
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

4-1-1990

Time-Optimal and Conflict-Free Mappings of
Uniform Dependence Algorithms into Lower
Dimensional Processor Arrays
Weijia Shang
Purdue University, shaug@ecn.purdue.edu

Jose A. B. Fortes
Purdue University, fortes@ecn.purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Shang, Weijia and Fortes, Jose A. B., "Time-Optimal and Conflict-Free Mappings of Uniform Dependence Algorithms into Lower
Dimensional Processor Arrays" (1990). Department of Electrical and Computer Engineering Technical Reports. Paper 717.
https://docs.lib.purdue.edu/ecetr/717

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages

f-X viv l-X 'X 'iv ivX 'X vIO X vX 'l-X vX 'X vX vX vI

i i i i i l i S i i I l i l l

IXv^

f:

Time-Optimal and
Conflict-Free Mappings of
Uniform Dependence
Algorithms into Lower
Dimensional Processor Arrays

Weijia Shang
Jose A. B. Fortes

TR-EE 90-29
April 1990

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

This research was supported in part by the National Science Foundation
under Grant DCI-8419745 and in part by the Innovative Science and
Technology Office of the Strategic Defense Initiative Organization and
was administered through the Office of Naval Research under contracts
No. 00014-85 k-0588 and No. 00014-88-k-0723.

TIME-OPTIMAL AND CONFLICT-FREE MAPPINGS OF
UNIFORM DEPENDENCE ALGORITHMS

INTO LOWER DIMENSIONAL PROCESSOR ARRAYS

Weijia Shang and Jose A. B. Fortes
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

shaug@ecn.purdue.edu and fortes@ecn.purdue.edu
(317) 494-3500 and (317) 494-3646

Key Words: processor array; time-optimal mapping; conflict-free; nested loops;
bit-level algorithm.

Abstract

Most existing methods of mapping algorithms into processor arrays are res-
tricted to the case where n-dimensional algorithms or algorithms with n nested
loops are mapped into (n —l)-dimensional arrays. However, in practice, it is
interesting to map n-dimensional algorithms into (k —l)-dimensional arrays where
k<.n. For example, many algorithms at bit-level are at least 4-dimensional (matrix
multiplication, convolution, LU decomposition, etc.) and most existing bit level
processor arrays are 2-dimensional. A computational conflict occurs if two or more
computations of an algorithm are mapped into the same processor and the same
execution time. In this paper, necessary and sufficient conditions are derived to
identify all mappings without computational conflicts, based on the Hermite nor­
mal form of the mapping matrix. These conditions are used to propose methods
of mapping any n-dimensional algorithm into (k— l)-dimensional arrays, k<n,
without computational conflicts. When k> n—3, optimality of the mapping is
guaranteed.

This research was supported in part by the National Science Foundation under Grant
DC1-8419745 and in part by the Innovative Science and Technology Office of the Strategic
Defense Initiative Organization and was administered through the Office of Naval
Research under contracts No. 00014-85-k-0588 and No. 00014-88-k-0723.

mailto:shaug@ecn.purdue.edu
mailto:fortes@ecn.purdue.edu

L b to fS y m b c ik

Bi (n—l)x(n—I) matrix; T̂ [J9> b). _
bt (n y column vector; T ==[B, 6].
Dt dependence matrix; Definition 2.1.
detB: determinant of matrix B.
dji dependence (column) Vector with n components; Definition 2.1 (4).
Ht the Hermite normal form of mapping matrix T; Theorem 4.1.
Ii identity matrix.
/: index set; Definition 2.1 (I).
j: column vector; index point; Definition 2.1 (I).
k: number of rows of mapping matrix T\ Definition 2.2.
m: number of dependence vectors in D mi Definition 2.1 (4).
IV: set of non-negative integers.
jv+ : Set of positive integers.
n: algorithm dimension or number of entries of index points in Jy Definition 2.1 (I).
rank{A): rank of matrix A.
St space mapping matrix; Definition 2.2.
Sijt entry of S' at ith tow and jth column.
T: mapping matrix; Definition 2.2.
U: multiplier of the Hermite normal form; Theorem 4.1. • •
Uqi entry of U at ith row and jth column.
7: inverse of U) Theorem 4.1.
g entry of F at ith row and jih column.
Zi set of integers.
II: row vector; linear schedule vector; Definition 2,2.
IP: row vector; optimal solution of Problem 2.2.
pi ^ t f P
Pi:, Uh entry of ft.
7: conflict vector; Definition 2.3.
7 ,-: ith entry of 7 .
IXiY the ith upper bound of /; Equation 2.5.
t: linear mapping of algorithms into arrays; Definition 2.2.
0: empty set.
0: a column or row vector whose entries are all 0.
I C I ; cardinality of set (7.
j a J : absolute value of Of.

I , JO T m O B W IlO N .
’M sa |'« d s lb j methods of mapping algorithms into processor arrays are res-

triotodl to t ie eases where. K-dimensiona] algorithms, or algorithms with n nested
loops, are mapped Into fm—IjhdImeosIoaaI processor arrays [2-13], For example,
the 3-dimensional matrix multiplication algorithm is usually mapped into a 2-
dimensjonal processor array by these methods [10],,. [21],, [32] , This paper considers
mappings, of n-dimenslonal algorithms into (k — l)-dimensional, k< n% processor
arrays. Procedures ate proposed to find mappings without computational
conflicts, whieh means, no two or more computations of the algorithm are mapped
into the same processor and execution time. When k>n — 3, these mappings are
time-optimal.

In simple terms, the algorithms under consideration in this paper are called
uniform dependence algorithms and can model nested loop algorithms. They are
represented as partially ordered subsets of a multidimensional integer lattice
(called index sets). The points of this lattice correspond to (or index) computa­
tions, and the partial order reflects the data dependencies between these computa­
tions. These data dependencies are represented as vectors that connect points of
the lattice. Informally, if a given dependence vector is always present when the
vector difference between any two lattice points equals the dependence vector,
then the dependence is said to be uniform. If all dependencies are uniform then
the algorithm is said to be a uniform dependence algorithm. This algorithm model
can be easily related to similar models and concepts in [1-13], [19] and several
other works.

Examples of 2-dimensional bit-level processor arrays include GAPP [33], DAP
[34], MPP [35], Connection Machine [31] etc. Many bit level algorithms are four or
five dimensional, such as matrix multiplication, convolution, LU decomposition,
etc. How to automatically map these algorithms into 2-dimensional bit level arrays
is still a problem [28], That is why in practice it is interesting to develop a method
to map n-dimensional algorithms into (fc —I)-dimensional processor arrays with
k<n. This work was motivated by the implementation of RAB (Reconfiguration
Algorithm for Bit level code) [26], an experimental tool which maps a class of algo­
rithms programmed in ’C’ into bit level arrays. In this approach, algorithms are
first expanded into bit level algorithms, and second, the dependence relations are
analyzed and the algorithm is uniformized. Then the global optimal solution,
which maps often a four or five dimensional bit level algorithm into a 2-
dimensional bit level processor array, is to be found.

Several attempts have been made to try to map algorithms into lower dimen­
sional systolic arrays [15], [22], [23] [25]. In particular, important steps towards a
formal solution to this problem were made in [23]. Based on the Lamport hyper­
plane transformation model [13], a procedure was proposed to find mappings of 3-
dimensional algorithms into 1-dimensional or linear systolic arrays without com­
putational conflicts and data link collisions. Five conditions were given to guaran­
tee the correctness of the mapping. The first condition ensures that dependence

relations among different computations of the algorithm are respected; the second
condition is about computational conflicts; the third and fourth conditions deal
with the number of shift registers on links and the data travel directions; and the
fifth condition is to avoid data link collisions. The concept of data link collisions
and the conditions to avoid such collisions are introduced in this work. Detection
of computational conflicts is basically by analysis of all computations of the algo­
rithm and the optimality of the mapping is not guaranteed. In [22], further
results are reported in mapping n-dimensional algorithms into (k — l)-dimensional
processor arrays. A suboptimal solution for the reindexed transitive closure algo­
rithm [17] [23] was found by the proposed procedure in [22] by which the total
execution time is /i(2/i-(-3)+l where H is the problem size.

This paper describes a method of mapping n-dimensional uniform dependence
algorithms into (k — l)-dimensional arrays, fc<n, without any computational
conflicts. Based on the Hermite normal form of the mapping matrix, simple and
easy-to-use necessary and sufficient conditions are derived to guarantee a conflict-
free mapping. These conditions are used to formulate the problem of finding
time-optimal and conflict-free mappings as an integer programming problem.
Optimality is always guaranteed for the mapping of n-dimensional algorithms, into
(n—j)-dimensional, *=1, ..., 4, processor arrays. Compared to the method in [22]
and [23], the main contribution of this paper is the easy-to-use and closed form
necessary and sufficient conditions for conflict-free mappings. In addition, based
on these conditions, this paper formulates the problem of identifying time-optimal
and conflict-free mappings as an integer programming optimization problem. For
some algorithms such as the matrix multiplication algorithm and the transitive
closure algorithm, the integer programming formulation can be further converted
to linear programming problems. In Section 5, the method proposed in this paper
is used to find the optimal solution for the reindexed transitive closure algorithm
which improves the total execution time of /i(2/^+3)+l in [22] to fj,(/jt+3)+l.

This paper is organized as follows. Section 2 presents basic terminology and
definitions, introduces the concept of computational conflicts and provides state­
ments of problems addressed in this paper. Section 3 discusses a simple case to
illustrate different aspects of, and provide insight into, the conflict-free mapping
problem. Section 4 discusses the conflict-free mapping problem in general. Sec­
tion 5 presents an optimization procedure and integer programming problem*for­
mulations which find the time-optimal mapping without any computational
conflicts. Section 6 concludes this paper and points out some future work.

