
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

5-1-1990

Directory Based Cache Coherency Protocols for
Shared Memory Multiprocessors
Craig Warner
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Warner, Craig, "Directory Based Cache Coherency Protocols for Shared Memory Multiprocessors" (1990). Department of Electrical
and Computer Engineering Technical Reports. Paper 720.
https://docs.lib.purdue.edu/ecetr/720

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages

Directory Based Cache
Coherency Protocols
for Shared Memory
Multiprocessors

Craig Warner

TR-EE 90-33
May 1990

f / (i C l / 4/

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

DIRECTORY BASED CACHE COHERENCY PROTOCOLS FOR SHARED MEMORY

MULTIPROCESSORS

AThesis

Submitted to the Faculty

of

■ ■

Purdue University

by

Craig Warner

In Partial Fulfillment of the

Requirements for the Degree

o f

Masters of Science in Electrical Engineering

May 1990

To my Father and Mother who have cared so deeply

iii

ACKNOW LEDGEM ENTS

I would like to use this time and space to thank Professor D. Meyer for listening to my

fully cooked as well as many of my half-baked ideas. I would also like to thank the rest of my

committee: Professor R. Fujii and Professor H. Dietz. For encouraging me to go to graduate

school, I thank Professor S. Kothari.

TABLE OF CONTENTS

Page

. v i

• ••• ’> • • • • • • • • • • • • . *. ... * • • • r • • • • • . . . i x

■; ■ ■■ "■ ■ " ' .

. i . . X, ;:

' V ; , . V ■■ ' ■ ' ' ' ■ ■

.................................... i

LIST OF FIGURES.

LIST OF ABBREVIATE

ABSTRACT.................. .

I. PRELIMINARIES ..

1.1 General A rc h ite c tu re ... I

1.2 Why Directory Based Protocols?.....,................................. .. 2

1.3 Operating System and Programming Model Assumptions..3

: 1.4 Private Caches... , , . , I , , , . . , . , . . 4

1.5 EventOrdering... ...6

1.7 Multistage Interconnection Networks..............., 9

1.6 M ultipleChannelA rchitecture.........,......................12

2. ANALYSIS OF SH A R IN G

3.

2.1 AniountofSharing and Frequency of W rite s 13

....... 13

’ *. • • • • ••••••••••••. v * • • •..... . .14

...................................18

......21

...22 :

.....22

... 24.

3.1 Traditional Directory Based Protocols...

3.2 M aintaining Weak C oherency..,....,.......,,.,.............

3.3 Evaluation of Traditional Protocols, : . . . 26

3.4 Criticisms of Traditional Techniques........... ...27

3.5 Using Broadcast Masks as Global Table Entries... 27

3,5.1 TheoreticalDifficulties...........29:'..

3.5.2 Simulation Results for Multiple Broadcast Masks./ : . . .

■ 3.6 ;Sloppy E j e c t i o n .̂« ^

3.7 E xpectedN um berofInvalidations,......................../...........,.........

3.8 Grouped Entry Form at.............................

3.9 Gomparing Accuracy of Grouped Entries to Broadcast Masks..........

Page

....33

....34

....37

...40

...42

4. GLOBAL TABLE ORGANIZATIONS ..L ..,.. / . . / . . / . , / . 4 5

4.1 MainMemory B l o c k R e c o r d i n g . . / . . 45

4.1.1 PipeliningtheGlobalTable , , / / / /4 8

4.1.2 Variable Length Tables 50

4-1.2.1 Pipelining Variable Length Tables... 52

4.1.2.2 Simulating the Variable Length Table.....................................56

4.2 Private CacheTagEntiyTables___.I. 61

5: SYNCHRONIZATION VARIABLES,

5.1 A nE conom icalQ ueu ingE ntryF prm at.,............../..../..,...../..../..,.....,..— 65

5/2 Evaluation of the Lock Grariting Algorithm..................../,...,..............,...... 70

6. LINKED LIST SYSTEMS..................................... 73

6.1 Singly Linked List Protocol..... 73
6.2 Specification of Singly Linked List Protocol....,;..,... ...— 75

6.3 Multiple Singly Linked List Protocol.. /___. , ---------..... 81

6.4 Limiting the Number of Shared Blocks......./../.......... 81

6.5 Doubly Linked L i s t s 83

6.5.1 S im ultanebusJ^ectionProbIem ..;,.,.....,..;....,,.,..;,,,......./.............. 84

6/5.2 . Expediting Invalidation for Doubly Linked List P r o t o c o l s . . 87

6.6 UsingBackupTagEntries 88

CONCLUSIONS /

BIBLIOGRAPHY.......................

. 91

93

LIST OF FIGURES

Figure Page
LI Processor and Memory Organization for Directory Based Protocols....................... . 2

1.2 N on-determ inistic Program4

1.3 Parallel Program 7

1.4 Non-Sequentially Consistent Execution of a Parallel Program.................................8

1.5 M ultistage Cube N etw ork ... 10

1.6 Home Memory Configuration............ 11

2.1 RW Data Markov Chain 14

2.2 Steady State Probability of RW Markov Chain..................... 16

2.3 EffectsofFw onSteadyStateProbabilities................. 17

2.4 RO Data Maikov Chain.. 18

2.5 Steady State Probability for RO Markov Chain. .. .19

2.6 Effects of Hit Ratio and qs on Present Set...... ..20

3.1 Two Counter E x a m p l e . 25

3.2 One Broadcast Mask System..........;■.......... 28

3.3 Mapping o f Minimal Broadcast Problem to Logic Minimization................................31

3.4 An Example Covering.........31

3.5 Four Broadcast Mask System................. , 33

3.6 Effects of Using More Broadcast M asks------- ------------------- -------------------- ------ 34

3.7 Sloppy Ejection Markov Chai n. , . 3 6

3.8 Comparison of Sloppy vs. Tidy Ejection.. , , 37

Figure Page
3.9 Expected Number of Unnecessary Invalidations................................ 38

3.10 Full Range Behavior of Multiple BroadcastMask Systems (N= 12 8) . 39

3.11 Accuracy of Grouped Method (N=128)... 41

3.12 Broadcast Masks vs. Grouped Method, N=128 (a) G=16, BMS =1 (b) G=4 BMS=4....43

3.13 Unnecessary Invalidations for Grouped Method .. 44

4.1 Global Table Block Diagram........45

4.2 Bit Vector Update Logic... 46

4.3 Broadcast Mask Interpreting............46

4.4 MultipleBroadcastMaskSelector.,.. 48

4.5 Pipelined Global Table49

4.6 Pipelineable Organization................................ 50

4.7 Variable Length Table Organization... 51

4.8 Reservation Tables for Variable Length Table 53

4.9 Reservation Tables for Realistic Variable Length Table.................... 53

4.10 Greedy Scheduler.. 55

4.11 Collision Vector Table__56

4.12 Collision Vector Table for Ideal Scheduling.. .57

4.13 AverageWaitingTime.......... ..58

4.14 Speedup Due to Pipelining Table............... 59

4.15 Pipelined Variable Length Global Table ...60

4.16 Block Diagram of Tang’ s Global Table..61

4.17 Table Set Organization, N=4, K=4, ITagl=8... ..,.63

..'..64;

5.1 Synchronization Variable Global Table Entry Format.:... 66

4.18 Parallel Look Up Organization, K -1. ,.......LV......................................

Figure Page
5.2 Synchronization Variable Access Diagram 67

5.3 Non-Starving Synchronization Variable Entry Format . . ; . . , , 67

5.4 Lock&Fetch and Store&Unlock Algorithm (a) Entry Format (b) Algorithm.. 69

5.5 Synchronization Entry Updating Logic...___________ _____

5.6 Waiting Time per Access .

5.7 Arbitration Fairness

6.1 Number of Messages in Two Counter Systems

6.2 Software Analogy to Table . . . ; .
■

6.3 An Example Block..

6.4 Read Miss by Processor Five (a) Before (b) After...

6.5 Write Hit by Processor Five to a Shared Block.......

. . . .

.7 0

• 71

. 72
v X -: .

.7 3

• 74

. . 7 4

. 76

77

. * ... • . . • • • •

.

6.6 Write Miss by Processor Three to a Shared Block > 79

6.7 Write Hit by Processor Five to Shared Block (No Ejection). .. 82

6.8 Number of Messages in Singly Linked List Protocol With Limited Nsb

6.9 Software Analogy for Double Linked L ists... 84

6.10 Simultaneous Ejection Example (a) A Single Processor (b) Before (c) After. 85

6.11 Algorithm for Ejection of Shared Blocks .. . ,

6.12 Algorithm for Receiving Ejection Requests .

6.13 Adding Backup Locations

. . i :.»«.»»»'»»'••»-•»'..86

....... 87

.................................... 88

LIST OF ABBREVIATIONS

System parameters
B - Sizeofacacheblock
D - The set of processors which the directory thinks has a particular block cached
IDI - The number of processors which receive invalidation messages when a block is

invalidated
G - Number of Clusteis in a system
GS - Activeglobaltablesize
h - Average hit ratio of the private caches
K - Associativitypftheprivatecaches
M - Numberofcacheblocksinmainmemory
MM - Number of memory modules (usually N)
N - Number of processors
Ncb - Numberofcacheblocksineachprivatecache
Ns - Numberofsetsineachprivatecache
Nsm - Numberofmemorysubmodules
P - The set of processor which have a particular block cached (the present set)
IPI - Thenumberofprocessorwhichhaveaparticularblockcached

Program parameters
Fw - Fractionofreferenceswhicharewrites
Nsb - Numberofsharedcacheblocks
qro - Fractionofreferenceswhicharetoreadonlydata
qs - Fraction of references which are to shared data

Other
RO - Read Only
RW - Read Write

ABSTRACT

Warner, Craig. M.S.E.E., Purdue University, May 1990. Directory Based Cache Coherency
Protocols For Shared Memory Multiprocessors. Major Professor: David Meyer

Diredtofyf based cache coherency protocols can be used to build large scale, weakly

ordered, shared memory multiprocessors. The salient feature of these protocols is that they are

interconnection network independent, making them more scaleable than snoopy bus protocols. The

major criticisms of previously defined directory protocols point to the size of memory heeded to

store the directory and the amount of communication across the interconnection network required to

maintain coherence. This thesis tries solving these problems by changing the entry format of the

global table, altering the architecture of the global table, and developing new protocols. Some

alternative directory entry formats are described, including a special entry format for implementing

queueing semaphores. Evaluation of the various entry formats is done with probabilistic models of

shared cache blocks and software simulation. A variable length global table organization is

presented which can be used to reduce the size of the global table, regardless of the entry format.

Its performance is analyzed using software simulation. A protocol which maintains a linked list of

processors which have a particular block cached is presented. Several variations of this protocol

induce less interconnection network traffic than traditional protocols.

I. PRELIMINARIES

1.1 G eneral Architecture

Directory based cache coherency protocols are a way of making the memory in a

multiprocessor system logically the same for all processors. The shared memory paradigm is

desirable from the programmer's perspective because of its conceptual simplicity. All processor-to-

processor communication can be performed through accessing shared memory locations. Because

VonNeumann architectures are limited by memory bandwidth, the shared memory must also be

fast. In large multiprocessor systems, there is great disparity between the main memory bandwidth

and rate at which processors generate memory references. Thus, the need for some way to satisfy

the majority of memory references without using main memory. This has lead many researchers to

consider systems with large private caches. These caches must be on the processor side of the

interconnection network to be effective. With the inclusion of these caches comes the coherency

problem of trying to maintain the same, "up to date" data from the point of view of all the

processors. In directory based cache coherency protocols, a global table records the current state of

the cache blocks (lines) in the system. The directory, or global table, is distributed across the

memory modules, and is used for every reference to main memory. The global table stores which

processor's private caches currently have the block cached, and whether the block is inconsistent

with memory. The set of processor which have a block cache is called the present set (P).

The general processor and memory organization is shown in Figure 1.1.

Ihte red ii riectio n
Network

T
▼

G T M — P G U

; V : ; V ; 1
G T M — P G U

• v ' ; .

i

P - Processor C - Private Cache GT - Glob«U Table Module M - Memory Module
PGU - Packet Generation Unit

Figure 1.1 Processor and Merriofy Organization for Directory Based Protocols

The memory is divided into modules, which can be interleaved to perform block size reads

and writes quickly [BrDa77|. The packet generation unit receives message requests, from the

memory, to send cache blocks to processors which have had private cache read or write misses. It

also receives invalidation message requests form Uie global table when a processor writes to a block

which is cached by other processors.

1.2 Why Directory Based Protocols?

There are many ways of implementing shared memory in multiprocessors. Some of these

techniques arc with software, others are with hardware, and some require both. The most

promising non-directory based protocols are snoopy protocols (for bus systems) and self

invalidating protocols.

The snoopy protocols are ultimately limited by the rate at which addresses may be placed

on the address bus. Unfortunately, the throughput of a bus is roughly inversely proportional to the

number of processors placed on the bus. Simulation results [ArBa851 [YaBL89] show that the

performance of these protocols levels off at around 32 processors. Sequent Computer [Scqu87]

sells multiprocessor systems, using snoopy bus protocols, with as many as 20 processors, but no

more. Furthermore, RISC processors have higher memory throughput requirements, which further

complicates the bus bandwidth problem.

Self invalidating protocols |ChVe88][MiBe89J involve compile analysis of programs to

determine, for each reference, whether or not the reference should be serviced by the cache or main

memory. As said by Min and Baer [MiBa89], "It is clear that directory based protocols ... will

always have higher hit ratios than self-invalidating schemes. On the other hand, there will be less

network traffic in the self-invalidating schemes..”

Because of the network independence of directory based schemes, non-bus interconnection

networks can be used to satisfy the memory bandwidth required by high speed CPUs or many

moderate speed CPUs, while maintaining higher cache hit ratios than self-invalidating protocols

yield. " ' V " . : -

1.3 Operating System and Programming Model Assumptions

Throughout the rest of the thesis, several assumptions about the operating system,

programming model, and event ordering will be made. They are:

1) All accesses to shared RW variables must be performed after accesses to

synchronization variables. Synchronization variables can be semaphores when the

references to shared data are in critical sections. Synchronization variables can also

be directed, like the synchronization in DoAcross loops.

2) ; The order of execution of instructions running in parallel is not

deterministic (Figure 1.2).

