Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
5-1-1990

Directory Based Cache Coherency Protocols for
Shared Memory Multiprocessors

Craig Warner
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Warner, Craig, "Directory Based Cache Coherency Protocols for Shared Memory Multiprocessors” (1990). Department of Electrical
and Computer Engineering Technical Reports. Paper 720.
https://docs.lib.purdue.edu/ecetr/720

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages

fiLe Co/q

Directory Based Cache
Coherency Protocols
for Shared Memory
Multiprocessors

'Craig Warner

TR-EE 90-33
May 1990

School of Electrical Engineering
Purdue University
- West Lafayette, Indiana 47907

DIRECTORY BASED CACHE COHERENCY PROTOCOLS FOR SHARED MEMORY
MULTIPROCESSORS
A Thesis

Submitted to the Facully
~of
Purdue Un’ivevrsily
by
Cr‘aig Wamer

In Partial Fulfillment of the

chuimmenls for the Degree

of

Masters of Science in Electrical Engineering

May 1990

To my Father and Mother who have cared so deeply

ACKNOWLEDGEMENTS

1 would like to use this time and space to thank Professor D. Meyer for listening to my
fully cooked as well as many of my half-baked ideas. I would also like to thank the rest of my
committee: Professor R. Fujii and Professor H. Dietz. For enéoura’ging me to g0 to graduate

schobl, I thank Professor S Kothari.

Page
LIST OF FIGURES.........ovvsveivirn.n! i e Vi
LIST OF ABBREVIATIONSovvcs leionreecresiens s ST
ABSTRACT .o e e e e e et X
L PRELIMINARIES ,.......o.cooivoimmmeeieersssssrsssonssnssessssses s ssass s senesennes e 1
1.1 GepetraIArchjtec.ture..v 1
12 Why Directory Based Protocols?............c........ e, 4....: L2
‘1.3 . Operating System and Programming Model Assumptions........ ieveees Caeereenieied 3
. 1.4 Private Caches................ ettt rants e eriie sl ean e i g aerene 4
1.5 Event Orderingiiveceviciiviisenevnnnnnns erereereseerarens SRR
1.7 Multistage Interconnection Networks....... e iaeeaa. 9
1.6 '.Multiple‘Cha,nnel Architecture et e eneneriaennerenss Ciieteeante SR, a2
2. ANALYSIS OF SHARING.........oooccovvrririnn RS LR 13
2.1 »Ax(n‘ountofShén'ng and Frequency of_Wn't,és..'.....f FORTRER e 13
2.2 Markbv Chain Models of Shared 'Blocks..........._.....;...,...ﬁ.....i.._..‘ e 13
2:2.1 Markov Chain for RW BIOCKS.............coviiiiruiiuiieicnaisiuinn oo 14
222 Markov Chain for RO BIOCKS...iuuuu.iivemmrienicionsiarnnisnsioiinieinenn i 18
23 Frequency of References to Shared BIOCKSe..eveeeienn. PR
3. FIXED LENGTHENTRY DIRECTORIES.............. e e e et 22
3.1 Traditional Directory Base_varotOcols‘...; i b s 22
32 Maintaining Weak COREIency......c..ccocsrvvrvrverenrsnrnnn. 24
33 Evaluatiqno_fTraditionalProt_ocols 26
34 ;Y“,‘Cr_iticisms'of Traditional Techniques................... RO R ieirnin. 27,
3.5. ‘Using Broadcast Masks as Global Table Entries........ R T e O SO .27

T\

~ TABLE OF CONTENTS

3.5.1 Theoretical Difficulties............. e e 29

, 352 " Simulation Results for Multlple Broadcast. Masks.; ceeen:33 .
v . 3.6 Sloppy Ejection...........cccceeriereciianiinnin, S 34 .
3.7 Expected Number of Invalidations......... A et et 37
38 Grouped Entry Format e i40 -
3.9 Comparing Accuracy of Grouped Entries to Broadcast Masks..................... . .42
‘4. GLOBAL TABLE ORGANIZATIONS SERAATRY 45
| 4.1 'MainMemory»Block‘Recording...............‘...,.'...‘....'.'.....‘. 45 '
: 4.1.1 :.Pipe]iyning'theGlobalTabIe...........,,............;........;.; i A8
412 VanabchengthTables S N ieiemeere e e te e ana '.--‘;7-50?
© 41.2.1 Pipelining Variable Length Tables...'..v.........’..‘ e 52
el 4.1.2.2 Simulating the Variable Length Table..‘..;‘.;,...»...v...-..’...._....‘..._._56‘
4.2 Private CacheTagEntryTables.;...'...._ e Liiein 61 o
5. 'SYNCHRONIZATION VARIABLES....oooosoooococoeerioss oo 65
R V»AnEconomica‘leueuingEntryFonnat.........,.......'..;.'...v_.,....................;'.'...._..65
5.’"2 Evaluatioﬁ of the-Lock Granting AlgOrithin.......c.cccoooivriniinnnnins '.._.v..‘.:.;.,...70
6. LINKED LIST SYSTEMS.._. e, s T3
6.1 Singly Linked List Protocol.............. SN S - ¥
6.2 Specification of Singly Linked List Protocol....'...-.~..'..‘...;. L
6.3 Multiple Singly Linked List Protocol - e 81 ‘
64 Limiting the' Number of Shared BIOCKS......ooc.ceorvecrirricorrri e 81
6.5 DoublyLmked LlStS.'."...‘..v.: eieevens ...83
6.5.1 Simultaneous E_]CC[IOH Problem.:...... SRR e '._..'..84
6.5.2 . Expediting Invalidation for Doubly Linked Llst Protocols..,. e 87
66 UsmgBackupTagEnmes..)...,'..-..............f....'....,._.......... ievieraes 88
CONCLUSIONS ..o iisoovasiestoneieseeeiee, et e, 91

BIBLIOGRAPHY....’.’..‘.b...; e e et i e e 93

37

e 38

LIST OF FIGURES

Figure S .
l.fu PAroce'ssor: and Meniorjr Organization for Directory Based P.rdtocols e, .2)
1.2 Nori-de‘teriiiinistic‘ Program..........,..........i P R SOP PP 4 -‘
1.3 PeiiéilielProgrami 7
14 Non—Séqﬁentially Consist_énf Exécution o“f a‘ Parallel ProgramS
15 Multistage Cube Network...... e e 10
1.6 Hovme ‘i\/‘Ié‘moryr Configurétion e e 11
2.1 RW Data Markov Chain e T e "
2.2 S'ieadyStatePrbbaibilityofRWMafkovChain...............................; 16
2.3 Effeéts of Fw an Sieady ,Siate Probabilities e 17
24 RO Data Markov Chain e 18
2.5‘ St“eady. State Probability for RO Markov Chain..................... e, 19
2.6 Effeéts (if,Hit Ratié ‘and gs on Preseni Seliiiiiiiii i R 20
3.1 Two Counter Example...........cc.o.... i rbereaetiys et 25
3.2 'OneBroadcastMaskSystem.......;;.............., R s 28
3.3 Mapping of Minimal. Broadcast Problem to ‘Logic Minimization........... [31
3.4 ’A>n Example Covering.............cooiiiiiiiiiiiiiennn, e 31
3.5 Four Broadcasi Mask System.......oovoviiiiiiiiinin..033
3.6 Effects of Usi_ng More Broadcast Masks esesteseenaion PR ST SR 34
,;él'»oppy»Eje’ctioh Markov Chain........ v36

 Comparison of SIoppy vs. Tidy BJeCtiOn.eeeeieeieenmeaerivnnieerneens 3T

Vi

':.Flgure T R Page
3.9 Expected Number of Unnecessary Invalidations . e cevteeeneniie . 38

o 73’.10:1;Fu11 Range Behav1or of Multiple Broadcast Mask Systems (N—128)....‘.,‘.1..".}'. 39 e
| 311 Accuracy ofGrouped Method 0\1—128) 41
312 Broadcast Masks vs. Grouped Method, N_128 (a) G-16 BMS l(b) G=4 BMS_4 a3

- 313 -'Unnecessary Invahdahons forGrouped Method 44'_" '

;4.1 GlobalTableBlock Dlagram...;.’....._...'...v..' 45 o
42 Bit',VeCtor'UndateLogic.t..v.._..,.;.‘ | 46 B
43 ,vBroadcastMask-‘Interpreting 46

| 44 'Muluple BroadcastMask Selector 48 .

45 :'Plpehned Global Table..,.v;’v.r.‘.v.f...v..“: RURCHRNE A vt S 49_" o
46 thpehneable Orgamzatlon " . e . . feid e 50
47 VanableLengthTableOrgamzatlon.v.jj.v.‘..;.j.b‘....»:.‘...-.}.‘-._;.‘.‘..'if._..:._.:..'._,.'.i.”."..tv'.’;.'..;_.'..-v..v_i.....v.vlv....\Sil' R

‘ diS{“zReservahon Tables forVanable Length Table 53

49 VRCSCI’VB.UOI] Tables for Reahsnc Vanable Length Table53 .

: 14.;'1()' iGreedy Scheduler ' 55 |
4.11 :C0111s1on VectorTable 56 |
‘4.12 'C0111s1on Vector Table for Ideal Scheduhng 57 g “

’ 413 ‘.Average Waltmngme - 58

_ 4.‘1{_tv-.-iSpeedupDuetoPlpehmngTable L s

| 415 ifPlpehned Vanable Length Global Table..},‘,..:..’.’.’. ;»;;.’,’»._ L

= ' 41 6 SBlock Dragram of Tang s Global Table,. . .

| r:'-.;_.TabIe Set Orgamzahon, N—4 K-—4 ITag| 8

.:fd"l‘_'l4f;“1,8-_-'Parallel Look Up Organlzatton K 1 e 04

s ‘.Synchromzatlon Varlable Global Table Entry Format..Q;».'....;\.,.v...v..v;.'.;v....'. oo 66

5. 2 Synchromzatron Vanable Access Dragram 67 .
'-" 5 3 Non—Starvmg Synchromzanon Vanable Entry Format Giae i .' 67
5 4 Lock&Fetch and Store&Unlock Algonthm (a) Entry Format (b) Algonthm. .. e 69 , |
5 5 Synchromzauon Entry Updaung Loglc 70 o
- 5 6 Walung T1me per Access 71 :
5 7 Arbrtratron Farmess 72 '
: ." ,6 1 Number of Messages 1r1 Two Counter S‘yst.ems D . - ot 73 :
| 6 2 Software Analogy to Table ,y. . 74 '
L :6 3 An Example Block........‘.u. 74 .
6 4 Read MlSS by Processor F1ve (a) Before (b) After. .. o) b 76 ‘
'6 5 Wnte H1t by Processor Five to a Shared Block. . ..;.Q ¥ ‘) i . 77
| [6 6 Write M1ss by Processor Three t0a Shared Block » 79
6.7 Wnte Hit by Processor Frve o Shared Block (No EjeC[IOD) 8‘2‘ A
6. 8 Number of Messages in Smgly Lmked LlSt Protocol ‘With erlted Nsb = e o .}-‘.; 83 .
6.9 Software Analogy for Double Lmked Llsts ,\.‘;.,.,.". 84 o

) 6. 10 Srmultaneous E]ectlon Example @A Smgle Processor (b) Before (c) After. . . oy .“ 8_5«: .

LIST OF ABBREVIATIONS

Svstem Darameters

B -
D -
D -

G -
GS -

K -
M s
MM -
N Z
Ncb -
Ns -
Nsm -
P _
Pl -

Size of a cache block

The set of processors which the dlrectory thmks has aparticular block cached -
The number of processors which receive 1nva11dat10n messages when a block is
invalidated .
Number of Clusters in a system
Active global table size . :
Average hit ratio-of the private caches

- Associativity of the private caches

Number of cache blocks in main memory

Number of memory modules (usually N)

Number of processors

Number of cache blocks in each private cache

Number of sets in each private cache

Number of memory submodules

The set of processor which have a particular block cached (the present set)
The number of processor which have a particular block cached

Program parameters -

Fw -
Nsb -
qro -
gs -
Other

RO -
Rw = -

Fraction of references which are writes

Number of shared cache blocks

Fraction of references which are to read only data
Fraction of references which are to shared data

" Read Only
- Read Write

" ABSTRACT”

, Wamer Cralg M S EE, Purdue Un1versrty, May 1990 D1rectory Based Cache Coherency
Protocols For Shared Memory Multlprocessors Major Professor Davrd Meyer BRE

R '--Di"r'ecto"ry? 'b'ased cache*fCOherency prOto‘C‘ols cari be used to buildfl‘a"rge scale; weakly
a ordered; sharéd memory mult1prOCessors The salient feature of these. protocols is that they are.
1nterconnect10n network 1ndependent making them more’ scaleable than snoopy bus protocols The
major cntrcrsms of preylously defined drrectory protocols point to the size of memory .needed to
store the directory and the amount of communication across the interconnection netWofk' required to
maintaln coherence ' This thesis tries'SOlving' these. problems by c'hanging the entry forrnat of the_ »
| -global table altenng the archltecture of the global table and developrng new: protocols Some
' altematrve d1rectory entry formats are descnbed 1nclud1ng da spemal entry format for 1mplement1ng
N queuemg semaphores Evaluatlon of the vanous entry fonnats is done w1th probabrllstrc models of
~shared cache blocks. and software srmulatron A variable length global table orgamzatlon is
.presented whlch can be used to reduce the size of the global table, regardless of the entry format
s performance is analyzed usmg software simulation, A’ protocol wh1ch mamtams a lmked lrst of
: processors which have a partrcular block cached is presented Several vanatrons of th1s protocol

' ‘1nduce less: 1nterconnect10n network traffic than tradltlonal protocols

" 1. PRELIMINARIES
1;,1 "-Ceneral | Archrtectul‘e
D1rectory based cache coherency protocols are a way of ‘making the memory m at
_multrprocessor system loglcally the 'same for all processors “The shared. memory paradlgm 1s"
. des1rab1e from the programmer S perspectwe because of i 1ts conoeptual s1mp11C1ty “All processor-to-
: processor commumcatlon canbe perfonned through accessmg shared memory locatrons Becausei

» VonNeumann archltectures are 11m1ted by meniory bandw1dth the shared memory ‘must also be :

fast. In large multrprocessor systems there is great d1spar1ty between the mam memory bandw1dth :

~and rate at whrch processors generate memory references Thus, the need for some way to: satrsfy :

~the majonty of memory references w1thout using main memory Thrs has lead many researchers o
v_cons1der systems w1th large pnvate caches. These caches must be on the processor side of the o
- interconnection network to be effective. - With the 1nclus1on of these,caches comes the coherency,
| problem of trying-to 'main'tain the same, "up to date” data from the point of. view'of all the i

processors In d1rectory based cache coherency protocols, a global table records the current state of

| the cache blocks (lmes) in the system The d1rectory, or global table, 1s dlstrlbuted across the

S memory modules and is used for every reference to mam memory The global table stores which-

i processors prlvate caches currently have the block cached and whether the block is 1ncons1stent

o : w1th memory The set of processor whrch have a block cache is called the present set (P)

The _gene-ral processor and memory-organization is shown in _Figure 1.‘1.‘ :

Invalidations . R L j " Invalidations,

" Interconnection
~ Network

P- Processor C- anate Cache QT - Global Table Module M - Memory Module
L ot PGU Packet Generatlon Umt ‘

Frgure L 1 Processor and Memory Organrzatlon for Drrectory Based Protocols ERR RN

L The memory is drvrded into modules, which can be mterleaved to: perfonn block size reads ‘
‘and wntes quickly [BrDa77] The packet generatlon unit receives message requests from the
" memory, to send cache blocks to processors whrch have had pnvate cache read or wnte mrsses It

also receives mvalldatron message requests form the global table when a processor wntes toa block

: Wthh is cached by other processors
1.2 "Wh'y»D’ire»ctory Ba’sed*ProtocOls?' =

There are many ways of 1mp1ement1ng shared memory 1n multlprocessors Some of these
vtechnrques are with software others are w1th hardware and some requ1re both “The most

prom1s1ng non- d1rectory based protocols are snoopy protocols (for bus systems) and self

o mvahdatmg protocols

The snoopy protocols are ultlmately lrm1ted by the rate at wh1ch addresses may be placed B

on the address bus Unfortunately, the throughput of a bus is roughly mversely proportronal to the e

' ‘ -number of processors placed on the bus Slmulatlon results [ArBa85] [YaBL89] show that the '

: performance of these protocols levels off at-around 32 processors Sequent Computer [Sequ87]
‘sells multrprocessor systems, usrng snoopy bus protocols, with as many as 20 processors “but noi:
: -more Furthermore RISC processors have hlgher memory throughput requrrements, wh1ch further “ -

' comphcates the bus bandwrdth problem .

Self mvahdatmg protocols [ChVe88][M1Be89] mvolve comprle analysrs of programs to o
| _determme for each reference whether or not the reference should be serv1ced by the cache or mam_"». s

’ memory As sard by Mm and Baer [M1Ba89] "It 1s clear that d1rectory based protocols wrll g

A ‘always have hrgher hit rattos than self-mvahdatmg schemes On the other hand there w1ll be less o

o ‘network trafﬁc in the self—mvahdaung schemes '

Because of the network mdependence of drrectory based schemes non—bus mterconnectronf L

networks can be used 10 satrsfy the memory bandwrdth requ1red by hrgh speed CPUs or many
moderate speed CPUs whrle mamtammg hlgher cache hrt ratlos than self-mvahdatmg protocols- R

. ylcld.
1.3 "Operati'ng System’and Programming Model_ASSurnptions R
Throughout the rest of the thesrs several assumptrons about the operatmg system _

B ‘v-_programmmg model and event ordermg wrll be made They are

L _'1)“ B e All accesses to shared RW vanables must be performed after accesses to
) 'synchromzatron vanables Synchromzatlon variables can be semaphores when the
o references to shared data are in critical sectlons Synchromzatron vanables can also :

o ',;zbe drrected like the synchromzatron in DoAcross loops

) BT The order of executron of mstructrons runnmg in parallel 1s not '

o determmrstrc (Frgure 1 2)

s bi=37
tpatbegin
b+c,p"
: b =5;
parend',_

" Figure 12 Non-detenninisticP'r‘ngam

3 .‘ All memory accesses 1ssued by processor p must be performed with
| respect to all other processors before p: accesses a synchron1zatlon varrable Issued
,and performed as used above are preclse tenns A reference is sa1d to be 1ssued',
wheni:the reference can no longer be cancelled by the processor Wthh mmated it

"Most of the trme references are issued when they enter the | processor to memory
mterconnectlon network A read from memory is said- 0 be performed with .