2. TERMINOLOGY AND DEFINITIONS
Throughout this paper, sets, matrices and row vectors are denoted by capital

letters, column vectors are represented by lower case symbols with an overbar and
scalars correspond to lower case letters. The transpose of a vector Fis denoted v .
The vector 0 denotes the row or column vector whose entries are all zeroes. The
dimensions of vector 0 and whether it denotes a row or column vector are implied

3

by the context in which they are used. The symbol I denotes the identity matrix.
The rank and the determinant of matrix A are denoted rank(A) and delA, respec­
tively. The set of integers, the set of non-negative integers and the set of positive
integers are denoted Z1 ATand iV+, respectively. The empty set is denoted 0 . The
notations j C | and | a | represent the cardinality or the number of elements of
set C and the absolute value of scalar a, respectively. Let v and u be two vectors.
Then means every component of v is greater than or equal to the correspond­
ing component of u. Finally, if x is an element of a set S1 the notation x E S is
used and this notation is also used to indicate that a column vector fhj (or row
vector Mi) is a column (row) of a matrix M1 Le., my GM (M1EM) means my (M1) is
a column (row) vector of matrix M.

Algorithms of interest in this paper are the so-called uniform dependence
algorithms defined as follows.

Definition 2.1 (Uniform dependence algorithm): A uniform dependence
algorithm is an algorithm that can be described by an equation of the form

v U) = 9j{ vX J - d i) , v [j - d2), ..., v (i ~ d m)) (2.1)

where .
(1) j E Jd Z n is an index point (a column vector), J is the index set or iteration

space of the algorithm and nEN+ is the algorithm dimension or the number
of components of j;

(2) gj is the computation indexed by j, Le., a single-valued function computed
'' "at point j" in. a single unit of.time;

(3) v(j) is the value computed "at j ”, Le., the result of computing the right hand
side of (2.1) and

(4) JiEZn1 I=A1 ..., m, mEN are dependence vectors, also called dependencies,
which are constant (i.e., independent of jEJ), the matrix D— [di, ..., dm] is
called the dependence matrix.

The class of uniform dependence algorithms is a simple extension of the class
of algorithms described by uniform recurrence equations [I]. The main difference is
that uniform dependence algorithms allow for different functions to be computed
(In a unit of time) at different points of the index set. From a practical viewpoint,
uniform dependence algorithms can be easily related to programs where (I) a sin­
gle statement appears in the body of a multiply nested loop and (2) the indices of
the variable in the left hand side of the statement differ by a constant from the
corresponding indices in each reference to the same variable in the right hand side.
Alternative computations can occur in each iteration as a result of a single condi­
tional statement as long as data dependencies do not change. Nested loop pro­
grams with multiple statements can also use the techniques of this paper together
with the alignment method discussed in [14] and [24], Uniform dependence

algorithms occur frequently in scientific computing and digital signal processing
applications. 7

For the purpose of finding time-optimal and conflict-free mappings, only
structural information of the algorithm, i.e., the index set J and the dependence
matrix I), is needed. Therefore, a uniform dependence algorithm with index set J
and dependence matrix D is herein characterized simply by the pair (J,D). Each
index vector jE J corresponds to a computation; and computation j depends on
computations j —d;E-J, 1' ==!,..., m. It is assumed that, as in Definition 2.1, the
letters n and m always denote the algorithm dimension and the number of depen­
dence vectors, respectively.

Many models have been proposed to map algorithms into processor arrays.
The linear algorithm transformation method proposed in [2], [12] and [32] is used
in this paper and stated as follows.

Definition 2.2 (Linear algorithm transform ation): A linear algorithm
transformation maps an n-dimensional uniform dependence algorithm into a
(A;—l)-dimensional processor array according to the mapping:

r: J-+Zk, T(J)=Tj \/Je J

where T=

(2.2)

EZkyn is the mapping matrix, SEZ^k 1̂xn is the space mapping

matrix, and IlEZlxn is the time mapping vector, or linear schedule vector. The
computation indexed by jE J is executed at time IIj and at processor Sj. The
mapping r must satisfy the following conditions:
'(I) IW > 0. V , , ; , . . .

(2) S p ^P K where PEZ^k~^xr is the matrix of interconnection primitives of the
target machine, KEZrxm is such that

X < n d{
/=1

=v m. (2,5)

(3) Vi 1, J 2GT, if j 1 ̂ i 2, then t(j\) ^ r (j2) or T j 1 ̂ T j 2.
(4) The rank of T is equal to kor rank(T)=k.

Condition I in Definition 2.2 preserves the partial ordering induced by the
dependence vectors. It is clear that if this condition is satisfied, then computation
indexed by jE J is scheduled to execute only after the executions of computations
indexed by j —diEJ, t = 1, ..., m because IlD> 0, and therefore the dependence rela­
tion is respected.

The matrix of interconnection primitives P describes the connection links of
processors in the array. For an array with each processor connected to its four
nearest east, south, west and north neighbors, it has four interconnection primi­

tives [0, 1]3, [0, — I]2", [I, 0]r and [—I, 0]T and matrix P = ^
I —I 0 0

Condition 2 in Definition 2.2 guarantees that the space mapping San be imple­
mented in a fixed systolic architecture with interconnection primitive matrix P.
The summation in the left hand side of the inequality in (2.3) is the number of
times of the usage of interconnection primitives to pass the datum caused by the
dependence vector d,- from the source to the destination. The item in the right is
the time units between the source usage and the destination usage of that datum.
Assuming it takes one time unit for a datum to travel one interconnection primi­
tive, the inequality must be satisfied to have the datum arrive before it is used.
Condition 2 in Definition 2.2 may not be required when a new processor array is
designed specially for the algorithm. It is required only when the algorithm is to
be mapped into a processor array with a fixed interconnection structure.

Condition 3 is for avoiding computational conflicts because if r(j i) = t(j 2),
then the computations indexed by J 1 and J 2 are mapped into the same processor
and time and a conflict occurs. Condition 4 guarantees that the algorithm is to be
mapped into a (k— l)-dimensional array but not a ^dimensional array, q< k— I.
When rank (T)=q +1 <fc, there are exactly q+1 linearly independent rows in T,
and all other rows of T are linear combinations of these 9+1 linearly independent
rows. Let T' be the matrix consisting of these q +1 linearly independent rows; then
T can be transformed linearly to T which means the algorithm is actually
mapped into a 9-dimensional processor array.

More constraints on the mapping r are possible for some implementation
requirements. In addition, different constraint forms from those in Definition 2.2
for the same implementation requirement can be used. For example, in [23], the
inequality in (2.3) is required to be an equality which, means data must arrive
right at the time of their usage and are not allowed to arrive before the usage.
Also, in [23], constraints to avoid data link collisions are considered.

Because the execution of any computation needs one time unit as defined in
Definition 2.1, the total execution time by the linear schedule vector II is as fol­
lows:

t = max { II (J 1 - J 2) : J 1, J 2 € J } + I (2.4)

For a class of practical algorithms, the loop bounds are constants. This kind
of algorithm is characterized by the constant-bounded index set defined as

J a=CEii, •••> 0 ii€Z, m €N +, ;= i , ...,«} (2.5)

where zero and p,- correspond to the lower and upper bounds of the ith loop,
respectively. Upper bounds /U,-, i= l, ..., «, are called problem size variables. To
simplify the problem, this paper is restricted to the algorithms with constant-
bounded index sets. This assumption is summarized as follows.

Assumption 2.1: In this paper, the index sets under consideration are assumed
to be constant-bounded defined formally by Equation 2.5.

Some other kinds of algorithms can be transformed into algorithms with
constant-bounded index sets by a linear mapping of the index sets [12]. For an
algorithm with a constant-bounded index set, because

TnaxQI(J1- J 2): J 1 , j 2GT}=[| Tr1 J, | tt„ |] ((/Z1, ...,MnJr -O), (2.6)

the total execution time t in Equation 2.4 can be simplified to

i= l + s K - 1 Ah (2.7)
1=1 J- - /■ - ; -

It is clear from Equation 2.7 that the vector If which minimizes the objective
function t in Equation 2.7 is such that the absolute values of its entries | tt, | ,
i= l, ..., n are as small as possible and with some constraints satisfied. In other
words, if the absolute value of any one of the entries of the optimal II is reduced
by one, then the resulting vector is not a valid linear schedule vector. This con­
clusion is also indicated in [10] and [11] and is summarized in the following
theorem.

Theorem 2.1 [10], [11]: The total execution time described in Equation 2.4 is a
monotonically increasing function of | 7rt-1, i= l, ..., n, the absolute values of
entries of vector IL

A conflict occurs if two or more computations are mapped into the same pro­
cessor and the same execution time. That is, for two distinct index points J 1
J 2£>7, if T ji = T j2 , then there is a conflict. For the case where k=n or T is a
square matrix, that rank(T)=^n guarantees a conflict-free mapping because T j1 —
T j2 if and only if J 1 = j 2. For the case where fc<n, even when rank{T)=k, or
matrix T has full row rank, there is at least one non-zero vector 7 such that
T7=0. Let J 1= J2-I-T, then T j1 = T j2. If both J 1 and J 2 belong to the index set,
then the computations indexed by J 1 and j‘2, respectively, are mapped to the
same processor and the same execution time and a conflict occurs. Therefore, it is
much more difficult to find a mapping without conflicts when k<.n than for the
case when k=n.

; One possible way to avoid conflicts is to find the mapping matrix T such
that, for any arbitrary index point j'GT and any 7 that is a non-zero integral solu­
tion of equation Tt=O, j + 7 does not belong to the index set T. This concept is
illustrated by Figure I which shows a 2-dimensional index set T=-Qj1, j 2]r :
0< J i , J 2<4, / 1, 12^ . If 7 is T1=Q, l]r , then index points j= 0 and
j + 7i= [l, 1]T both belong to index set J and computations indexed by [0, 0]T,
[I, l] r , [2, 2]r , ..., [4j 4]7 . will be mapped into the same processor and the same
execution time. Therefore, there is at least one conflict. However, if 7 is
72=[3, 5]r , there will be no conflict at all because for any arbitrary JGT̂ J-Py2^T.
Intuitively, if vector [3, 5]T is drawn with one end at [0, 0]r (or at any other index

Figure I Non-feasible conflict vector 7 i and feasible conflict vector 72 • Vector
72 does not meet any integral points inside the index set.

point of the index set), then the other end is out of the index set and vector [3, 5]T
does not meet any integer points in the index set. Therefore, the mapping with
this 7 is conflict-free. To describe these concepts formally, the following definitions
are introduced.