Figure 1.2 Non-deterministic Program

4)

5)

All memory accesses issued by processor p must be performed with

respect to all other processors before p accesses a synchronization variable. Issued

and performed as used above are precise terms. A reference is said to be issued

when the reference can no longer be cancelled by the processor which initiated it.

Most of the time references are issued when they enter the processor to memory

interconnection network. A read from memory is said to be performed with

respect to processor k when processor k can no longer initiate a write which alters

the value fetched by the read. A write to memory is said to be performed with

respect to processor k when processor k cannot initiate a read operationto the same

Ideation which does not receive the value stored by the write.

All synchronization variables are not cached.

Semaphores are accessed through uninterruptable read-modify-write

operations. Examples of such operations are test-and-set, compare-and-swap

[PeSi 851, and the xmem instruction used in the Motorola 88000 [Moto88J

Every two shared variables which could concurrently be granted RW

privilege to two different processors, must be stored in separate cache blocks.

Together the assumptions, one through six, imply Weak Ordering of events [DuSB86]

[DuSB88], explained later in this chapter.

1.4 Private Caches

The private caches can perform five basic types of operations: read hits, read misses, write

hits, write misses, and block ejections. How each of these five operations effects the global table is

discussed below.

Read Hit

When a read hit occurs, the data is fetched from the private cache; !here is

no global table operation.

Write Hit

When a write hit occurs, the global table record of that block is updated; all

other caches which have the block are invalidated.

Read Miss

For read misses, the global table is updated to reflect that a new processor

also has the block cached. If the block is not cached or cache read only (RO), the

block is fetched from the memory. If the block is in another processor's cache and

is dirty, the block must be written back to memory and sent to the reading

processor. The processor which has the block dirty does not need to invalidate the

block. ^ ' vV-V'

W rite Miss _

When write misses occur, the global table must be updated to reflect that

the processor which is performing the write is the only processor with the block

and the block is dirty. If when the write miss occurs, the block is not cached or

cached RO, the block is fetched from memory. If the block is cached read write

(RW), then the processor which has the dirty block must send it to the writing

processor. All other copies of the block must be invalidated because only one

processor at a time is allowed to have a block cached RW.

Ejection

A block ejection occurs when a valid block must be removed from a cache

because a new block needs to be moved into the same cache set, and there is not

enough associativity to hold all the valid blocks in the set. When clean blocks are

ejected, the global table may or may not be informed of the update. The effects of

not updating arc discussed in chapter three.

The private caches have three essential parameters, the size of the cache block (B), the

number of sets in the cache (Ns), and the associativity of each set (K). The product of these three

parameters equals the size of the cache, and the number of blocks in the cache (Ncb) is the number

of sets multiplied by the associativity (K*Ns). The greater the associativity, the slower the access

time, but the less frequent blocks ejections are. As the cache size increases, the associativity effects

on the hit rate diminish |Hill88|. This is why large caches are usually direct mapped.

For some systems the disparity between the processor speed and memory speed is so great

as to warrant multilevel caches. The multiple levels of caches further complicates Goherency

control. Gne simplifying constraint which does not drastically affect performance is the inclusion

property [BaWa88], The inclusion property states that every block in a faster cache is also in

every slower cache. This way, cache invalidation requests only need to check against the cache

tags of the slowest cache. The slowest cache needs to maintain a bit for each block indicating if

that block is cached by a faster level. This way, if a block is invalidated, the slowest cache knows

when it must invalidate the faster cache(s).

Some RISC processors are designed to work with two private caches: a data cache and an

instruction cache [Moto88]. This allows for concurrent access to instructions and data which

increases parallelism. If self modifying code is not allowed, the cache coherency problem is

nonexistent in the instruction cache, making it possible to usG instruction caches in vary large scale

multiprocessors like the BBN Monarch [RCCT90J. The ideas we discuss in this paper can be

easily extended to system with separate instruction and data caches, so for simplicity we assume

each processor has only one cache.

1.5 Event O rdering

In multiprocessors, there are N sequences of memory references which in a shared memory

system need to be merged into one sequence. Sequential Consistency is merging these

reference sequences in such a may that no two references from the same processor appear to

execute in an order different than that specified by the program. For conceptual simplicity arid

definition exactness, we introduce the concept of an event order graph. Iri the event order graph,

the references are thought of as vertices, arid dependencies are thought of as directed edges.

Sequential Consistency is violated if, and only if, there exits a cycle in the event ordering graph. A

machine is said to maintain Sequential Consistency if, for every possible program, there does not

exist an execution which violates Sequential Consistency: Formally, the event order graph is

constructed in the following way.

A. Every read or write to memory corresponds lo a unique vertex in the event order
graph.

B. There exists an edge from vertex i to vertex j if

i. Vertex i and vertex j correspond to references generated by the same
processor* P> and vertex j is after i, as specified by the program running on
processor p.

or .• ■ . ■

ii. If j is a read which fetched the value written by reference i, or i is a read
which fetches the value of the shared location before it is mpdified by j.

Consider uni-processor systems for a moment. Provided that memory operations are

issued in program order, there cannot exist a cycle in the event order graph (if the memory does not

permute the order of references). Hence, events are Sequential Consistent. But for multiprocessor

systems with private caches, writes are not atomic; therefore issuing memory operations in program

order is not a sufficient condition for sequential consistency. Consider the following example

(Figure 1.3)

Processor I
Rl (a)
W 1(b)

Processor 2
R2(b)
W2(a)

Figure 1.3 Parallel Program

A cycle in the event ordering graph will occur if the code executes in the following way.

Processor I has a cache miss when it reads a, and the read request is slowed by network traffic.

While the read to a is in the network, the write to b is issued by Processor I and the invalidations of

the other processor's caches happens quickly. After Processor 2 invalidates its cache, Processor 2

reads the new value of b and writes to a. This all happens before Processor I's read request

reaches the memory module. In such an execution sequence, the program will have the an event

order graph like Figure 1.4

Figure 1.4 Non-Sequentially ConsistentExecutionof a Parallel Program

This is a very strange kind of behavior for programmers to take into account when writing

programs, so two more straightforward event ordering definitions were developed by Dubois et. al.

The first definition is called Strong Ordering; it maintains the sufficient conditions for Sequential

Consistency in multiprOeessors [DuSB86] [DuSB88]. The conditions for Strong Ordering are:

1. Accesses to shared data by any one processor are issued, and performed in
program order.

Strong Ordering has a second condition which is needed whenever writes to shared data are

not atomic.

2. At the time when a write to shared data by processor i is observed by processor j ,
all accesses to global data issued by i before the issuing of the write must be
performed with respect to j.

Strbhg Ordering is a very tight constraint. Most all uni-processor systems don’t uphold

Strong Ordering; rather, they allow for reads and writes to different locations to be permuted, and

reads to the same location to be permuted. This is done to improve performance.

A m ore realistically ordering of events is Weak Ordering [DuSB86] [DuSB88]. Weak

Ordering divides references into two large categories: references to synchronization variables and

references to all other variables. A synchronization variable is any variable used to indicates to

other processors that data is available for reading. They also help to guarantee that there is only one

writing processor to a location at a time. For the most part these are semaphore variables. A system

is Weakly Ordered if:

I) Accesses to synchronization variables are strongly ordered.

2) No access to a synchronization variable is issued by a processor, p, before all
previous shared data accesses issued by processor p have been performed with
respect to all other processors.

3) No access to shared data is issued by a processor, p, before an access to a
synchronization variable has been performed, with respect to all other processors.

Requirement one is easily maintained by not caching the synchronization variables.

At first, it might not seem that requirement two is essential to the correct operation of

parallel programs. Considera processor which immediately after entering a critical section, reads a

shared variable -- a r r a y _ in d e x , used to index into an array of data elements -- and just before

exiting the critical section increments a r r a y _ in d e x . If when the processor leaves the critical

section it issues a write to arrayjndex, but does not wait until the write is performed with respect to

all other processors, another processor with an old copy of a r r a y _ i n d e x cached can enter the

critical section. Once in the critical section, this new processor might reference a r r a y _ i n d e x

and receive die old value.

Requirement three requires programs be written so that there cannot be processors trying to

read or write to a location which are being written to.

For the rem ainder of the thesis only Weakly Ordered sy stem s will be considered.

1.7 M ultistage Interconnection Networks

Multistage interconnection networks are a compromise between mutually exclusive,

inexpensive busses and shareable, expensive crossbars |Sieg85J. Consequently multistage

interconnection networks are desirable to build large scale multiprocessors around; The most

popular multistage network is the multistage cube, used in the BBN Butterfly [BBN85] and Ultra

Computer [GGKM83], In one pass of the network, a message can go from any port to any Other

port, and by including an extra stage in the interconnection network, the network can be made to

tolerate one faulty box or two faulty links. The multistage cube network has log2N stages of N/2,

two by two switch boxes; each box can be set to straight, exchange, upper broadcast, or lower

broadcast, determined by the routing tag carried along with a packet. Figure 1.5 shows an eight-

ported multistage cube network.

Stage O

Stage 1

Straight Exchange Lower
Broadcast

Upper
B roadcast

Figure 1.5 Multistage Cube Network

Since the netwotk handles every request every processor generates, there is pressure for

this to be as fast as possible. High performance systems will want to use networks with

unidirectional links, because arbitration for the links between switch boxes will slow the network

down considerably. If a processor shares its network port with a memory module, only one,

unidirectional multistage cube network is needed. Figure 1.6 shows this organization which will be

referred to as the "Home Memory" configuration. It gets its name because references, made by a

processor, don’t need to use the network if the memory location resides in the module attached to

the same port as the processor.

. LA
Invalidations '. ■ ■■ ^ .■ Invalida1

C . • • • C :

■"' -h

V r

M NlU GT M NIU GT

" :: I ■> ■
j A.;. ’y>. ■

Packet Switched
Interconnection

Network ^

' NIU-Nctwork Interface Unit

Figure 1.6 Home Memory Configuration

Included with each message in a multistage cube network is a routing tag specifying the

settings for each of the switch boxes the message goes through. There are two classes of routing

tags: single destination and multiple destination. The destination of a message serves as a simple

and efficient single destination routing tag, requiring only log2N bits. Multiple destination tags can

be used to send the same message to several processors. This is useful for invalidating the other

processors which have the block cached when write hits or write misses occur. Several multiple

destination schemes have been presented. One method is to use an N bit vector as the routing tag.

Bit i of the vector is set if port i is intended to be a destination. In order to represent any arbitrary

set of destination ports, all N bits are required. A more concise, multiple destination routing tag is

the broadcast mask [Seig85] consisting of a IogaN bit routing vector and a broadcast vector of equal

length. The routing vector is any one of the destinations of the message, and the broadcast vector

indicates which stages should perform broadcasts. A box in stage i looks at bit i for the broadcast

vector, and if the bit is asserted the switch box is set to broadcast; otherwise, it looks at the routing

vector to determine whether the switch box should be set to straight or exchange. For example, if

N=4 and one wants to send a message to port zero and two, the broadcast mask could be {routing

vector=002; broadcast vector= IO2} or XO for short. Notice when the destinations are zero (OO2)

and three (H 2), the present set cannot be represented with one broadcast mask.

Because each switchbox acts independently of other switchboxes, no guarantee can be

made about the arrival order of two message sent from different pons to the same destination port,

but we will assume that two message sent from the same port to the same destination port will

arrive in the order they were issued.

1.6 M ultiple Channel A rchitecture

In the more remote future, optical busses may be feasible for processor to memory

interconnection. WaiJes and Meyer are beginning work on a frequency multiplexed optical bus they

call Multiple Channel Architecture [WaMe90]. The bus will have as many channels as discemable

frequencies of light (likely to be several thousand). The performance improvement comes because

each channel can be used concurrently with every other, and hence greatly reducing interconnection

network contention. Although the interconnection is physically a bus, the snoopy protocols will

perform poorly in the multiple channel architecture, because the snoop unit at the private caches

would have to "snoop" every channel at the same time. On the other hand, directory based

protocols can utilize the many independent channels.

13

2. ANALYSIS OF SHARING

In order to evaluate the effectiveness of coherency protocols it is useful to know some

properties of shared cache blocks. Some of the questions which we want to ask are: What

percentage of blocks are shared blocks in a typical program? How many processors are likely to

share a cache block? How many references does a processor typically make to a block before

another processor writes to it?

2.1 Amount of Sharing and Frequency of Writes

From the analysis done on parallel applications [WeGu89] [BaRa89] [EgKa88]

[ASHH88], typical values for the fraction of references to shared variables and the fraction of

writes can be known. The fraction of references to shared variables ranged from 1.98% to 21.5%,

and was on average 10% for the application observed. The fraction of writes ranged from 7% to

40%, and was typically 30%.

2.2 Markov Chain Models of Shared Blocks

To aaswer the question: "How many processors are likely to have a shared block cached?",

a Markov chain was developed - one that transitions from state to state whenever a private cache

issues a global table operation.

A Markov chain is a fitting model for the behavior of the shared block because the future

state of the block only depends upon the present state. This is the fundamental Markov property.

Other assumptions which need to be made are:

1) Every processor is equally likely to cache any one of the shared blocks.

2) The accesses to shared blocks are uniformly distributed across all the shared
blocks.

3) Ever>' block in a private cache is equally likely to be ejected.

4) Each memory reference is independent of all other references.

2.2.1 M arkov Chain for RW Blocks

The Maiicov chain for a representative shared RW block is presented in Figure 2.1. The

states a shared RW block can be in are Not Cached, Cache with RW privilege by one processor, or

cached with RO privilege by any number of processors. This chain is similar to the Markov chain

present by Dubois [Dubi87], but this chain incorporates block ejections.

a2 aN-1
Not

Cached
RO-N

b3 bN

Figure 2.1 RW Data Markov Chain

The transitional probabilities can be expressed in term of "observable" properties of the

system and program, as done for bus snooping protocols by Yang et, al. [YaBL89].

I
write probability
[l-q ro][q s][F w]LNsbJ

probability of adding a processor
[l-q ro][q s][l-F w]LNJLNsbJ

probability of deleting a processor

N-i I

[1-h] j_
n J

l
LNcbJ

(2 . 1)

(2 .2)

(2.3)

Definition of parameters:

Ncb = Numberofblocksinasingleprivatecache

Nsb = Number of shared cache blocks in an application

15

qs = Fraction of references which are to shared data

qro = Probability that a reference is to a shared RG block given that the
feferenceis to a shared block

Fw == Fraction of references which are writes

h Hitratiooftheprivatecaches

The steady state probabilities for my Markov Chain solved by finding the solution

to the set of N+3 equations below:

n=nr

b
N+l

X jcI
Li=O .