'respect o processor k when processor k can no longer 1n1trate a wnte Wthh alters .
the value fetched by the read. A wnte to memory is said to be performed w1th '
respect to processor k when processor k cannot initiate a read operatlon to the same .k

. 'locatron whrch does not recelve the value stored by the wnte
R Al synchronization variables aré not Cached; S
5) R " Semaphores are accessed through uninterrupta’ble r"ead*modify'\vrit‘e
' .'operations ‘Examples of- such operatrons are test- and set; compare and “Swap
" [PeSl85 I, and theé xmem mstructron used 1n the Motorola 88000 [Mot088]
‘”6) - ' Every two shared varrables wh1ch could concurrently be granted RW
' pnv1lege 0 tWo d1fferent processors must be stored 1n separate cache blocks

) Together the assumptlons one through s1x 1mply Weak Orde 'ng‘of events [DuSB86] ‘

[DuSB88] explamed later in [hlS chapter o
14 Private Ca‘-ch‘es .

" The pn'vat'e caches can perform frve basic typesofoperation‘s; read'hits 'readmisses write
“hits, wnte mrsses and block ejectlons How each of these ﬁve operatlons effects rhe global table is

drscussed below '

Read Hlt

When a read hit occurs the data is fetched from the pnvate cache there 1s- '

.no global table operation. -

Wnte Hit

When a write h1t occurs, the global table record of that block is updated all ,

: other caches whrch have the block are mvahdated

Read Mrss |

For read misses, the global table is updated to reﬂect that a new processor
'also has the block cached If the block is not cached or cache read only (RO) the
' block is fetched from the memory If the block is in another processor s cache and
o is d1rty, the block must be ‘written back to memory and sent to the reading
: processor The processor which has the block dirty does not need to 1nvalrdate the :
block. ‘ ‘ ’ ' o ' '

erte MISS : ‘

When write m1sses occur the global table must be updated to reflect that
vthe processor whrch is perfonmng the wrrte is the only processor with the block
and the block is dirty. If when the wr1te miss occurs the block is not cached or
cached RO, the block is fetched from memory If the block is cached read write
(RW) then the processor which has the d1rty block must send it to the writing

i processor All other copies of the block must be 1nvahdated because only one

o processor ata trme is allowed to have a block cached RW.
Ej ection _

A block eject_ion Occurs when a valid .block must be ‘r'e‘movedv from a cache
because a new block needs to be moved into the same cache ’setv and there is not

- enough assoc1at1v1ty to hold all the valid blocks in the set When clean blocks are
eJected the global table may or may not be 1nformed of the update The effects of

‘not updatmg are drscussed in chapter three ; T

The pnvate caches have three essential parameters the size of the cache block (B), the
__number of sets in the cache (Ns) and the assoc1at1v1ty of each set (K) The product of these three

\':,'_'parameters equals the srze of the cache, and the number of blocks i in the cache (Ncb) is the number

i of sels: multrplred by the assocratrvrty (K*Ns) The. greater the assocratrvrty, the slower the access

trme;‘but the less frequcnt blocks ejectlons are. As the cache s1ze 1ncreases the assoclatlvrty effects L

ion the hlt rate dlmlmsh [H11188] Th1s is why large caches are usua]ly duect mapped

For some systems the d1spar1ty between the | processor speed and memory speed is so great -

;;..control On, : srmphfymg constramt Wthh does not drastrcally affect performance 1s the mclusron :

e "‘iproperty [BaWa88] The 1nclus1on property states that every block 1n a faster cache is. also in: o

E -every slower cache -ThlS way, cache’ mvalldatlon reqUests only need to check agamst the cache .
f tags of the slowest cache The slowest cache needs to- marntaln a b1t for each block 1nd1catmg 1f ,
: that block i$ cached by a faster level Thrs way, ifa block is 1nva11dated the slowest cache knows |

- when 1t must 1nva11date the faster cache(s)

Some RISC processors are desrgned to work w1th two prrvate caches a data cache and an

o 1nstruct10n cache [Mot088] Th1s alIows for concurrent access to' mstructlons and data whrch : |

- ,, 1ncreases parallehsm If self modlfymg code is not allowed the cache coherency problem 1sv

nonexlstent 1n the mstructlon cache makmg 1t possrble to use 1nstruct10n caches 1n vary large scale

_mult1processors hke the BBN Monarch [RCCT90] The 1deas we d1scuss 1n th1s paper can be‘ -

'eas11y extended to

tem w1th separate 1nstruct10n and data caches, so for s1mphclty we assume

- each processor has only one cache -

..ejnxf*fOrfderin,g.»

: In multlprocessors there are N sequences of memory references Wthh ina shared memory
-"_system need to be merged mto one sequence Sequentlal Consrstency is’ mergmg these '

= reference sequences in such a:may’ that no. two- references from the same processor appear o

i :'.;-.execute in an order dlfferent than that spemﬁed by the program For conceptual s1mphclty and

“deﬁnmon exactness we mtroduce the concept of an event order graph In the event order: graph

e the references are thought of as VCI’thCS, and dependencres are thought of as d1rected edges

. ;‘Sequentlal Cons1stency is v1olated if, and only if; there ex1ts a cycle m the event ordenng graph A -

o ',machlne 1s satd to mamtam Sequent1a1 Consrstency 1f for every possrble program there does not,' o

'vexrst an executron whrch vrolates Sequent1a1 Cons1stency Formally, the event order graph is =

- constructed in the followmg way

'as to warrant multllevel caches The multlple levels of caches further comphcates coherency '

CAL Every read or wnte to- memory corresponds to a un1que vertex 1n the event orderf -

'graph
B. rThere exrsts an edge from vertex i to vertex J 1f
i. ' Vertex i and vertex j correspond to references generated by the same:?
-processor; p, and vertex j is after i, as specified by the program running on -
processor p.) L
~or
ii. - If jis aread wh1ch fetched the value written by reference i, ori is a read' S

Wthh fetches the value of the shared locatlon before it is modified by _]

Con31der un1 processor systems for a moment Provrded that memory operatrons are
1ssued 1n program -order, there cannot ex1st a cycle 1n the event order graph (if1 the memory does not N
’ pennute the order of references) Hence events are Sequent1a1 Consrstent But for multlprocessor :
systems with private caches, writes are not atomic; therefore issuing memory operatlons 1n-prog'ram_-‘

_-order is not-a sufﬁcrent condmon for sequentlal consrstency Consrder the followmg example:

(Flgure 1.3) .

Processor 1 Processor 2

Ri(@) , R2(b)
WIi) r - W2(a) -

Figure 1. 3 Parallel Program -

A cycle in the event ordering: graph will occur 1f the code executes in the followmg way .

Processor 1 has a cache mtss when it reads a, and the read request 1s slowed by network trafﬁc)

Whrle the read toa isin the network the write to b is 1ssued by Processor land the 1nva11dat10ns of BN

. the other processor S caches happens quickly. After Processor 2 invalidates its cache Processor 2

** reads the new value of b-and wntes to a.- Thrs all- happens before Processor I's read request o :

reaches the memory module. In such an execution sequence ‘the- program will have the an event

| order graph like Frgure 1. 4

F1gure14Non-SequennallyCons1stemExecuuonofaPara]lel Program R

Th1s isa very strange kmd of behavror for programmers to take mto account when wntmg i

programs so two more stralghtforward event ordermg deﬁmtrons were developed by Dubo1s et al ‘, m :

> “The: first deﬁnmon is- called Strong Ordermg, 1t mamtams the sufﬁc1ent cond1t10ns for Sequenual R

- ""Consrstency in mult1processors [DuSB 86} [DuSB88] The condmons for Strong Ordenng are

E Ordermg d1v1des references mto two large catego” ;

: 1."-'_ Accesses to shared data by any one processor are 1ssued and performed mg’
program order : S e t B e

: Strong Ordenng has a second cond1t10n whxch is needed whenever wntes to shared data are

' not atom1c

o "2". At the time wheri 4 Write to shared data by processor s observed by processor j, o
o ~all: accesses to global data issued by i before the 1ssu1ng of the wrlte must be -

performed w1th respect to _]

Strong Ordermg isa very t1ght constramt Most all un1-pr00essor systems dont uphold, o

”“}Strong Ordermg, rather they allow for reads and wntes to d1fferent locatlons to be permuted and T

(O reads to the same locatlon o be permuted Thls is done to 1mprove performance

A more rea11st1cally orderlng of events is- Weak Orderrng [DuSB86] [DuSB_88]. »Weak .

s references to synchromzatron vanables and

S references to all other vanables A synchromzat1on varlable s any varlable used to 1nd1cates to

o '.other proCessors that data is avallable for readmg .

| ey also help to guarantee I at, ere is only one
o f:'iwrltmg processor to a locat1on at a t1me For the most part these are , maphore varlables A system

L vf1s Weakly Ordered 1f R R 1

o l:) AccesSes to synchromzauon varlables are strongly ordered

2) - No access to a synchron1zat10n vanable is 1ssued by a processor p, before all'-
. previous shared data accesses issued by Processor. p have been performed w1th
respect to all other processors.

- -3) No access to shared data-is issued by a processor, p, before an access to a
LRI “synchron1zat1on variable has been performed, with respect to all other processors N

- Requrrement one is easrly maintained by not cachmg the synchromzatron vanables

At first, 1t ‘might not seem that requirement two:is essential to -the correct operatioh of '

v parallel programs Cons1der a processor which 1mmed1ately after entenng a cnttcal section, reads a
shared vanable - array 1ndex used to index into an-array of data elements -- and]ust before
exiting the cntlcal sectlon 1ncrements array_ index. If when the processor- leaves the cnt1cal‘
section it issues a- wnte to. array mdex but does not wait until the wnte is performed w1th respect to'
all.other processors another processor wrth an old copy of array index: cached can enter the
cntlcal sectron Once in the crmcal section, this new processor mrght reference array 1ndex_ a

- and receiye the old value,

Requ1rement three requrres programs be wntten) that there cannot be processors trymg to’

.read or wnte to a locatlon whrch are bemg written to.
- For the ,rem,ainder of the thesis onlyWea_kly Ordered systems will be considered. o
, 1.7 Multistage Interconnection Networks

Multi_s_tage‘v interconnection networks are a compromise between mutually ev)‘(clusive- '
inexpensiVe buSSes and ‘shareable expensiVe crossbars [Sieg85] Consequently multrstage -
1nterconnectron networks are des1rable to build large scale multrprocessors around The most
‘ popular multrstage network is the multistage cube, used i 1n the BBN Butterﬂy [BBN85] and Ultra o
(Computer [GGKM83]. In one pass of the network a message can go from any port to any other

port and by 1nclud1ng an extra stage m the mterconnectron network the’ network can be made to
; tolerate one faulty box or two faulty links. The multlstage cube network has logzN stages of N/2
- two by two switch boxes; each box can be set to strarght exchange, upper broadcast or lower
’ broadcast determined by the routing tag camed along with a packet Flgure 1.5 shows an elght-

ported mulnstage cube network,

= ‘10_—;. :

‘}m
| =

| Stage1.

- Stage2 -

: Straight . Exchéhgé LoWer R 'UP.P_ér-': : ~

Flgure L. 5 Multlstage Cube Network. a ; EES0

Srnce the network handles every request every processor generates there is pressure for
~this to be as fast as}possrble. ngh performance systems wrll want to use networks w1th
unidirectional lli’nks because’ arbrtratron for the links between swrtchvboxes w1ll slow the network
~down conSiderably If a processor shares its network port wrth a memory module only one,
vumdlrectlonal multlstage cube network is nieeded. Figure 1.6 shows thls organization which wﬂl be
referred to as the "Home Memory conﬁ guratron It gets lts name because references made by a

: processor don t need to-use the network if the memory locatron resrdes 1n the module attached to

: the same port as the PIOCeSSOr. g -

1 - lnvalldations N kR H ‘lhva‘lbidan'ons . '
Colad ||| e @00 | . C lgl]ll|w—
M e [l e | opm [fwu [e
.- Packet Switched - - o
" Interconnection
“Network 7

"'NIU-Network Interface Umt ST e

Flgure 16 Home Memory Conﬁguratlon L i

‘ Included w1th each message ina mult1stage cube network is a routmg tag spec1fy1ng the
: setttngs for each of the sw1tch boxes the message goes through There are. two classes of routlng '
Htags smgle destmatlon and mult1p1e destlnatron -The destmatron of a message serves as a s1mp1e _'

and efﬁc1ent smgle dest1nat1on routmg tag, requmng only log2N b1ts Multlple destmatlon tags can.

ke be used to send the same message to. several processors Th1s is usefu for 1nva11dat1ng the other__ i

" ‘processors wh1ch have the block cached when wnte hits. or wnte m1sses occur Several muluple
‘ ‘destmatlon schemes have been presented One method is to use an N' b1t vector as: the routlng tag

'B1t i of the vector is set 1f port iis 1ntended to be a dest1nat1on In order to represent any arbltrary

o .set of destmatlon ports all N b1ts are requrred A more concise, mult1p1e destlnatlon routmg tag 1s ‘

- the broadcast mask [Se1g85] cons1st1ng ofa loggN bit routmg vector and a broadcast vector of equal. ‘

' length The routmg vector 1s any one of the destmattons of the message and the broadcast vectorf

L 1ndlcates whlch stages should perform broadcasts. A box i in stage i looks at’ b1t i for the broadcast_: S

vector and if the blt is asserted the sw1tch box is set t0 broadcast otherw1se 1t looks at the routmg) L

e vector to determme whether the sw1tch box should be set to strarght or exchange For example if

o 'N—4 and one wants to send a message to port zero and two, the broadcast mask could be {routlng

: vector—OOz, broadcast vector*lOz} or X0 for short. Notrce when the destmatrons are zero (002), :

o and three (1 12) the present set cannot be represented w1th one broadcast mask

Because each sw1tchbox acts mdependently of other swrtchboxes no guarantee can bef o

- ,made about the amval order of two message sent from different ports to the same destmatlon port '

S ,but we w111 assume that two message sent from the same port to the same destmatron port w111 R

' arnve in the order they were 1ssued
' 1’.6 .'Multiple‘ Channel' Arehitecture--

o In the more remote future optlcal busses may be feasrble for processor 0 memory:; ;)
: fmterconnectlon Walles and Meyer are beglnnmg work on a frequency multrplexed optlcal bus they'
) call Multrple Channel Archrtecture [WaMe90] The bus will have as many channels as d1scemable N
frequencres of 11 ght (11ke1y 0 be several thousand) The performance 1mprovement comes because.
each channel can be used concurrently wrth every other and hence greatly reducmg mterconnectron_ -_ '

network: contentlon Although the mterconnectlon is physrcally a bus the snoopy protocols w111 '

B : :perform poorly in the multlple channel archltecture because the snoop umt at the pnvate caches :

:'would have to-! snoop every channel at the same trme On the other hand drrectory based -

. xprotocols can’ ut111ze the many 1ndependent channels

T

2. ANALYSIS OF SHARING

-+ In order to evaluate the effectiveness of coherency protocols it is useful to know some
E propemes of shared cache blocks Some of the questlons which we want to ask are: What
percentage of blocks are shared blocks ina typrcal program" How many processors are llkely to
share a cache block?- How many references does a processor typrcally make to a block before_ _

- another processor wntesto 1t‘7 i
21 Amount of 'S'haring' 'a'nd Frequency of Writes

From the analysrs done on parallel appllcatlons [WeGu89] [BaRa89] [EgKa88]
[ASHH88] typ1cal values for the fractron of references to shared vanables and the fractlon of
wntes can be known The fractlon of references to shared vanables ranged from 1.98% to0 21.5%,
and was on average 10% for'the apphcatlon observed The fraction of wntes ranged from 7% to

40%, and was typrcally 30%.
2,2‘ ‘Markov Chain Models of Shared Blocks

To answer the question: "How many processors are likely to have a shared block cached?",
a Markov cham was developed -- one that transitions from state to state whenever a private cache

1ssues a global table operanon

A Markov chain i 1s a ﬁttmg model for the behav1or of the shared block because the future
- 'state of the block only depends upon the present state This i is the fundamental Markov property

Other assumptlons wlnch need to be made are:

; 1) x '-"_Every processor is equally lrkely to cache any one of the shared blocks
) _'_-—"The accesses to shared blocks are unrfonnly dlstnbuted across all the shared R
o -blocks. . T R I Sl

. 3) 'Every block in a pnvate cache is equally hkely o be ejected

4) ‘Each memory reference is 1ndependent of all other references R S

v 221 Markoy Chain';for ‘RW Bl‘ocks- o
7 : “The Markov cham for a representatxve shared RW block is presented in Frgure 2 1 The o
states a shared RW block can be in are Not Cached Cache w1th RW privilege by one processor or

cached with RO pnv1lege by any number of processors Th1s chain'is s1m11ar to the Markov cham-’ ‘,

present by Dub01s [Dub187] but this. chaln mcorporates block ejectlons

\ a2 aN-1

f " Not
\ Cached [

Figure 2.1 RW Data Markov Chain

The transrtronal probabllmes can be expressed in term of observable propertles of the

' system and program as done for bus snoopmg protocols by Yang et al. [YaBL89]

w s f wﬁte_p_robability L | e
o el Eel xep]) ey
. .a .. '=°- probability of adding a processor Lol
. 1- 1-F N-i [1] I
o el][o
bi. -~ = - probab111ty of deletmgaprocessor R
[1-][N Ncb N B VRO I
Deﬁmtlon of parameters
Ncb = | Number of blocks masmgle pnvate cache '

Nsb = Numberof shared cache blocks in an apphcauon-. N

15

qs = " Fractlon of references Wthh are to shaned data ‘ }
.qro V_ = " v;‘fProbabihty that a reference is toa shared RO block glven that the
- R reference istoa shared block C '
Fw = Fractl_on of references Wthh are writes
h : - Hit ratio ‘of the _priv_ate caches'

The steady state probabilities for any Markov Cham can be solved by ﬁnding the solutlon

to the set of N+3 equatlons below :
=1 . © (N+2-equations) -
N+1 ‘ .
2 f1%] ’ =
‘ : (1 equation)
‘Where: - _‘ SUREE B
T= (N+52)x(N+2)'transitional probability matrix Hs
I‘l (N+2)xl steady state probablhty matrix

'1:1 = steady state probabihty of state i
Once t_he ni’s. are known, the,expectedasize Of the present set.(IPl);cmfbe calcjnlated,vi o

E[IPI]—m+ 2 (1 197,41
i=2

@4
‘Using numerical analy_sis software, the vstea_'dy state probabilities for a sample s’ystem were

solved for.