Definition 2.3 (Conflict vector, feasible and non-feasible conflict vectors
and conflict-free m apping m atrix): Given an algorithm (/, D) and a mapping
matrix TEZkxn, an integral column vector 7 = [7 i, ..., 7n]r is a conflict vector of
the mapping matrix T if and only if T7—0 and gcd^(^i, ..., 7„)=1. If for any arbi­
trary index point j EJ, i+ 7^ /, then 7 is a, feasible conflict vector. If there exists at
least one index point j EJ such that y+7 6 / then 7 is called a non-feasible conflict
vector. If all the conflict vectors are feasible, then this mapping matrix T is
conflict-free:

E xam ple 2 .1: Consider a 4-dimensional algorithm {J, D) where

JH r- * = 1, 4}.
Assume that this algorithm is to be mapped into a 1-dimensional or linear proces­
sor array and one possible mapping matrix is

m I 7 1 1 T=
1 7 1 0

Consider the following solutions of 2’7= 0: 7 i=[0, I, —7, 0]r , 72=[7, —I, 0, 0}T and
73=[1, 0, —1, O]2 . Clearly, = Ty2 = T7Js=O and their greatest common divi­
sors of their entries are unity. So -yy, 72 and 73 are conflict vectors of mapping
matrix T. However vector [2, 0, —2, 0]T is also a solution of equation T7—0 but is
not a conflict vector of mapping matrix T because the greatest common divisor of
its entries is not unity. Conflict vectors 7 j and 72 are feasible because it can be
checked that for any arbitrary index point jEJ, 3+ 1$J, *=1, 2. Conflict vector
73 is not feasible because for the index point y=[0, 0, 1, Ojr E/, J-Fy3 —
[l, 0, 0, 0}t EJ. Therefore, T is not conflict-free. □

Given an arbitrary algorithm, if it is possible to identify the set of all vectors
7 , whose entries are relatively prime and such that for any arbitrary index point
jEJ, 7+7^ /, then the mapping matrix T can be constructed subject to that all its
conflict vectors must be in that set. Unfortunately, it is not always easy to find
the set of all such vectors. For algorithms with constant-bounded index sets, the
common characteristics of such vectors are described in the following theorem.

1': gcd(a i, ..., art) denotes the greatest common divisor of integers tti, ..., an

. ■ ■ . ■ ' ■ . - - -

■ " . . 8 :

Theorem 2 .2 : For algorithms with constant-bounded index sets defined by Equa­
tion 2.5, a mapping matrix T is conflict-free if and only if for each of its conflict
vectors 7= [71, ..., 7 ,-, 7n]2' there exists an entry 7 ,- such that | 7 ,- |

Proof: (= >). Because T is conflict-free, all the conflict vectors of T are feasible.
Now suppose that 7 is a conflict vector of T and | 7 ,-1 </7 , t= l, n. Consider
the index point j — [ji, ..., j n\T where if 7,->0 and j ,= —7 ,- if 7 ,< 0. It is
clear that both j and Jf+ 7 belong to the index set J defined by Equation 2.5
because | 7 ,- | <//,-, 1 — I, ..., n. By Definition 2.3, 7 is not feasible which is contrary
to the assumption. Therefore, for each of the conflict vectors 7 , there must exist
an entry 7 ,- such that | 7,-1 >/+.
(< —). Let 7 be a conflict vector of mapping matrix T and consider an arbitrary
index point j belonging to the index set defined by Equation 2.5. Let j ' 7+7 ■■==
[/1, ..., f n]T. Because there exists an entry 7 ,- of 7 such that | 7 , |\>/+ and
A ^><>, /,=jf’{+7 ,>At,- if 7 j>0 and / , = it+ 7 t<0 if 7,-<0.. In both cases, / is not
in the index set / and 7 is feasible. This implies that T is conflict-free. □

According to Theorem 2.2, for the algorithms with constant-bounded index
set, the set of feasible coiiflict vectors is {7 : | 7v | >/h', *€{l, •••, n}, gcd{^x, ...,
7n)=l}. This solution space is not convex and is very difficult to analyze.

In practice, it is interesting to find optimal conflict-free mappings with
respect to different criteria and based on different assumptions. To achieve this,
one has to identify first all feasible mappings that are conflict-free. Then it is pos­
sible to choose an optimal one with respect to a certain criterion from these
conflict-free mappings. The criterion could be the total execution time for the
algorithm, the VLSI area taken to implement this algorithm including the number
of processors and the length of the wiring, or the combination of the total execu­
tion time and the VLSI area. Two problems are addressed in this paper and are
formulated below. The first is about identifying all conflict-free mappings and the
second is about finding time-optimal mappings.

Problem 2.1 (Conflict-free m apping problem): Given an n-dimensional uni­
form dependence algorithm and a (&—l)-dimensionai processor array, find neces­
sary and sufficient conditions for mapping matrix TEZkyn to be conflict-free, or
equivalently, identify all conflict-free mapping matrices TEZkyn.

Problem 2.2 (T im e-optim al and conflict-free m apping problem): Given an
ra-dimensional uniform dependence algorithm (/, D) and a feasible space mapping
matrix SEZ^k~^xn, find an integral row vector U0Giflxn which minimizes

/ = max { II (J 1 - y2) * J 2 G / }

9

subject to

ILDX)
r —

Y kji < n dj, where SD=PK
j - i :
rank(T)=k

is conflict-free

In Problem 2.2, the objective function / differs by one from the total execu­
tion time t in Equation 2.4. Clearly, / is minimized if and only if t is minimized.
P and K are as defined in Definition 2.2. In general, in Problem 2.2, space map-
ping matrix S is given and usually is not a function of problem size variables /x,
«=1, ..., n. The solution of a special case of Problem 2.1 is discussed in Section 3,
and the general case is discussed in Section 4 followed by the discussion of Prob­
lem 2.2.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR CONFLICT-
FREE MAPPING MATRIX TeZf-n^ xn

This section discusses the solution of Problem 2.1 or how to identify all
conflict-free mapping matrices T6 ^ n-1 x̂n that map ^-dimensional algorithms
into (n —2)-dimensional processor arrays. This simplest case can illustrate and give
an intuitive understanding of different aspects of the conflict-free mapping prob­
lem. So the reader can follow the general discussion in the next section more
easily. Practical applications are the mapping of 4-dimensional convolution algo­
rithm at bit-level [26] into a 2-dimensional systolic array and the mapping of the
3-dimensional matrix multiplication algorithm into a linear systolic array [23].

Let YlEZlyn, £>(=£'(n-2)x'1 and rank(S)=n—2. Consider the following equation

T /'y=0 or 7=0 (3.1)

Let’s first assume that rank[T)=n—l. Later in this section, conditions on If are
given to guarantee that rank[T)=n— I. Clearly, there is only one linearly indepen­
dent solution of Equation 3.1. Without loss of generality, let T=[B, b) where B
contains the first n —1 columns of matrix T, rank(B)=n—l and b is the last
column of TV Also, let B and detB be the adjugate or adjoint matrix and deter­
minant of matrix B, respectively [18, pp. 170]. Then all solutions of Equation 3.1
can be expressed as

(3.2)

If the first non-zero entry of a conflict vector is assumed to- be positive (this
implies no loss of generality),, then for tie mapping matrix TEZ^n~^xn, there is
only one unique conflict vector (otherwise, —7 would also be a conflict vector).
This unique conflict vector 7 is expressed by Equation 3.2 where X is such that 7 is
integral, its entries are relatively prime and the first non-zero entry is positive.
According to Theorem 2.2 if this unique conflict vector is feasible, then the
corresponding mapping is conflict-free. In addition, if Il is such that there exists a
non-zero entry /*(tTi ,, ..., 7iy), l< t< n , then rank(T)—n — I because /,(TT1, ..., 7r„) is
the determinant of the submatrix of T consisting of all columns except the ith one
of T. These facts are summarized in the following theorem.

Theorem 3.1 (Necessary and sufficient condition l): Let 7 be defined in
Equation 3.2 where the constant X in Equation 3.2 is such that 7 is integral, its
entries are relatively prime and the first non-zero entry is positive. Then mapping
matrix r£ /f(”-1)xn is feasible if and only if vector 7 is feasible. The rank of
matrix T is n —I if and only if there exists a non-zero entry /,(Tr1, ..., 7rn), l<*<n.

Proof: First, it is shown as follows that there is only one conflict vector if the first
non-zero entry of the conflict vector is assumed to be positive. Suppose there are
two conflict vectors ŷ1 and % whose first non-zero entries are positive. Because
there is only one linearly independent solution of Equation 3.2, 7x and 72 are
linearly dependent. Thus 72= c7 i , where c is a constant. If c = 1, then 7i — !%'■> if
c——I, then the first entry of one of the vectors is not positive; if c is a non­
integral rational number, then 72. is non-integral because the greatest common
divisor of entries of 7 , is: one; and if c> l is integral,, the greatest common divisor
of 72 is greater than unity. Therefore, in all the cases discussed above, 72 is not a
distinct conflict vector whose first entry is positive. So there is only one such
conflict vector of mapping matrix T and, therefore, Tis feasible if and only if 7 is
feasible.

It is trivial to show that if rank(T)=n—l, then there is a non-zero entry
/,(TT1, ..., 7T„) because otherwise, rank(T)=n. Now suppose there exists a non-zero
entry /,(Tr1, ..., Wn). Let

7 —X

where X is a constant.