(N+2 equations)

(I equation)

T = (N+2)x(N+2) transitional probability matrix

11 = (N+2)xl steady state probability matrix

Tti— steady state probability of state i

Once the jq ’s are known, the expected size of thepresent set (IPI) can be calculated.

I , ■ N+1 L ' .. ; ; .■ ! ' - L. LS, - '
E[IPI] = 7Ci+ X (i-l)Tti

i=2 : (2.4)

Using numerical analysis software, the steady state probabilities for a sample System were

solvedfor.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

StateNurnber

Parameters
N = 32
qro =1.0
qs = 0.2
Fw = 0.3
h = 0.9
Nsb = 64
Ncb = 4096

Figure 2.2 Steady State Probability of RW Markov Chain

Because the assumed hit ratio is ninety percent and Nsb/Ncb is a small fraction, ejections

are infrequent, and consequently shared RW blocks are seldom in the Not Cached state or RO-I

state. Ifthe number of shared blocks increases, so does the probability of these states.

The steady state probabilities are most affected by Fw, the fraction of writes. As Fw

increases, the expected size of the present set decreases.

17

I ■ F w =O l
H Fw=O.3
□ Fw=0.5

1 2 3 4 5 6 7 8 9 10 1 1 12

S i/e o f Present Set (IPI)

Parameters
N=32
qro = 0
qs = 0.2
h = 0.9
Nsb = 64
Ncb = 4096

Figure 2.3 Effects of Fw on Steady State Probabilities

This Markov chain’s steady state probabilities reflect the number of invalidations required

to perform a write. The results we obtained concur with the number of invalidations per write

observed by Weber and Gupta |WeGu89J as well as Agarwal ct. al. |ASHH88] in their analysis of

parallel applications

Thevalidityofassum ptionnum beronereveryprocessorisequallylikelytocacheanyone

of the shared blocks might be questioned, because frequently in parallel applications not every

processor references every shined location. But, the number of processors which reference a block

does not alter the Markov chain more than to change N to a number which better suits the

application of interest. A more realistic model would be to divide the shared blocks into several

different classes according to how many processors access the various shared block.

2.2.2 Markov Chain for RO Blocks

Read only (RQ) data which remainsRO fortheentire execution of the program, like

instruction data, should be marked as local by a compiler, and lumped into local pages by the

operating system. Once a processor performs address translation, the global or local distinction is

known, and local cache miss Operations will require coherency maintenance. Commercial systems

like the 88000[Moto88] use this strategy to reduce the amount of traffic to the snooping units. This

strategy also helps reduce the traffic to the global table.

Even with intelligent compilers and operating systems which put local data into distinct

pages, some shared data is global and RO. In VLSI channel routing for example, the vertical and

horizontal constraint graphs are RW during the phase which generates the graphs [WaCa89], then

during the phase where the nets arc assigned to a track, they become RO.

A Markov model can be constructed for RO data. It is a degenerate case of the RW Markov

Chainwherethewritepercentageiszero(Fw = O).

v i y b1 b2V _ y b2
Figure 2.4 RO Data Markov Chain

ai probability of adding a processor
(N-i) [qs] [qro] I

NsbJ (2.5)

Probability of removing a processor
_L

LR
[1-h] I

NcbJ (2 .6)

This is unlike the RW case where the effects of Fw seemed to dominate, here all the

parameters play a significant role in influencing the steady state probabilities. Equation 2.6 does

not offer intuitive understanding as to how each parameter effects the probability density function of

IPI, so several graphs were generated for various system parameters.

- Nsb=S192 ■
" Nsb=4096
• Nsb=2048
• Nsb= 1024
- Nsb=512U \

Size of Present Set (IPI)

Parameters
N = 128
qro = 0.5
qs = 0.5
h = 0.9
Ncb =32768

Figure 2.5 Steady State Probability for RO Markov Chain

20

As the number of shared blocks increases, the likelihood of a bloek being cached by more

than one !processor diminishes. The cardinality of the present set also is affected by the hit ratio of

the caches and the percentage of shared references.

/ / / / qs=0.2/ / /

Private Cache Hit Ratio (h)

Parameters
N = 128 :
qro = 0.5
Nsb = 2048
Ncb = 32768

Figure 2.6 Effects of Hit Ratio and qs on Present Set

As the hit ratio and the percent of shared references increases, the cardinality of the present

set increases. This is because the only effect which decreases the size of the present set is block

ejection. When the hit ratio is low, block ejections are less frequent. When qs increases, shared

blocks are accessed more frequently, making the likelihood of a block being cached greater.

2.3 FrequencyofR eferencestoSharedB Iocks

It is useful to know how many references a processor will make to a block that it wrote to

before another processor writes to it. This gives an indication of the utility of caching dirty blocks.

This, of course, is program dependent. Baylor and Rathi [BaRa89] analyzed the behavior of

several engineering and scientific applications, and reported a measure corresponding to the amount

of time after a processor writes to a block and before another processor writes to that same block.

The unit of time they used was a logical cycle. In a logical cycle, every processor can perform a

read or a write to memory. When the block size was four words (the best and smallest size in their

analysis), the average number of cycles was in the hundreds. Eggers and Katz, in their analysis of

snoopy bus systems, monitored the number of writes a processor made to a block after it's first

write miss or write hit and before another processor wrote to the block. They called this the write

run length The number of reads and writes to a shared block during this time can be estimated if

the write run length and the fraction of writes are known.

ReadandW riteRunLength = WriteRunLengthyFw (2.8)

Using the numbers gathered by Eggers and Katz, the read write run length for the four

applications observed ranged from 6 to 22, and on the average was 13.

22

3. FIXED LENGTH ENTRY DIRECTORIES

Traditional Directory Based Protocols

Chronologically, Tang’s method [Tang76] is the first directory based cache coherency

protocol. He proposed to store a copy of the private cache tags in M, K*N-way associative

memories each Ns/M sets large (where N is the number of processors in the system, M is the

number of memory modules, Ns is the number of sets in the private caches, and K is the

associativity of the caches). The major drawback to such an approach is the access time of the

associative memory. In most logic families, the access time for a CAM (Contents Addressable

Memory) is directly proportional to the associativity. This property of associative memory makes

Tang's approach hard to scale. Wedescribe a way to design out the associate memory in the next

chapter, but when done, the memory size is comparable to the amount of memory required by the

next approach we will now discuss.

Censier and Feautrier [CeFe78] developed a coherency protocol that does not require

associative memory. Instead, the global table contains an entry for every block in main memory,

each entry being N+l bits. Bit zero Of the entry records the type of access privilege the cache(s)

with the block have (Only one cache may have read and write access to a block at a time, but all

caches may simultaneously cache the block if all have read only access) If this privilege bit is

asserted, a cache has read and write privilege (RW); otherwise, the cache(s) have read only

privilege (RO). The next N bits determine which of the private cache(s) have the block cached. If

processor i has block b cached, then bit i of the global table entry for block b is asserted. This N bit

array is referred to as the present vector. If a block is not cached, the present vector is all zeros.

Whenever a read miss, write hit, write miss or block ejection occurs at one of the private

caches, a request is sent to one of the memory modules based on the address of the reference. How

the global table is updated depends upon what type of operation being performed, and what stale

the block is currently in. The actions for each of the five basic operations are:

Read Miss (By processor i to block b)

RO

Bit i of the entry is set, and the block is fetched, from main memory.

RW

An invalidate ’without in tent to modify message is sent to the

processor which has RW privilege to the block; Call it processor j. ProcesSor j

sends the block to main memory and changes his local state to RO. The final

global table entry is RO with bits i and j set. While the block is being written back,

the entry for the block must be put in a “pending” state. If another processor has a

read miss on the location while the entry is in the “pending” state, that processor

should be recorded as requesting the block. It is assumed that program

synchronization will make it so no write misses occur while the entry is in the

pending state. When the block arrives at main memory, the global table is updated,

and a copy of the block is sent to the requesting processors).

NptCached

■: . . - ' Y V
The entry is set to RO with bit i set, and the block is fetched from main

memory.

W rite H it (Byproeessoritoblockb)

RO

RW

An invalidate with intent to modify message is sent to processor H f

and only if i is an element of P. The final entry is set to RW, with only bit i in the

present vector set. The block sent to the requesting processor is a copy of what

resides in main memory.

W rite Miss

The write can be performed locally without any interconnection network

messages. ' '

(By processor i to block b)

24

An invalidate with intent to modify message is sent to processor i if

and only if i is an element of P. The final entry is set to RW1 with only bit i in the

present vector set. The block sent to the requesting processor is a copy of what

resides in main memory.

RW

An invalidate with intent to modify message is sent to the processor which

has RW privilege to the block. The final entry is set to RW privilege with only bit i

set. The processor with the dirty block sends it to the requesting processor. Itis

assumed that the program synchronization wifi assure that no other write miss to

this block will occur until after the dirty block arrives at the processor which had

the write miss.

Not Cached (Write Miss only)

The entry is set to RW with bit i set, and the block is fetched from main

: A, m e m o r y . " ■ 'v V ;’'1

Ejection Request (Of blockb by processor i)

RO bit i is cleared in the entry.

RW bit i is Cleared from the entry, and the block is written to memory.

3.2 M aintaining Weak Coherency

\ In order to maintain Weak Ordering, a system must insure that all accesses which are

issued before the issuing of a synchronization variable access, are “performed” with respect to all

other processors; A convenient way to enforce this is to have two counter for each processor. The

first counter is a called a re tu rn receipt counter which records the number of return receipts

which have been received. This counter is incremented every time a read to a shared block is issued

and decremented every time the read data is returned. Writes are more complicated. A write is

performed with respect to all processors when all the other processors which have the block

invalidate it, and the global table is updated. When a processor issues a write operation, the

outstanding writes counter (the second counter) is incremented. The counter is decremented

when it receives a return message from the memory module indicating the number of invalidation

messages which were sent as a result of the write. This number must be added to the return receipt

counter. Thus, this counter records the number of writes which have been issued, but have not

updated the return receipt counter. Since it is entirely possible for some return receipts from the

invalidating processors to be received before the message from the memory is received, the return

receipt counter must be designed to hold both positive and negative numbers. When both the

outstanding writes and the return receipt counter are zero, all references are performed with respect

to all other processors, and accessing synchronization variables is allowed. Consider the example

write miss illustrated in Figure 3.1.

Outstanding Writes counter incremented when the write is issued
Global table returns the size of the present set

- Return Receipt counter += size of the present set
* Outstanding Writes counter decremented

Other processors which have the block are sent invalidation messages.
The invalidating processors send return receipts

-RetumReceiptcounterdecrementedforeaehmessage

Figure 3.1 Two CounterExample

As Brooks and Hoag [BrHo90] mention, a facility like this makes it possible for normal

program variables to be used as synchronization variables. By simply surrounding the access of

the variable by calls to an operating function wait(), the variable can be treated as a synchronization

variable. The wait() function stops the processor from issuing any more references until both

counters are zero;

3.3 Evaluation of Traditional Protocols

For a system which uses the Censier and Feautrier protocol to maintain cache coherency,

the global table can become very large. A system with 64 processor, 256 Megabytes of main

memory, and a block size of 16 bytes, will need a 130 Megabyte global table— 50% the size of

main memory! The size of the global table is not large because the entries are inefficiently

representing the possible states of a shared block. Since any combination of processors can

simultaneously cache the block with RO privilege, there are 2^’ RO states, and since each processor

can obtain RW privilege to the block, there are N, RW states. N +1 bits are capable of recording

2n+1 states, so the efficiency of this global table entry format is:

Efficiency = (2n + N)/2n+1 0 .1)
, : . . .

Lim Efficiency = 0.5
N->°° ' " ^ v : — :

This implies that an alternate fixed entry format capable of recording every possible state

will not yield an order of magnitude improvement.

The most obvious way of reducing the global table size is to increase the block size. For

every doubling of the block size, the global table size is halved, because only one entry is needed

for each block in main memory. But increasing the block size degrades system performance when

the block size is made very large. Often, unnecessary words arc carried along with other references

when the block size is big [DuBr82].

An economical protocol [ArBa85] has been proposed which only requires two bits per

block, consequently each block can be in one of four states: Modified, Present, Present*, or Not

Cached. The entry is set to Modified if a cache has a dirty copy of the block. Ifone of the caches

has the block RO, Uien the entry is set to Present. If more than one processor has the block cached,

the entry is set to Present*. The distinction between Present and Present* is made so no invalidation

messages need to be sent when write hits occur to blocks which are in the Present state. Whenever

one or more private caches need to be invalidated, an invalidation message has to be sent to every

processor. Because the broadcasts are to all the processors in the system, excessive, unnecessary

network traffic is introduced, and each private cache must spend time servicing invalidation

requests for blocks which are not present.

3.4 Criticisms of Traditional Techniques

ThemajorcriticismsofthetraditionaiglobaltablecachecolierencyprotbcolS are:

1) The amount of interconnection network traffic is great.

2) The amount of memory required to make the global table is great.

3) The number ofimnecessary invalidation to Ihe private caches distracts them from
Servingthepibcessoftheyareprivyw i^

The remaining sections of the thesis will be devoted to grappling with these problems, by

inventing new protocols and altering global table architectures.

3.5 Using Broadcast Masks as Global Table Entries

A compromise between the economic protocol and the Censier and Feautrier approach is to

record the present set with a single broadcast mask. Equation 3.2 expresses the size of the global

table when this entry format is employed.

Global Table Size (with broadcast masks) = M*(2*log2(N)+l) (bits)

= 0(Mlog2N) (3.2)

M is the number of blocks in main memory.

As shown in Figure 2.2, the most likely combinations for shared read/write data are those

combinations where IPI < (1/5)N, so the global table entry format only needs to be accurate when

several processors have a block cached.

Because not every combination of processors can be represented with a single broadcast

mask, processors which are not in the present set may be inadvertently included in the broadcast

mask. In fact, the processor which performs an operation which invalidates all other copies of the

block may itself receive an invalidation message which it must ignore. In order for die processor to

discern whether or not an invalidation message should be disregarded, the invalidate operation is

divided into twb types: invalidate (RW) and invalidate (RO). The global table sends out

invalidations consistent with the state it has recorded, and if a processor receives an invalidation

inconsistent with its record of the access privilege, the invalidation is disregarded.