216

0.4

Probability

012345678 91011121314151617 = -
-State Number

Parameters
“N=32
qro =1.0.
g =02 -
. Fw=03"
h=09
Nsb = 64
Ncb =4096

Frgure 2 2 Steady State Probabrlrty of RW Markov Cham :

Because the. assumed h1t ratio is nmety percent and Nsb/Ncb is a small fractron ejectrons
are 1nfrequent and consequently shared RW blocks are seldom in the Not Cached state or RO-1

state If the number of shared blocks 1ncreases) does the probabllrty of these states

The steady state probabrlrtres are most affected by Fw, the fractlon of wrrtes As Fw :

1ncreases the expected size of the present set decreases ‘

17

06T
o541
1y
RTINS B4 ¢ B
B -.044 4
L ’ o ’ / . ~
= i M Ew=01
' E’ ; t - 'O Fw=05
~ 021 1 Fl S
WA lg '
il
o h B L L L
1.2 3.4 5 .68 7 8 9 10,11 :12
Size of Present Set (IP))
- Parameters.
" N=32 ’
qro=0-,
gs=02
h=09
Nsb =64

‘Ncb=4096

¥ Figure 2.3 Effects of Fw on Steady State Probabilitics

Thrs Markov cham s steady state probab111t1es reﬂect the number of mvalrdatrons requrred
.10 perform a write. The results we obtamed concur w1th the number of 1nvalrdat1ons per write

” : observed by Weber and Gupta [WeGu89] as well as Agarwal et. al [ASHH88] m the1r analysrs of E
’ parallel applrcatrons ' ’ ‘

} The valrdrty of assumptron number one: every processor 1s equally hkely to cache any one
B of the shared blocks mlght be questloned because frequently m parallel applrcatrons not every
processor references every shared locatlon But the nurnber of processors Wthh refetence a block

- does not alter the Markov cham more than to change N 10 a number whrch better surts the

applrcat1on of mterest A more reahsnc model would be to divide the shared blocks mto several' -

drfferent classes accordmg to how many processors access the various shared. block
2._2”.,2 Markoy.. Chain for RO Blocks

Read_ only (RO’);data which remains RO for the‘entire execution of th_e program,:.l:i,ke,,
instruction, data, should be marked as local by a compiler, and lumped into local pages by the o
operating system. Once a processor performs address translation, the global orlocal distlncti_on_ is "
known, and local cache miss operations will require coherency maintenance Commercial.system's
like the 88000[Moto88] use this strategy to reduce the amount of traffic to the snooping units. Thls_

strategy also helps reduce the trafﬁc to the global table.

‘ rEven with -intelligent compilers and operating systems which put local data into distinct '
pagesl, some shared data is global and RO. In VLSI channel,routing for example, the ve_rt_ical and
horizontal. constraint’ graphs are RW during the phase which generates the graphs [WaCa89] then :

dunng the phase where the nets are ass1gned to a track; they become RO.

A Markov: model can be constructed for RO data. Itisa degencrate case of the RW Markov

: chaln where. the wnte percentage is zero (Fw =0).

" Figure 2.4 RO Data Markov Chain =

a = probabihty of adding a processor

| Ve[t o5
o [N Jlasllarel|xg @.5)
.bi L= Probability of removing a processor

'[ﬁfl[l‘h] Nlc—b] IR X

The closed form solution of the steady state,probabilities for the RO Markov chain is

1
= J
4j-1
b

b)

den

19

Thrs is unlike the RW case where the effects of Fw seemed to domlnate, here all the

parameters play a significant role in 1nﬂuencmg the steady state probab111t1es Equation 2.6 does

not offer intuitive understandmg as to how each parameter effects the probablhty densny function of
1Pl, so several graphs were generated for varrous system parameters

0.2

E’ © Nsb=8192
E . » R R B NSb—4096
£, . : L cof o mmmreeset Nsb=2048
£ A Al =m=e=m- UNsb=1024

K - Nsb-512
[I \ / A) :
Mooy I\
PO A N v
v N v
kY v [\
X \VA \
‘_ / Q“ .. .)
T LA ! v g
40 60 80 100
Size of Present Set (IP}) :

Parameters - .

"N=128

gro = 0.5

gs =0.5 ,

-h=09 - I
Ncb 32768

Frgure 25 Steady State Probablhty for RO Markov Chaln

“20

As the number of shared blocks mcreases the 11ke11hood of a block bemg cached by more
than one processor d1m1n1shes The cardmahty of the present set also is affected by the h1t ratro of

the caches and the percentage of shared references

E .
CRE 502
N e A B gs=0.
R S I R A0 A qs=0.4"
e)y T S e qs=0.5
B B R T = G A SR Rttt gs=0.6
£ o
' 204
0.6 07 08 . 09 EEEAER I IR L
"Private .Ca‘_che Hit Ratio (h) ‘
, Pararneters :
N=128
qo =05 - -
-Nsb=2048 -

'Ncb=32768 -

‘Figure 2.‘6_‘Effects of Hit Ratio and qs on Present Set.

As the h1t ratlo and the percent of shared references mcreases, the cardmahty of the present)

set mcreases Th1s is because the only effect whrch decreases the s1ze of the present set 1s block R

Q]CCthIl When the hrt ratlo is low, block ejectlons are less frequent When qs 1ncreases, shared '

blocks are accessed more frequently, makmg the 11ke11hood of a block belng cached greater

21

23 Freqﬂen?y of .References to Shared Blocks

‘ : ‘It is useful to know how many reférenbes a processor will Ihake toa bl(_)ék that it wrotev to
before another proc'essor'Writes to it. This gives an indi‘céti.on‘of the ﬁtility‘of caching :dirty blocks.
This, of éourse; is prograin dependent. Baylor and Rathi [BaRa89] analyied the behavior of
"séveral_ eﬁginecﬁng and scientiﬁc applications, and reported a measure corresponding to the amount
of ‘timé after a processof writes t‘ova block and before ahother propessbr writes to that same block.
The unit of time they used was a logical cycle. In alogical cycle, eviery processbr can perform a
| read or a write to memory. When the block size was four words (the best and smallest size in their
analysis), the average number of cycles was in the hundreds. Eggers and Katz, in their’ analysis of
snoopy bus systems, monitored the number of writes a processor made to a block after it's first
- write miss or write hit and before another processor wrote to the block. They called this the write
v run léhgth. The numbei~ of reads and writeS to a shared blbck during this time can be estimated if

the write run Iengtll and the fraction of writes are known. '
Read and Write Run Length = Write Run Length/Fw -~ (2.8)

Using the numbers gathered by Eggers and Katz, the read write run length for the four

-applications observed ranged from 6 to 22, and on the average was 13. =

3. FIXED LENGTH ENTRY DIRECTORIES

31 Traditl.onal Directory Based Protocols

- Chronologlcally, Tang $ method [Tang76] is the ﬁrst d1rectory based cache coherency.'
: protocol He proposed 1o store a copy. of the pnvate cache tags in M K*N way assocratlve__
‘ memorres each Ns/M sets large (where N 1s the number of processors in the system M 1s the -

number of memory modules Ns is the number of sets in the private caches and K is the'. =

assocrat1v1ty of the caches) The ma_]or drawback to such an approach is the access.tlme:of the"'f'
s assocratrve memory In most log1c famrhes, the access t1me for a CAM (Contents Addressable,"
‘ Memory) is d1rectly proportlonal to the assocrat1v1ty Thrs property of assocratrve memory makes.'
, Tang s approach hard to scale We descrrbe a way to de51gn out the assoc1ate memory m the next
chapter but when done the memory size is comparable to the amount of memory requlred by the '

next approach we will now discuss.

‘ Censier and Feautrier [CeFe78] developed a coherency' protocoltha't‘does ndt?'req{me .
assocranve memory Instead the global table contams an entry for every block 1n main. memory, "
each entry bemg N+1 bits. B1t Zero of the entry records the type of access pnvrlege the cache(s)

‘with the block have (Only one cache may have read and write access to a block ata time, but alli

_caches may smultaneously cache the block if all have read only access). If thls pr1v11ege b1t 1s":=.' -

* asserted, a cache has read and wnte pnv1lege (RW) otherw1se the cache(s) have read only
pnvrlege (RO). The next N bits determine which of the pnvate cache(s) have the block cached If
processor i has block b cached, then bit i of the global table entry for. block b i is asserted ThlS N b1t

- array is referredto as the present vector. If a block is not cached, the present _vector._rs all- zer_o__s.. .

Whenéver a read miss, write hit, write miss or block ejection occurs at one of the prlvate_ .

' caches a request is sent to one of the memory modules based on the-a'ddres’s of"the reference How R

the global table is updated depends upon what type of operatron bemg performed and what statei '

the block is currently in. The actions for each of the five basic operatlons are:

- Read Miss.

. (Byprocessori toblockb) S

. Biti of the entry is set, and the block is fetched from main memory.

" An mvaltdate w1thout mtent to modtfy message 1s sent to the'v'." ’

: ___processor which has RW pr1v1lege to the block call 1t processor j- Processor J

o 'sends the block to ma1n memory and changes h1s local state 10’ RO The final =

o "read miss on the locatlon wh11e the entry isin the pend1ng state that processor L

S global table entry isRO with blts i and j set.: ‘While the block 1s bemg wntten back ‘
-the entry for the block must be put ina pendlng state If another processor has. a

-should be recorded ‘as requestlng the block It is: assumed that program

S ,synchromzatlon w1ll make it so no wr1te mlsses occur wh1le the entry is 1n the -

o pendmg state When the block arrives-at ma1n memory, the global table is updated o |

and a copy of the block is sent to the requestmg processor(s)

Not Cached

- , “ ,memory
 Write Hit -

RO

RW

Write Miss

v‘(B‘Yﬁbréce"s"scri Bblock By

}res1des 11 mam memory

-'f.messages EE R

The entry 1s set to RO W1th bxt i set and the block is fetched from mam_- .

An invaltdate wnth mtent to modlfy message is sent to processor i 1f ’

- and only if i is'an element of P The ﬁnal entry is set to RW w1th only b1t 1§ 1n the

‘ present vector set The block sent to the requestmg processor 1s a: COpy of what

The ‘write can be perfonned locally w1thout any 1nterconnectton network o

_-'1'(13“y 'p;rOCessor_i' toblockb) i

An mvalrdate wrth mtent to modlfy message is sent to processorl 1f S |

- and only if i is an element of P. The. ﬁnal entry is set to RW, w1th only brt iin thex }
present vector set. 'I'he block sent to the requestmg processor isa copy of what ‘

/ fresrdes m main memory

An 1nva11date w1th intent to modlfy message is sent to the processor whrch 3
; : has RW pnv1lege to the block The final entry 1s set to RW pnvrlege w1th only b1t i
- set The processor wrth the dirty block sends it to the requestmg processor It 1s o
; assumed that the program synchromzatlon will assure that no other wnte m1ss to |
: .f r,v,thls block wrll occur untll after the drrty block amves at: the processor which had

: the wnte m1ss

Not Cached (Wnte M1ss only)

The entry is set to RW w1th b1t i set and the block is fetched from mam
memory : e : e e T
‘ EJectron Request (Of block b by processor 1)

RO ” b1t iis cleared in the entry.

RW bit i is‘(‘:leared from -th,e, entry, and the block is -‘written to memo’ry; :

- 32MamtammgWeakCoherency

In order to mamtam Weak Ordermg, a. system must msure that all accesses whrch are

i 1ssued before the 1ssumg of a synchromzatron vanable access, are “performed” w1th respect to all :

o -other processors A convement way to enforce thls is to have two counter for each processor The

, frrst counter isa called a return receipt counter which records the number of retum recelpts ’

o which have been recelved Tlus counter is mcremented every trme aread to a shared block is 1ssued

,and decremented every t1me the read data is retumed Wntes are more comphcated A wnte isT

fperformed w1th respect to all processors when all the other processors whrch have the block'

- mvahdate it, and the global table is updated. When a processor 1ssues ‘a wrtte operatron the o

o p,‘-‘outstandmg wrrtes counter (the second counter) is mcremented The counter is decremented N

o when 1t rece1ves a retum message from the memory module mdlcatmg the number of mvahdatlon E

messages Wthh were sent asa result of the wrrte ThlS number must be added to the retum recerpt I ERINS

T 'counter Thus thrs counter records the number of wrttes whrch have been 1ssue

L updated the retum recerpt counter Srnce 1t 1s enurely possrble for some retum recerpts from the Sl

e ,-mvahdatmg processors to be recerved before the message from the memory 1s recelved the retum B

el .,-'Jrecelpt counter mUSt be desrgned to hold both posrtrve and negatrve numbers When both the o

s : outstandmg wntes and the retum recerpt coutiter are zero, a]l references are performed w1th respect |

S _f':wrrte m1ss 1llustrated in Frgure 3.1

to all other processors, and accessmg synchromzatron varrables 1s allowed Consrder the example'

o -Outstandmg Wntes counter 1ncremented when: the wnte is 1ssued
2) " Global table retums the- size of the present set.’ ‘ R
N “ - 'Return'Receipt countér += size of the. present set

- .= Outstanding Writes counter decremented :
- Other processors which have the block are sent- mvahdatron messages
£) The invalidating processors send return receipts =~ - - .
T - Retum Recerpt counter decremented for each message R

: Frgure 3. 1 Two Counter Example

L _As Brooks and Hoag [BrHo90] mentron a facrlrty lrke thls makes 1t poss1b1e for normal -

BET program vanables to be used as synchromzatron Vi H,'»ables ”'By s1mp1y, surroundmg the access of o

 the vanable by calls to an operatmg functron wart(), the vanable can be treated as a synchromzatlon : :

S 'vanable The watt() functron stops the processor from 1ssumg any more references untrl both(’

counters are zero SR

26
33 ‘Evaluation of Traditional Protocols *

Fora system which uses the Cens1er and Feautrier protocol to maintain cache coherency,
the global table can become very large A system with 64 processor 256 Megabytes of main -
lmemory, and a block size of 16 bytes will need a 130 Megabyte global table -- 50% the size of
' main memory' The s1ze of the global table is. not large because the entnes are 1nefﬁc1ent1y»,
repr_esentlng the possible sta_tes of a shared block. Since any combrnanon of processors: can:
simultaneously'vcache the block with RO privilege, there are 2N€ RO states, and since each processor..

- can obtain RW privilege to the block, there are N RW states. N+1 b1ts are capable of recordrng

2N‘r1 states SO the efﬁcrency of this. global table entry format is:

| Efﬁclency (2N + N)/ 2N+1 : (3.»1) . .
Lim Efﬁcrency 05 -
N->e0
- This 1mplles that an altemate fixed entry format capable of recordlng every possmle state

will not y1e1d an order of magmtude 1mprovement

The most obv1ous way of reducrng the global table size is to 1ncrease the block srze For |
} every doubhng of the block srze the global table size is halved because only one entry 1s needed
for each block in ma1n memory ‘Buti 1ncreas1ng the block size degrades system performance when
the block size 1s made very large Often unnecessary words are carried along w1th other references

when the block size is b1g [DuBr82]

An economrcal protocol [ArBa85] has been proposed Wthh only requlres two b1ts per /

R block consequently each block can be in one of four states: Mod1ﬁed Present, Present* or Not -

4Cached The entry is set to Modified if a cache has a dirty copy of the block. If one of the caches
has the block-RO then the entry is set-to Present. If more than one processor has the block cached

‘ the entry is set to Present*. The d1st1nct10n between Present and Present* is made so no 1nvahdat10n _
messages need to be sent when write hrts occur to blocks wh1ch are in the Present state Whenever‘v
one.or more pnvate caches need to be 1nva11dated an 1nva11dat10n message has to be sent to every
' processor Because the broadcasts are to all the processors m the system excessrve unnecessary'
network traffrc is 1ntroduced and each prrvate cache must spend trme serv1cmg 1nva11dat10n '

. requests for blocks which are not present

27

3 4 ‘ Cntlcrsms of Tradntlonal Techmques |

- | The maJor cnt1c1sms of the tradmonal global table cache coherency protocols are .
A'n1)> o The amount of mterconnectron network traffic i 1s great. . E iy
o 2) The amount of memory requn'ed to make the global table is great ‘ ,
- 3) "j . The number.of urmecessary 1nva11dat10n to the pnvate caches drstracts them from

- servmg the processor they are pnvy w1th : S
k vThe remalmng sectlons of the thesis will be devoted to grapphng with these problems by <
mventmg new protocols and altenng global table archrtectures '

‘ k _3.5' Using ,Brio_adcast Masks as Global Tabl‘e Entrie’s‘

A compromrse between the economrc protocol and the Censrer and Feautner approach isto
.v'record the present set w1th a smgle broadcast mask Equatron 3 2 expresses the 51ze of the global - '
ble when tlus entry fonnat is employed : LR oS
Global Table Srze (w1th broadcast masks) e M*(2*log2(N)+1) (b1ts) ‘_ ‘ »
E " soMogd 32

vMis the numberf of blocks in mam memory. R

As shown in F1gure 2. 2 the most 11kely combmatrons for shared read/wnte data are those R
rcombrnatlons where Pl < (1/5)N; so. the global table entry format only needs to be accurate when' e

several processors have a block cached

‘ Because not every, combmatron of processors can be represented w1th a s1ng1e broadcast
= mask processors whlch are not in the present set may be 1nadvertent1y 1nc1uded in the broadcast
‘ .mask In fact the processor whrch performs an operatlon wh1ch 1nva11dates all other coples of the

' ».block may 1tse1f recelve an 1nva11dat10n message which it must 1gnore In order for the processor to

o discern: whether or not an mvahdatlon message should be drsregarded the 1nva11date operatron is

- divided 1nto two types 1nva11date (RW) and 1nva11date (RO) The global table sends out

1nvalldatlons cons1stent with the state it has recorded and 1f a processor recelves an 1nva11datlon

’ » 1ncon51stent wrth its record of the access privilege, the invalidation is dlsregarded. STy

Assumlng that every. processor is equally 11ke1y to cache a block a s1mu1ator was bu11t to -

detenmne how accurately a broadcast mask can nepresent the present set.