_ / l (^1 T̂fi)
:=x 'I2(TT1, ..., Wn)

; de tB ;■ - . *

K J r • • r ^n)ik

11

B*=

B i x B 21 ••• # (» - 1), 1

B 12 B 22 — B (n_ 1)i2

8 Uri - I) 8 2,(h- i)

(3.3)

where Byy, i, J==I, ..., n — I, are the cofactors of m atrixB [18, pp. 165]. Clearly, /,•
— [^lt) ®(»r-l)-*]̂ -=T= BliSi n + — + B(n_2)),-S(n_2)ln, + ■B(n_1)i,-7Tn, l<4<(n —I).
With little thought, it can be seen that /,• is the determinant of matrix B with its
ith column being replaced by b [18, pp. 165] which is a submatrix of T. Therefore,
there is a submatrix of T whose determinant is non-zero which means
rank(T)=n—l. □

According to Theorem 2.2, the unique conflict vector 7 in Equation 3.2 is
feasible if and only if the absolute value of one of its entries is greater than a cer­
tain value. Therefore, given a mapping matrix T, to see if it is conflict-free or not,
Equation 3.2 has to be used. Later in Section 5, Equation 3.2 is used to formulate
Problem 2.2 as an integer programming problem. If functions /,• in Equation 3.2,
2= 1, ..., n, are linear, then the formulation is possibly an integer linear program­
ming problem. In the following, it is shown that if the space mapping matrix S is
given, functions /, in Equation 3.2, t= l , ..., n, are linear functions of 7Ty; y==l,
n.

Proposition 3.2: Functions /,-, t = 1, ..., n in Equation 3.2 are linear functions of
J ~ I, •>., n.

Proof: Let B* be, defined as in Equation 3.3. Clearly, /,• =. [Bll-, ..., B(n_i)i\b —
B l i s I1H + — + £(n-2),is(rt-2),n + #(n-nbi7rn> I).- Cofactors Bh,
l< l< n—2, are the linear functions of TTy, j= l , ..., n — I because Bh is the deter­
minant of the submatrix of B obtained from removing the Ith row and the ith
column of matrix B. Thus, BnSi n are linear functions of 7Ty, / = I, ..., n —I. Cofac­
tor , is independent of 77, 2= 1, ..., n because it is the determinant of the
submatrix of B obtained by removing the ith column and the (n—l)th row which
is U. Thus = B (^ 1)jlTrn is a linear function of 7Tn. Therefore, /,,
2= 1, ..., n —1 are linear functions of 7Ty, J==I> ..., n. The last entry Jn=^detB is also
a linear function of 7Ty, j= l , ..., n —1 because it is the determinant of matrix & □

Exam ple 3.1: Consider algorithm (J, D) used in [23] where dependence matrix D
and index set J are as follows.

I 0 0
0 I 0
0 0 I

J={j' j £Z3, o<ji<v, *'=1, •••, 3} (3-4)

JkfttttaMIIf',, this: eaat moduli the- matrix, multiplication
algorithm., How the dependenee matrix and! the indiex sett are derived from, the
Fortraa code of the. matrix: multiplication, algorithm is: shown- in. [21],, [23] and [32.].
l e f t , t t t e ' -.ipiMB%fea8Woiii algorithm, compute: 0;—A B r where- € '—-[:%-]). A =[wtjJ;-

andj Bif [23]), dependence; vectors- d \ , d2 and di3, are-induced: hy B, A and-
Q. respectively.. In other; words, the- computation indexed by* y needs data. A from
index' point- BAmra, index point j;—d\ and G from; index point y—d>3i. If the
spacer mapfihgj matrix is; chosen as; the- one- used In [23] 5=[1>,. Iy —3l], then mapping
matrix; Xand its; GoaadIftttvector'7/are. as follows..

I. 31 —I j
j% % % I. 7=X

'-TT2' 7T3
S TTr d %5
7%-7T2

(3.5)

It Ta cltear th a t Ttt=O. If II is- chosen su ch th a t —7r2—7r3 /0 ; or TT1 -Fvr3 ̂ Q- or

TTi -Tr2ZO), th en rank^T)r=n —1=2'.. □

E lx a n n p te ^.,2:; Consider' another* Mgordhm {J, D) used in [22] w here dependence
m atrix D a n d index set J are as follow s.

|® Of I 3|. , 1I
10= b ii, m i - I O j

I 0 - I O ■—1 \
J={j- j£ Z 3, 0<h<Ah f e l l , / . 3} (3.6)

This uniform dependence algorithm, can model the reindexed transitive closure
algorithm. How the dependence matrix and the index set; are; derived' from the
Fortran code of the transitive closure algorithm is shown in [17] and [23]. If the
space mapping matrix is chosen as the one used in [22] S—[0,.O),l], then mapping
matrix T and its conflict vector tt are as follows.

(3.7)

I t is, clear' that: XttMtt I® Hf ■ is, chosen' such that Tr2-ZO' or Tr1ZO then
rank{T)=n—1=2, Q ! '

O O I i _ 7H ,

Ii 7rG 71Is
i , tt=^
I.-

-TTi ■;
j ® {

te- GENERAL C ASE-~NEOESSARY AND SUFFICIENT CONDITIONS
FOK CQNFEITOI1®©MAF1ING& "

This section discusses and presents the solution to the general case of Prob­
lem 2.1, Le., it provides necessary and sufficient conditions for conflict-free map­
pings where n-dimensional algorithms are mapped into, (X-I)Mimensional proces-

TIszIxtt and $£Z{k~^xn.sor arrays. In these mappings, T£Zkyn, T

Consider the equation

13

IvZ=O or 7=0 (4-1)

If rank(T)=k, then there are n —k linearly independent solutions of Equation 4.1.
Let ^1, ..., 7Jn-Ic be the linearly independent integral solutions of Equation 4.1,
whose entries are relatively prime, then all solutions 7 of Equation 4.1 can be
represented as linear combinations of the n —k linear independent vectors as fob
lows ■

7 = ^ 7 1 + • • • + K -k ln -k ? (4.2)

Clearly, 7 ! , ..., 7n_^ are conflict vectors of T.
In general, the mapping matrix T has more than n —k conflict vectors when

&<n—I because a linear combination of these n —k conflict vectors may be a
different integral vector whose entries are relatively prime and therefore another
conflict vector of T. This new conflict vector may or may not be feasible. Thus,
unlike the mapping matrix TEZ^n~^xn described in Section 3, it is not guaranteed
that all conflict vectors of T are feasible even if the n — k linearly independent solu­
tions 7 ,-, *=1, ..., n —k, of equation T7I=Q are all feasible. This is illustrated by the
following example.

Exam ple 4.1: Consider the 4-dimensional algorithm of Example 2.1 and the
mapping matrix T in Equation 2.8. Let 7 j = [0 ,1, —7, 0]r and 72=[7, —I, 0, 0]r .
Clearly, T7̂i = T̂ y2=O, % and % are linearly independent, and they are feasible
conflict vectors of T. Let 7 — 1/7% + 1/7% == [I, 0, —I, 0]^. Vector 7 is also a
solution of equation T7I=O and its entries are relatively prime. By Definition 2.3
and Theorem 2.2, 7 is a non-feasible conflict vector of T. Therefore, as mentioned
above, for a given mapping matrix TEZkxn with k<.n— I, there are possibly more
than n —k conflict Vectors, and T may not be conflict-free even if there are n —k
linearly independent feasible conflict vectors of T. □

From Example 4.1, an interesting observation is that one difficulty in making
all conflict vectors of mapping matrix T feasible is that non-feasible conflict vec­
tors can result from rational linear combinations of the n —k linearly independent
feasible conflict vectors %, ..., %_* like 7 — I /7% + 1/7% in Example 4.1. Let’s
consider another way to select the n —k Iinearlyyindependent conflict vectors of T
such that constants Xf-, t= l , ..., n —k in Equation 4.2 must be integral in order for
7 to be integral. To achieve this, the notion of the Hermite normal form is intro­
duced.

Theorem 4.1 (H erm ite norm al form [29, pp. 45]): Let TEZkxn and
ran^(T)—A:. Then there exists a unimodularf matrix UEZnxn such that TU—H—\L,
0] (0 denotes a zero-entry matrix) where LEZkyk is a nonsingular and lower

triangular matrix. Matrix H is called, the Hermite normal form of T.

!Tlie definition of the Hermite normal form used here is slightly different from
the one used conventionally and in [29], where each diagonal element of matrix L
is required to be positive and be the maximum of all absolute values of elements in
that same row. This is because for the purpose of this paper it is enough to know
that matrix T can be transformed into a lower triangular matrix [L, Oj by right
multiplication of a unimodular matrix U.

For a given mapping matrix T, let II be the corresponding Hermite normal
form and T -H V where V = U '1, U=Iu1, ..., u„] and F==Fvi, ..., v„j. Then Equa­
tion 4.1 can be rewritten as //Ey==O. Let P=Vp —- [A, ..., /:>’„]r and p=Up. Then
the following statements are true.

Theorem 4.2:
(1) H^=O if and only i f /?* are zero.
(2) Vector 7 is integral if and only if /3 is integral.
(3) Vector 7 is a conflict vector of mapping matrix T if and only if

(4-3)

. 7 '
where * =A:-f-1, ..., n, are arbitrary integers which are not all zero and are rela­
tively prime. '

Proof: (I) Because H=[L, 0] and Hf! — L[f31} ..., Pk}T where LEZkyk is a non­
singular lower triangular matrix, Pi, ..., Pic are zero if and only if Hp=0.
(2) By definition, a matrix is unimodular if and only if it is integral and the abso­
lute value of its determinant is unity. So U is unimodular means that matrix
F-C / -1 is also unimodular. Therefore, 7 is integral implies that p is integral and
vice versa.
(3) By Theorem 4.2 (l) and (2), all integral solutions 7 of equation Tp=O are
represented by Equation 4.3 where .i=A>H-l, ..., n, have to be arbitrary integers
because non-integral values of »==fc+l, ..., n result in a non-integral vector 7 .
Next it is shown that the greatest common divisor of Pi,. i —1, ■:...,n is unity if and
only if the greatest common divisor of 7 ,-, V=l, ..., n is unity. Suppose gcd(fiu ...,
P n) = l and gcd(fii, •••> 7n)= c> l. Then 7—cY where 71 is integral and its entries
are relatively prime. Because P=V7) — cV-f where, obviously VpfEZn, the
greatest common divisor of p,, i — I, ..., n is at least c> l. This is contrary to the
assumption. So, the greatest common divisor of Pi, i= l , ..., n is unity implies the

f : A matrix is unimodular if and only if it is integral and the absolute value of its y
determinant is one.