28

Assuming that every processor is equally likely to cache a block, a simulator was built to

determine how accurately a broadcast mask can represent the present set.

300 .

■ r
: :
I13 200-
I ’ ■
£
Si u
I
I
£ loo
's - ^

tZ

p~*
^ - \ i - -V-'. ■■■■-. ./

/
■ ■ v : I ■

/ ^
/ /

I Y
I ' . - I « t I I « « . I > I

I f ^

10 20

Number of Processors Which Have the Block

Figure 3.2 One Broadcast Mask System

-•a-— N=32
n =64

- N= 128
N -2 5 6

-■---- Ideal

Evident from the simulation resuits, the single broadcast mask method degenerates to the

performance equal to that of the Archibald and Baer economical solution when IPI > 10,

independent of N.

Representing the present set with several broadcast masks reduces the number of

extraneous invalidations, but there are some complications.

We present throe theorems showing the difficulties in preventing extraneous and redundant

invalidations. Theorem 3.1 is an upper bound on the number of broadcast masks needed; 3.2 is

the corresponding lower bound. Theorem 3.3 shows the difficulty of determining which masks

should cover which processors.

3.5.1 Theoretical Difficulties

Theorem 3 .1 : (An upper bound on the number of broadcast masks)

The maximum number of broadcast masks needed to represent an arbitrary P without

introducing extraneous or redundant invalidations is N/2.

Example:

Consider a system with N=8, and a particular block where P = (OOI25OIO2iIOO2,! I ^ l -

Because every processor number is a Hamming distance of two away from every other processor

number, none of the processor numbers can be merged into a broadcast mask without introducing

extraneous invalidations. Notice IPI = N/2 = 4.

Lemma3.1: .o

Let S be a set numbers such that, for every number in the set, there does not exist another

number in the set which is a Hamming distance of one away. The minimum number of bits to

represent any S is log2 (ISI) + I . This is a the idea behind single bit parity.

Lemma 3.2:

The maximum number of broadcast masks ever needed equals the cardinality of S (!SI).

Proof by contradiction:

Assume there exists a set S2, such that IS2I > ISL Let 0=S2-S; Every element in O is a

Hamming d ista n ce o f on e aw ay from an e lem en t in S (otherwise, the e lem en t w ould be in S).

Hence, every element in O can be covered by altering one or more o f the broadcast masks, without

introducing extraneous or redundant invalidations. Thus no more than ISI broadcast masks are

required.

Proof of theorem:

Because each processor’s ID is log2N bit long,

log2(ISI)+ I - Io g 2(N)

ISI = 2A(log2(N)-l) = N/2 -

maximum number of broadcast masks needed = ISI ..=N/2

Even if the present set is the best case (the combination of processors which requires the

fewest number of broadcast masks), several broadcast masks may be needed to represent it.

Theorem 3.2: (A lower bound on the number of broadcast masks)

The lower bound on the number of broadcast masks needed to represent the present set

(without introducing in extraneous or redundant invalidations) is Hathming(IPI5O).

Proof:

Broadcast masks are only capable of having destination Sets of size 2i; 0<=j<=log2N.

Each asserted bit in IPI represents a group of size 2‘, where i is the hit's position. Since no

collection of groups can be combined into one group without changing IPI, the minimum number of

broadcast masks must equal Hamming(IPIjO),

The last major difficulty with representing the present set with multiple broadcast masks is

the complexity of trying to determine which masks should cover which processors.

Theorem 3.3: (Optimal Covering in NP Complete)

Given a present set, determining the minimal set o f broadcast masks which does not

introduce any extraneous or redundant invalidations is an NP complete problem.

Proof:

The problem is polynomially related to the logic minimization probletti [BHMS85].

Showing that another problem is polynomially related to a problem which is known to be NP

Complete proves that the new problem is also NP complete [Baas78]. Ifthere exists a polynomial

time algorithm to convert the a solution of the optimal Covering problem into a solution for the logic

minimization problem, optimal covering is NP complete. Both the logic minimization problem and

the optimal covering problem have the same input: a set of minterms which need to be covered.

Both problem’s solutions arc stated in term of prime implicants, but not necessarily the same prime

implicants. In the optimal covering problem the prime implicant must be disjoint, and in the logic

minimization problem they are to overlap as much a possible. A polynomial time algorithm to

convert an optimal covering solution to a logic minimization solution is given in Figure 3.3. The

algorithm assumes that the solution to the minimum number Of masks problem is stored in an array

of mask called PI (prime implicants). Each prime implicant (PI|j |) has log2N binary digits (0,1, or

X); digit b of mask j is indicated by PI[j]:b.

31

for i=l to number_of_PI1 s do begin
for b=0 to IogpN-I do begin

if(PI[i] :b <> X) then .
if P I [i] with P I [i]:b = X only covers wanted minterms

P I [i]:b = X;
end

end
Figure 3.3 Mapping of Minimal Broadcast Problem to Logic Minimization

Consider an example where the where N -16 and the minterms which need to be covered

are: 4,5,6,7,13,14, and 15. Figure 3.4 shows these minterms placed on a Karnaugh map, the

solution to the optimal covering problem, and the corresponding logic minimization problem.

b3b2

b1b0 0 0 01 11 10

00

01

11

10

0 I 0 0

0 1 1 0

0 1 1 0

0 1 1 0

b3b2 b3b2

blbO
00

01

11

10

0 0 01 11 10

0 T 0 0

0 1 Pf] 0

0 1 J j J 0

0 i m 0

b1b0 00 01 11 10

00

01

11

10

Figure 3.4 An Example Covering

-

32

The number of minterms which need to be covered in the size of the inputs (n). In the

worst case, the number of Pi's equals n, and for each one of the iterations of the outer loop, i, the

algorithm has to compare with every other minterm. Consequently, the above algorithm is 0(n2).

How do we know that the solution to the logic minimization problem generated above, is

indeed a proper solution? We know that the number of prime implicants is the minimum number,

since the input to the conversion algorithm solution to the optimal covering problem.

The optimal covering problem is not only encountered when new processors need to be

added into broadcast masks in broadcast mask systems. The same problem arises if the entry

format is Censier and Feautrier1S and interconnection network uses broadcast masks for routing

messages.

Because of the difficulties of eliminating extraneous and redundant invalidatioas, a multiple

broadcast mask scheme which introduces redundant and extraneous invalidations was developed.

Initially, all the broadcast masks for each global table entry are invalidated. When a processor

which is not currently covered by any mask caches the block, the processor number is compared

with each broadcast mask, and merged it into the broadcast mask to which it is closest. Distance

between a processor number and a broadcast mask is defined as:

Distance = Hamming(0, (broadcast vector & (processor number A routing vector))

When two masks are the same distance from a processor number, the one with the fewest

number of asserted bits in the broadcast vector is chosen, and if this fails to resolve a conflict, one

of the several, closest masks is arbitrarily chosen.

This method does not guarantee to minimize the number of extraneous or redundant

processors. Consider the two broadcast masks IXXXX and 1100X iji a two mask system, with

the new processor being processor 00000. Notice OOOOOis closer to IXXXX than 1100X, though

merging with IXXXX will introduce 15 extraneous invalidations, while merging 00000 with

1100X will only introduce 5 extraneous invalidatioas.

3,5.2 Simulation Results for Multiple Broadcast Masks

The effectiveness of this method was studied using a simulator which assumed every

processor is equally likely to reference a block. Figure 3.5 indicates the precision obtained for

various system sizes.

N=32
rmrw-"mmir N =64
— N= 128

N=256
— * -------Ideal

2010

Number of Processors Which Have The Block

Figure 3.5 Four Broadcast Mask System

The effects of varying the number of broadcast masks (BMS) can be seen in Figure 3.6,

for a system with 128 processors.

BMS=I
BMS=2
BMS=4
BMS=8
Ideal

Number of Porcessofs Which Have The Block

Figure 3.6 Effects of Using More Broadcast Masks

A drawback to die multiple broadcast method is its frequent inability to reduce the number

of invalidations when block ejections occur. Seldom can a broadcast mask be reduced. The two

cases where a broadcast mask can be reduced are when the ejecting processor is covered by a

broadcast mask containing just that processor, or by a mask containing that processor and only one

other processor, Consequently, the global table should not be notified when clean blocks are

ejected.

3.6 Sloppy Ejection

Before we can bring the Markov models for shared blocks into the analysis of multiple

broadcast mask systems, we need to introduce the concept of sloppy ejection. Sloppy ejection is

not updating the global table when clean blocks are ejected from the private caches (the traditional

approach we call tidy ejection) This reduces the number of references to the global table, and

reduces contention for the table. Traditional directory protocols keep the global table "up to date"

Figure 3.7 Sloppy Ejection Markov Chain

The transitional probabilities are:

ai

write probability
[l - q r o l f q s J t F w] ^]

probability of adding a processor
[U lrO i q s D - I V j ^ i M J

probability of deleting a processor

^ [n] bleb]

(3.3)

(3.4)

(3.5)

From the steady state probabilities, Efnumber of invalidates with tidy ejection} and

E {number of invalidations with sloppy ejection} for a systems which uses a N+l bit vector for its

entry format, were calculated to help determine the effectiveness Of sloppy ejection. Figure 3.8

compares the two methods for a range of write percentages (Fw) on a system where N=32.

Sloppy
Tidy

Fraction o f Writes (Fw)

Parameters
N = 32
qro = 0
qs = 0.2
Fw = 0.3
h = 0.9
Nsb = 64
Neb = 4096

Figure 3.8 Comparison of Sloppy vs. Tidy Ejection

3.7 Expected N um ber of Invalidations

Using the steady state probabilities from the MaricOv chain (Figure 3.7) and the broadcast

mask simulation results, the expected number of redundant and extraneous invalidations for an

invalidate operation can be determined by the law of conditional expectation (3.6).

E[unnecessary inva idations]= ^ (Efinvalidationsl IPI=i]-i)*P[IPI=i]
'■ i=i (3.6)

38

BMS=I
BMS=2
BMS=3
BMS =4V \

\ \
\

0 .50 .4

Fraction of Writes (Fw)

Parameters
: N = 128

qro = 0.2
qs = 0.2
h = 0.9
Nsb = 512
Ncb = 2048

Figure 3.9 Expected Number of Unnecessary Invalidations

When using more than one mask to represent the present set, the maximum number of

invalidation messages can exceed N, because some of the mask will overlap one another generating

two or more invalidations to the same processor. Figure 3.10 shows the results from our simulator

for various numbers of broadcast masks in a system with 128 processors.

200'

I
I

-tS
I

100 '

f |i J i

■ / / / ■ ■

i j/f
i H
I H f
Hl
I Ui
i In
• ?a*

•••••••—••••"■• Four Masks
ThreeMask

“ “ “ “ “ Two Masks
■■• ChieMask

N

O
—r-

50

Cardinality of the Present Set (IPl)

Figure 3.10 Full Range Behavior of Multiple BroadcastMask Systems (N= 128)

The number of processors which are being invalidated (IDI) when the accuracy levels out

we call the saturated destination set. The size of the saturated density set roughly follows equation

■3.7,- : '; ; '■ '

!saturated Dl = (0.15)*N*(BMS-1) T N (3.7)

BMS - number of broadcast masks

The simulator was amended, so that whenever a new processor is merged into a broadcast

mask, each broadcast mask is compared with every other broadcast mask. If ahy one of tbemasks

was a subset of another, the smaller mask was invalidated. Masks seldom became subsets of other

masks, so this did not make a noticeable difference in the number of invalidations, Not to mention,

implementing such a property would be costly.

If many broadcast masks arc used to represent the present set, the number of bits required

for each block will exceed that required by the present vector approach. The maximum number of

broadcast masks which can effectively be used depends upon the number of processors in the

system. Until now, a broadcast mask was assumed to require 21og2N bits. Theoretically, only

1.51og2N are required. Whenever a bit in the broadcast vector is asserted, the routing bit carries no

information. A more efficient way to store the data is to divide each broadcast mask into tuples of

three routing bits and three broadcast bits. Each tuple can be represented with five bits; the three

routing bits and three broadcast bits together represent 27 states, which is less than 25. Using this

more efficient method of storing the broadcast masks, an expression for the “break even point” was

derived (3.8) The break even point is the number of broadcast masks which can be represented

with N+l bits.

V". BMS = (N+l) / ((5/6)(2)log2(N)) (3.8)

BMS is the maximum number of broadcast masks. For a system where N=128, BMS =

129/((5/6)(2)(log2(N)) = 11. - ■■■;;■/

3.8 Grouped Entry Format

Concurrent with the development of our multiple broadcast mask systems, Brooks and

Hoag [BrHo90] developed another kind of compromise between the Archibald and Baer entry

format and the Censier and Feautrier entry format. Their idea was to group the N processors into G

groups each size N/G. At the global table, each entry consists of the two bits of the Archibald and

Baer protocol concatenated with G bits. If any of the processors in a group has the block cached,

the bit for that group is set.

One can think of this method as a several broadcast mask system where the masks are

disjoint, fixed to always represent one set of processors, and together cover all the processors.

Continuing with the analogy, each mask has log2(N/G) bits set in the broadcast vector of the mask.

These asserted bit in the broadcast vector can be any of the Iog2N bits, but they must be the same

for all the masks.

When the number of processors in an entry is small, the processor numbers can be

recorded in the bit vector which indicates which groups have the block cached. The interpretation

41

of the bit vector depends upon the setting of the first two bits of the entry. If these bits are set to

Present*, the bit vector should be interpreted as if each bit represented a group, and if the first two

bits are set to Present, the bit vector should be interpreted as processor numbers.

The simulator used to simulate the broadcast mask systems was altered to simulate the

accuracy of Broqks and Hoag's entry format. For almost all cases, the grouped method was more

accurate than the broadcast mask method. The grouped method also does not have the problem of

sending out redundant invalidations as the broadcast mask does.

' / /

Size o f lhe Present Set (IPI)

Figure 3.11 Accuracy of Grouped Method (N= 128)

3.9 Comparing Accuracy of Grouped Entries to Broadcast Masks

Comparing the accuracy graph of the grouped method to the multiple broadcast mask

method shows that only for some cases, when the number of processors is small, the broadcast

mask Systems are more accurate than the grouped systems.

- - BMS=I
•••" G=16

Size of the Present Set IPl

£ too

Size of the Present Set IPI

Figure 3.12 Broadcast Masks vs. Grouped Method, N= 128 (a) G=16, BMS =1 (b) G=4 BMS=4

The expected number of invalidations for the grouped system was determined for various

fractions of writes.

