On the distribution of computation for sequential decoding
using the stack algorithm," IEEE Trans. Information Theory, VOL. IT-25, No. 3
(1979).

: ; V ̂ ■ '

[59] S. Lin and D, J. Costello, "Error control coding: Fundamentals and applications,"
Prentice-Hall, Englewood Cliffs, New Jersey (1983)

[603 S. Mohan and J.B. Anderson, "Computationally optimal metric-first code tree
search algorithms," IEEE Trans. Communication, VOL. COM-32, pp. 710-717 (
June 1984)

[61] K. B. Letaief and J. S. Sadowsky "A Large deviations analysis of the Stack
Algorithm" Proc. 22nd Annual Conf. on Information Science & System, Princeton
university, Princeton, NJ, pp. 1027-1032 (March 1988)

[62] E. Wong, "Stochastic processes in information and dynamical systems,"
Huntington, N.Y., Krieger (1971)

[63] E. Cinlar, "Introduction to stochastic processes," Prentice-Hall, Englewood Cliffs,
NJ, (1975)

[64] I. Iscoe, P. Ney, and E. Nummelin. "Large deviations of uniformly recurrent
Markov additive processes," Adv. in Appl. Math., 6, pp. 373-412 (1985)

[65] P. Ney and E. Nummelin. "Some limit theorems for Markov additive processes,"
in semi-Markov Models, ed. Janssen, Plenum, (1986)

[66] P. Ney and E. Nummelin. "Markov additive processes I: eigenvalue properties
and limit theorems, parts I and II," Am . Probab., 15, pp. 561-609 (1987)

[67] N. Nilson, "Problem-Solving Methods in Artificial Intelligence,"ALL: McGraw-
Hill, (1971)

[68] A. Martelli, "Edge detection using heuristic search method," CGIP I, pp. 169-182
(1972)

[69] M. Hueckel, "A Local visual operator which recognizes edges and lines," J. ACM,
VOL. 20, pp. 634-647 (1973)

[70] Y. Chien and K. Fu, "A decision function method for boundary detection," CGlP,
VOL. 3, pp. 125-140 (1974)

[71] A. Roserifeld and A. Kak, "Digital Picture Processing," N.Y.: Academic Press,
W-; (1976) ■' ■

[72] A. Martelli, "An application of heuristic search methods to edge and contour
detection," Commum ACMiV OL. 19, pp. 73-83 (1976)

[73] W. Pratt, "Digital image processing," N.Y.: Wiley, (1978)

[74] G. Ashkar and J. Modestino, "The contour extraction problem with biomedical
■ applications," CGIP, VOL. 7, pp. 331-355 (1978)

[75] I. Addou, "Quantitative methods of edge detection," Los Angeles, CA: Image
Processing Inst., Univ. Southern California (1978)

[76] I. Addou and W. Pratt, "Quantitative design and evaluation of
enhancement/thresholding edge detectors," Proc. of IEEE, VOL. 67, pp. 753-763
(1979)

[77] D. Cooper, "Maximum likelihood estimation of Markov-process boundaries in
noisy images," IEEE Trans. Pattern Anal. Machine Intell., VOL. PAMI-1, pp.
372-384 (1979)

[78] D, Marr and E. Hildreth, "Theory of edge detection," Proc. R. Soc. Lond., VOL,
B 207, pp. 187-217 (1980)

[79] R. Machuca and A. Gilbert, "Finding edges in noisy scenes," IEEE Trans. Pattern
Anal. Machine Intell., VOL. PAMI-3, pp. 103-111 (1981)

[80] M. Basseville, B. Espiau, and J. Gasnier, "Edge detection using sequential
methods for change in level - part I: a sequential edge detection algorithm," IEEE
Trans. Acoustics, Speech & Sig. Proc., ASSP-29, pp. 24-31, (1981)

[81] R. Suciu and A. Reeves, "A comparison of differential and moment based edge
detectors/' Proc, IEEE Comp. Soc. Conf. on Pattern Recog. and Image Proc., pp.
97-102(1982)

[82] M. Kunt, "Edge detection: a tutorial review," Proc. IEEE Intern. Conf. on
Acoustics, Speech and Signal Proc., VOL. 2 (1982)

[83] J. Canny, "Finding edges and lines in images," MIT AI-TR-720, (1983)

[84] P. H. Eichel, "Sequential detection of linear features in two-dimensional random
fields," PhD dissertation, Computer, information, and Control Engineering
Program, University of Michigan, Ann Arbor, M I48109 (May 1985)

[85] P. H. Eichel and E.J. Delp, "Sequential edge detection in correlated random
fields/* Proc, TEEE Computer Vision and Pattern Recognition Conf., San
Francisco, CA, pp. 14-21 (June 1985)

[86] P. H. Eichel, E. J. Delp, K. Koral, and J. Buda, "A method for a fully automatic
definition of coronary arterial edges from cineangiograms," IEEE Trans, on
Medical Imaging, VOL. 7, NO. 4, pp. 313-320 (December 1988)

[87] S. D. Personick, "Receiver design for digital fiber optical communication
systems, I," Bell System Technical Journal, VOL. 52, pp. 843-874 (1973)

[88] W. Hauk, F. Bross, and M. Ottka, "The calculation of error rates for optical fiber
systems," IEEE Trans. Communication, VOL. COM-26, No. 7 (1978)

[89] N. Sorenson and R. Gagliardi, "Performance of optical receivers with avalanche
photodetection," IEEE Trans. Communication, VOL. COM-27, No. 9 (1979)

[90] R. Dogliotti, A. Luvison, and G. Pirani, "Error probability in optical fiber
transmission systems," IEEE Trans. Information Theory, VOL. IT-25, No. 2

[91] R. Gagliardi and G. Prati, "On Gaussian error probabilities in optical receivers,"
IEEE Trans. Communication, VOL. COM-28, No. 9 (1980)

VEFA

218

VITA

Khalcd Ben Letalef was bom in Nabeul, Tunisia on January 7,1962. He attended

Ecole Reussite Primary School from 1968 to 1974 and Lycee Teehnique High School

from 1974 to 1981 in Nabeul, Tunisia, He received the Baccalaureat degree with

' distinction from Lycee Technique in June 1981. He received his BS with distinction in

Electrical Engineering from Purdue University, West Lafayette, Indiana, USA, in

December 1984. He has also received his MS and Ph.D degrees in Electrical

Engineering from Purdue University, in August 1986, and May 1990, respectively.

Since January, 1985 he has been employed as a teaching assistant and a research

assistant in the School of Electrical Engineering at Pmdue University.

His research interests include statistical communications, information & coding

theory, digital communications, digital signal and image processing.

Khaled is a member of the Tunisian Scientific Society and IEEE.

	Purdue University
	Purdue e-Pubs
	5-1-1990

	Importance Sampling Simulation of the Stack Algorithm with Application to Sequential Decoding
	Khaled Ben Letaief

	tmp.1542052450.pdf.Ye8J5