T I j
Pit+1

• • ♦

Pn

greatest common divisor of /7,-, t = = l , n is unity. With similar reasoning, the
reverse can be shown. Therefore, the ..., n ,in Equation 4.3 have to be
relatively prime integers, otherwise the greatest common divisor of entries of vec­
tor '7 is greater than one, which is not a conflict vector by Definition 2.3. □

What Theorem 4.2 implies is that all conflict vectors of mapping matrix T
can be represented by Equation 4.3 where Pk.+u ..., Pn are arbitrary integers
which are not all zero and relatively prime. Notice that a non-integral value of
any one of the Pk+i, •••, Pn results in a non-integral vector 7 according to
Theorem 4.2. So in this representation, the case where a new conflict vector of T
can be obtained by a non-integral linear combination of the n —k linearly indepen­
dent solutions of Equation 4.1 is avoided.

Exam ple 4.2: The Hermite normal form of the mapping matrix T in Equation
2.8 is :

TU=H=
0 0 0

- I 0 0

where

I - I - I -7 1 7 1 I
0 0 0 I

and V=U-1=
0 0 0 1

0 0 I 0 0 0 1 0
0 I 0 0 0 I 0 0

All Conflict vectors of T are the integral combinations of the third and fourth
columns of matrix U as follows:

7=

- I -7
0 I
1 0
0 0

Pz
Pi

where /?3 and p4 are integers which are not all zero and relatively prime. □

So far, a better representation of all conflict vectors of T has been found
which requires integral combinations of n —k linearly independent conflict vectors
of mapping matrix T. However, it is still not guaranteed that all conflict vectors
are feasible unless matrix U satisfies some conditions. The following six theorems
describe these necessary and sufficient conditions for mapping matrix T to be
conflict-free.

Theorem 4.3 (Necessary condition 2): Let be the entry of matrix F at the
ith row and the jth column. If mapping matrix T is conflict-free, then at least one

I

' r :. / ia
of the first k entries of each and every column of V must be non-zero, that is, the
following condition holds.

{Wji # 0V%i • A/ujt i ^ 0)A
(V j2 ¥$S/V%% $^0\A • ’\/Vk 2.5^0) A

(4.4)
• • 9.

{ v l n 9 ^ \ / v 2n^ \ / - ■ A /vkn¥Q)

Proof: Let 7 be an arbitrary conflict vector of mapping matrix j . If T is conflict-
free, then 7 is feasible and it has at least two non-zero entries 7 ,-̂ O and 7y#0.
Next, it is shown that 7 has two non-zero entries if and only if Equation 4.4 holds.
(< —). Suppose that 7 has only one non-zero entry, then 7 s= [(), ..., 0, I, 0, ...,
0]A By assumption, P — P7 — Vi, the ith column of matrix V. According to
Equation 4.4, there exists a non-zero element u,,6 {wlt-, ..., vki] which means A/-/0,
1</<A:. This is contrary to Theorem 4.2 (I) that Pi-O, I-1 , ..., k. Therefore, 7
has at least two non-zero entries.
(==>), Suppose there exists a column V{ of matrix V whose first k entries are all
zero, then Vi -m [0, ..., 0, ..., wm]T. Let P=Vi. Because the first k entries of
Vi are zero, ///?=0 and 7= is a conflict vector of mapping matrix T. However,
7= F - 1wj- = [0, ..., 0, I, 0, ..., 0}T whose entries are all zero except that the ith
entry is unity. So, mapping matrix T has a conflict vector with only one non-zero
entry which is contrary to the assumption. This means Equation 4.4 holds. □

Theorem 4.4 (Necessary condition 3): If mapping matrix T is feasible, then
Uk+ i , ..., un are feasible conflict vectors.

Proof: Mapping matrix T is feasible implies that all conflict vectors 7 of T are
feasible. Such a conflict vector 7 is represented by Equation 4.3 where Pk+u •••> Pn
are arbitrary integers which are relatively prime and not all zero. Let A be a vec­
tor whose entries are all zero except that the ith entry, k+l<i<n, is unity. Then
the corresponding conflict vector 7 — Ui , i=k +1, ..., n. Therefore, Ui is a conflict
vector and must be feasible because T is feasible by assumption. □

Theorem 4.5 (Sufficient condition 4): Mapping matrix T is conflict-free if the
following conditions are met. (I)

(I) There exist i 1} ..., z*n_*G{l, n} such that

(2) det

gcd(uiuk+l) uiuk+2 , ..., uiun)>iJ,ii

9cd(uiu k.{ l, U^'k+2, u«2,n)>M«2

ficd(Ui„ t,k I I * u«, *,k+2) • • •> uIn *, n)>/xi,
' V ' . ' / V. " . . . '

«»!,*+1 uiuk+2 ••• Wt1, n

ui2,k+l ui2,k-\-2 ••• Wt2, n

Uin-k)k+2 ••• Win_kln

Proof: Let 7 be an arbitrary conflict vector of mapping matrix T represented by
Equation 4.3 where P k + \ , •••> P n are arbitrary integers which are not all zero and
relatively prime. Because

det

and P k + \ , ..., P n are not all zero, there exists ..., such that

Wj1VfcH-I Wj f̂cn-2 ••• « ii,n

U«a,fc+1 Wj2, fc+2 ••• UH,n

Wjn_t,fc+1 Wj,_t,fc+2 — U'n-t, n

ui , k + l r ui,k+2’ ui,n

P k+ 1
Pk+ 2

=Ii '¥=- 0 . (4.5)

According fco condition (l), gcd(uik+i, ..., u,• „) = « ,>/z,-fl. If | 7 ,-1 </^,+1, then
&i does not divide 7 ,- which means, according to [27], Equation 4.5 has no integral
solution a n d p k + 1 , . . . , P n are not all integral. Thus 7 is not integral and not a
conflict vector. Therefore, it must be 17 ,-1 >/./,,+I. By Definition 2.3 and
Tlieorern 2.2, 7 is feasible and T is conflict-free. □

T heorem 4.6 (Sufficient condition 5 for Mapping matrix
2'£<£(n -2Ln js conflict-free if the following conditions are met.
(1) There exists i £ { l , ..., n}such that
(2) Let P n ^ l and P n be relatively prime integers, not both zero and such that
P n - i w { ,„ -i + P n U in=O , there exists i £ { l , n}, y # i , such that | P n ^ i % n - i + '

Pn uj, n I Mj •

Proof: Consider all integral values for Pn^ i and P n which are not both zero, rela­
tively prime and Pn- i n!jn_i + PnUi n^O. Let the corresponding conflict vectors be
7 . Because 7 ,-̂ O and jcd(ut- n_ ly Uj>n)==a;t->/u,-+l, I 7» I >Mj+l- Otherwise, a, does

notdl'vMte 7 ̂and! equation: @'n_j»Uj, +• P~m%M — 7 ,v has.no integral solution [27.].
TlersefiOirejf filar- these: va-hies, off /Jjl,_E and! 0n,r tie? corresponding; conflict:. vectors-; are
IIeasiMte;, Mtew-? let’s:- coaBidfer tie: integral values; fitaiir /IjtwJ, and; 0.n, whicht are: not
Btotli zero?) EelktmeliF pTiteerandr^s-ii^jjn.-i: + PnUin=Q. For tie ' GterEesgondiag:
conflict -Weeteir %■ IeeanBK there exists- /€ { l',, n:}’,. jZ ir. such that)t/%-®«jy.n,_ij -F-
@n,wjhn> I! >/4j> I ! % 1 is- greater than /iy, and! 7 is. HasiMteu Therefore, mapping
mateik T'ik GOiallidl-ffiteejftexsanse; alii ofi itss Gonfl&tt-weGferm are HasiMe., □=

Theorem? 4.7? (,Necessary and sufficient condition. 6 for T£if(ri~2h n)y Map­
ping matrix. T1£Zin~2̂xn is conflict-free if and only if t ie following conditions are
met...
(1) ; There* exists ■ n}; such that Uljn-Jfttjin^O and |] «t*. + Uj-; „ |:
(2) ; There exists- y£ |ls, .r a * } such, that Uyj n_ j-Uyn^O1 and I uy n-J-Uyin | >jUy.
(U): un._i and un are HasiMe conflict vectors.