<3=64

Fraction of Writes (Fw)

Parameters
N = 128
qro = 0.2
qs = 0.2
h = 0.9
Nsb = 512
Ncb = 2048

Figure 3.13 Unnecessary Invalidations for Grouped Method

4. GLOBAL TABLE ORGANIZATIONS

Two classes of global tables will be discussed in this chapter* tables which are copies of the

private cache tags first proposed by Tang [Tang76], and tables which have an entry for each block

in main memory, proposed by Censier and Feautrier [CeFe78]. The latter class will be discussed

first.

4.1 Main Memory Block Recording

For protocols requiring an entry for each block in main memory, the higher order bits of

the physical address can serve to select the entry in the global table. The lower order bits of the

physical address serve to select which memory module and which byte of the cache block is to be

referenced. All operations on global blocks require a global table read, some modification of the

entry and a global table write. The modification done by some updating logic depends upon the

entry format. Figure 4.1 shows the simplest global table organization for this class of global table.

Figure 4.1 Global Table Block Diagram

Ifthc format of the global table entry is an N+1 bit vector, the update logic for the updating

of the N bit vector is simply several XOR gates and a multiplexer (Figure 4.2). Besides the logic

shown in Figure 4.2, the update logic must also generate a new RO/RW bit; this is

straightforward.

Processor
Nunhber

Current Present Vector
I I I I I ! T H

New Present Vector

Figure 4.2 Bit Vector Update Logic

If the entry format is a single broadcast mask, a new processor can be added to the mask if

each bit of the broadcast mask is updated according to the logic functions in Figure 4.3. The only

cases where a processor can be removed from the broadcast vector is when only one or two

processor are in the broadcast mask. The state where RW and BQ are asserted is and unused state,

and for the equations below is used to indicate not cached.

Bi1 = Bi IRiSNi
Ri1 - Ni&(RO/RW == RW)SBO I RiS (not ((RO/RW. == RW) SBO)

Bi - Bit i of the broadcast vector
Ri - Bit i of the routing vector V
Ni - Nit i of the processor number

Figure 4.3 Broadcast Mask Interpreting

47

When multiple broadcast masks and shortest distance merging are used, circuitry must be

added to select which of the broadcast mask the new processor will be merged into. To make this

selection, each mask computes its distance from new processor number, the closest mask is the one

which the processor is merged into. Only (N-l)N/2 comparison Circuits are requited. Figure 4.4

shows the block diagram of the circuit which selects the closest mask in a four broadcast mask

'system.,:.

Register holding mask i
CombinatorialCircuitwhichc^eulatesthedistance
between a broadcast mask and a processor number
Logic which compares I with j and if i<=j asserts its output
Registerholdingthenewprocessornumber

MUK

Meige - Merge circuit defmed in Figure 4.3
= \"'T vU'V'... . >■

Figure 4.4 Multiple Broadcast Mask Selector

i l l Pipelining the Global Table

Since the global table performs a read and a write for every memory reference to a shared

block, it needs to be fast. One common way to increase performance for any computer systems is

to introduce pipelining. The global table and update logic can be thought of as two stations in a

49

pipeline. A global table reference has a reservation table like Figure 4.5. For operations with this

kind of reservation table, the optimal scheduling strategy is the greedy $trategy.

I 2 3
GlobalTableMemdiy X X
Update Logic X

Optimally scheduled operations

I 2 3 4 5 6 7
GlobalTableMemoiy I 2 I 2 3 4 3
UpdateLogic I 2 3 4

Figure 4.5 KpelinedGlobalTable

When shared memory references are waiting to be serviced, the global table memory is

never idle if the table is pipelined, so the performance cannot be increased, and the pipelined global

table will service two reference in every four cycles. This is a speed up of 1.5 when compared to

the non-pipelincd global table, assuming the update logic propagation time equals the global table

memory access time.

In order to support pipelining, several latches and data paths must be added to the global

table. Figure 4.6 shows where these latches and busses are to be placed.

Physical
Address

Figure 4.6 Pipelineable Organization

Latches

Latches Latches

Update Logic

Global Table
Memory

Rather than pipelining to increase throughput, the global table, each global table module can

be divided into Nsm sub-modules each serving roughly 1/Nsm of the references. A convenient

way to partition the global table is to interleave the moduleusing the lower order bit positions of the

physical address (after removing the block offset from the physical address). This increases the

throughput of the global table, but does not help when there is contention for one location.

'4.1.2 /V ariable=Length Tables

Only those blocks which are cached utilize the many states a “complete” global table entry

is capable of representing. At any given tirie, most blocks are likely to reside in main memory.

The motivation behind variable length tables is to reduce the global table size by only maintaining

"complete" entries for the blocks which are currently^cachdl./ This reduced table of "complete"

entries is referred to as the active global table. Because the activeglobaltableis smaller than the

global table memory, a more exact global table entry form atcanbeused without as muchconcem

for the amount of memory it will use. The physical address cannot be used as a pointer into the

active global table, so, for every block in main memory, a pointer into the active global table is

kept. This pointer either points to the location in the active global table where the entry for that

block resided or the pointer is NULL, indicating the block resides in main memory. These pointers

are stored in the table pointer table.

Figure 4.7 shows a variable length table organization. There are four sections to the

variable length table: The free list FIFO, the active global table, the table pointer table, and the

update logic. The active global table is the memory which contains the present set information for

the blocks which are currently cached. The format for recording the present set information can be

any format desired. Although very concise formats, like in Archibald and Baer's protocol, will be

poor choices for this type of organization; the table pointer table will be larger than a fixed length

global table with this entry format The free list FIFO maintains which locations in the active global

table are invalid. On system start-up, this FIFO must be initialized so it contains all the locations of

the active global table.

Physical
Address

Don’t Cache

Figure 4.7 Variable Length Table Organization

Entry Update Logic

Din Valid

Table
Pointer

Active Global Table

If every private cache holds unique blocks (a unique block being a block held by no other

cache), the maximum number of active global table entries required is (N)(Ncb)/(MM), where Ncb

is the number of cache blocks which can be held by a single private cache, and MM is the number

of memory modules. This is assuming that all blocks are equally distributed across the memory

modules. The active global table can be made smaller than (N)(Ncb)/(MM) entries, but if the active

global table becomes full, indicate by the free list FIFO being empty, the referenced blocks must

remain uncached. Thisallowsfor an active global table size vs. performance tradeoff. Ifthe active

global table size at one global table module is denoted by GS, and the number of bits in each entry ;

is denoted by E, the memory required for the entire global table is:

(4.1)

With variable length tables stagnant blocks - blocks ejected front all private caches but not

removed form the global table - can fill the active global table. To avoid this problem tidy ejection

must be employed. When the last processor to have a block cached ejects it, the entry is

relinquished by enqueueing the pointer to the entry onto the free list FIFO. In order to use

broadcast masks as the entry in the active global table, a count field must be appended to each entry

to indicate the number of processors which have the block. Whenever a block ejection reaches the

global table the counter is decremented. If an ejection operation occurs and the value of the counter

is one, the active global table location can be given up.

Strcnstrom proposed the present vector be migrated into the private caches [Stre89], and

obtaining similar reduction in the global table size. However, when his protocol is used, and a

processor ejects a block from its cache (and it is the owner), finding another processor to take over

ownership requires O(N) messages to and from other processors. Furthermore, the cache

controller unit is likely to be very complex. Variable length tables offer comparable size reduction,

size flexibility, and reduced network traffic.

4.1.2.1 Pipelining Variable Length Tables

As with fixed length tables, pipelining can be used to increase the throughput of the

system. The four basic stations of the variable length table are the table pointer table, the active

global table, the update logic, and the free list FIFO. When and what stations an operation requires

depends upon the type of operation (e.g. read miss, ejection etc.) and what state the block is

currently in. The reservation stations for all possible global table operations are shown in Figure

4.8,: '

Ejection
Table Pointer Table
Active Global Table
Update Logic
Free List FIFO

Read Miss (Not Cached) or
Write Miss (Not Cached)

TablePointeriTable
ActiveGlobaTable
Update Logic
FrecListFIFO

ReadM iss(ROorRW),
Write Miss (RO or RW),
WriteHit(RG), ^ - .V'
or Flush *
Table Pointer Table
Active Globa Table
Update Logic
Free List FIFO

4

X
X
X

X

X

Group I

Group 2

Group 3

Figure 4.8 Reservation Tables for Variable Length Table

Since the state of the cache block is not known until after the table pointer table and the

active globa table has been accessed, one cannot use the reservation tables in Figure 4.8 to develop

a greedy pipeline scheduler [Kogg81]. Greedy scheduling can reaistically be implemented in

hardware [Davi71]. ITie collision vectors used by a greedy scheduler must not depend upon the

state of the cache block being referenced. Reservation tables which only depend on the type of

operation are shown in Figure 4.9.

Ejection
Table PointerTable
Active Global Table
Update Logic
Free List FIFO

Read Miss or Write Miss
Table Pointer Table
Active Global Table
Update Logic
Free List FIFO

W riteHitorFlush
Table PointerTable
Active Global Table
Update Logic
Free List FIFO

I 2 3 4
X

X : ' ■ X
X

X

I 2 3 4
X X

X X X
■■ X X
.. X

I ■■■■ 2 3 4

Group I

Group 2

Group 3

Figure 4.9 Reservation Tables for Realistic Variable Length Table

A greedy pipeline scheduler can be built for a global table using three shift registers because

there are only three unique reservation tables. Each of the shift registers determines when a new

operation of the corresponding type can be initiated. When a new operation is scheduled, all the

shift registers are updated by ORing in the appropriate collision vector. Figure 4.10 shows the

circuit.

When an operation belonging to group i wants to perform a global table operation, the last

bit of the ith shift register is checked. If this bit is asserted, it must wait until it is cleared before

initiating the operation. When the operation is initiated, whenever that might be, it must place its

group number, i, onto die type lines so all the shift registers become aware of the operation in

■progress.. -

Collision vectors which could be used in the grealy scheduler are shown in Figure 4.11.

2nd/lst Gl G2 G3
Gl

OS- no OlO
G2 no 116 HO
G3 OlO HO 010

Figure 4.11 ColUsioh Vector Table

4.1.2.2 Simulating the Variable Length Table

A simulator was made which generates operations randomly and schedules them using the

greedy strategy. The operation generation subroutine of the simulator generates arrival times as a

Poisson process, The arrival times where made to be a Poisson process for several reasons. In

general, Poisson processes are good models for traffic because a Poisson process is the only one-

at-a-time random protess which has stationary and independent increments. Stationary increments

implies that the rate of arrival is constant for all time, and independent increments implies that the

number of operations in one time interval does not influence the number Of time ahivals in a disjoint

time interval. For a Poisson process, the E[#rtumber of arrival In t time units] = Xt. Fittingly, A, is

called the rate of the process, and I A is the expected time between arrivals. Though memory

traffic is usually bursty, modelling the arrivals as a Poisson process for a range of arrival rates

indicates how the table will perform at busy and as weU as slow times.

The interarrival times of the Poisson process (with rate %) are distributed as independent

and identically distributed exponential random variables with parameter X. In order to generate

these random variables on the Computer a function which maps the uniform random variable, U,

ranging from O to I (available of the system) to an exponential random variable was derived.

Interarrival Time = f(U) (4.2)

Using probability theory, f was found.

f(U) = ^ ln (U)
X (4.3)

An "ideally" pipelined greedy system was also simulated using the greedy algorithm, even

though it in actuality cannot be implemented. This gives an indication of what kind of performance

is lost by the using collision vectors generated from the reservation table in Figure 4.9 rather than

from the reservation table in Figure 4.8. The "ideal" scheduler uses the collision vectors in Figure

4.12, which are generated from the reservation table in Figure 4.8.

2nd/lst Gl G2 G3

Gl OlO 11 010

G2 no 01 100

010 11 010

Figure 4.12 Collision VectorTable for Ideal Scheduling

The average number of cycles an operation has to wait depends upon the rate at which the

references to the global table arrive. Figure 4.13 shows the average number of cycles an operation

has to wait before being serviced for the non-pipelined case, the pipelined case, and the ideally

pipelined case. This is for a snapshot of nine thousand global table operations. (Note: the y-axis of

the graph is logarithmic)

Non-Pipelin
Pipelined
Ideal

■ ■■ % r:; ■

Expected Number o f Cycles Between
Operations

Figure 4.13 Average Waiting Time

The simulation which generated the result presented ip Figure 4.13 simulated nine thousand

operations where 30% of the operations were group I operations, 45% were group 2 operations,

and 25% were group 3 operations. For the "ideal" pipeline, the distribution was 30% group I ,

10% group 2, and 60% group 3. The reason the group distributions are different is because the

basic operations are put into different groups as shown in Figures 4.9 and 4.10. The percentages

were chosen so to make the comparison fair.

Notice how each configuration appears to have a maximum throughput which die global

table can handle. If the rate at which operation arrives exceeds this threshold, the waiting time

drastically increases. This is Wcause the the operations later in the simulation have to wait a

significant portion of time. In a real system, global table operations will not wait this long. The

limited throughput of the global table coupled with heavy traffic will cause the buffers at the

memory modules to fill, stopping the processors from sending any more references, or a processor

59

may have to wait because of data dependencies. In both cases, system performance will drop

because of the global table.

Thespeedupachievedbypipeliningtheglobaltablewasestimatedbycomparingthetimeit

took to service nine thousand global table operations in the pipelined, "ideally" pipelined, and non-

pipelined cases. The service time of nine thousand operations was simulated at various arrival rates.

Figure 4.14 shows the speedup for the realistic and ideal system.

Ideal:
Realistic

Expected Number of Cycles Between
Operations

Figure 4.14 Speedup Due to Pipelining Table

Speedup only occurs when the arrival rate becomes sufficiently quick. When traffic is

sparse, seldom is there more than one operation at the global table at one time. The speedup levels

off at approximately 1.7 for the realist pipeline, and 1.95 for the "ideal" pipeline. These speedup

limits are the maximum throughput rates of the various tables.

Redesigning the global table so that it can be pipelined involves including staging registers

and extra data paths as shown in Figure 4.15.