) NumberOanvate Cache ‘Inyalidatfrons - S

v_‘2’oo.-ﬁ- |

© 1004 .

,'-0-0-0-‘-.-0-0-0-0-0 . .'

1 . . - .
Y I : . . -)
. 'l o » “,'...'...0‘.......‘.............,....................
oo’ N
N .

10 : 20 -

 Number of Processors Which Have the Block

~ Figure 3.2 One Broadcast Mask System '

-.,..--l,_--lf--l-;--'l-'f'.-lfl-.-ﬁ.#;. .

Iqiffﬂ'ﬂ-ﬂ-**-ﬂ"ﬂ-ﬂ-ﬂ--ﬂ-'ﬂ :

-

-.4-*-.’-

N=32

- N=64.
" N=128
- N=256
“Ideal

Evrdent from the s1mulatron results the smgle broadcast mask method degenerates to the

' "performance equal to that of the Archlbald and Baer economical solutxon when IPI > 10 ’

mdependent of N

Representmg the present set w1th several broadcast masks reduces the number of ' .

' ’extraneous 1nvahdat10ns, but there are some comphcanons

—~We present three theorems showmg the dlfﬁcultles m preventmg extraneous and redundant .

1nva11datrons Theorem 3 1is an upper bound on the number of broadcast masks needed 3 2is

——

the correspondrng lower bound. Theorem 3. 3 shows the dlfﬁculty of detenmmng whrch masks

- should cover which processors

35 1 Theoretlcal Drfficultles :

: Theorem 3. l (An upper bound on the number of broadcast masks) ‘ ,
* The maxrmum number of broadcast masks needed to represent an arbltrary P w1thout.
1ntroduc1ng extraneous or redundant mvahdanons is N/2 I

Examiple; L e R : _
Consrder a system with N=8, and a pamcular block where P {0012,0102,1002,1 l I}

L Because every processor number isa Hammmg drstance of two away from every other processor' '

'number norie of the processor numbers’ can be merged 1nto a broadcast mask wrthout mtroducmg :
extraneous 1nvahdat10ns Notrce IPI N/2 4 ‘ o '
".Lemma31 S o . , , _
| Let Sbe a set numbers such that, for every number in ‘the set there does not exist another -
. number in the set wh1ch isa Hammmg distance of one away. The mlmmum number of brts to ‘

; represent any S is logz(ISI) + l Tlns isa the idea behmd smgle bit panty N o

. 'Lemma 3 2 » ‘ , , R
| ' The maxrmum number of broadcast masks ever needed equals the cardmahty of S (ISI)

iProof by contradlctlon ,

Assume there ex1sts a set S2 such that ISZI > IS| Let O-SZ S Every element in O 1s a
' ,‘Hammmg distance of one away from an element in S (otherwrse the element would be in S).
: Hence, every element in O can be covered by altenng one or more of the broadcast masks wrthout a

; introducrng extraneous or redundant 1nvahdat10ns Thus no more than lSI broadcast masks are

L requrred

- “ Proof of theorem

Because each processor s ID is log2N brt long,_ o
: logz'(ISI) +1 = logz(N) -
lSI 2"(10g2(N) 1) N/2

‘maximum number of broadcast mas_ks_ needed ISI N/2

30

_ Evenrf -the_'present set 1s the"be.‘st case (the ,combina’tion of proceS‘sors"vVhiCHZ;mquires the
- fewest nummr‘ofbroadcast masks) ~s’eVeral'broadcastmasks may be'needed-‘-to ’represent 1t o
- Theorem 3.2: (A lower bound on the number of broadcast masks) v ,
- The lower bound on the number of broadcast masks needed o represent the present set
' ‘ (wrthout 1ntroduc1ng in extraneous or redundant mvahdatrons) is Hammmg(IPI 0)
| . Broadcast masks are only capable of having destinatron sets of s1ze 2 O<—J<—log2N

o Each asserted bit in P| represents a group of size 2i, where i is the bit's pos1tron Smce no

collectlon of groups can be combmed into one group wrthout changrng IPI, the minimum number of . " ’

R broadcast masks must equal Hammmg(IPI 0)

The last maJor drfﬁculty with representmg the present set w1th multlple broadcast masks is

. . the complexrty of trymg to determme whrch masks should cover whlch processors

'_ Theorem 3 3 (Opumal Covermg mNPComplete) S R
e Grven a present set, determmmg the mrmmal set of broadcast masks whrch does not
- mtroduce any extraneous or redundant 1nva11datrons isan NP complete problem '
Proof: . o
: “ The problem is polynomially related to the logrc mrnrmrzatron problem [BHMS85]
: Showmg that another problem is polynomrally related to a problem whrch is known to be NP

. ‘ 'Complete proves that the new problem is also NP complete [Baas78]. If there exists a polynomial }

time algonthm to convert the a solution of the opUmal covering problem into a solution for the logic

- j” m1mm1zat10n problem opt1ma1 covenng is NP complete. Both the logic mrmmlzatron problem and B '

) the. optunal covermg problem have the same mput aset of mmterms whrch need to be covered v '

" Both problem S soluuQns are stated in term of prime implicants, but not necessanly the same pnme ' ‘
implic'vantvs.' In the optimal c0ver'ing problem the prime im_plican‘t_ must be disjoint, and in the logic
minimization pr_oblem they are to overlap as much a possible.-" A polynomial time‘algoritlun to

| convert an optimal_ covering solution to a logic minirnization solution is given in Figure 3.3, The ’

- algorithm assumes that the solution to the minimum number of masks problem is stored in an array

o of mask called PI (prime unpllcants) Each pnme unplicant (PI[]]) has logzN tnnary d1g1ts (0 l,or
o X) dlglt bof mask ji is 1nd1cated by PI[]] b, '

31

- for i=1 to number of PI's do begin
- for b=0 to -log;N-1 do begin
' if (PI[i]:b <> X) then I
" if PI[i] with PI[i]:b = X only covers wanted minterms
< PI[il:b = X; ' R R
end ' :
end

‘ Figuré 3.3 Mapping of Minimal B'roadcast Pmbiem to Log'ié Minimizatiqn '

* Consider an example where the where N=16 and the minterms which need to.be covered
are: 4,5,6,7,13,14, and 15. Figure 3.4 shows these minterms placed on a Kamaugh map, the

solution to the optimal covering problem, and the corresponding logic mini'rnizaition problem.- -

b3b2 |
b1_b(")"- 00 01 11 10
oofo[1{o]o
otjo|1f1]o
1jo|1|1]o0
;10' ol1]1 0 |
BN S oNb%b2
bibo N 00 01 11 10 gy N\ 00 01 11 10
joimjogo oofo [mjofo]f
offo |f[[m]o] otfo|ffTT|o
11} 0 || 1o 1o THEA o
'10‘0 dlmlo] 10lo [LLd] o

Figure 3.4 An Example Covering

The number of mmterms which need to be covered in the size of the mputs (n). In the
- worst case, the number of PI's equals n, and for each one of the 1terat10ns of the outer loop, is the

algonthm. has to compare w1th every other minterm. Consequently, ,t,he a_bove algortthm 1s-‘ om?). .

HoW do we know that the solution to the logic minimization problem generated above, is
indeed a proper solution?-We know that the number of prime implicants is the _minimum number,

since the input tothe conversion algorithm solution to the optimal covering problem.

The optimal covering problem is not only encountered when new processors need to be
added into broadcast masks in broadcast mask systems. The same problem arises if the entry
format is Censier and Feautrier's and interconnection network uses broadcast masks for routing

messages.

Because of the dlfﬁculttes of ehmmatmg extraneous and xedundant 1nvaltdat10ns a multtple
broadcast mask scheme whlch introduces redundant and extraneous 1nvaltdattons was developed.
In1t1ally, all the broadcast masks for each global table entry are mvalldated When a processor
- which is not currently covered ‘by any mask caches the block the processor number is compared- '
w1th each broadcast mask and merged it into the broadcast mask to which it 1s closest. Distance -

between a processor number and a broadcast mask is defined as:

Distance = Hamming(O, (broadcast vector & (processor number A routing vector))

When two masks are the same distance from a processor number, the one with the fewest
‘number of asserted bits in the broadcast vector is chosen, and if this fails to resolve a conflict, one

of the several, closest masks is arbitran’ly_ chosen.

Th1s method does not guarantee to'rninimize the number of extraneous or redundant
processors. Consider'the two broadcast’masks 1XXXX and 1100X in a two mask system, with
the new processor bemg processor 00000. Notice 00000 is closer to 1XXXX than 1 100X, though
. merging with 1XXXX w111 introduce 15 extraneous invalidations, wh11e merging 00000 with-

1100X will only introduce 5 extraneous invalidations.

B -

3.5.2 Simuiation Results for Multiple Broadcast Masks
The effectiveness of this method was studied using a simulator which assumed every
Processor is equally likely to reference a block. Figure 3.5 indicates the precision obtained for.

various system:sizes.

300

] - -=-0

Q3 ., @

& I

p=> ",0 o

B v ~ L

R 200 : o . SR
- A S ; 7

“ | AT Sea=— N=32
g_ ;! , , B g —64
g / - el NC2g
B g ', S . : _i-;'I". meseTe g N—256 N
5 1004 A g o Ideal
R ‘ -

bt

.

Z

Number of Processors Which Have The Block

Figure 3.5 Four Broadcast Mask System

The effects of varyrng the number of broadcast masks (BMS) can be seen 1n Frgure 3.6,

fora system with 128 processors

2001
1
]
>
k<] . .
. S . - e |
g g T 3-1'!-1--&1'-!- ¥*¥a
/7 - N . T ‘
é ' ‘l -"." : a - =~
. - : . R & L Lo eeeeseagpesess
; 4 -
g ,100‘ , -4 Rl : eeele-e
= .
k)
2
5
VA

10 . 20
Number of Porcessors Which Have The Block -

‘Figure 3.6 Effects of Using ‘More Broadcast Masks -

 BMS=1

BMS=2 . -

‘BMS=4 -
ideal

- A drawback to the multiple broadcast method is its frequent inability to reduce the number .

of invalidations when block ejections occur. Seldom can a broadcast mask be reduced. The two

cases where a broadcast mask can be reduced are when the ejecting processor is covered by a

broadcast rnask»cbntaining just that processor, or by a mask containing that processor and only one

other processor. Consequently, the global table should not be notified when clean blocks are

ejected.

3.6 Sloppy Ejection

- Before we can bring the Markov models for shared blocks into the analysis of muitiple

broadcast mask systems, we need to introduce the concept of sloppy ejection. Sloppy ejeétion’ is

not updating the global table when clean blocks are ejected from the private Caéhes (the traditional

approach we call tidy ejection) This reduces the number of references to the global t_a,ble',- an_d'

reduces contention for the table. Traditionalbdirectory protocols keep the global table "u[f) to date"

36

" Figure 3.7 Sloppy Ejection Markov Chain =~

The transitional probabilities are:

bi.

write probability - o

[1-arol Lgs]{Fw] [Nsb] 63
*_probability of adding a processor
- [-qro][gs][1 F“’][NHNsb] | (3.4)

* probability of deleting a processor
‘_[l-h][l][1]

'[NJINcb. (3.5)

From the-steady state probabilit_,ies,' E{number of invalidates with tidy ejéction} and

E{number of invalidafions with sloppy ejéction} for a systems which uses a N+1 bit vector for its

entry format. were calculated to help d'eier’mine the effectiveness of sloppy _ejec_tidn. Figure 3.8

compares the two methods fd’r_ arange of _Wﬁte percentages (Fw) on a system where N=32.

37

20

. ——e— Sioppy
—~4=~ Tidy

10 4

: Expected Number of Invalidafions :

© 0.0 0.1 0.2 .03 7. 04
Fraction of Writes (Fw) =~
.. Parameters
oN=32
qro=0
gs=02 -
Fw=03 -
- ~h=09 .
 Nsb=64
"Ncb = 4096

Figure 3.8 Comparison of Sloppy vs. Tidy Ejeetion

, 37 " Expected Number of Invalidations

Usmg the steady state probabllmes from the Markov cham (Flgure 3 7) and the broadcast
mask s1mulatlon results the expected number of redundant and extraneous 1nva11dat10ns for an

mvahdate opcratlon can be determined by the law of condmonal expectatxon (3 6)

E[unnecessary mvaldatlons]—z (E[mvahdatlonsl IPI—1]-1)*P[IPI—1]
i=1 ‘ : L o (3 6)

38

100
5 0o
| === BMS=1
B e e Y S Preeeon BMS=
T 0l ---a--- BMS=3
z& —e— BMS=4
as)
88 2
0 -
0.0 0.5
Fraction of Writes (Fw)
Paraméters
N=128
qro=0.2
gs=0.2
h=0.9
- Nsb=1512
Ncb =2048

Figure 3.9 Expected Number of Unnecessary Invalidations.

When using more than one mask to represent the present set, the maximum number of
(invalidation messages can exceed N, because some of the mask wi]yl‘ overlap on¢ another generating
two or more invalidations to the same processor. Figure 3.10 shows the results from our simulator

for various numbers of broadcast masks in a system with 128 processors.:

: 39

2007 "‘;

2 £ v
5..,_,"%».,&- f‘-" z.,-"._,‘,‘ "fﬂ" N ;:: &
‘ b;"‘-&,*.,- 5 f.m.v-.-"\;".' \."‘ "'* "l‘,,-J:‘\ﬁ _
‘/\I‘JJ.-" ’} ;,»N"\/"v ‘\N\NN\AM’U\AA W\I"\
a
-3 Tt ; —_—) N .
< ' , Falf SR , BN :
E ‘ !) : .': . Dok . ; -‘--a--fu-e-----g.- Four MaSkS
T qed Bl ' Sl esewssssse Three Mask
= (Vs ' R .= =====" TwoMasks
g i s One Mask
g ilig "N
g i |
: iy
in ;i
yrs
1
: 5 , _
Y 'Fb - — — |
0 . 50 S 100

Cardinality of the Present Set (IPl) -

Figure 3.10 Full Range Behavior of Multiple Broadcast Mask Systems (N=128)

The number of proeessors which are being ihvalidaf_ed‘ (DN ‘When. the aceurac§. Ievels out
we call the ,samrateki 'des‘tir‘lation "set; 'The size of the sat_urated density vset roughly follro_\&sveqtiat}ion
3.7. , | e ’ -

_Isaturated DI = (0.15)*N*(BMS-1) + N 3.7

BMS - number of broadcast masks

~ The simulator was amended, so that whenever a/new' processor is merged into a broadcast
" mask, each broadcast mask is compared with every' otheribi'oadcast mask. If any onc of the masks
‘was a subset of another, the smaller mask was mvahdated Masks seldom became subsets of other -

masks so this d1d not make a notlceable dlfference in the number of mvahdauons Not to mentlon

1mplementmg such a property would be costly

40

’ If many broadcast masks are used to represent the present set, the number of bits required‘
- for each block w111 exceed that requlred by the present vector approach. The max1mum number of
'broadcast masks whrch can effectlvely be used depends upon the number of processors in the
~ system Untrl now, a broadcast mask was assumed to require 210g2N bits: Theoretlcally, only '
L 510g2N are requlred Whenever a bit in the broadcast vector is asserted, the routing bit cames no
mformat10n A more efﬁcrent way to store the data is to drvrde each broadcast mask into tuples of
three rounng b1ts and three broadcast brts Each tuple can be represented wrth ﬁve brts the three
routing bits and three broadcast bits together represent 27 states, which is less than 25. Usmg thlS
more éfficient method of stonng the broadcast masks an expression for the “break even pomt
~derived (3. 8) The break even pornt is the number of broadcast masks which can be represented ‘

~ with N+1 b1ts _
BMS= (N+1)/((5/6)(2)10g2(N)) (38

BMS is the maximum number of broadcast masks For a system where N—128 BMS =

129/((5/6)(2)(log2(N)) = 11

’3 8 Grouped Entry Format

" Concurrent wi'th the de‘velopment of our multiple broadcast mask systems, Brooks and
Hoag [BrHo90]' developed another kind of compromise between the Archibald and Baer entry
o fonnat and the Censier aﬂd Feautrier entry fonnat. Their idea was to group the N processors into G :
'g\roups each size N/G VAt the global table, each entry consists of the two bits of the Archibald and
Baer protocol concatenated with G bits. If any of the processors 1n a group has the block cached

N the bit for that group is set

_ One can thmk of this method as a several broadcast mask system where the masks are
deJornt fixed to always represent one set of processors, and together cover. all the processors.
‘ Contmumg with the analogy, each mask has logz(N/G) bits set in the broadcast vector of the mask.
: These asserted bit i in the broadcast vector can be any of the logzN bits, but they must be the same
for all the masks. '

When the number of processors in.an entry is small, the processor numbers can be

‘recorded in the bit vector which indicates which groups have the block cached. The interpretation

41

of the b1t vector depends upon the settmg of the ﬁrst two bits of the entry If these b1ts are set to
' Present* the bit vector should be mterpreted asif-each b1t represented a group, and 1f the first: two

brts are sct to Present the bit: vector should be 1nterpreted as processor numbers

~The simulator used to simulate the broadcast mask systems was ‘altered to simulate the
accuracy of Brooks and Hoag s entry fonnat For almost all cases the grouped method was more
accurate 1han the broadcast mask method. The grouped) method also does not have the problem of :

‘ sendmg out redundant invalidations as the broadcast mask does

140 —

& L S L™
. g : .

g 100 v af 4
S . 4) R S ' ¢

= , & e
g 0 oA g e e
g 80 - ot e o _ _ :

= 0 A | ==ee- Ge1s
—9 ‘ ﬂ . o P - v B ,-»..-.......,..;...- - G=8 -
E e , /‘ . _',,-(" e _..f!" ";""".",:';'v»' G=4 ;,‘ "
oW o et .