Proof:; Because T£Z^n ^ <n, its conflict vectors are described by Equation 4.3
where 2|, P n - \ . and? Pn are arbitrary integers that are not both zero and rela­
tively prime.
(<==): Suppose conditions (I), (2) and (3) are met. Let’s consider the case where
one of Pn- 1. and /?„ is zero; Then the corresponding- conflict vector 7 equals either
un- j or un and is feasible in either case because of condition (3). Let’s consider
the second case where. /9n_j >d) and PnZQ have the same sign and the correspond­
ing conflict vector 7 . By condition (I), there exists *£{l, ..., n} such that Ujj n_j,
Uj n have the same sign and | uj n_j + Ujj„ | >/ij. Because un_j has the same sign
as un and! p n,~i has the same value as, P n, 17 j | = \ P n - i ui , n - i + P n ui,n I
= I + I Ai«t> I > K > -1 + «i;n |?>Mr Therefore, 71s Hasible. Now
let’s consider the third case where P n^ iZ Q and P nZQ have opposite signs and the
corresponding conflict vector 7 . According to condition (2), there exists j€{ l,
n) such thal- UjynwJ,,- Uyjn have opposite signs and |[uy.n._j—uJjn | >/ty. Because
P n - I and /?„. halve? different signs,, j 7y | =- j /Sjl- j Uyj nw j ZPn Uj: n |
> | ujtn-i'~uj,n I? ^Pj- Therefore, 7 is feasiMe.
(= >): Suppose T Is conflict-free and therefore all its conflict vectors are feasible.
Suppose conditions I in. Theorem- 4i7 does not hold; Thus, there does not exist
iE jl, . . . , such-that UjjnwJ,. Ujjfv have the same sign and I, Ojin-J + Uifti | > /7 .
Let /3n-J==L andi^ = I and: consider the eonflict vector 7 = /3n_jun_j -|- 8nun --
Un-J-I-Un. Because condition (l) : does not hold, 17j | <jUj, t = l , ..., n which means
7 is not feasiMe and T is not conflict-free. Similarly, it can be shown that condi­
tion 2 holds. By Theorem 4.4, condition 3 holds. □

Theorem 4,7 provides necessary and sufficient, conditions for mapping
matrices T E Z n̂~2)xn which can be applied to map 5-dimensional algorithms into
2-dimensional processor arrays and can- be used to handle most frequently

occurring mappings in RAB [26| such as the mappings of a bit level matrix multi­
plication algorithm and a bit level LU decomposition algorithm. The reasoning
used in Theorem 4.7 can also be used to derive similar necessary and sufficient
conditions for mapping matrices T£Z^n~^xn, TEZ^n~^xn and so on. These condi­
tions are stated as follows for mapping matrices TEi^w~3)xn without proofs, which
is similar as the proof of Theorem 4.7.

Theorem 4.8 (Necessary and sufficient condition 7 for T G ^” 3̂ "): Let
the sign of the number zero be defined as either positive or negative. Then map­
ping matrix TGif(n~3)xn is conflict-free if and only if the following conditions are
met.
(1) There exists *Tg{1, ..., n} such that Ullj n_2» uti,n-i and U1Ijn have the same
sign and I ulljn_2 + Ullj^ 1 + Ulljft I > m, i -
(2) There exists «2G{1, ...» n} such that ut2jn_2 and Ul2 n-X have the same sign
and Ut2jft has an opposite sign from ul2 ft_2 and ul2 ft_1. Also, | ut2 ft_2 +
ui 2 , n - \ ~ ui2,n I
(3) There exists t3G{l, ...» n} such that ul3jft_2 and Ul3jft have the same sign and
ut3 J1-X has an opposite sign from ut-3jft_2 and ul3 ft. Also, | W3, »~2_ ,i-i "-F
u »3,n I > /F 3 -
(4) There exists i4G{l, ..., ft} such that Ut4 n-X and Ul4 ft have the same sign and
Ut4jn_2 has an opposite sign from ut-4 ft_x and ut4jft. Also, | — ut4jft_2 + ut4jft_x +
u t4 ,n I > ^ « 4 -
(5) un_2, Un-X and Uft are feasible conflict vectors. □

From the discussion above, it is clear that the multiplier matrix U is involved
in most of the necessary and sufficient conditions for conflict-free mappings and
the key point is to have matrix U satisfy certain conditions in order to make the
mapping matrix T conflict-free. Given a mapping matrix T in numbers, there are
several numerical methods to compute matrix U in polynomial time [20]. When
the entries of T are symbols (variables), computing matrix U becomes more
difficult. However, when the space mapping matrix S is known, it is possible to
express matrix U as a function of II. Proposition 8.1 in the appendix computes
matrix 17 as a function of II for the mapping matrix T G ^ x5.

5. TIME-OPTIMAL CONFLICT-FREE MAPPINGS
Solutions to Problem 2.1 have been discussed in the above sections. In this

section, Problem 2.2 and its solutions are discussed: that is, how to find the
optimal vector II0 which contributes a conflict-free mapping matrix T and satisfies
some other constraints. Two approaches are proposed, one of which is an intelli­
gent search of the solution space by employing the basic strategy in [ll] and the
other is to formulate Problem 2.2 as an integer programming problem where the
solution can be obtained by using existing standard algorithms for integer pro­
gramming problems. I

By Theorem 2.1, the total execution time increases monotonically with the
sum of the weighted absolute values of entries of vector II. Therefore, to find the
solution of Problem 2.2, one simple way is to modify the method in [11] where
candidates are enumerated in an increasing order of their total execution times.
In the modified method, besides other considerations, each candidate should be
checked to see if it contributes a conflict-free mapping. This method is described
in the following procedure.

Procedure 5.1 (Finding optimal II0 of Problem 2.2):
Input: Algorithm (/, D) and the space mapping SEZ^k
Output: An integral row vector II0 which is the solution of Problem 2.2.
Step I: Set /= 1. CQ= 0

20 :+’;

Step

Step 3:

Step 4:

Step 5:

2: Construct a candidate set C/={1I: I Ki I A h '^x /€ A rl }.
• «=l

C=C1 - QfIC/-!. Let I C I =c.
Sort and assign indices to all candidates in C such th a t ' £(II,-). < t (Hy),
0< 2< j<c, where I(II) is the function described in Equation 2.7.
Set i = l.

Consider candidate Il,-; set T t

conditions

S
n , and check if 11,- meets the following

(1) IlD >0. -
(2) Tank(Tt)=L
(3) T t is conflict free. If T’£i?(n_1)xn, test the condition in Theorem 3.1;
if r e £ (n~2)xn, check the conditions in Theorem 4.7; if r ' e £ (B“3)yB,
check the conditions in Theorem 4.8 and otherwise, check the conditions
in Theorem 4.5.

J _ _
(4) . SD -P K and JT] 'Is# < II d,-, i= I, ..., m. where P and K are as

• 3-1.
defined in Definition 2.2.

Step 5: If 11,- meets all the three conditions above, then I l0=II, and stop. If IT1-
does not meet any one of the conditions above, ignore this candidate, set
2= 2+ 1.

Step 7: If i>c, set 1=1+1, %=£/+o;, CkGIV+ and go to Step 2. If i<c, go to Step
5.

Clearly, for mapping matrices T G ^n_1 >̂n, T£Z^n~2̂xn and T G ^n '3̂ xn, Pro­
cedure 5.1 finds the optimal solution because in Step 5 (3) it uses the necessary
and sufficient conditions in Theorems 3.1, 4.7 and 4.8. An upper bound on the
computational complexity of this procedure is 0 (ra2/i+1) where /i=min{/x,-:
2= 1, » . } . This is because the search starts at II=O and the possible values for
7r,-, 2= 1, ..., n are 0, + 1, ..., Obviously, the candidate II where the absolute

values of 7T,-, 2= 1, n, are small does not contribute a conflict-free mapping. So
more sophisticated methods of finding the solution of Problem 2.2 may be possi­
ble. In general, together with Theorem 2.1, these necessary and sufficient condi­
tions described in Theorems 3.1, 4.5, 4.6, 4.7 and 4.8, depending on the dimension
of the mapping matrix T, should be used to guide the solution search which is
under investigation. Usually, Procedure 5.1 is the last choice for finding the
optimal solution. In the following, a much more preferable approach, integer
linear programming approach is discussed.

For the mapping matrix TEZ^n~^xn, Problem 2.2 can be formulated as an
integer programming problem as follows.

min /= I Tri I Hi (5.1)

• 21.

subject to

(1) IJD>0

(2) SD =PK and ,kjj < II d,, 2= 1, ..., m

(3) — * I /«(*1 , • - - , TTn) I >£l*
(4) U e z lxn ■ .r-'y-

(5.2)

where 'T* , S and P are given and /,-, 2= 1, ..., n are as defined in Equation 3.2.

The last two constraints required by Definition 2.2 are included implicitly in (5.2)
because by Theorems 2.2 and 3.1 they are implied by constraint 3 in (5.2). Also,
constraint 2 is not required if a new processor array is designed specially for the
algorithm. By Proposition 3.2, constraint 3 in (5.2) is linear. So the formulation
in (5.1) and (5.2) is an integer linear programming problem if, as in Examples 5.1
and 5.2, constraint I in (5.2) requires that 7T,->0, 2*=1, ..., n. Actually, this integer
linear programming problem can be further converted to a linear programming
problem for some applications as indicated by Examples 5.1 and 5.2. As a matter
of fact, if 7rt-, 2=1, ..., n are required to be positive (usually by constraint I in
(5.2)) and all entries of dependence matrix D and space mapping matrix S take
values 0 ,1 or — I, i.e., s„ I, 0, l}, 2= 1, ..., n and /=1 , ..., m, then the
integer programming problem defined by (5.1) and (5.2) can always be converted
to several linear programming problems. This is because in this case, the objective
function is linear, the coefficients of TTi, 2= 1, ..., n, in the constraints of the integer
linear programming problem in (5.1) and (5.2) are I, 0 or —I, and therefore all
extreme points of the solution sets are integral. 1

The general integer programming problem is NP-complete [29, pp. 245].
However, for each fixed natural number n, there exists a polynomial time algo­
rithm which solves the integer linear programming problem [29, pp. 259]. This
algorithm is a polynomial function of the number of constraints of the integer

Mneaf programming problem and a logarithmic function of the problem size vari­
ables /Uf-, »=1, ..., n. Many existing standard algorithms can be used to solve the
formulation in (5.1) and (5.2) efficiently because in practice, the number of con­
straints and the algorithm dimension n are not large.