As with fixed length tables, the global table module Can be divide into Nsm submodules

each handling 1/Nsm of; the locations. Ideally, this will distribute the traffic so each submodule

handles 1/Nsm of the traffic. From the modelling point of view, if the trial to decide which

submodule should receive the operation is independent of when the operations occurs, the arrivals

of operations observed by each of the submodules is a Poisson process as well, but this time with a

rate of A/Nsm. Because of this property of the Poisson process the graphs in Figure 4.13 and 4.14

represent the analysis for systems with submodules as well.

4.2 Private Cache Tag Entry Tables I

The other class of global table which will be discussed holds copies of the private cache

tags rather than holding an entry for each block in main memory. This kind of global table is

required by Tang's [Tang76] protocol. The amount of memory required for this type of table i s :

TabIe Size = Ncb*N*(Number of bits in a cache tag) (bits)
= Ncb*N*log2(M) (bits)
< N*M if log2(M*Ncb)< M (4.4)

If Iog2(M) *Ncb is much less than M, this alternative organization will produce a smaller

global table then a fixed length global table with an N+1 bit entry format.

For global table operations, the tag field of the address must be compared with all copies of

the private cache tags from all processors which map to the same set A match indicates that the

block is cached. A bit vector can be constructed representing the present set if all the match bits are

concatenated together as shown in Figure 4.16.

Figure 4.16 Block Diagram of Tang’s Global Table

One way to build the global table is with Ns sets of N*K way associative memory where

RO/RW

ProcessorOffset

Read/Write

Global Table

each word is a private cache tag. (Figure 4.17 shows the organization of one set) As mentioned

earlier, the major problem with this approach is the associativity. For the case of CMOS, the access

time of the associative memory is dominated by the capacitance of on the lines that the physical

address must be placed on. This is not the only place where there might be a high capacitive

loading. If busses are used for distributing the physical address and capturing the present vector,

the access of the table is likely to be made even slower. These busses can be replaces with a large

decoder and multiplexer constructed with logic gates. The disadvantage here is the area the

multiplexer and demultiplexer takes up on a chip.

5. SYNCHRONIZATION VARIABLES

In order to implement critical sections, a multiprocessor must have an uninterruptable read-

modify-write operation like a test-and-set [PeSi85]. One solution is to reserve several locations of

the main memory to act as this type of variables, and have special entry formats and hardware for

these variables. A flexible way to implement the uninterruptability of operations with

synchronization variables is to allow these locatioas to be locked. A locked variable has the unique

property that it can only be accessed by one processor at a time. A processor referencing a variable?

which is locked by another processor must wait until the processor which has control of the

variable unlocks it. To perform an uninterruptable read-modify-write operation, a processor locks

the variable, reads it, performs any modification it wants to, then unlocks the variable.

If a processor has control of a variable, and other processors are trying to lock the variable,

the global table might send retry messages to these processors which don't have the variable. Since

the waiting processors don’t know when the variable will become unlocked, they have to

continually re-request to lock the variable. This is what is called busy waiting, and it is highly

undesirable because accesses to synchronization variables are frequent, and network traffic effects

the system performance.

Adaptive back-off techniques have been proposed by Agarwal and Cherian [AgCh89]. The

idea behind these back-off techniques is to delay re-requesting the variable by some amount of time.

The amount of time usually depends upon the number of retry messages received. These

techniques still require re-request messages to be sent, but have better performance than busy

waiting.

5.1 An Economical Queuing Entry Format

A better way to handle access to synchronization Variables is to record which processors

have requested the variable, and when the variable is unlocked, pass control to one of the waiting

processors. To inform the processor of the unlocking, a message must be sfent to the

processor which controls the variable. This way, requesting processor don't heel'to request for a

lock more than once. Techniques for queuing requests to synchronization variables have been

proposed by Gottlieb et. al. [GoLR831 and altered by Goodman et. al. [GoVM89] so as to not

require a combining netwoik, Both these techniques require a front pointer, a rear pointer, and a

buffer to store waiting processor numbers. For large scale multiprocessors, the queue length might

need to be limited, in which case retry messages must be generated when the buffer fills.

An easier way to record the requestors, than using circular waiting queues which record

processor numbers, is to simply record which processors are waiting in a hit vector, and grant the

vanable to the waiting processor w ift the lowest number. An example entry format is shown in

Figure 5,1.

Controller Waiting Vector

Figure 5.1 Synchronization Variable Global Table Entry Format

The L bit in Figure 5.1 indicates if the variable is currently locked. If L is asserted, the

Controilef field indicates the processor number of the processor in control of the variable. The

Waiting Vector is the N bit vector indicating which processors are waiting to control the block.

When a lock request is received by the memory module, and the variable is locked, the processor

number is recorded by asserting the corresponding bit in the Waiting Vector. The global table then

sends a response back to the processor indicating it should wait. When the block is granted to the

processor the global table module sends a granting message to the processor. Figure 5.2 shows

this piclorially.

67

'(/ '

Send Lock Request

Grant

\ : -V ’ Modifying Waiting

Relinquish

Figure 5.2 Synchronization Variable Access Diagram

While in the waiting state, the processor could simply wait, spinning on a No-Op in its

cache, or it could execute some other process until the variable is granted.

Starvation is possible if the synchronization is handled in the way just described. Imagine

a sixteen processor system where processors four, six, arid ten ate contending for a particular

synchronization variable. If processor four gets control of the variable first, and processors six and

ten request, then six and ten will receive wait responses because the variable is already locked.

Processors six and ten will be recorded in the waiting vector, and when processor four relinquishes

the variable, processor six will be granted control. If, while processor six is modifying the

variable, processor four re-requests, processor four will be added to the waiting vector. When

processor six relinquishes the variable, processor four will regain control, because four is less than

ten. This cycle can continue indefinitely, starving processor ten. A way to avoid the starvation

problem is to decompose the waiting vector into two N bit vectors: Priority I Vector and Priority 2

Vector.

L Controller Priority 1 Vector Priority 2 Vector

Figure 5.3 Non-Starving Synchronization Variable Entry Format

68

When a new processor requests a synchronization variable, it is added into Priority I

Vector if its processor number is greater than the controller's processor number, otherwise it is

placed in Priority 2 Vector. So, for the example described above, processor four will be placed into

Priority 2 Vector the second time it requests - allowing processor ten to access the variable.

To reduce the amount of network traffic, two compound operations can be implemented:

Lock&Fetch and Store&Unlock. With these compound operations a processor can increment a

shared counter with just three networkmessages. Ldck&Fetch will automatically send the variable

to the processor with the grant lock message, and Store&Unlock will store a value to the variable

before it unlocks it. The algorithm which the global table must follow for the Lock&Fetch and

Store&Unlock Operations is presented in Figure 5.4. TTie algorithm assumes that the current

operation was initiated by processor i and references synchronization variable s. The entry format

in Figure 5.3 is analogous to the data Structure in 5.4 (a).

ĥ.:;

type
synch_var_type record \

locked:boolean;
controller:I ..N; .

' priority2,priorityl:array[I .
end; ■ .

.N] of boolean;

table[0..number of synchronization variables] of synch_var_type;

switch (operation, type)
■ case locksfetch:

if (tablets].locked = false) begin
table[s].controller = i;
table[s].locked = true;
send granted message to i with contents of s

end- v ; -r V'-; ■ \ ' ' >■-j/v V-. ' r
else begin

if(table[s].controller < i)
tablets] .priorityl [i] - tru e t : r \ ■ : i Y - ' ' ' .

■ V ' XeAse:.
table fs].priority2fi) = true;

send wait message to i
end

case store&unlock:
s = new value;
if(for every x 0<x<N tablets].priorityl [x] = false) begin
'. if(for every x 0<x<N tablets].priority2[x] = false)

tablets].locked = false; \
else begin

j = smallest j such that tablefs].priority2[j] = true;
table[s].controller = j;
tablets].priority2[j] = false;
send granted message to j with contents of s

e n d .; ; . . ■
else begin
■? - j,;.= smallest j such that tablets] .priorityl [j] == true;

table ts] .controller = j; ■ ■:
tablets].priorityltj] = false;
send granted message to j with contents of s

endswitch
Figure 5.4 Lock&Fetch and Storc&Unlock Algorithm (a) Entry Format (b) Algorithm

The circuit for updating Priority I Vector and the Priority 2 Vector of a synchronization

variable format is shown in Figure 5.5. Notice this is not a sequential circuit; the updating can be

done with combinational logic. :

Remove

NeW Processor N urn be r Current Priority 1 VectorDecoder

Signal asserted if the the synchronization variable is being
unlocked

Remove

Figure 5.5 Synchronization Entry Updating Logic

5.2 Evaluation of the Lock Granting Algorithm

The Lock&Fetch and Store&Unlock algorithms were assessed by writing a simulation

program. The simulation models one synchronization variable trying to be accessed by several

71

processors. Each processor, for the simulator, is in one of three states: working, waiting, or

locking. When in the working state, processors are performing useful computations. When a

processor is in the Waiting state, it is waiting to access the synchronization variable, and the locking

state represents when a processor has control of the synchronization variable. TTie time between

when a processor unlocks the variable until it re-request it, is assumed to be exponential with

parameter X, As lambda decreases, the expected time increases, because the expected value of an

exponential random variable is Ifk. The reasons for choosing an exponential waiting time are the

same as they were for the interarrival times of global table operations in the previous chapter.

The simulator recorded the time each processor spends in the waiting state before each time

it controls the synchronization variable, and the number of times each processor controls the

variable. It does this for both two priority and first in first out (FIFO) arbitration. Figure 5.6

shows the waiting times for various requesting rates. The parenthetic numbers in the figure key

indicate the expected number of cycles spent in the working state between requests.

■O— FIFO(IO)
Two Priority (10)

- D - FIFO (100)
»•»:••• Two Priority (100)
-£s- FIFO (1000)
-■••••■ Two Priority (1000)

Number of Processors (N)

Figure 5.6 Waiting Time per Access

Because the granting algorithm chooses processors based upon processor number, there is

concern that this scheme might not be fair, however, even when sixty four processors arc trying to

access the synchronization variable, a situation where processor favoritism would be noticeable if it

existed, the two priority scheme appeared to be just as fair as first in first out An interval of time in

which 6400 references to the synchronization variable were made is shown in Figure 5.7

As discussed in chapter three, the amount of network traffic introduced in the two counter

system is coasiderable (see figure 6.1). Many of these messages are return receipts.

6. LINKED LIST SYSTEMS

Operation Number of Messages
Read Miss

Not Cached
RO
RW

WriteMiss
Not Cached
CadiedRO
Cached RW

WriteHit
Cached RO

2
2
4

2
2IPI + 2
3

2(IPI -I) + 2

Figure 6.1 Number of Messages in Two Coimter Systems

Some variations of linked list protocols require fewer messages to inform the writing

processor that the write is performed with respect to all processors, reducing network traffic. This

is the primary motive for considering linked list protocols. Furthermore, Jinked list protocols

require a modest amount of memory to coaslruct the global table.

6.1 Singly Linked List Protocol

Linked list directory protocols maintain coherency by forming a linked list of processors

which have the block cached. Thaper and Delagi [DeTh90] presented an outline for what will be

referred to as singly linked list protocols; this is the only publication on this topic.

With linked list protocols, there still exists a global table distributed across all the memory

modules. Each block in memory has a global table entry; the entry points to the head of the list of

processor which have the block cached. If this pointer is NULL, the block is assumed to reside in

the memory module. Stored with the pointer to the head of the list is a RO/RW bit which indicates

whether or not the processor pointed to by the entry has RW privilege to the block.

Associated with each block in every private cache is a pointer to the next processor in the

list. Figure 6.2 is a Pascal-like type definition which is analogous to the memory required for the

global table.

fcYPeprocessor_number_type = I ..N
tag_type = I..MAXTAG {MAXTAG is the maximum cache tag value}
entry_type = record

. cached:boolean;
rw:boolean;
head:proce s s or_numbe r_type;

cache_entry_type = record
dirty:boolean; ;
null !boolean-
next :processor_number_type;

' ■. tag: tag_type;
end

v a r ' " ; ' ; ' v I
table:array[I..M] of entry_type;
cachetable: array[I..N] [I..Neb] of cache_entry_type;

Figure 6.2 SoflwareAnalogytoTable

T h ev a riab lc tab le is analogous to the table distributed across the memory modules, and

c a c h e t a b l e is analogous to the pointers stored with the cache tags of the private caches.

Consider, for e x ^ p le , when processors three, five, and thiityone have block seven

cached. One way this present set information could be recorded is shown below.

table[7] =? {cached=true; rw=false; head=5)
cachetable[3][7] = {null=true}
cachetable[5][7] = {null=false; next=31}
cachetable[31][7] = {null=false; next=3]
Global Table->processor5->processor31->processor3

Figure 6.3 AnExampleBlock

All IPI! permutations of the processors which have the block cached are correct

representations of the present set (the order of this list depends on when the processors access the

block for the first time)

The total amount of memory required by a singly linked list protocol is:

Total memory = M*(log2N+2) + Ncb*N(log2N+l) bits (6.1)

Provided Ncb*N is on the same order as M, the amount of memory required is comparable

to a single broadcast mask system.

6.2 Specificatibh of Singly Linked List Protocol

A description of the protocol is inherent in the description of how the system reacts to the

five basic operations of the private caches: read hit, read miss/write hit, write miss, and ejection.

The actions which are performed in response to operations depend upon the current state of the

linked list, except in the case of a read hit. The protocol described below assumes processor i is

acting on block b.

Read Hit : (c a c h e ta b le [i] [b mod Neb] . t a g matches address)

The word is read from the private cache.

Read Miss:
Not Cached: (t a b l e [b] .c a c h e d = f a l s e)

A read request is sent to the memory module responsible for b. The block

is fetched, and t a b l e [b] . h e a d is updated to point to processor i.

T a b le [b] . c a c h e d is asserted; t a b l e [b] . rw is deasserted. X

Shared RO: (t a b l e [b] .c a c h e d = tru e an d t a b l e [b] . rw = fa ls e)

A read request is sent to the memory module responsible for b. The block

is fetched, and t a b l e [b] .h e a d is updated to point to processor i. The old

t a b l e [b] .h e a d value is passed to processor i, along with the block, and stored

in c a c h e t a b l e [i] [b mod Neb] . n e x t . This effectively adds processor i to

the front of the list of processors which have the block cached. Figure 6.4 shows

the system before and after processor five has a read miss on a block already

cached by processors nine six, and zero.

GIbbaI

P9
Table

• ■ . . . : - Module

Explanation of Messages
1) A read miss message is sent to the global table module.
2) The block and the pointer to processor nine are sent to processor five.