5

Z

Size of the Present Set (IPY) -

Figure 3.11 Accuracy of Grouped Method (N=128)

42

3.9 Compaﬁhg Accuracy of Grouped Entries to Broadcast Masks
* Comparing the accuracy graph of the grouped method to the multiple broadcast mask
method shows that only for some cases, when the number of processors is small, the broadcast

~ mask systems are more accurate than the grouped systems.

43

200
.
8
3
S
3
B
Yt
°
2
g
4
0 - ey — -
[+3 C 10 S 20
. Size of the Present Set IP! '
@ : .
1,200 4
2
°
g
= :
L E e
E ‘ 100
S
(=)
i
2
£
L3
Z
0=
) _)
Size of the Present Set Pl
®) ‘ ‘

| Figure 3.12 Broadcast Masks vs. Grouped Method, N=128 'f(a)‘G'-—-ll:vG, BMS =1 (b) G=4 BMS=4

44

: Th,é{ eXpected number of invalidations for the grouped system was determined for various

fractions of writes. . .

- 100

Expecfed Number of Unnecessary Invalidatons 4

=
.-
~.
L.y
~.
oo,
s,
.. ~
", Seo
T e, 3
* -
..
-, -,
"%, ~,
o, ~.~
., .~
"o , ~a
3
’-,.
.,
e,
E e
“se L
< & ;
.
S aq, .
, . .
* .
)
S,
.
’~~ oo

Parameters - -
N=128

gro = 0.2
gs=0.2
h=09

Nsb =512

' Neb=2048

Fraction of Writes (Fw)

0.5

Figﬁré?:.l?i Unnecessar'y Invalidations for Grouped Method |

45

- 4. GLOBAL TABLE ORGANIZATIONS

Two classes of global tables will be discussed in this chapter, tables which are copies of the
private cache tags first proposed by Tang [Tang76] and tables which have an entry for each block
in main memory, proposed by Censier and Feautner [CeFe78). The latter class will be discussed

first.
41 Main Memory Block *‘Re;cording .

For protocols requmng an entry for each block in'main memory, the higher order bits of
the physical address can serve to select the entry m the global- table The lower order bits of the
phys1ca1 address serve to select which memory module and whrch byte of the cache block is to be
referenced. All operanons on global blocks requrre a global table read, some modification of the
- entry and a. global table write. The modification done by some updating logic depends upon the
entry format. Fi gure 4.1 shows the simplest global tablé organization for this class of global table.

Physical . Global Table
Address Memory
Update Logic

_ Figure 4.1 Global Table Block Diagram

If the format of the global table entry is an N+1 bit vector, the update logic for the updating
of the N bit vector is simply several XOR gates and a multiplexer (Figure 4.2). Besides the logic

46

: -s'hOWn in Figure 4.2, the update loglc must also generate a new. RO/RW b1t, thrs is

.straightforWardr o

TR Current Present Vector L i
“Processor | [|/f TITT ll "
AN | TTITITT

Decoder

2

R I

New Present Vector

Flgure 4, 2 B1t Vector Update Loglc

If the entry fonnat isa smgle broadcast mask a new processor can be added to the mask 1f -

_' each b1t oi the broadcast mask is updated accordmg to the loglc functrons 1n Flgure 4. 3 The only' e

- -cases where a processor can be removed frorn the broadcast vector 1s when only one or. two.. L

: processor are in the broadcast mask The state where RW and BO are asserted is and unused state ’

and for the equanons below 1s used to mdrcate not cached

Bi |R1&Ni.

Bi' S e
Ni& (RO/RW == RW)&B0 | Ri&(not ((RO/RW,

. Ri"

Bi efubit'i of}thé‘bidadcast veetor.
“Ri'= 'Bit-i of the routing vector . -
Ni~— Nlt i of the processor number

Flgure 4, 3 Broadcast Mask Interpretmg

.

- When multlple broadcast masks and shortest distance merging are used, c1rcu1try must be
added to select whxch of the bnoadcast mask the new processor will be merged into. To make this
selection, each mask computes its d1stance from new processor number; the closest mask is. the one
Wthh the processor is merged mto Only (N-l)N/2 companson circuits are requ1red Flgure 44

shows the block diagram of the circuit which selects the closest mask in a four broadcast mask

sys'te_ni. v

48

.Len' SRR
1 M1 - D
|| — .
1 M2 _' D
— | &L
en
41 m3 (o]
3
en:
1 ma o}
N : . .
e MIX
w : ‘
S
Mergé‘ ‘
M i - Register holdmg mask i ’
D = - . Combinatorial circuit which calculates the dtstance '
. .7 between a broadcast mask and a processor ‘number:
i>j © - . Logic which compares i with j and if i<=j asserts its output
. New " -.. . Register holdmg the new processor number
- Merge - Merge circuit deﬂned mFlgure 4, 3 '

L | F1gure44 Multlple Broadcast Mask Selector

411 ffrii_;pel'inir'_,g the "Gl"obaflii_"l"ablé

_ Smcc the global table performs a read and a wnte for every memory reference to a shared o
block it needs to be fast One common way to increase performance for any computer systems 1s '

| to mtroduce plpelmmg The global table and update log1c can be thought of as two statlons 1n a o

49

p1pe11ne A global table reference has a reservation table like Figure 4.5. For operatrons wrth this
kind of reservation table the optlmal schedulmg strategy is the greedy strategy

o . 1 2 3
- 'Global Table Memory D¢ X
Update Logic X '
Optimélly scheduled operations
1 2 3 4 5 6 7
. Global Table Memory -1 2 1 2 3 4 3
Update Loglc 1 2 3 4

Figure 4.5 Pipelined Global Table

‘When shared memory references are - waiting 'to be serviced the global table memory. is
never idle if the table is plpelmed so the performance cannot be increased, and the pipelined global
table will service two reference in every four cycles. This is a speed up of 1.5 when compared to
the non-pipelined global table, assummg the update logic propagation time equals the global table

memory access time.

In order to support pipelining, several latches and data paths must be added to the glcbal

table. Figure 4.6 shows where these latches and busses are to be placed.

b 5() S

GlobaITab|e | g SRR |

‘Latch_e;s B ,‘ o .-; LatChes : |

- Update Logic: -~

. Physical __ —
" Address - latches

 Figure 4.6 Pipelineable Organization

Rather than ptpelmmg to 1ncrease throughput the global table, each global table module can

| be d1v1ded mto Nsm sub-modules each servmg roughly 1/Nsm of the references A convement)

- vway to pamtlon the global table s to 1nterleave the module usmg the lower order b1t posrtlons of the

'phys1cal address (after removmg ‘the block offset from the physrcal address) ThlS increases the' .

throughput of the global table, but does not help when there is contentlon for one locatton

"4.1.2‘ ,"Variablel Length Tables ‘

Only 1hose blocks whtch are cached utrhze the many states a “complete” global table entry
18 capable of representmg At any gtven time, most blocks are llkely to- res1de in mam memory

o :The mottvatton behmd vanable length tables IS to reduce the global table size by only matntatmng ‘ j

o complete entries for the blocks which are currently cached ’I'hls reduced table of " complete L :

g entnes 1s referred to as the acttve global table Because the acttve global table is smaller than the -
' global table memory, amore exact global table entry format can be used w1thout as much concem .

E for the amount of memory it will use.. The physrcal address cannot be used as a pomter lnto the '

i acttve global table so for every block in’ mam memory, a pomter 1nto the acuve global table i lS‘ : .

. kept Th1s pomter etther pomts to the locatton in the: actlve global table where the entry for that e

51

| block res1ded or the pomter is NULL, 1nd1catmg the block resides in main memory These pomters

are stored in the table pomter table

Figure 4.7 shows a variable lehgth table 'organization. There are four sections to the ‘
variable length table: The free list FIFO, the active global table, the table pointer table, and the
E update loglc The active global table is the memory which contams the present set mfonnatlon for
“the blocks Wthh are currently cached. The format for recordmg the present. set mformatlon can be

any foxmat des1red Although very concise formats, hke in Archibald and Baer's protocol ‘will be
“poor ch01ces for th1s type of orgamzatton the table pointer table will be larger than a fixed length
global table with tlns entry fonnat The free 11st FIFO mamtams which locations in the active global ‘
table are mvahd On system start-up, ‘this FIFO must be 1mt1allzed SO 1t contams all the locations of

the act1ve global table
Table
|- Pointer - , - ,
'7 .'Ta‘ble' 1 | Active Global Table
Physical - Doutb—sf0 | o
Address | - -) M'+Addr o
- L—»lAadar - | Data
: R ™11 sell — 1
-] Din"Valid : , o
—L o Entry Update Logic = |e—— Eject
Din : JeCl
Free ‘I_ : : g Empty
List — EnQl _ !
FIFO' Dagfet—
Dout EMPY ——— Don't Cache
| R

Figure 4.7 Variable Length Table Organization

, If every private c‘éche holds unique blocks (a unique block being a block held by no other
- cache), the maximum number of active global table entries required is (N)(Ncb)/(MM), where Ncb
is the number of cache ‘blocks which can be held by a single private cache, and MM is the number -

‘ of memory modules, This is assuming that all blocks are equally distributed across the memory

- .modules. The active global table canbe m'ade smaller than’(N)(Ncb)/(MM) entries, but if the active, o

- global table becomes full, indicate by the free list FIFO belng empty, the referenced blocks must :ﬁ e

remain uncached This allows for an active global table srze vs. performance tradeoff If the actlve il B

global table size at one global table module is denoted by GS and the number of brts in each entry
is: denoted by E, thie memory requlred for the entire global table 1s

Global Table Size = (GS*(E+loggGS) + M*logz(GS+1))*MM (blts) (4 1)

With variable length tables stagnant biocks -- blocks ‘ejected from all private ca(':hes but not L

removed form the global table -- can fill the active global table To avoid this problem t1dy e]ectlon g
must be employcd When the last processor to have a block cached ejects it, the entry 1s .

rehnqulshed by enqueuerng the pomter to the entry onto the free 11st FIFO. In order to use

broadcast masks as the entry in the act1ve global table, a count field must be appended to each entry o "

to mdrcate the number of processors which have the block Whenever a block e)ectron reaches the
global table the counter is decremented If an ejectlon operatlon occurs and the value of the counterf

is one, the active global table locatron can be given up.

‘ Strcnstrom proposed the present vector be migrated mto the pnvate caches [Stre89] and -
: obtaining s1m11ar reduction in the global table size. However when his protocol 1s used and a
processor ejects a block from its cache (and 1t is. the owner) ﬁndrng another processor to take over ‘
~ ownershlp requrres O(N) messages to and from other processors Furthermore, the cache
controller unit is 11ke1y to be very complex Vanable length tables offer comparable srze reductlon

size ﬂexrblhty, and reduced network trafﬁc 4
'4.1.2.1 A Pipelining Variable Length Tables
As wrth ﬁxed length tables p1pe1m1ng can be used to 1ncrease the throughput of the

‘ system The four basrc statrons of the vanable length table are the table pomter table, the actwe

global table, the update logic, and the free 11st FIFO When and what stations.an operatlon requires

o depends upon the type of operatron (e. g “read miss, ejectron etc) and what state the block is 'v

R currently in. The reservatlon statlons for all possrble global table operatrons are shown in Frgure

.’48

ey

_
Ly}
g

Table PomterTable B , X B
‘Active Global Table *~ .~ - o X X
Update Logic - R R X o
Frec LlstFIFO T v P X

'Read MlSS (N ot Cached) ‘or
- Write Miss (Not Cached) -
" .~ Table Pointer Table
* - Active Global Table
-+, -~ Update Logic
" “Free L1st FIFO

ol I

CMXX
ke

Read M1ss (RO or RW)
 “Write Miss (RO orRW)
- Write Hit (RO)

.= orFlush. - 7

TablePomterTable o . S S

' ActlveGlobalTable S X o0 X

. Update Logic: T B X o
' FreeLrstFlFO L - R

o
b

" Group 3

Flgune 4 8 Reservatlon Tables for Vanable Length Table

Smce the state of the cache block is not known until after the table pomter table and the

h actlve global table has been accessed, one cannot use the reservatton tables in Flgure 4 8 to. develop -

a greedy plpehne scheduler [Kogg81]. Greedy schedulmg can reallstlcally be: 1mp1emented in
) _hardware [Dav17 1] The collision vectors used by a greedy scheduler must not depend upon the
 state’ of the cache block bemg referenced Reservauon tables whrch only depend on the type of

- 'operatlon are shown in Flgure 4.9..

. 'Ejectlon -
+. " Table Pointer Table
- Active Global Table
-~ Update Logic " -
.’-gFree L1st FIFO

'Grottp 1

e
M

o Read Mrss or Write Miss = 1
~ . Table Pointer Table X
- Active Global Table - =
. Update Logic -
Free L1st FIFO

Group 2 |

g
LTI N

ks
'S

R WrrteHrtorFlush B |

" -Table Pointer Table - X

" ActiveGlobal Table -~~~ .
UpdateLogic .~ X

. ‘Free Ltst FIFO SR '. R

Growp3

O T ST

| Flgure 4, 9 Reservatton Tables for Reahstrc Vanable Length Table

.54

A greedy pipeline scheduler can be built for a global table uSing thfée‘ shift registers because
'there are only three umque reservatlon tables Each of the Shlft reglsters determmes when anew
operatlon of the correspondmg type can be initiated. When a new operatlon is scheduled, all the

sh1ft reglsters are updated by Ong in the appropnate collision vector Flgure 4.10 shows the

circuit. -

55

CFF

— I :

: Océupied

B .

FF

G3->G3

-Type

T
Occupied

|

F

Action S

- No operation initiated , ,
A group 1 operation was initiated

A group 2 operation was initiated
A group 3 operation was initiated -

Collision vector for a group
.operation

Figure 4.10 Greedy Scheduler

- Occu‘pied- v

i operation initiated before agroupj - |

.56

' thn an operatton belongmg to.group i wants to perfonn a global table operanon the last .
: b1t of the ith shift register is checked If this bit i is asserted it must walt untll it is cleared before
T mmatmg the operation. When the operatron is 1n1t1ated whenever that mlght be it must place its
group number, i, onto the type lmes so all the. shift’ regrsters become aware of the operatlon in

' progrcss

Collision vectors which could be used in the greedy scheduler are shown' in Figure 4.11.

Zndflst___JOT___ I

Gl 010 10 [010_
G2 10 [0 [T1i0
G3__ 010 — [0 |00

F1gure4 11 C0111S1on VectorTable TR

4122 'Svim’u'lating the Variable Length Table

A simulator was made which generates operations randomly and schedules them using the

- greedy strategy The operatlon generation subroutme of the s1mulator generates amval tlmes asa’

Poisson: proccss The amval times where made to be a Po1sson process for several reasons In
general, Porsson proccsses are good models for traffic because a P01sson process is the only one-
at-a-time random proccss which has statlonary and mdependent mcrements Statronary mcrements
‘ 1mphes that the rate of arrival i is constant for all trme, and mdependent mcrements implies that the
‘number of operanons in one time interval does not mﬂuence the number of tlme amvals in a disjoint
- lime interval. For a Poisson process, the E[#number of amval inttime umts] At | Fittingly, A is
called the rate of the process and 1/A is the expected t1me between amvals Though memory
trafﬁc is usually bursty, modelltng the amvals as a Poisson process for a range of arnval rates "

indicates how the ‘table will perform at busy and as well as slow trmes

The mterarnval trmes of the Poisson process (wrth rate 7») are dtstnbuted as mdependent f
and 1dent1cally drstnbuted exponenttal random vanables wrth parameter X In order to generate
-these random vanables on. the computer a functron Wthh maps the umform random vanable U '

. rangmg from 0 to 1 (avarlable of the system) to an exponenttal random vanable was denved

57
" Interamival Time = f(U) (4.2) =

‘Using ﬁrobability theory, f was found.

=2
: A : “4.3)

An "idealiy". p,ipelined greedy system was also simulated using_ the greedy algorithm, even
~though it in actuality cannot be implemented This gives an indication of what kind of p’erforrnance ‘
s lost by the usrng colhs1on vectors generated from the reservation table in Flgure 49 rather than

from the reservatron table in Flgure 4.8. The "1dea1" scheduler uses the collrsron vectors in Flgure _ '

4.12, whnch are generated fnom the reservatton table in Flgure 4. 8

2nd/1st Gl G2 G3

Gl 010 11 010
@2 |no 01 100
G3 010 1 Lo

* Figure4.12 Collision Vector Table for Ideal Scheduling

, The average number of cycles an operation has to wait depends upon the rate at which the - -
references to the global table arrive Figure 4.13 shows the average number of cycles an operation
has to wart before bemg serviced for the non-pipelined case, the pipelined case and the ideally

. plpelmed case. This is.for a snapshot of nine thousand global table operatlons (Note the y-axis of

i 'the graph is loganthmrc)

i,,,:\ .
o B .
22 37 N
3 . .
S5 e
&3 | e
5..8 } ‘ 24 .8 'f.