Example 5.1: Consider the matrix multiplication algorithm in Example 3.1
Where the space mapping matrix is given as £=[!,. I, —I]. The dependence matrix
D and index set J are shown in Equation 3.4. To satisfy condition I in Equation
5.2, each entry of the linear schedule vector Tl must be positive or TT,->l, f= l, ...,
3. Therefore, the problem of finding an optimal linear schedule vector for the
matrix multiplication algorithm is formulated as an integer linear programming
problem:

min / =M(TTjd-TT2H-Tr3)

(l) Trt> l, i - 1 , 2 , 3
(5.3)

subject to ■
(2) SD=PK and £ < II dh i= l, ..., 3

-;= 1 '
(3) Tr2+Tr3 >£<+!, or Tr1-FTr3^ -M , or | Tr1 -TT2 | >p+l

(4) IleZ 1x3

where the inequalities in Constraint 3 are derived in Example 3.1 and shown in
Equation 3.5. As indicated in the appendix, this problem can be converted to
three linear programming problems because all extreme points of the convex solu­
tion space are integral. In the appendix, techniques for solving linear program­
ming problems are Used to find the optimal solution. If the problem size variable
/x=4, then the optimal solution of this algorithm is either 112 = [1,11, l]=[l, 4, 1] or
II3 =[p, I, I]. The derivation of the solution is shown in the appendix. Let’s choose
H0=II2 = [I, p, I]. The total execution time is t=ii(2+fi)+l according to Equation
2.7. The matrix of interconnection primitives is P= S= [l, I, —1] and K=I, the
identity^matrix. Figure 2 shows the block diagram of the linear array and Figure 3
shows the execution of the matrix multiplication algorithm by mapping matrix

T
I I - I

I 4 I
Computation c; i y2=ayiil3'6;-3)y2 indexed by j= [ji, j 2, j 3]T is exe­

cuted at processor S j and at time H,;'. Clearly, there are no computational
conflicts. Also, as shown in Figure 3 and explained in the appendix, there is no
link collision either which means no two data use the same link at the same time.
A3 shown in Figure 2, three data links are used, one for data A traveling from left
to right, one for data B traveling from left to right and one for data C traveling
from right to left. Three buffers are needed for each processing element on the
link for data A or for dependence vector d2. E

HZHZHZH—
PR

H=H=I-O
B̂

PT?I U?
C

■ ' ; : .

Figure 2: Block diagram of the linear array for the matrix multiplication algorithm. Data A and
B travel from left to right and Data C travel from right to left. Three buffers are needed in data
link for A .

I

20

19

18

17

16

15

14
:

13

12

11

10

9

8

7

6

5

4

3

2

I

0

I !4e04

4c 14

I6S3e04

|§||4c23

4cl3

4c03

4cl2

2§42

!Si

W4c01

Mt
4c02

m
Oa.03in

Pl3cl3

Mt4c32

IgI2c03

2§32
3c22

3cl2 4c41

sets m m3c02 4c31 2cl2

If I i ill!4c21 2c02 3c31

IgIH gI3c21 lc02

M M : M fSell 4c40 2c21

4c22

2§32

m i |§ | | | § |3cl4 4c43 2c24

3§43 4§24 3§33 f§14
4c33 2el4 3c43 le24m M l m2c04 3c33 lc l4 2c43mm m M3c23 lc04 2c33 Qcll

4el2 2c23 0c04 lc33

Ml Mf leg
2cl3 3c42 lc23

M l sell m i m
3c32 lc l3 2c42 0c23

Mi Ml M Ml
lc03 2c32 0cl3 lc42

I l K m i
2c22 0c03 lc32

Ii3c41 lc22 0c32

■Mi Mf Mlc l2 2c41 0c22

4a40
IbOl
0c41

Ml «lc34 0c44

«
0c34

M0c24

IgIIlc43

|§03
0c43Iff0c33

2c34 lc44

0c42

4c20
OaO 2
1621
2c01

8§IB
3c30

I a ll
I b ll
I c ll

OaOO 3a31
2b02 Ib ll
0c02 lc31
2a21
Ib ll
le21

klil i£oi
2c40 0c21

OgIo0 2a23 OaOl 3a32&e i n m ifQell
kih
lc4Q

W
4c00 M l i Lf mle30

kfo Bsio »
3c00

m
2cl0 lc20

0c20

0c30

.M JSffi
IcOO 8§8S

OclO

OcOO

PE-4 PE-3 PE-2 PE-I PEO PE l PE2 PE3

3a30
IbOl
0c31

a
)c40

Figure 3: The execution of matrix multiplication algorithm. The small block
with the left most column being [/,, j2, h iT corresponds to the computation ciU2
== ajijz'bjzjz which is executed at processor and at time ji+ih+h-

In [23], with the same space mapping matrix S, the linear schedule vector
11'=[2, I, fi] is used and the corresponding conflict vector is 7=[—(ju-f I), 2+m 1]T.
When //=3, H' is the optimal solution. However, when /i=4, it is not. When /i=4,
the total execution time by H' is which is longer than the optimal

■3 ' _
linear schedule II0. Also, the number of buffers is J](II 'd—I) = 4. The systolic

' i= 1
array designed in this paper only needs three buffers on data link for data A or
dependence vector d2.

Exam ple 5.2: Consider the transitive closure algorithm in Example 3.2 where the
space mapping matrix is given as <S=[0, 0, I]. The dependence matrix D and index
set / are shown in Equation 3.6. To satisfy condition I in Equation 5.2, it must
have tt2> 0, tt3>0 and Tr1- tt2> 0 or TT1Mr2M). This means each entry of the linear
schedule vector Il must be positive. Therefore, the problem of finding an optimal
linear schedule vector for the transitive closure algorithm is formulated as an
integer linear programming problem:

min / =/j.(7Tj H-7t2)
(■ ' (5.4)

(I) 7T,>1, 1=2, 3, TT1-TT2-TT3M ,
TT1-TT2M , TTi -TT3M

subject to - (2) SD =PK and]T] kj, < II d,, t — I, ..., 3
/■-

(3) tt2>/U+1, or TT1^ d - I

(4) IlGif1x3

where constraint 3 is derived in Example 3.2 and, shown in Equation 3.7. Again,
as indicated in the appendix, this problem can be formulated as two linear pro­
gramming problems. The optimal solution of this algorithm is IT°=[/U-fl, I, l]
when p>2. The derivation of the solution is shown in the appendix. The total
execution time is i=/t(3+/T-)+l according to Equation 2.7. As mentioned in Sec­
tion I, the solution found by the heuristic procedure in [22] is Jl,=[2fi+ly I, 1]
(notice that the lower and upper bounds for index points are I and n in [22] and
therefore, fu=n—l in [22]) and the total execution time is i'=yu(2^-f3)+l which is
much longer than for II0. The matrix of interconnection primitives is
P=SD=[l, 0, —1, 0, —1] and K=I, the identity matrix. Clearly, there are no com­

putational conflicts because the conflict vector of the mapping matrix ^ ^ *
/M T I I

is 7=[l, —(pt+l), 0]1 which is feasible according to Theorem 2.2. Also, as explained
in the appendix, there is no link collision either which means no two data use the
same link at the same time. □

Problem 2.2 can be formulated as an integer programming problem in gen­
eral if the multipier matrix U can be expressed as a function of IT. Proposition 8.1
in the appendix expresses matrix U as a function of JI for the mapping matrix
TEZ3x5. Therefore, Problem 2.2 can be formulated as an integer programming
problem as follows by using the necessary and sufficient condition in Theorem 4.7.

n
min /= Y1 I TTj I IM (5.5)

• I =̂l

(1) WD>0 ,
(2) rank{T)=k

subject to

(3) ..., 5} I Ut4-Hit5 I >IM,

(4) i / € { I , v ,, 5 } I U/4-Ui5 J >(j,h

• (5) . , . , 5} I Ufl4 \ > m \

(6) i / ' e { I , ..., 5} I Uyi5 I >Myi

W>4'Wt5>0

Um‘U/5<0

(7) SD=PK and g kj{ < D d{, i= l,
j - i

(s) i Ie z 1 5

(5.6)

where T Sn Clearly constraint 2 in (5.6) is linear because the determinant of T

is a linear function of 7r,-, *=1, ..., n. If it is required that TT1-> 0, 1=1, ..., n, the
objective function in Equation 5.5 is linear and the integer programming problem
in (5.5) and (5.6) can be transformed to be linear because the constraint ut4*ut5>0
can be replaced equivalently by {ut4, ut5>0 or Uy4, u,s<0} and so can the con­
straint u/4’U/5<0. Constraints 5 and 6 ensure U4 and U5 are feasible conflict vec­
tors as required by Theorem 4.7. Again, instead of mapping the algorithm into a
target machine with fixed interconnections, if a new processor array is designed
specially for that algorithm, constraint 7 can be removed as illustrated in Exam­
ples 5.1 and 5.2. This formulation is being used to find the optimal design of a 2-
dimensional bit level processor array for the bit level matrix multiplication algo­
rithm and the results will be reported in a separate paper due to limited space.

6. CONCLUSIONS AND FUTURE WORK
The main contributions of this paper are first, the necessary and sufficient

conditions for computational conflict-free mappings, and second, the optimization
procedure and the integer programming problem formulation of finding optimal
solutions to map algorithms with n nested loops into lower dimensional processor
arrays. Without these necessary and sufficient conditions for conflict-free map­
pings, the integer programming formulation is impossible, and even the optimiza­
tion procedure has to enumerate all index points of the algorithm to see if there is
a computational conflict. These techniques can be applied to map algorithms with

n nested loops into linear or 2-dimensional processor arrays with the total execu­
tion time minimized; they are especially useful for programming bit level processor
arrays such that the total execution time is minimized.

Future -work includes consideration of the number of buffers and length of
wires required by the mappings and investigation of the following two problems.

25

Problem 6.1 (Space-optim al and conflict-free m apping problem): Given
an n-dimensional uniform dependence algorithm and a linear schedule vector, find

a space mapping matrix SEZ^k 1̂xn such that T= is conflict-free and the

number of processors plus the wire length of the array is minimized.

P roblem 6.2 (O ptim al conflict-free m apping problem): Given an n-
dimensional uniform dependence algorithm and a (&—l)-dimensional processor
array, find a conflict-free mapping matrix TEZkxn such that a certain criterion is
optimized.