Figure 6.4 Read Miss by Processor Five (a) Before (b) After

RWl (table [b] . cached = true and table [b] . rw = true)

: A read requestds sent to the memory module responsible for block b.

Upon realizing that the block is cached RW, the memory module sends a flush

message to the processor which has the block. When the dirty block arrives at the

memory module, it is relayed to processor i along with the old t a b l e [b] . h e a d

pointer. T a b l e [b] .h e a d is set to the requesting processor number, and

c a c h e ta b l e [i] * n e x t is set to the old value of t a b l e [b] .h ead . Theblock

is then set to RO status by clearing table[b].rw.

.Write Hit:' I'';-'1
Shared RQ: (t a b l e [b] , c a e h e d - t r u e an d t a b l e [b] . rw = fa ls e)

77

A write hit message is sent to the memory module responsible for block b.

Along with write request, the processor number (cachetable [i] [b mod
Neb] . next) is sent. Processor i, immediately after the Write hit message is sent,

starts executing its next memory reference. Processor i must send its next pointer

to the memory module, and the memory module can initiate an invalidation

message to cachetable [i] [b mod Neb] .next only after it realized there

are two streams of invalidation - one from the memory module to the processor i,

and one from processors i to the end of tile list. The memory module must initiate

the invalidation of the processors at the end of the list because there must be an

exact way to tell when a write is performed with respect to all processors. Figure

6.5 is an example showing processor five performing a write to a clean block

which it has cached; in the example, processors nine, six, zero, and three also have

the block cached.

Explanation of Messages
1) Processor five sends the write hit message to the memory module.
2) Processor c a c h e [i] [b mod Neb] . n e x t receives an invalidation
message.
3-5) The list is walked, invalidating along the way.
6) Processor zero sends a message to the memory module indicating the stream

of invalidations is complete.
7) Processor three sends a message to the memory module indicating the

stream of invalidations is complete.
8) The memory module sends a message to processor five, telling it that the

write is performed with respect to all processors.

Figure 6.5 Write Hit by Processor Five to a Shared Block

At the global table module, t a b l e [b] . h e a d is assigned to i, and

t a b l e [b] . r w i s s e t .

When a processor, j, receives an invalidation message, it invalidates the

block it is instructed to, then generates a invalidation message to

c a c h e t a b l e [j] [b mod Neb] , n e x t , bio invalidation message is generated

i f c a c h e t a b l e f j] [b mod Neb] .n e x t is i (the processor ejecting the block)

o rif c a c h e ta b l e [j] [b mod Neb] . v a l i d is false.

RW: (c a c h e t a b l e [i] [b mod Neb] . d i r t y = t r u e)

It is known that processor i is the only processor with RW privilege by the

fact that c a c h e t a b l e [i] [b] . d i r t y is asserted, so the cache may be written

to without updatingmain memory.

W rite Miss:

In the event of a write miss, a message is sent to die memory module which corresponds

with the address. When that message arrives at the memory, t a b l e [b] is looked up.

Not Cached: (t a b l e [b] .c a c h e d = f a l s e)

T a b le [b] , h e a d is assigned to i and t a b l e [b] , rw is assented, WMle

the global table is being changed, the block can be fetched. Gnce fetched, the

block is sent to processor i.

Shared RO: (t a b l e [b] . c a c h e d = t r u e , t a b l e [b] .rw = f a l s e)

TIie processors which have the block must be invalidated, and the linked

list modified so that only processor i is in the list. An invalidation sequence *s

initiated by sending a message to processor t a b l e [b] , h ead . The linked list of

processors is walked, and one by one they are invalidated. While the invalidations

are occurring, the block can be fetched from main memory and sent to processor i.

T a b le [b] . f i r s t is assigned to i and t a b l e [b] . rw is asserted.

79

: .
P3 P5;

5 I
PO

- 4
P6

M 3
P9;

1

I) A write miss message is sent to the memory module
2-5) The list is walked, invalidating each processor’s copy of the block.
6) Processor five sends a message indicates the list is invalidated.
7) Processor three is notified that the write is completed.

Figure 6.6 Write Miss by Processor Three to a Shared Block

RW: (table[b] .cached = true, table[b].rw = true)

Ejection:
RW:

An invalidation message must be sent to processor table[b] .head. Oncethe

block has been sent back to memory, the block is sent to the requesting processor

and table [b] . head is set to i; table [b] . rw is also asserted.

(cachetable[i][b mod Neb].dirty = true)

A block which is cached with RW privilege is not coherent with respect to

memory, so when ejected the block must be sent back to memory, and the global

table must be updated by deasserting table [b] . cached.

Another processor may have already induced a flush to processor i, but

this introduces no coherence problem, the ejection just expedites the flush. If

when the flush request arrives at processor i, it does not find the block in its cache,

the processor should not be alarmed. The flush message should simply be

discarded.

RO: (cachetable[i][b mod N e b] .dirty = false)

When processor i ejects a clean blocks from its private cache, the next

pointer of the previous processor must be adjusted so that it no longer points to i,

but rather to processor cachetable[i][b mod Neb].next. Since this list is only singly

linked, the only way to update this field is to send a message to the memory

module responsible for b, which in turn initiates a traversal of the linked list Once

the walking message reaches the processor immediately before i, call it k,

c a c h e t a b I e [k] [b] . n e x t is updated to point to

c a c h e t a b i e [i] [b] . n e x t -- effectively removing processor i from the list.

Anotherprocessormayhavealreadyinitiatedaninvalidationsequenceto

this list when processor i’s ejection occurs, causing a break in the list. To resolve

this complication, a counter, called the stream counter and a single hit, called the

null received bit, are associated with each of the blocks which was cached RQ and

is currently being invalidated. These counters and null received bits are held at the

memory modules. The number of counters and reserved bits should be sufficient,

so they do not become a bottleneck. Also when a processor ejects a clean block, b,

it must send, along with ejection request, c a c h e t a b i e [i] [b mod

Ncb] . n e x t , so if the processors deeper than i need to be invalidated, they can be

reached. When an invalidation sequence is initiated, the null received bit is cleared,

and the the stream counter is set to one.

Every time an invalidation sequence terminates, one of two types of

messages is sent to the memory module. If the invalidation sequence terminates

because an invalidation message was sent to a processor which did not have the

block anymore, a plain termination message is sent to the memory module. If the

invalidation sequence terminated because a NULL pointer was encountered, a

termination by null message is sent the the memory module. When the memory

module receives either of these messages it decrements the corresponding stream

counter. If the message is a "terminated by null" message, the null received bit is

asserted as well. Block ejection messages received by a memory module are cross-

referenced against the list of blocks currently undergoing invalidations; if the block

is currently being invalidated, an invalidation sequence is initiated with processor

c a c h e t a b i e [j] [b mod Neb] . n e x t (j is the ejecting processor), and the

stream counter is incremented.

80

Only when thestream counter.-equals zero and the null received bit is clear

is the write performed with respect to all processors. At this point, the processor

which initiated the write operation should receive a message indicating the write is

performed.

N ptethatinboththeR O and RWcases the private caches do hot need to

wait for a response front main memory granting permission to eject the block —

this is very crucial, for block ejections are too frequent for the system to tolerate the

delay involved with waiting for an ejection confirmation from the memory module,

or another processor.

6.3. Multiple Singly Linked List Protocol

Using a broadcast mask to represent the start of the list is one way to eliminate having to

walk the linked list on ejections. When processor i ejects block b, c a c h e t a b l e [i] [b] . n e x t

is sent to the memory module, and is merged with the previous head of the list. Wnen it comes

time to invalidate the present set, an invalidation sequence is set to each of the destinations implicit

in the broadcast mask. This way, ejections don't need to update the linked list, rather just the start

of the list. This idea can be extended to include any kind of fixed length entry format.

The problem with this crutch is the performance degradation. If many ejects are done

before a write is performed, the method degrades to a fixed length entry, single broadcast mask

method, as seen in chapter three.

6.4 Limiting the Number of Shared Blocks

If the number of shared blocks (Nsb) accessed by a processor is limited to the capacity of

the private caches (Neb), and the shared blocks are placed in contiguous locations, there will not be

two shared cache blocks contending for the same block in the private caches. This simplifies the

protocol because block ejections no longer need to update the linked IisL With no block ejections

the number of messages for private cache operations is reduced to fewer messages than that

required for non-linked list protocols. Furthermore, the stream counters and the null received bite

can be eliminated.

Write misses and write hits can also be implemented more efficiently. Forthe case of write

hits, consider the same example just discussed. The writing processor, five, can initiate an

invalidation sequence to processor three directly.

ExplanationofMessages
1) Processor five sends a message to the memory module to start invalidating the

processors from the start of the list.
2) Processor five sends a message to processor three to start invalidating the end of

the list.
3-5) Other processor’s copies are invalidated.
6) Processor five is notified that the beginning Section of the list is invalidated.
7) Processor three notifies processor five that the last section of the list is invalidated.

Figure 6.7 Write Hit by Processor Five to Shared Block (No Ejection)

Write misses can also be handled differently. The last processor in the list can directly send

a message to the referencing processor, rather than sending a message to the global table which in

turn sends a message to the referencing processor.

Tlie number of messages for this linked list protocol is less than that required for two

counter systems. Keep in mind that IPI is really IPsloppy' because there are no block ejections. The

P for double counter systems will vary depending upon whether or not tidy ejection is employed,

and on how P is represented.

Operation
Read Miss
WriteMiss

Not Cached
Cached RO
CachedRW

WriteHit
Cached RO

Number of Messages

2
iPI + 3
4

IPf+3
Figure 6.8 Number ofMessages in Singly Linked List Protocol With Limited Nsb

Unfortunately, the linked list methods sequentialize the invalidations of the processors,

making the time to perform writes longer. The only time this causes performance degradation is

when synchronization variables are to be accessed, and the writes issued by the processor wanting

to access a synchronization variable are not performed with respect to all processors.

Consequently, linked list protocols excel when accesses to synchronization variables arc infrequent.

They take advantage of the reduced network traffic during the duration of execution which doesn't

access synchronization variables. Furthermore, compiler assists might be done to move the last

write before an access to a synchronization variable so it is issued as soon as possible.

6.5 Doubly Linked Lists

Because it is undesirable to bound the number of shared blocks to the number of private

cache blocks, and require that the shared blocks be placed in contiguous locations, we invented

doubly linked list protocols. Changing the linked list organization to a doubly linked list eliminates

having to walk the linked list when blocks are ejected - only the pointers at the adjacent processors

in the list need to be updated. In order to implement doubly linked list, the cache lag format must

be changed. Figure 6.9 shows the updated global table format.

type :
processor_number_type - I ..N

' tag_type = I..MAXTAG
e n t ry_t y pe = reco r d .

cached:boolean;
r w :boolean;
head:processor_number_type;

end
cache_entry_type = record

di rty:boolean;
nullnext,nulIp rev:boolean;
ejecting, grantedenec1~-lon:boolean:
tag:tag_type;

Ta r
table:array[I..M] of entry_type;
cache_table: a r r a y [I ..N] [I•.Neb] of cache_entry_type;

Figure 6.9 Software Analogy for Double Linked Lists

In order to maintain the previous pointer/a message must be sent to the processor pointed

to by t a b l e [b] . h e a d , whenever a read miss occurs. This message must carry the processor

number, of the processor which has just had the read miss. The first processor in the list updates its

previous pointer when it receives this message.

6.5.1 Simultaneous Ejection Problem

When a block is ejected, the update messages cannot be indiscriminately sent to the adjacent

processors. Consider the example where processors five and two both decide to eject block b

concurrently. If processor five sends messages to processors six and two. and processor two

sends messages to processors five and three, the linked list will become corrupted. Processor

three's and processor six's pointers will point to processors which no longer have the block, and

nothing will be done with the messages sent to processors two and five. Figure 6.10 shows this

simultaneous ejection problem.

Figure 6.10 Simultaneous Ejection Example (a) A Single Processor (b) Before (c) After

In order to insure the list does not become corrupted, ejection request messages can be

sent to the adjacent processors to make Sure they are not currently ejecting the same block. The

algorithm followed by a processor i trying to eject a block b is shown in Figure 6.11.

to cache_table[i] [b].prev;
to cache_i:able [i] [b] . next ;

while block not ejected do
begin

while (cache__table [i] [b] . grantede jection =- true)
{Already granted permission to the adjacent processor}
begin

••wait;
'■ .end'
cache_table[i][b].ejecting = true;
send ejection request messages to next and prev processors;
if both riiessages generate affirmative responses ; V-

.begin
eject the block;
send cache^table[i][b].next
send cache_table[i][b].prev

end
else
begin

; i f (cache_table[i][b].next granted)
begin

send previous pointer update message where/
the new previous value is i;
{Restore the original previous pointer}

■ ■ ■ \ end
if(cache_table[1][b],prev granted) I
begin

send next pointer update message where
the new next value is. i;
{Restore the original next pointer)

end
cache_table[i][b].ejecting = false;

. " e n d '
end .

Figure 6.11 Algorithm for Ejection of Shared Blocks

The algorithm for receiving ejection requests is shown in Figure 6.12, where i is the

ejecting processor number, and j is the processor receiving the ejection request.

switch(message_type)
begin

case ejection request:
if(cache_table[j][b].ejecting == false)
begin ' '

cache_table[j] [b].grantedejection = true;
send affirmative response;

•• end f. V "
send negative response;

case update previous: .
cache_table [i][b].prev = newprevious;
cache_table [i][b].grantedejection =. false;

case update next:
cache_table [i][to].next = newnext; '
cache_table [i][b].grantedejection = false;

end ; ■■ : ; : v
Figure 6.12 Algorithm for Receiving Ejection Requests

It is not possible for a set of processors to get into deadlock wailing for each other to eject a

block. A deadly embrace is avoided because the necessary condition hold and wait is never

satisfied. That is, a processor never asserts c a c h e _ t a b l e [i] [b] . e j e c t i n g and from then

on waits for its adjacent processors to grant permission to eject. Once one of the adjacent

processors rejects permission, c a c h e _ ta b l e [i] [b] .e j e c t i ng is cleared, and the processor

re-requests after some amount of time. In a bad and unlikely case, it is possible for the ejection to

be delayed for a long time because two adjacent processors are simultaneously trying to eject the

block and end up colliding several times before one of the processors successfully ejects the block.