'v‘”'té) : g , i '—_ﬂ'—" Non—Prpelm
éé‘n’ . T i Pipelmed
5 10. '

Q. E ‘ -...

5 g AR S
© Q) 0 : - '.. "--.,
S g S
54 ' e T, .
G R LS : ey
. < B ‘ : ..-.",""---....._.i-._"
1 T T L] T I
0 2 4 6 8 10

Expected Number of Cycles Between
Operauons

Frgure 4. 13 Average Wamng Trme |

: The simulation Wthh generated the result presented in hgure 4.13 srmulated nmefthousand
- operations where 30% of the operatrons were group 1 operatrons, 45 % were group 2 .operatlons,
and 25% were group 3 operatlons For the "ideal" prpelme, the d1str1butron was 30% group 1, _
. 10% group 2, and 60% group 3. The reason the group dlstnbutrons are drfferent is because the .'

basic operauons are put into different groups as shown in. Frgures 4. 9 and 4. 10 The percentages ' j

were choscn $0 to make the comparison fair. -

~ Notice how each configuration appears to'have a maximum throughput which the global -

. ‘table can handle If the rate at which operatron amrives exceeds thrs threshold the waltmg trme o

o 'drastlcally 1ncreases Thrs is because the the operatrons later in the s1mu1at10n have to walt a

‘sr gmﬁcant portron of trme In a real system global table operatlons w111 not wa1t thrs long The _

| limited throughput of the global table coupled with heavy trafﬁc wrll cause the buffers at the. |

memory modulcs to fill, stoppmg the processors from sendrng any more references, or a processor o

59

may have 1o wait because of data dependenmes In both cases, system performance w1ll drop

E because of the global table

» The speedup achleved by plpehnmg the global table was estimated by companng the trme it _
took to servrce nme thousand global table operatlons in the p1pe1med "1deally" plpehned and non-
p1pe11ned cases. 'Ihe serv1ce time of nine thousand operations was. s1mu1ated at vanous amval rates

: Flgure 4.14 shows the speedup for the realistic and ideal system a

20—
"1.,5-' .
YT

——— Ideal -

gk ..-..Ts.-..-... ReallSﬁC

‘, Speedup

| cA2q

EETE I

0.8 F———r————— v —— -
‘0 »,v2‘ 4 s 8 10

Operanons

Expected Number of Cycles Between S |
Figure 4.14 Speedup Due to Pipelining Table !

_ Speedup only occurs when the amval rate becomes sufﬁcrently qurck ‘When traffic is
sparse, seldom is there mone than one operat10n at the global table atone time. The speedup levels.
off at approxlmately 1.7 for the realist plpelme, and 1.95 for the “ideal" p1pe11ne These speedup

11m1ts are the. maximum throughput rates of the various tables. _ "

S ;,"'and extra data paths as shown in Flgure 4 15,

i : ‘each handlmg 1/Nsm of |

Rcd031gn1ng the global table SO that 1t can be plpehned mvolves mcludmg stagmg regrsters L

|| Table -
,'.Po_inter-‘
1 Table:

- Dataf——

Actlve Global Table

: Addr

| As]mener] e

| Entry UpoateLogic |

.Din

 Free
nE fFlFO e o | |
" :,'?‘Bio'm emo}— 1 pontcace -

: AorAddr TR Addt'essLatch | .
oD -~ - DataLatch o :
o Op = ' - "Operatlon type" latches and control loglc

F‘g“‘e 4 15 Plpelmed Vanable Lengm Global Table S

As w1th ﬁxed length tables}' the global table module can be d1v1de mto Nsm submodules |

_ the- locattons Ideally, thlS w111 drstnbute the trafﬁc 50 each submodule o
E f handles l/Nsm of the trafﬁc From the modelhng pomt of v1ew rf the tnal to decrde whrch'

o _I'submodule should recerve the operatton is mdependent of when the operattons occurs the amivals

o of operanons observed by each of the submodules is a Porsson process as well but thls ttme wrth a

L rate of NNsm Because of this property of the Porsson process the graphs in Flgure 4 13 and 4 14

' »represent the analys1s for systems w1th submodules as well

61

R i e

4.2 Private Cache Tag Entry Tables |

The other class of global table which will be discussed holds copies of the pﬁVate' cache
’ tags rather than holdlng an entry for each block in main memory. This kind of global table is
required by Tang s [Tang76] protocol The amount of memory required for this type of table is :

Ncb*N*(Number of bits i m a cache tag) (blts)
Ncb*N*log,(M) (bits)
N*M if logo(M*Ncb) <M (4.4)

 Table Size

AN

' If Iogz(M)?Ncb is much less than M, this alternative organization will produce a'sm_aller

global table then a fixed length global table with an N+1 bit entry format. f

For global table operations, the tag field of the address must be compared with all copies_ of
the private cache tags from all processors which map to the same set. A match indicates ‘:that't'he -
block is cached A bit vector canbe constructed representing the present set if a]l thc match bits are

: concatenated together as shown in Flgure 4, 16.

| Tag | set Offset Processor-
Global Table P
r
e
s
o
S to
: BeadNVnte 5 : : [RO/'F'iW
ReadNVnte :

Flgure 4, 16 Block Dlagram of Tang s Global Table

One way to-build _thc global table is with Ns sets of N*K way associative memory where |

each word is a private cache tag. (Figure 4.17 shows the organization of one set) As mentioned

7

| carlier, rhe major problem with this approach is the assocratwlty For the case of CMOS the access, :
_t1me of the associative memory is dominated by the capacrtance of on the 11r1es that the physrcal :
'address must be placed on This 1s not the -only place where there mlght be a hrgh capacmve o
loadmg If busses are used for dlstnbutmg the phys1cal address and captunng the present vector, :

_the access of the table is likely to be made even slower These busses can be replaces w1th a largel

: vdccoder and multiplexer constructed with logic gates The drsadvantage here 1s the area the B

mult1plexer and demuluplexer takes up on a chlp

63

'5. SYNCHRONIZATION VARIABLES ~

- In order to 1mp1ement crmcal sectlons, a multlprocessor must have an unmterruptable read- 7,
modlfy wnte operatron hke a test and- set [Pe8185] One solutlon is to reserve several locatlons of »
the mam memory to act as thls type of vanables, and have specral entry formats and hardware for
: ‘these vanables A ﬂex1ble way to 1mp1ement the unmterruptablhty of operatrons w1th
| synchromzanon vanables is to a]low these locatlons 1o be locked. A locked vanable has the unique
) property ﬂ‘l;at_l_t‘ can only;be ac_cess_ed by one processor at ak time. A] p_rocessor .referencmg a variable
Whi'chis v'locked by another proces‘sor must. Wat’t until the'p'r'oc'essor "wh’i‘ch'h’as control of the
.vanable unlocks 1t To perfonn an umnterruptable read-modlfy wnte operatlon a processor locks '

the vanable reads 1t performs any ; modlﬁcatlon it wants to, then unlocks the vanable

B _ If a processor has control of a vartable and other processors are trymg to lock the vartable,
the global table mlght send retry messages to these processors which don't have the vanable Since »
the waltmg processors don t know when the variable will become unlocked, they have to

' contlnually re- request to lock the vanable Th1s is what is called busy wartmg, and it is hlghly
o undes:rable because accesses to synchromzatlon vanables are frequent and network trafﬁc effects

| the system performance

Adapnve back-off techmques have been proposed by Agarwal and Chenan [AgCh89] The |

R 1dea behmd these back-off techniques is to delay re- requestmg the vanable by some amount of time.

The amount of time usually depends upon the number of retry messages recelved These '

, techmques still requtre re-request messages to be sent, but have better performance than busy

Co waltmg

5‘;1 An'»_E'conomieal Queuing Ehtry Y_Fo’r"mfa‘t» .

A better way to handle access to synchromzatron vanables is to record whlch processors

i : have requested the vanable, and when the vanable is unlocked pass control to one of the waiting

66

,,<

""processors To mform the processor of the unlockmg, a message must be sént 1o the newA

L processor wh1ch controls the vanable Thls way, requestmg processors don t need to request for a

j"proposed by Gottheb et al. [GoLR83] and altered by Goodman et al [GoVM89] $0 as to not ‘ R

‘*;requtre a combmmg network Both these techmques requtre a front poxnter a rear pomter and a

bbuffer to store wamng processor numbers For large scale: multlprocessors, the queue length mrght' S

" ’need to be 11m1ted in wlnch case retry messages must be generated when the buffer ﬁlls o 8

An ea31er way to record the requestors, than usmg c1rcular wamng queues whlch record

processor numbers is to srmply record whrch processors are waltmg m a b1t vector and grant the L

vanable to the wa1t1ng processor w1th the lowest number -An example entry format is, shown 1n A

'H:.."'Frgure 5 1

& ! f‘fl;*"f’cbﬁtrdl'ler’”‘ Waltmg Vector

Fxgure 5 1 Synchromzatlon Vanable Global Table Entry Format

The L b1t m Frgure 5. 1 mdrcates 1f the vanable is currently locked If L is asserted the .

R .Controller ﬁeld 1ndtcates the processor number of the processor in control of the vanable The :

- _qu';-.thls plctonally

'Waxtmg Vector is: the N brt vector mdrcatmg which | processors are wartmg to control the block L

| “‘When a lock request 1s recetved by the' memory module, and the vanable is locked the processor

' "number is: recorded by: assertmg the correspondmg b1t in the Wartmg Vector ‘The global table then o

N _-sends a response back to the processor mdlcatmg 1t should wart When the block is. granted to the

S processor the global table module sends a grantmg message 10 th’ proce SSOT. - Frgure 5 2 shows»' .

: .>, ‘f.—'}j_:.;-_" '5‘%: Send Lock ReQUest

B ubdiffvirig

= Relmquush

Frgure 5. 2 Synchromzanon Vanable Access Dla . ‘am | RIS

Whrle in the waltrng state, the processor could srmply wait, spinning onaNo-opmlts

cache, or 1t could execute some other process until the vanabIe 1s :

Starvatlon is poss1ble 1f the synchronlzatlon is handled in the way _]USt descnbed Imaglne |

L a s1xteen processor system where processors four srx, and ten are contendlng for a partrcular» '

L synchromzatlon vanable If processor four gets control of the vanable ﬁrst, and processors six-and . o

.ten request then s1x and ten wrll recelve wart responses because the vanable is already locked S

Processors Six and ten w111 be recorded in the waltlng vector and when processor four relmqulshes .

o the vanable, processor srx w1ll be granted control If while’ processor srx 1s mod1fy1ng the :

L _vanable processor four re-requests, processor four w1ll be added 10 the waltmg vector When

S ,;processor srx rehnqulshes the vanable, processor four will regam control because four is less than"

o j’:ten Thls cyc< > can contmue 1ndeﬁn1tely, starvmg processor ten A Way to avord the starvatron i

e problem is to decompose the wamng vector mto tWo N blt vectors PnorrtY 1 Vector and P nonty 2 ‘

o 3'_._\{ector

L) Controller Prlorlty1 Vector PnorltyZVe tor

Flgure 5 3 Non-Stamng Synchmnlzatlon V‘anable Entry Format

68

thn a new processor requests a synchromzatron vanable, 1t is added into Pnonty 1
_Vector if i 1ts processor number is greater than the controller's processor number, otherwrse it is
placed in Pnonty 2 Vector. So, for the example described above,,processor four will be placed into

.- Priority 2 _Vector the second time it requests -- allowing processor ten to acce?ss the variable; ,

To reduce the amount of network trafﬁc, two compound operatlons can be 1mplemented .

o Lock&Fetch and Store&Unlock With. these compound operatlons a processor can mcrement a

_ ' -shared c0unter with _]USt three network messages. Lock&Fetch will automatlcally send the vanable '

to the processor W1th the grant lock message, and Store&Unlock will store avalue to the variable

before it unlocks 1t The algonthm which the global. table must follow for the Lock&Fetch and

: Store&Unlock Operatrons is presented in Flgure 5.4. The algorithm assumes that the current
operatron was m1t1ated by processor i and references synchromzatlon vanable s. The entry format

m Flgure 5. 3 1s analogous to the data structure in5 4 (a)

G»

“type. .
i synch var: type = record
’ ; - -locked: boolean,
"~ controller:l. s R
prlorltyZ,prlor;tyl:array[l.;Nl“of'b9§1¢§n?'f'
o end; : o S D
var’

table[O nﬁmber of‘sYnchronization variables] of s§ﬁ¢j;
®

*;sw1tch (operatlon type)
‘. case. lock&fetch ;
if (tablefs] . locked = false) begln
table[s].controller = i;
-table[s] .locked = true;
send granted message to 1 w1th contents of s)
-end" Sl : i ok
else begin :
'1f(table[s] controller < i) -
~ table[s] prlorltyl[l] ='true;«‘
else o
‘table[s]. prlorlty2[1] = true;
send walt message. to’ i B
‘end " B SRR R ‘
case store&unlock
s ='new value; -

" 69 :

var’ type; . -

if (for every x 0<x<N table[s] prlorltyl[x] = false) begln o

" if(for every x 0<x<N tablel[s]. prlorlty2[x] = false)
: table[s] locked = false,_' G
else begln_

3= smallest: j such that. table[s] prlOrltyZ[j] ‘true;
table[s].controller = j;. .
‘table[s].priority2[]j] = false, :
"send granted message to J w1th contents of s
end
else ‘begin S
j = smallest: j 'such that table[s] prlorltyl[j] :ue} N

table[s] controller =. 3 -
table[s] .priorityl[j}' = false;
.send. granted message to j with:. contents of s

) end) .

. endsw1tch

Flgure 5. 4 Lock&Fetch and Stone&Unlock Algonthm (a) Entry Format (b) Algonthm

The c1rcu1t for updatmg Pnonty 1 Vector and the Pnonty 2 Vector of a synchromzatlon

vanable format is shown in Figure 5.5. Nonce this is not a sequenUal c1rcu1t the- updatmg can be

fdone w1th combmanonal log1c

]

‘Current Priority 2 Vector.
,N.ew,Pri'or'_ity_';?.s_\/ecfEOr- IR

JaoY

LOU-0 [

Current Priority 1 Veotor,

. ’New"Proces’sor’Number — Decode;r : . ;C'ur:réntf"Prior\”ity 1 Vector ‘,

“v"’Remove‘- e Slgnal asserted 1f the the synchrom 'atlon van ’bl"

being -
o unlocked SEET

: o FVFlgure 55 Synchromzatlon Entry'Updatmg Logic

| 52 E?al’iﬂxatio'n:of}the Lock' GrantmgA'gOrnthm

The Lock&Fetch and Store&Unlock algonthms were assessed by wntmg a s1mulatlon

- program The s1mu1at10n models one synchromzatron varlable trymg to be accessed by several

’processors Each processor for the s1mulator is in one of three states workmg, wartmg, orF .
‘ locking When in the workmg state processors are perfonmng useful computations When a
processor is in the waltmg state, 1t is wa1tmg to access the synchromzatlon vanable, and the locking
‘ Vstate re_presents when a processor has control of the synchromzatlon variable. The time between
when a processor unlocks the variable until it re-request it, is assumed to be exponential with
parameter 7» As lambda decreases the expected time 1ncreases because the expected value of an
E ‘exponential random vanable is 1/7& The reasons for choos1ng an exponennal wait:mg time are the

same as they were for the mteramval times of global table operat:tons in the. prev1ous chapter.

The simulator re‘corded the time each proceSSOr spends in the waiting state before each time
~ it controls the synchromzation variable, and the number of times cach processor controls the
. ‘variable. It does lhlS for both two pnonty and ﬁrst in first out (FIFO) arbttration Flgure 5.6
shows the waitmg tlmes for various requestmg rates. The parenthettc Tnumbers in the ﬁgure key

indicate the expected number of cycles spent in the worklng state between requests

< I
b ’ RV) : . -
iy —O— FIFO(i0)
3 | == Two Priority (10)
% | —L FIFo (100)
. :é,_ ' “ememeTwo Priority (100)
B =%~ FIFO (1000) ,
5 sl . Two Priority (1000)
S0
001 ————— T
R R 20 140 60 . 80.
v Number of PrOce'ssors (N) S

Figure 5.6 Wa’iti'ng Time per Access =

Because the grantrng algonthm chooses processors based upon processor number there 1s>- o

concem that thrs scheme mrght not be faxr however even when s1xty four processors are trymg to:_'-_: C

access the synchromzatron vanable, a srtuatlon where processor favormsm would be notrceable ifit -

exrsted the two' pnonty scheme appeared to be _]USt as fair as ﬁrst in ﬁrst out An mterval of time rn*r

o 'whrch 6400 references to the synchromzatron vanable were made is shown m Flgure 5. 7

B b= TwoProriy.
R 1 .) . . vA“...VJ“. FIFO R
40 = - . - R E T

204 .

Number of Accesses (6400 in all)

" Processor

. Figure 5.7 Arbitration Faimess - s

6. LINKED LIST SYSTEMS -

As discussed in chapter three, the amount of network traffic mtroduced in the two counter

5 system is’ consrderable (see figure 6.1). Many of these messages are retum recelpts

~Operation” -~ -Numberof Messages- -
vReadMlss S o L
L Not Cached 2
, ‘RW : 4
erlthlSS ' . pe
. 7 NotCached -~ 2 7
Cached RO - CC2Pl+2
: CachedRW 3 . .
: Cached RO , 2(P-1)+2 -

: Figure' 6.1 Number of Messages in Two Counter'S‘ystem‘s” '

_ Some vanatlons of hnked list protocols requrre fewer messages to 1nform the wntmg
processor that the’ wnte is performed with respect to all Processors, reducmg network traffic. This
is the prrmary motlve for considering llnked list’ protocols Furthermore hnked list protocols

. requlre a modest amount of’ memory to construct the global table

61 Smgly Lrnked Lrst Protocol

Lmked 11st drrectory protocols maintain coherency by formmg a hnked list of Pprocessors
wh1ch have the block cached. Thaper and Delagi [DeTh90] presented an outlme for what will be
referred 1o as smgly hnked hst protocols this i is the only pubhcanon on this toplc ' '

Wlth lmked hst protocols there st111 exrsts a global table drstnbuted across’ all the memory

o 'modules Each block 1n memory has a global table entry, the entry points to the head of the list of

- ;f;p,rocessor which have,t_he»block cached., If this pointer is NULL, the block is assumed to reside in - - |

4

the memory module Stored with the pomter to the. head of the listis a RO/RW blt whtch mdlcates o

i E -whether or not the processor pomted to by the entry has RW pnv1lege to the block

Associated wrth each block in every pnvate cache is a pomter to the next processor m the S

- list. Frgure 62isa Pascal-hke type deﬁmtton whrch is analogous to the memory requtred for the :
global table. ’ o

type L
o processor_ . number type 1..N : : BRI
tag_ type =-1..MAXTAG {MAXTAG 1s the maximum cache tag value} o
‘entry_type = record Lo
Co cached:boolean;
‘rw:boolean; : v
- head: processor number type,
. end
cache entry type = record , : :
: - dirty:boolean;
null:boolean;
next: processor_ number type,
- tag:tag’ type,l :
end
! table array[l M]'of entry type;
‘‘cachetable: array[i .NT . [1 -Ncb] of cache entry type,

Frgure 6.2 Software Analogy to Table

The vanable table is analogous to the table d1stnbuted across the memory modules, and '

cachetable is analogous to the pomters stored with the cache tags of the pnvate caches

Consrder for example, when processors three five, and thrrtyone have block seven"r

cached Oné way this present set 1nfonnatlon could be recorded is shown below

table([7] = {cached=true; rw=false; head=5}~
‘cachetable[3][7] ‘= {null=true}

’cachetable[S][7]'= {null=false; next 31}
cachetable[31][7] = {null=false; next=3} ﬂ‘f AN
Global Table- >processor5 >processor31 >processor3 i

Figure 6.3 AnExample Block o

All IPI' pennutatlons of the processors whrch have the block cached are correct
representatlons of the present set (the order of th1s list depends on when the processors access the

block for the ﬁrst tlme)
R Thé ;total,_iamount of memory required by a singly linked list p‘notocol is:
’I_‘otal memory = M’l‘(log2N+2) + Ncb*N(logQN+ 1). bits (6. rlf)

- Provrded Ncb*N 1s on the same order as M the amount of memory requlred is comparable

toa smgle broadcast mask system
6.2 Spe_ciﬁcation -of Singly' Linked'List- ProtOcol- '

A descnptlon of the protocol 1s mherent in the descnpuon of how the system reacts to the
five bas1c operatlons of the pnvate caches read hit, read miss, write h1t wrlte mrss and ejectlon
‘The actions whlch are performed in response to operatlons depend upon the current state of the
 linked list, er'rcept 1n the case of a:,r'eadhit. The protocol described below aSSumes Processor i is

~acting on block b.. o '

. R‘eadVHit».:: »('cache'tabl.e,[i]‘ [b} mod Ncb] .tag maiches addréSS)’
~ The word is read from the private cache. .
Read Miss; L ’,
Not Cached: (table[b] .cached = false)
A read request is sent to the memory module responsible for b..The block j
is’ fetched and table [b].head is updated to pomt to- processor i.
Table[b] cached is asserted table[b].rw 1s deasserted.