6.5.2 Expediting Invalidation for Doubly Linked List Protocols

In doubly linked list systems, write hits may be hurried by invalidating the list in three

rather than two directions. To understand the performance increase due to this enhancement,

consider the linked list as a line segment [O.IPI], and the processor performing the write as a

randomly chosen point, s, on the line. The time is takes to perform the write is proportional to the

longest of the line segments [0,s] and fs,IPIJ in the singly linked list case. The problem can be

made tractable if the probability of the ejecting point is assumed to be uniformly distributed over the

line. In our idealized system:

Efnumber of sequential network transfers to perform a write hit in a singly linked system)

-in. , a

I ™«(s,I P I - S = I E tlds ■ j i ds = ?I11

(6. 1)

When the linked list is a double linked list the invalidation can be done in three direction,

rather that two. The addition direction is from the writing processor to the memory module. Again

turning to the idealized system, the time to perform a write hit can be estimated,

Efnumber of sequential netwoik transfers to perform a write hit in a double linked system) =

>IPII m“(S)̂ ds=| w ds+ 1

a [BI

lSSds + I ^ r d s = ^ P !2IPI L IPI 36
(6.2)

This requires more messages, and there is more return receipt contention at the writing

processor's interconnection network port. In fact, non-linked list systems are the extreme case of

this invalidation parallelism.

6.6 Using Backup Tag Entries

A way to make ejections less frequent is to add one or more extra fields to the cache tags

allowing them to store multiple pointers for each cache block. This way, the only time ejected

blocks must use the interconnection network is when all the backup locations are being used to

store previously ejected global blocks, and the block which is being brought into the cache is also

global. Figure 6.13 shows how the tag memory can be modified

cache_entry_type = record
next_backup; process or_numbe retype:
prev_backup:prbces sbr_number_type;
tag_back:taatype;
nullnext/nullprev:boolean;
next, previous: process or_nurnber__type;
e jecting,grantedeJectionrboolean;
tagitagtype;

end .
Figure 6.13 Adding Backup Locations

When hie backup locations are not being used, n e x t_ b a c k u p ! = p r e v jb a c k u p .

This alleviates the need for a back up location "in use" bit.

The number of backup locations needed to insure that no block ejections occur is large if

the shared blocks are nbt constrained to contiguous locations. The worst situation is when all

shared blocks map to the same private cache block, thus requiring Nsb backup locations. This is an

unlikely event. Using analytical analysis, the probability that bringing in another shared block will

require the freeing up of a backup location can be estimated, for a given number of shared blocks,

cache blocks, and backup locations. In the worst case, all of the shared blocks are not being

written to, so all processors cache all shared blocks. In this case, each shared block requires a

backup location. Assuming that every processor is equally likely to cache a block, and each cache

set is equally likely to receive the block, the probability that a miss to a shared block requires

freeing up backup locations can be analytically estimated. Consider a representative cache block,

and imagine the mapping of a shared block to a cache set as a trial. If shared blocks are equally

likely to map into any cache set, the probability that a shared block will map to the representative set

is 1/Ncb. The probability that exactly k of the Nsb shared blocks will map to the representative

cache block is governed by a binomial distribution.

P{A private cache block will require exactly k backup locations to hold all shared blocks which map
V., ■ to i t } = .-VV

I lN sb-kN sbl r .M - 1
k!(Nsb-k)! LNcbJ. (6.3)

The probability that a block will need k or fewer backup locations to store all the pointers

for its shared blocks is:

P{A private cache block requires k or fewer backup locations to hold all the shared blocks which
map to it) =

Nsb>2 Nsb! [I I
j!(Nsb-j)! -Ncb-

IT i--L _jNsb-j

(6.4)

If there are many (>30) shared blocks and cache blocks, this distribution can be

approximated as a normal distribution with mean Nsb/Ncb and variance Nsb(l-1/Ncb)/Ncb.

90

In order to make sure the backup locations don’t all fill up, causing all ejections to operate

at the degenerate performance, the backup locations need to freed at the end of an application. This

causes a burst of network traffic whenever a process terminates. If the system is not multitasking,

the caches could be designed so that all the backup locations in a single private cache could be

invalidated at once.

CONCLUSIONS

Throughout the thesis, ideas have been presented on how to make directory based

protocols use less memory and generate fewer interconnection network messages.

To reduce the size of the global table without inducing an unacceptable amount of network

traffic, alternate entry formats were invented and analyzed. The compromises between the

Archibald and Baer entry format and Censief and Feautrier entry format looked at were: a single

broadcast mask, multiple broadcast masks, and grouped bit vector representations. In order to

determine the expected number of redundant or extraneous messages, a Markov chain for RW

cache blocks was developed. This chain has its transitional probabilities expressed in terms of

program and system attributes, making it easier to see what parameters are important for cache

effectiveness. The steady state probabilities of the RW chain were found to be most effected by the

fraction of writes. After modeling the behavior of shared block and these alternate formats, it was

discovered that the difficulties in coming up with an optimal covering of the present set cause

multiple broadcast mask systems to be less accurate than grouped systems with a comparable

number of bits per entry.

An economical way of implementing queuing semaphores was developed Using a

software simulation, the two priority scheme was found to be just as fair as first in first out. No

additional waiting time is introduced by the two counter method.

In addition to the Maikov chain for RW blocks, Maikov chains were developed for RO and

sloppily ejected blocks. A closed form solution for RO block was also developed; no one

parameter dominates the steady state probabilities of this chain. From the sloppy ejection chain, it

was seen that not updating the global table on ejections of clean blocks is desirable.

Rather than changing the entry format for the global table, because this always leads to

some extraneous and redundant invalidations, the table can be made to record elaborate entries for

only those shared blocks which are currently cached. A pipelined architecture of a variable length

table was described and evaluated using a scheduling simulator to determine the speedup brought

about by pipelining. The simulator randomly generates global table operations (like write hits) as a

Poisson process with a specified rate, and schedules them according to a greedy strategy.

Pipelining the global table yielded a maximum speedup of 1.7.

The last section presented several variations of linked list protocols which reduce the

amount of interconnection traffic. A singly linked protocol which supports block ejection was

defined, but this protocol is not effective because of the network communication created by block

ejections. Constraining the shared data to a fixed number of contiguous blocks was found to

reduce the network traffic to less than that required by two counter systems. Finally, doubly linked

list protocols were defined. The advantage of doubly linking the list is that ejecting a block requires

only cooperation with the two adjacent processors, making it possible to have some of the traffic

reduction of the Singly linked protocol without the limited number and contiguously placement

restrictions on shared blocks.

• ?■?:
' I .

BIBLIOGRAPHY

[AgCh89] Agarwal, A. and Cherian M., "Adaptive Backoff Synchronization Techniques,”
Proceedings o f the 16th Annual International Symposium on Computer
Architecture, pp. 396-406,1989.

[ArBa85] Archibald, J. and Baer, J.L., "An Economical Solution to the Giache Coherence
Problem,” Proceedings of the12th Annual International Symposium on Computer
Architecture, pp. 355-362, June 1985.

[ArBa86] Archibald, J. Baer, J. L., "Cache Coherency Protocols: Evaluation Using a
Multiprocessor Simulation Model,” ACM Transactions on Contputer Systems, pp.
273-298., November 1986.

[ASHH88] Agarawal, A., Simoni, R., Hennessy J., and Horowitz M., "An Evaluation of
Directory Schemes for Cache Coherence,” Proceedings of the 15th Annual
International Symposium on Computer Architecture, pp. 280-289,1988.

[Baas78] Baase, S., Computer Algorithms Introduction to Design and Analysis, Addison
Wesley, 1978.

[BaRa89] Baylor S. and Rathi B., "A Timestamp Cache Coherence Scheme,” Proceedings of
the International Conference on Parallel Processing, pp. 24-32, VoL 1 ,1989.

[BaWa88] Baer, J.L. and Wang, W.H., "On the Inclusion Property for Multilevel Cache
Hierarchies," Proceedings of the 15th Annual International Symposium on
ComputerArchitecture, pp. 73-80,1988.

[BBN85] BBN Butterfly Parallel Processor Overview, 1985.

[BHMS85] B ray ton, R.K., Hackel, G.D., McMullen C.T. and Sangiovanni-Vincentelli, Logic
Minimization Algorithms for VLSI Synthesis, Klower Academic Publishing,
1 9 8 5 . ' !''-'A;;...

[BrPa77] Briggs, F. and Davidson,E., "Organization of Semiconductor Memories for
Parallel Pipelined Processors," IEEE Trans, of Computers, C26, Feb. 1977.

[BrHo90] Brooks, E. and Hoag, J., "A Scaleable Coherent Cache System with Fuzzy
Directory State,” Submitted to Proceedings of the International Conference on
Parallel Processing, August 1990.

[CeFeI8] Censier, M., and Feautrier, P. "A new Solution to Coherence Problems in
Multicache Systems,” IEEE Trans, on Computers, C27(12);pp. 1112-1118,
December 1978.

[ChVc88]

. ' ■ ..'i ■ ■

lDavi71]

[D^IWO]

[DuiS87]

[DuBr82J

I DuSB 86]

[DuSB88J

[EgKa88]

[EgKa89j

[GGKM83]

[GbLR83]

[Good83]

[Hill88]

[Kogg81]

[MBL2;89]:

Chcong H. and Veidenbaum, A., "A cache coherence scheme with selective
invalidation,” Proceedings of the 15th Annual international Symposium on
ComputerArchitecture, pp. 299-307, June 1988.

Davidson, E.S., "The Design and Control of Pipelined Function Generators,"
Proceedings lnt. IEEE Conference on Systems, 'Kei^drks:,:^nd\Compuiers-,-
Oaxtepec, Mecico, January 1971, pp.19-21.

Delagi, B.Thaper, Submitted to IEEE Computer, June 1990.

Dubios, M „ "Effects Of Invalidation on the Hit Ration of Cache-Based
Multiprocessors," Proceedings of the International Conference on Parallel
Processing, pp. 255-257,1987.

Dubios, M. and Briggs, F., "Effects of Cache Coherency in Multiprocessors,"
IEEE Trans on Computers, vol. 37, pp. 58-70, November 1982.

Dubois, M., Scheurich, C., and Briggs, F., "Memory Access Buffering in
Multiprocessors,” Proceedings of the 13th Annual International Symposium on
Computer Architecture, pp. 434-442,1986.

Dubios, M. Scheurich, C. and Briggs, F., "Synchronization, Coherence, and
Event Ordering in Multiprocessors,” IEEE Computer, pp. 9-21, Fcbmary 1988.

Eggcrs, S. and Katz, R., "A Characterization of Sharing in Parallel Programs and
its application to Coherency Protocol Evaluation,” Proceedings of the 15th Annual
International Symposium on Computer Architecture, pp. 373-381, May 1988.

Eggcrs, S. and Katz, R., "The Effects of Sharing on the Cache and Bus
Performance of Parallel Programs,” Proceedings of APLOPS 111, pp. 257-270,
April 1989.

Gottlieb, A ; Giishman, R., Kruskai. C. P , McAuliffe, K.P,, Rudolph, L., and
Snir, M., "The NYU Ultracomputer - Designing an MIMD, Shared Memory
Parallel MacMnef IEEE Transactions on Computers, Febmmry 1983, pp.175-
189.

Gottlieb, A., Lubachevsky, R., and Rudolph, L., "Basic Techniques for the
Efficient Coordination of Very Large Numbers of Cooperative Sequential
Processors," ACM Transactions on Programmign Languages and Systems, April
1983, pp. 164-189.

Goodman, J., "Using Cache Memory to Reduce Processor-Memory Traffic,”
Proceedings of the IOth Annual International Symposium on Computer
Architecture, pp. 124-131,1983.

Hill, M., "A Case for Direct-Mapped Caches,” IEEE Computer, pp.25-39.
December 1988.

Koggcc, P., The Architecture of Pipelined Computers, McGraw Hill, 1981.

Mizrahi, H., Baer, J.L., Lazowska, E., and Zahoijan, J., "Extending the Memory
Hierarchy into Multiprocessor Interconnection Networks: A Performance

■ ■’ ■ V ; >'■>

Analysis,” Proceedings of the International Coirference on Parallel Processing, pp.
41-50, Vol. I, 1989.

[MiBa89] Min, S.L. and Baer, J.L., "A Timestamp Cache Coherence Scheme,” Proceedings
of the International Corrference on Parallel Processing, pp. 24-32, Vol. 1 ,1989.

[Moto88] Motorola 88200 Data Book, Motorola Inc., Austin, Texas, 1988.

[PeSi85] Peterson, I. and Silberschatz, A., Operating System Concepts, Addison Wesley,
1985. Z v -V:

[RCCT90] Rettbergv R., Crowther, W., Carvey, P., and Tomlinson, R., "The Monarch
Parallel Processor Hardware Design," IEEE Computer, pp.l 8-29, April 1990.

[Sequ87] Sequent Computer System, Inc., Symmetry Technical Summary, Beaverton, OR,
; 1987.

[Sieg85] Siegel, H.J., Interconnection Networks for Large Scale Parallel Processing,
Lexington Books, 1985.

[Stne89] Strenstrom, P., "A Cache Consistency Protocol for Multiprocessors with
Multistage Networks," Proceedings of the 16th Annual International Symposium
on ComputerArchitecture, pp. 407-415, June 1989.

[Tang76] Tang, C.K. "Cache Design in Tightly Coupled Multiprocessor Systems,”
Proceeding of AFIPS, National Computer Conference, June 1976, pp. 749-753.

[WaCa89] Warner, C. and Casavant, T., "Channel Routing on the NCUBE," Independent
Study Project Report, Purdue University 1989.

[WaMc90| Wailes, T. and Meyer, D., "Multiple Channel Architecture," Submitted to Frontiers
of Parallel Computing, 1990.

[WeGu89] Weber, W. and Gupta, A., "Analysis of Cache Invalidation Patterns in
Multiprocessors,” Proceedings of APLOPS IIIr pp. 243-256, April 1989.

[YaBL89] Yang, Q., Bhuyan, L., and Liu, B.C., "Analysis of Comparison of Cache
Protocols for a Packet-Switched Muliprocessor,” IEEE Trans on Computers, vol.
38 No. 8, pp. 1143-1153, August 1989.

	Purdue University
	Purdue e-Pubs
	5-1-1990

	Directory Based Cache Coherency Protocols for Shared Memory Multiprocessors
	Craig Warner

	tmp.1542052450.pdf.6WxMH