Shared RO (table[b].cached=true and table [b] .rw=false) .

4 -~ A read request is sent to the memory module responsrble forb. The block ,
is fetched, and table [b]. head is updated to point‘to processori ~The old
' 'table [b].head value is passed to processor , along with the block, and stored
“in cachetable [1] [b mod N¢b].next. This effectlvely adds processor ito
the front of the lrst of] pro_cessors which have the block cached. Figure 6.4 shows,

the system before and after processor five has a read miss on a block already

cached by processors nine six, and zero.

[Globai |
| N s Tl |TRDle
PO P Mo
- Link |
Lo Sy NuII
Global
~ [Table

PO —|P6[* | Po[*—|P5 [+ Module"

~a—Message | 2 3

RO R R
‘ Explananon of Messages

‘1) - -~ A read miss message is sent to the global table module _ .
2) . . The block and the pomter to processor mne are sent to processor ﬂve

thure 6.4 Read Miss by Processor Five (a) Before (b) After

RW: (’t_:_able[b_] .cached'= true a‘nd table'[b]_ rw = :true_): ~

A A read request is sent to the. memory module responsrble for block b.
Upon reahzmg that the block is cached RW, the memory module sends a:flush
message to the processor which has the block When the dlrty block amves at the
memory module, it is relayed to processorr along w1th the old table {b} head

’ ,pomter Table [b] head is set to the requestlng processor number and -
cachetable [1] next 1s set to the old value of table [b] head The block
| is then set to RO status by clearmg table[b] w. ’ R o

L Wnte Hit: , PR L o
: Shared RO .;.f(;tab'l}e[b]: ;-cached-—-t;':ue and’ table [-b] .rw=false)

ST

A wnte hit message 1s sent to the memory module responsrble for block b.

‘Along w1th wnte request, the processor number. (cachet able [1] [b ° mod
- Ncb] next) is sent. Processor 1, ‘immediately after the write h1t message is sent,
*Star[S executmg its next memory reference. Processor i must send its next pomter

o to the memory module, and the memory module can 1mt1ate an mvahdatron ,

i . message to cachetable[i] [b mod Ncb]. next ‘only after it realrzed there

3} are two streams of invalidation -- one from the memory module 10 the processor1

. and one from Processors i to the end of the list. The memory module must initiate

the mvahdatron of the processors at the end of the list because there must be an

vexact way to tell when a write is performed w1th respect to all processors Flgune

6.5 1s an cxample showmg processor ﬁve perfonmng a write t0 a clean block

: : whlch it has cached; in the example, Processors nine, s1x, zero, and three also have‘
the block cached ' ’ '

| Global
___|Table

—Module

. 3.5) .

L Explananon of Messaggs B
Sy

Processor five sends the write h1t message o the memory module. -

2) Processor cache [i] [b mod Ncb] .next receives an mvalrdatlon

‘ message , .
-~ The list is walked, mvahdatmg along the way
<. 6) ‘Processor zero sends a message to the memory module mdrcatmg the stream

- of invalidations is complete..

:7) - Processor three sends a message o the memory module mdlcatmg the

~ stream of invalidations is complcte o
8) ~The mcmory module sends a message to processor ﬁve, tellmg it that the

write is performed with respect to all processors.

R Figure6v.5 Write Hit by Processor Five 10 a Shared Block

8

At the global table module, table [b] head is assrgned to i, and'
‘table [b] .rw is set.. B :

v When a processor j» Teceives an mvalrdatron message it invalidates the'

;block 1t is 1nstructed to, then. generates a mvahdatron message to
‘cachetable[j] [b mod Ncb] .next: No invalidation message is generated ‘
if Cachetable[J] [b mod Ncb].next is i (the processore_]ectlngthe block). - 3
or1f cachetable[j] [b mod Ncb] Valld is false :

: "“'RW:’ , (cachetable[:.] b mod Ncb] dlrty true)

It is known that processor i is the. only processor wrth RW pnvrlege byt the

: .fact that cachetable [1] [b]. dlrty is asserted so the cache may be wntten
to wrthout updatmg main memory. i

: ~erte Mrss ' ' »

‘In the event of a wnte miss, a message is sent to the memory module whlch corresponds

w1th the address. When that message arrives at the remory, table[b]is looked up.

Not Cached: ~ (table [b] .cached = false) :

~Table[b] 'head is assigned toi andtable'["]’o]v "rwv i‘sasserted“While
the global table is bemg changed, the block can. be fetched Once fetched the

block 1s sent to processorr ‘ < ’ L
Share dRO.' ; (table[b] cached true','table[b]‘._rw = fale.e)

“The processors whrch have the block must be 1nvalrdated and the lmked
list modified so that only processor iis. m the list. An invalidation sequence is
initiated by sending a message to processor table [b] he ad. The linked list of

rprocessors is walked, and one by one they are mvahdated . While the mvalrdatlons
| 3 are occumng, the block can be fetched from mam memory and sent to processorr
= : Table [b]. flrSt is. assrgned to iand table [b] . TW 1s asserted

79

'cm0b3|
Table -

5

7

1

1)

2-5)

7

A wnte miss message is sent to the memory module

The list is walked; invalidating each processor's copy of the block: = -~

- Processor five sends a message indicates the list is invalidated.
Processor three is notlﬁed that the write is completed

Frgure 6 6 Write MlSS by Processor Three to a Shared Block

(table[b].cached = true, table(b].rw = true)

An'invalidation message must be sent to processor table[b].head. Once the

| block has been sent back to memory, the block is sent to the requesting processor

. and table[b] .headis setto o table [b] .rwis also asserted.

- Ejection:
- RW

(cachetable[l] [b mod Ncb].dirty = true)

A block wh1ch is cached with RW pnvrlege is not coherent with respect to
memory, so when ejected the block must be sent back to memory, and the global
table must be updated by deassertmg table [b]. cached. '

Another processor may have already induced a flush to processor i, but

 this introduces no coherence problem, the ejection Just expedltes the flush. If

when the flush request arrives at processor i, it does not ﬁnd the block in its cache, -
e the processor should ‘ot be alarmed The ﬂush message -should s1mp1y be
- dlscarded ' : '

(cachetable[l] [b mod - Ncb] dlrty 1 false)

80

When processor i eJects a clean blocks from 1ts pnvate cache, the next o

pointer of the previous processor must be adJusted so that it no longer pomts toi,

,but»rather to processor cachetable[l][b mod Ncb].next Since thrs_,hstls only smgly ‘ -
‘linked, the only way to update this field is to send a message to the memory
~ module responsible for b, which in tum initiates a traversal of the linked list. Once

:the walking message reaches the processor 1mmed1ately before i, call it k,

: cachetable [k] [b] . next ' 1s updated to. pomt to
: vcachetable[l] [b]. next -- effectively removmg processorlfrom the list.

Another processor may have already 1mt1ated an 1nva11dat10n sequence 1o
: thls list when processor i's ¢jection occurs causrng a break in the lrst To resolve
rthrs comphcatron a counter, called the stream counter and a smgle brt called the
null recelved bit, are associated with each of the blocks whrch was cached RO and |

is currently bemg 1nva11dated These counters and null recerved bits are held atthe
memory ‘modules. The rumber of counters ‘and reserved bits’ should be sufﬂcrent
-so they do not become a bottleneck Also when a processor eJects aclean block b,
it must send, along with eJectlon request cachet abl e [il[b - mod
‘Ncb] .next, so if the processors deeper thani need to be mvalrdated they can be
“reached. ‘When'an 1nvahdatron sequence is 1mt1ated the null recelved blt is cleared _
and the the stream counter is set to one. 3

Every time an 1nva11dat10n sequence term1nates one of two types of
messages is sent to the memory module If the 1nva11dat10n sequence termmates
' ‘because an invalidation message was sent toa processor wh1ch did not have the :
block anymore, a plain termination message is sent to the memory module 1f the
»mvalldatlon sequence termmated ‘because a NULL pomter was encountered a
termination by null message is sent the the memory module When the memory .

- “module receives either of these messages it decrements the correspondmg stream

‘counter. If the message 1s a termmated by null" fnessage, the null rece1ved b1t is
‘asseried as well “Block ejectmn messages received by a memory module are cross- '
- referenced agamst the 11st of blocks currently undergorng 1nvahdatrons if the block
| is currently belng mvalldated an 1nva11dat10n sequence 1s 1mt1ated with processor
cachetable (31 [b mod Ncb] next. (| is the ejectmg processor) and the _
- stream counter is: mcremented

v Only when the stream counter equals zero and the null recerved b1t is clear =

.’1s the wr1te perfonned w1th respect to all processors At thls pornt the processor '

. N ': whtch 1n1t1ated the wrrte operatlon should recerve a message 1nd1cat1ng the wnte 1s
& : _:1perfonned . : o AR :

Note that 1n both the RO and RW cases the pnvate caches do not need to

‘ ”'-'wart fora response from main memory grantmg perrmss1on o eject the block -~ 3

: :.;thls is very crucral for block eJectrons are too frequent for the system to tolerate the .
- delay 1nvolved with walttng for an eJecnon conﬁrmauon from the memory module

| . 'or another processor
6 6. 3 Multtple Smgly Lmked List Protocol
Usmg a broadcast mask to represent the start of the hst is one way to e11m1nate havmg to'-"

L walk the: hnked hst on eJectlons When processor i e]ects block b, cachetable [1] [b] next o

is sent to the memory module and is merged w1th the prevrous head of the 11st Wnen 1t comes

o t1me to mvahdate the present set an 1nvahdat10n sequence is set to each of the destmatto'ts 1mphcrt ‘

" in the broadcast mask ThlS way, eJectlons don t need to update the lmked hst rather Just the start 8
,{ : of the list. Th1s 1dea can be extended to mclude any kmd of ﬁxed length entry format o '

The problem w1th th1s crutch is the performance degradatlon If many ejects are done
S before a wnte is performed the method degrades to a ﬁxed length entry, s1ngle broadcast mask

‘ method as seen in chapter three.
o 64 Lirn‘iting‘ithe»Numb,er df- Shared "Bulo_cksv o

" : 3 o If the number of shared blocks (Nsb) accessed by a processor is 11m1ted to the capacrty ‘of .}
the pnvate caches (Ncb), and the shared blocks are placed in contrguous locattons, there wrll not be :
Vtwo shared cache’ blocks contendmg for the same block in’ the pnvate caches Thrs sunplrﬁes the -
‘ .'"*‘protocol because block ejectrons no longer need to update the linked list. . Wrth no block ejectrons
the number of messages for pnvate cache operatrons is reduced to fewer messages than that |
requlred for non-hnked hst protocols Furthennore, the stream counters and the null recerved b1ts

'.»‘can be cllmmatcd

- tum sends a message 10 the referencrng processor.

82

Write misses and wnte hits can also be unplemented more efﬁc1ently For the case of wnte
hits, cons1der the same example just d1scussed The wntmg processor ﬁve can mmate an

invalidation sequence to processor three directly.

et * |Global
S L — e) — | Table
J%i 1P5 [S——1 PO [P6 [S— P9 [——Module |
Exglanatlon of Messages ' :
= 1) Processor five sends a message 0 the memory module to start 1nva11dat1ng the
' processors from the start of the list.
2) Processor five sends a message to processor three to start mvahdatrng the end of -
- the list. _ - ,
3-5) Other processor s copies are invalidated. s '
- 6) Processor five is notified that the beginning section of the hst is 1nva11dated ,
7 Processor three nouﬁes processor five that the. last section of the list is mvalldated o

- Figure 6 7 Write Hit by Processor Five to Shared Block (No EJectlon)

: Wnte mlsses can also be handled dlfferently The last processor m the lrst can dlrectly send

a message to tne referencmg processor rather than sendmg a message to the global table Wthh in

The number of 'meSSa'ges for this linked list protoc'ol is less than that required for two
counter systems. Keep in mmd that IPI is really IPs1oppyI because there are no block CJCCUOIIS The
P for double counter systems w111 vary dependlng upon whether or not tldy eJectlon is employed

_ and on how Pis represented

-

" Operaion ~ . Numberof Messages

. Read Miss
- Write Miss - o
“NotCached - 2 e
CachedRO. -~ "P+3
Cached RW - .4
Write Hit - _ e
"~~~ Cached RO P+ 3

Figure 6.8 Number. of Messages in Singly Linked List Protocol With Limited Nsb

. “Unfortunately, the linked list methods sequentialize the invalidations of the processors,
making the time to perform wn'teslonger "l‘he only tirne this causes ‘perfonnance degradation 1s '
s ‘ when synchromzatron vanables are to be accessed and the writes 1ssued by the processor wantmgﬁ'
| to access -a synchromzat1on variable are not performed with respect to all - processors :

Consequently, linked list protocols excel when accesses to synchromzat10n variables are mfrequent -
They take advantage of the reduced network traffic during the duratron of execution which doesnt ,
access synchromzatlon variables. Furthermore ‘compiler assrsts might be done to move the last o

write before an access to a synchromzatlon variable so it is issued as soon as possrble
6.5 Doubly ‘Link_eLd Lists

» Because 1t is.undesirable to bound the number of shared blocks to the number of pnvate o
cache blocks and requrre that the shared blocks be placed in contiguous locations, we invented
1 doubly linked hst protocols Changing the linked list orgamzauon toa doubly linked list ehmmates o
havmg to walk the linked hst when blocks are eJected -- only the pomters at the adJacent Processors
~“in'the list need to be updated In order to 1mp1ement doubly linked list, the cache tag format must
' ‘rbe changed Flgure 6. 9 shows the updated global table format

‘84

type : .
" processor_| number type =1..N_. "~
tag _type = 1..MAXTAG
entry type = . record o
B) cached boolean,
S'rwe boolean; :
' "head: processor_: number type,
end -
cache entry type #,record : < [S
v , ' dirty:boolean; - : i;g:
nullnext, nu_Llp_Le:L._boolean, : :
next,pxez;gua+processor number type,

**ptag:tag_type;lv

. end B

var

' ‘table: array[l .M]" of" entry type: Ty
eache_table ~ arrayll. N][l Ncb] of . cacbe entry type,'

‘Figure 6.9 Software Analogy for Double Linked Lists

In order to mamtam the prev1ous pomter a message must be sent to the processor pomted
to by table [b] head whenever a read miss occurs Th1s message must carry the processor
number. of the processor Wthh has just had the read miss. The first processor m the 11st updates its

o prev10us pomter when it recelves this message
6.5.1 SimultaneousjEjection Problem‘ o

When a block is etected the update messages cannot be 1nd1scnm1nate1y sent to the adjacent
processors.. Cons1der the example where processors ﬁve and two. both declde to eJect block b
o concurrently If processor ﬁve sends messages to processors s1x and two, and processor two
sends messages to processors five and three, the hnked list will become corrupted Processor
- three's and processor six 'S pomters will point to processors Wthh no longer have the block, and
nothmg will be done with the messages sent to processors two and ﬁve Flgure 6 10 shows thls

’ s1multaneous eJectton problem

Next<+——

P# o
(a') ' —4—>"Previous
T T R A 1 ps P6
-
P3 _ P2 5 | P6

Figure 6.10 Si_multaneous Ejection Example (a) A Sin_gle Processor (b) Before (c) -Aft_et -

In order to insure t_h'e» list does no t become corrupted, ejection request meSs,agés can be
sent to the adjacent processors to make sure they are not currently ejecting the same block. “The

aigorithm followéd by a processor i trying to ejeqt a block b is shown in Figure 6.11. ‘

86.

whlle block not ejected do

begln » T
while ‘(cache: table[ll[b] grantedejectlon ——'true)
{Already granted permission ‘to the adjacent processor}
begin : :
©owait;
end

cache_table[i][b]. ejectlng = true,’_ . : :
-send ejectlon request messages to next. and prev processors, S
. if both messages generate afflrmatlve responses L
_beglnb : o
eject the block
send‘cache table[ll[b] next to cache table[l][b] prev,
» send cache table[ll[b] prev to cache table[1][b] next,
. end”
}else
begin’ ' o
‘ -1f(cache table[ll[b] next granted)
"begin. .
send prev1ous p01nter update message where
the new previous value is i; .
_ ‘{Restore. the orlglnal prev1ous p01nter}
‘end -
if(cache table[ll[b] prev granted)
‘begin - -
. send next p01nter update message where "
the new next value 'is i;
; {Restore the orlglnal next.: p01nter}
.end . .)
cache table[1][b] ejectlng = false,
“end .
end

'Figure 6.1 Algorithm for Ejection of Shared Blocks

The algonthm for rece1v1ng eJectlon requests is. shown in Flgure 6. 12 where iis the L

' ’ejectmg processor number and jis-the’ processor recexvmg the eJectlon request :

87

3vsw1tch(message type)
begin
case ejectlon request‘ ‘
if(cache_table[]j][b]. ejectlng == false)

. begin :
“cache table[J][b] grantede]ectlon = true;
send . afflrmatlve response, .
end . - :

‘else .

' send negatlve responser

case update previous: o o TN

- cache_table [1][b] prev = newprevious;

cache’ table [i]1 bl grantedejectlon . false;
case update next: '
”1«cache table " i) [b] .next = newnext; AL
’ cache table [i][bl.grantedejection = false;

- Figure 6.12 Algorithm for Recciving Ejection Requests.

Tti is not poss1b1e for a set of processors to get into deadlock wamng for each other to cject a
'block A deadly embrace is avoided because the necessary condition hold. and wait is never -
setls_ﬁed. That is, a processor__n_ever asserts cache_table] i] [b]. eJevc_tlng_and n_f_r‘_om,_the‘n
on whits for its adjacent processors.to grant permission to eject. Once ohe, of the adjacent
ProCessors rejects permission, ceche__tvabie (1] [b] e‘jectingv is cleared, and the processor -
re.-requests after some amount of time. Ina bad and unlikely case, it is possible for the ejection to
“be delayed for a long time because two adjacent processors are simultaneously trying to-eject the

block and end up colliding several times before one of the processors successfully 'ejects the block. '
6,5.2, . Exp'editing, Invalidation for Doubly. Linked List Protocols

| Ih doubly_ Iinked.’ list systerhs, write hits may be bum'ed by invalidating the list in t:hree
| rather than two (_iirections. To understand the performance increase due to this enhancement,
consider the Iinked list as a line segment'[O,IPI], and the processor performing the write as a
randomly chosen point; s, on the line. The time is takes to perform the write is proportional to the -
Jlongest of the line segments [0, s] and [s,IPI] in the singly linked list case. The problem can‘be’
made tractable if the probability of the eJectmg point is assumed to be umformly distributed over the

lme In our idealized system:

E{number of sequential network transfers to perform a write hitin a singly linked system} =

" - A ' "
‘ IPl-s . 3
1PI-)— —ds+ | X d = 2|P|
| J ma"(s “Shpr ds = j IPI L P T4 o
Jo 0 . , v
SRS R (6. 1)
When the linked list is a double linked list the mvahdation can be done in three direction

: rather that two. The addition dlrection is from the writing processor to the memory module Agam

tummg to the 1deahzed system, the time to perform a write h1t can be est1mated

'E{number of sequent1a1 network transfers to perform a wnte hlt ina double hnked system}

M _ % 2] ‘ i
; = — ' ——QP[-
| Jr maxs, 2)IPI ds = fo 2pr 95+ f ipr 9

cdo : » i

This requires more Messages, and there is more return receipt cbntention at the writing
processors 1nterconnectlon network port. In fact, non- hnked list systems are the extreme case of

this mvahdahon parallehsm
6.6 Using Ba'ckup:Tag Entries_ :

A way to make ejections less frequent is to add one or more extra ﬁelds to the cache tags’v
allowrng them to store multiple poiniers for each cache block ThlS way, the only time ejected
blocks must use the interconnection network is when all the backup locatlons are bemg used to
store prev1ous1y ejected global blocks, and the block Wthh is being brought into the cache is also o
global. Figure 6.13 shows how the tag memory can be modiﬁed L |

‘cache_entry type = record - P e P
— R = = o
nullnext,nullprev:boolean;

- next,previous:processor_number_type;
ejectlng,grantedejectlon boolean,
tag: tagtype,,’ : -

end .

. Figure 6.13 Adding Backup'LocatiOns e

When the backup locatrons are not bemg used next backup '—~ prev backup

N ThlS a]levrates the need for a back up locatton in use“ blt ‘ f s

‘ The number of backup locattons needed to insure that no block ejectlons occur is large it

- the ' shared blocks are not constramed to contrguous locatlons The worst srtuatron is when all, .
: shared blocks map to the same pnvate cache block thus requmng Nsb backup locattons ThlS is an g

. unhkely event Usmg analytlcal analysrs the probability that- brmgtng in another shared block wrll .

"requtre the freerng up of a backup locatton can be esttmated for a gtven number of shared blocks, -

| ; cache blocks “and backup locatlons In the worst case all of the shared blocks are _Qt bemg

B E written to, so all processors cache all shared blocks In tlns case, each shared block requires a

g backup locatton Assumrng that every processor is equally hkely to. cache a block and each cache X
‘set is: equally lrkely to recerve the block the probabthty that a mrss to-a shared block requrres
| freetng up backup locatrons can be analytlcally esttmated Consrder a representatlve cache block _ B

B _ and nnagme the mapprng of a shared block to: a cache set as a tnal If shared blocks are equally

B ' hkely to map 1nto any cache set, the probabtltty that a shared block wrll map to the representatrve set . "

- : '1s 1/Ncb "‘he probablhty that exactly k of the Nsb shared blocks w111 map to the representatrve

| cache block is govemed bya bmomtal drstnbutton '

| 'P{A pnvate cache block wr]l requtre exactly k backup 1ocat10ns to hold all shared blocks whrch map f
S O o wit)=r Co

Nsb! [1 4.]Nsbk

. B1n(k NSb) k'(Nsb k)'lNch Ncb . (6;35 ‘ v

The probabrhty that a block wrll need k or fewer backup locatrons to. store all the pomters

v ,. for 1ts shared blocks is:

P{A pnvate cache block requrres k or. fewer backup locatrons 0 hold all the shared blocks whrch
map to it} = : .

Nl H 1thb-J
- '(Nsb—_])'LNcb Nch

(6 4)
If there are many (>30) shared blocks and cache blocks, thrs drstrtbutlon can be
approxrmated as a normal drstnbutlon wrth mean Nsb/Ncb and vanance Nsb(l l/Ncb)/Ncb

90

In order 10 make sure the backup locatrons don't a11 ﬁll up, causmg all e_]ectrons to operate -
at lhe degenerate performance, the backup locauons need to freed at the end of an apphcatlon This
causes a burst of network traffic whenever a process terminates. If the system is not multitasking,

the caches could be des1gned SO that all the backup locations in a smgle pnvate cache could be

1nva11dated at once

 'CONCLUSIONS

Throughout the thes1s, 1deas have been presented on how to make drrectory based‘ :

e protocols use less memory and generate fewer lnterconnecuon network messages

| © To reduce:'the Size of the global table without inducing an unacceptable amount of 'ﬁetwbﬂc :

'traffic altemate entry formats were 1nvented and analyzed ‘The compromlses between the_ '
Arch1bald and Baer entry fonnat and Cens1er and Feautrler entry format looked at were a smgle .
broadcast mask mu1t1p1e broadcast masks, and grouped bit vector representatlons In order to
| determine the expected number of redundant or extraneous messages a Markov cham for RW
cache blocks was developed. - This chain has,,1ts trans1t1onal probab111t1es _expres_sed in terms ,of -
program and system attributes' making it easier to see what param'eters are important for cache
effecnveness The steady state probab1ht1es of the RW chain. were found to be most effected by the
fract1on of wntes _After modehng the behavior of shared block: and these altemate formats it was
‘discovered that the dlfﬁculttes in coming up with an optimal covenng of the present set cause
multlple broadcast mask systems to be less accurate than grouped systems wrth a comparable

number of brts per entry

An econom1ca1 way- of implementing queumg semaphores was. developed Using a
: software s1mu1at10n the two pnonty scheme was found 1o be Just as fa1r as ﬁrst in first out. No-

” add1t10nal wa1t1ng time is introduced by the two counter method

In addmon to the Markov cham for RW blocks, Markov chains were developed for RO and
N slopplly ejected blocks A closed form solutlon for RO block was also developed no one
| parameter dommates the steady state probabllltles of this chain. From the sloppy ejection cham, it

B was seen that not updatmg the global table on eJectrons of clean blocks is désirable.

Rather than changmg the entry fonnat for the global table, because this always leads to

o some extraneous and redundant 1nva11datrons, the table can be made to record elaborate entnes for

: only those shared blocks which are currently cached A plpelmed archrtecture of a varrable length E

o table was descnbed and evaluated usmg a scheduling s1mulator to determme the speedup broughtr

| ‘about by plpehmng The' s1mu1ator randomly generates global table operatlons (llke wnte hlts) asa f";
' P01sson process with a spec1ﬁed rate, and schedules them accordmg to a greedy strategy ')

Plpehmng the global table y1e1ded a maximum speedup of 1 7

7 The last sectlon presented several variations of hnked hst protocols whlch reduce the "
amount of 1nterconnectron traffic. A singly linked protocol which supports: block ejectlon was" o '
.- defined; but this protocol is not effeCIJve because of the network commumcahon created by block L

| eJectlons Constrammg the shared data to a fixed number of contlguous blocks was found to

reduce the network traffic to less than that requ1red by two counter systems Fmally, doubly hnked o |

list protocols were defined. The advantage of doubly lmkmg the list is that e]ectmg a block requmes R

- only coopcratlon with the two adJacent processors, making 1t poss1b1e to have some of the trafﬁc o B

reductlon of the smgly lmked protocol without the limited number and cont1guously placemem e

restnctrons on shared blocks

i-[AgCh8§] .

BIBLIOGRAPHY -

Agarwal A and Chenan M "Adaptlve Backoff Synchromzatlon Techmques _
Proceedings of the 16th ‘Annual Internatzonal Symposzum on Computer

o Architecture, op- 396-406, 1989,

[ArBag5] - |
[ArBas6]
[ASHHSS8]

[Baas78]

(BaRa8o)

o [BaWa88]

[BBN8S]
- [BHMSS5] -
... Minimization Algortthms for VLSI Synthests, Klower Academic Publlshmg, '
o 1985 o , ‘ k

[BrDa77]

[BrHo%0]

[CeFeT8)

Archlbald J and Baer JL., "An Economrcal Solutwn to the Cache Coherence '
Problem,’ * Proceedings of the 12th Annual Internatzonal Symposzum on Computer
Archttecture Pp. 355- 362 June 1985. C ,

‘Archlbald J Baer J L., "Cache Coherency Protocols: Evaluation Using a

Multiprocessor Slmulatlon Model,” ACM_ Transactlons on Computer Systems pp

' 273 298 November 1986.

”Agarawal A, Slmom R., Hennessy J., and Horowntz M., "An Evaluation of

Directory Schemes for Cache Coherence,” Proceedings: of ‘the. 15th Annual .

: Internatzonal Symposzum on Computer Architecture, pp. 280-289, 1988

T Baase S Computer Algorzthms Introductlon to Deszgn and Analysls, Addlson
. Wesley, 1978 , ,

Baylor S. and Rathr B "A Tlmestamp Cache Cohenence Scheme,” Proceedmgs of

 the Internatzonal Cory’erence on Parallel Processmg, PP 24 32, Vol I, 1989
. Baer, J.L. and Wang, W. H "On the Inclusion Property for Mulnlevel Cache :

Hierarchies," Proceedings of the 15th Annual Internatzonal Symposzum on
ComputerArchttecture PP 73- 80 1988. -

BBN Butterfly Parallel Processor Overvrew 1985

Brayton, R.K., Hackel, G.D., McMullen C.T. and Sangiovanni- Vmcentelh Logzc

Bnggs F. and Davidson,E., "Organization- of Semiconductor Memories for

' ‘Parallel Pipelined Processors," IEEE Trans. of Computers, C26, Feb. 1977.

Brooks, E. and Hoag, J., "A Scaleable Coherent Cache System with Fuzzy

" Directory State, » Submitted to Proceedmgs of the Internatzonal Conference on
. Parallel Processmg, August 1990. ,

" 'Censier, M ‘and Feaumer P. "A new Solutlon to Coherence Problems in

Multicache - Systems »? IEEE Trans on Computers, C27(12) pp 1112 1118

g Degember 1978

[Chves8]

[Davi7l]

Y[De’I_"h}90]‘ ‘

~[Dubig7]

[DuBr82] |

 [DuSB86]

 [DusBS§]

[EgKa8s]

- [EgKag9]

| tGGKM83] 1

[CoLR83]

':[GoodéS]» :
) [Hmss].

. »;[Kogg81]

| .[MBLZS9] ,

 April 1989,

B ’»December 1988

94

Cheong H. and Veidenbaum, A., "A cache coherence scheme with selective:

invalidation,” Proceedings of the 15th Annual Internatzonal Symposzum on
' _-ComputerArchltecture, pp- 299 307, June 1988. Sl

' Davidson, E.S., "The Design and. Control of Plpelmed Functron Generators o
“Proceedings Int IEEE Conference on Systems Networks and Computers, S
~ Oaxtepec, Meclco, January 1971, pp.19-21. : _

" Delagi, B. 'I'haper Submitted to IEEE Computer, June 1990
Dubios, M., "Effects of Invalidation on the Hit Ration of Cache- Based R
'Multlprocessors Proceedings of the Internatzonal Conference on Parallel“
‘Processmg, pp. 255-257, 1987 R : :

Dubios, M. and Briggs, F. "Effects of Cache Coherency in Multrprocessors,
IEEE Trans on Computers, vol. 37 pp- 58-70 November 1982; :

Dubois, M Scheunch C., and Bnggs, F’l "Memory Access Buffermg in a
,Multlprocessors, , Proceedmgs of the 13th Annual Internatlonal Symposzum on
y Computer Architecture, pp 434—442 1986 : o .

- 'vDublos M, Scheurrch C. and Briggs, F, "'Synchromzatlon Coherence, and‘

Event Ordermg in. Multlprocessors ” IEEE Computer pp. 9-21 February 1988

Eggers, S. and Katz,R,, "A Charactenzanon of Shanng in Parallel Programs and

its application to Coherency Protocol Evaluation,” Proceedings of the 15th Annu_ol

Internatzonal Symposlum on Computer Archltecture, pp 373-381, May 1988

Eggers, S and Katz, R., " "The Effects of Sharmg on the Cache and Bus i

Performance of Parallel Programs ? Proceedlngs of APLOPS 111 pp 257 270

] Gottheb A, Grrshman R Kruskal C P McAuhffe, KP Rudolph L and_
. Snir, M., "The NYU Ultracomputer -- Desrgnmg an MIMD Shared Memory
‘Parallel Machme " IEEE Transactzons on Computers, Februrary 1983 pp 175-
‘ 189 . _

Gottlieb, A., Lubachevsky, R.;: and Rudolph, L.; "Basic Techmques for the

- Efficient Coordmatron of Very Large ‘Numbers of Cooperative ‘Sequential

Processors,” ACM Transactions on Programngn Languages and Systems, April

: 1983 pp: 164 189

. Goodman T "Usmg Cache Memory to Reduce Processor-Memory Trafﬁc,

Proceedings of ‘the 10th Annual Internatzonal Symposrum on Computer

‘ Archltecture, pp 124- 131 1983

H111 M, "A Case for Drrect-Mapped Caches,” IEEE Computer, pp 25 39

i ””Koggee, P, The Archrtecture of Pzpelmed Computers McGraw H111 1981

:Mrzrahr, H, Baer J L., Lazowska, E and Zahorjan, 1 "Extendmg the Memory
»]Hrerarchy mto Multlprocessor Interconnecnon Networks A Performance

. .MB a8§]' |
» [Motos.él], |
 esiss]
[RCCI‘90] :
e
ISicgss]

h ‘[Stxesé]g
2 [Tangrs]
N ['WaCa89]»'

w0

. [WeGus9]

 [YaBL89]

. AnalyS1s,” Proceedzngs qf the Internatzonal Conference on Parallel Processmg, pp L
o 41 50 Vol I .1989: Lo , Sl

-'Mm S.L. and Baer, J.L., A Tunestamp Cache Coherence Scheme, Proceedmgs' o
- of the Internatzonal Cory”erence on Parallel Processtng, Pp- 24-32 Vol I 1989 S

Motorola 88200 Data Book Motorola Inc Austrn Texas, 1988

: ‘Peterson J and S11berschatz A Operatzng System Concepts, Addtson Wesley,
‘1985 o _

: :Rettberg, R., Crowther, w., Carvey, P, and Tomlmson R, ""I"‘l'ie“Monarch ’
) Parallel Processor Hardware Desrgn," IEEE Computer, pp.18- 29 April 1990.

'Sequent Computer System Inc., Symmetry Techmcal Summary, Beaverton OR |

1987.

! _'Slegel H J Interconnectzon Networks for Large Scale Parallel Processmg, :
Lexmgton Books 1985. o A

Strenstrom, P "A Cache Consistency Protocol for Multlprocessors w1th
Multistage Networks " Proceedings of the 16th Annual Internattonal Symposmm
onComputer Archttecture, pp. 407-415, June 1989 , _

" *Tang, C.K. "Cache Desrgn in Tightly Coupled Multlprocessor Systems, -

Proceedmg of AFIPS National Computer Conference, June 1976 pp 749-753
Wamer C. and Casavant, T., "Channel Routmg on the NCUBE " Independent ,

o 'Study PrOJect Report, Purdue Umversrty 1989.

“ Wailes, T. and Meyer, D., "Multiple Channel Archltecture," Submrtted toFrontters o
: ofParallel Computtng, 1990 R

Weber W. and Gupta, A., "Analysis of Cache Invahdatlon Pattems m_ '
.»Multlprocessors,” Proceedmgs of APLOPS 1lI, pp 243-256, April 1989 '

Yang, Q., Bhuyan, L., and Liu, B. C "Analysis of Companson of Cache :
“Protocols for a Packet-Swrtched Muhprocessor ” IEEE Transon Computers, vol
‘38 No. 8, pp 1143 1153, August 1989. : : o

	Purdue University
	Purdue e-Pubs
	5-1-1990

	Directory Based Cache Coherency Protocols for Shared Memory Multiprocessors
	Craig Warner

	tmp.1542052450.pdf.6WxMH