In general, in Problem 2.2, space mapping matrix S is given and usually is
not a function of problem size variables /q- t= l, ..., n; in Problem 6.1, linear
schedule vector II is given, possibly by the optimization procedure proposed in
[16], and usually is not a function of problem size variables; and in Problem 6.2,
both S and II are not given and possibly are both functions of problem size vari­
ables.

7. REFERENCES:
[1] R.M. Karp, R.E. Miller and S. Winograd, "The Organization of Computa­

tions for Uniform Recurrence Equations," JACM 14, 3, Jul. 1967, pp. 563-
;

[2] D.I. Moldovan and J.A.B. Fortes, ’Partitioning and Mapping Algorithms into
Fixed Size Systolic Arrays," IEEE Trans. Computers, Yol. C-35, No. I, Jan.
1986, pp. 1-12.

[3] P.R. Cappello and K. Steiglitz, "Unifying VLSI Array Designs with Geometric
Transformations," Proc. of 1983 Int’l Conf on Parallel Processing, pp. 448-

: 457. ,
[4] P. Quinton, "Automatic Synthesis of Systolic Arrays from Uniform Recurrent

Equations," Proc. I l ’th Annual Symposium on Computer Architecture, 1984,
pp. 208-214. ■■'■■■

[5] S.K. Rao, "Regular Iterative Algorithms and Their Implementations on P ro-
cessor Arrays," Ph.D Dissertation, Stanford University, Stanford, California,7/ Oct. 1985.

[6] M. Chen, "A Design Methodology for Synthesizing Parallel Algorithms and
Architectures," Journal of Parallel and Distributed Computing, Dec. 1986,
pp. 461-491.

[7] J.-M. Delosme and I. C. F. Ipsen, "An Illustration of a Methodology for the
Construction of Efficient Systolic Architectures in VLSI," P roc. Second In t’l
Symposium on VLSI Technology, Systems and Applications, 1985, pp. 268-
273. .

[8] S. Y. Kung, "VLSI Array Processors," Prentice-Hall, Englewood Cliffs, N.J.
1987.

[9] C. Guerra and R. Melhem, "Synthesizing Non-Uniform Systolic Designs,"
Proc. 1986 Int’l Conf. on Parallel Processing, pp. 765- 771.

[10] G.-J. Li and B. W. Wah, "The Design of Optimal Systolic Arrays," IEEE
Trans. Computers, Vol. C-34, Jan. 1985, pp. 66-77.

[111 M.T. O’Keefe and J.A.B. Fortes, "A Comparative Study of Two Systematic
Design Methodologies for Systolic Arrays," Proc. 1986 Int’l Conf. on Parallel
Processing, pp. 672-675,

[12] J.A.B. Fortes, F. Parisi-Presicee "Optimal Linear Schedule for the Parallel
Execution of Algorithms," Proc. of 1984 Int’l Conf. on Parallel Processing,
pp. 322-328.

[13] L. Lamport, "The Parallel Execution of DO loops," Comm, of the ACM, Vol.
17, No. 2, Feb. 1974, pp. 83-93.

[14] J.-K. Peir and R. Cytron, 'Minimum Distance: A Method for Partitioning
Recurrences for Multiprocessors," Proc. 1987 Int’l Conf. on Parallel Process­
ing, pp. 217-225.

[15] V.P. Roychowdhury and T. Kailath, "Subspace Scheduling and Parallel
Implementation of Non-Systolic Regular Iterative Algorithms," Journal of
VLSI Signal Processing, I, 1989.

[16] W. Shang and J.A.B. Fortes, "Time Optimal Linear Schedules for Algorithms
with Uniform Dependencies," Proceedings of Int’l Conf. on Systolic Arrays,
May 1988, pp. 393-402 (also to appear in IEEE Trans, on Computers).

[17] S. Y. Kung, S. C. Lo and P. S. Lewis, "Optimal Systolic Design for the Tran­
sitive Closure and the Shortest Path Problems," IEEE Trans, on Computer,
Vol. C-36, May 1987, pp. 603-614.

[18] G. Strang, 'Linear Algebra and its Applications," Second Edition, Academic
Press 1980.

[19] R. Cytron, "Doacross: Beyond Vectorization for Multiprocessors (Extended
Abstract)," Proc. of 1986 Int’l Conf. on Parallel Processing, pp. 836-844.

[20] R. Kannan and A, Bachem, "Polynomial Algorithms for Computing the
Smith and Hermite Normal Forms of an Integer Matrix," SIAM J. on Com­
puting, Vol. 8, No. 4, Nov. 1979, pp. 499-507.

[21] ll.T. Kung and C.E. Leiserson, "Algorithms for VLSI Array Processors," in C.
Mead and L. Conway, "Introduction to VLSI Systems," Addison-Wesley,
1980, Section 8.3.

[22] P. Lee and Z. M. Kedem, 'Mapping Nested Loop Algorithms into Multidi­
mensional Systolic Arrays," IEEE Trans, on Parallel and Distributed Systems,
Vol. I, No. I January, 1990, pp. 64-76.

26

27

[23] P. Lee and Z. M. Kedem, "Synthesizing Linear Array AJgorithms from Nested
For Loop Algorithms," IEEE Trans, on Computers, Vol. 37, No. 12,
December 1988, pp. 1578-1598.

[24] D. A. Padua, "Multiprocessors: Discussion of Theoretical and Practical Prob­
lems," Ph.D Thesis, Univ. of Illinois at Urb.-Champ., Rept. No. UIUCDCS-
R-79-990, Nov. 1979,

[25] Y. Wong and J.-M. Delosme, "Optimal Systolic Implementation of N-
diinensional Recurrences," IEEE Proc. ICCD, 1985, pp. 618-62L

[26] V.E. Taylor and J.A.B. Fortes, "Using RAB to Map Algorithms into Bit-level
Systolic Arrays," Proc. of Int’l Conf. on Supercomputing, May 1987.

[27] L.J. Mordell, Diophantine Equations, Academic Press, New York, 1969, pp.
30. . ■

[28] M.T. O’Keefe and J.A.B. Fortes, "Bit Level Processor Array: Current Archi­
tectures and a Design and a Programming Tool," 1988 Int’l Symposium on
Circuit and System, Helsinki, Finland, June 1988, pp. 2751-2755.

[29] A. Schrijver, "Theory of Linear and Integer Programming," John Wiley &
Sons, 1986.

[30] W. Shang, "Scheduling, Partitioning and Mapping of Uniform Dependence
Algorithms on Processor Arrays," Ph.D Thesis, Purdue University, W. Lafay­
ette, IN 47907, May, 1990.

[31] W.D. Hillis, "The Connection Machine," MIT Press: Cambidge, MA, 1985.
[32] Moldovan, D. I., "On the Design of Algorithms for VLSI Systolic Arrays,"

Proc. of IEEE, Vol. 71, No. I, Jan. 1983, pp. 113-120.
[33] R. Davis and D. Thomas, "Systolic Array Chip Matches the Pace of High-

Speed Processing," Electronic Design, Oct. 31, 1984.
[34] R.W. Hockney and C.R. Jesshope, "Parallel Computers: Architecture, Pro­

gramming and Algorithms," Adam Hilger Ltd.: Bristol, 1981, pp. 178-192.
[35] K.E. Batcher, "Bit-Serial Parallel Processing Systems," IEEE Trans, on Com­

puters, Vol. C-31, No. 5, pp. 377-384.

8. APPENDIX
Discussion of Exam ple 5.1: Let’s design a new linear systolic array for the
matrix multiplication algorithm. Thus, constraint 2 in Equation 5.3 can be
ignored at this moment. For an integer linear programming problem with convex
solution set, if all of its extreme points are integral, then one of the extreme points
is the optimal solution of that problem [29, pp. 232]. Now the solution set of the
integer programming problem in Equation 5.3 is not convex because of constraint
3 although all extreme points are integral. One way to solve this problem is to
partition the solution set as three convex subsets and then to find all optimal solu­
tions for all the solution subsets. If the one with the smallest value of the objec­
tive function is satisfactory, then it is the optimal solution of the integer program­
ming problem in Equation 5.3.

28

Now let’s partition the solution set of the integer programming problem in
Equation 5.3 as three subsets which are expressed as follows.

(J) min / =^(7ri+7r2+7r3)

(I) * i> l, i = l , '2, 3 ;| '

s u b j e c t to (2) ^ 2 + % ^ + !
(3) J ie ^ 1x3 ..

(JJ) min / =p(xi +7r2+7r3)
■ (. : it ' ' (8.1)

(I) Tr,->1, * - l , 2 , 3 I
s u b j e c t to ■ (2) 7Tj+7r3 > / i + l

(3) I l G ^ 1' 3
(JJJ) min / =^(^1+^2+%) i|

................... ' ■■' ' ' ■ v ' ■ ■ .'I) ' ■ ;
(I) 7Tt > l , 1 = 1 , 2 , 3

s u b j e c t to -1 (2) I TT1—7T2 I > J t + l
(3) I ie z 1x3

Each of the above problems is an integer linear programming problem with a con­
vex solution set. Because the coefficients of 7r,-, t= l, ..., 3, in these inequalities are
either I, 0 or —I, every extreme point of the convex set is integral and one of the
extreme points is the optimal solution of that problem. Let’s first consider Formu­
lation I in Equation 8.1; the convex solution set is defined by {II=[7r1, 7r2, Tr3]:
7Ti>l, 7T2>1, 7r3> l, Tr2-t-7r3>/x+l}. Each extreme point is the solution of three of
the following four equations: Tr1= I, tt2=1, Tr3=I and Tr2-I-Tr3 =/^4-1. There are two
such extreme points TI1 =[1,1, /i] and IT2 =[l, p, I]. II1 is not feasible because the
corresponding conflict vector [1,1, 0]T is not feasible. When p is an even number,
II2 is feasible and the corresponding conflict vector is [—(/i+1), 2, (1—/t)]T. Simi­
larly, the extreme points for the other two integer linear programming problems in
Equation 8.1 are II3=[/u, I, l]> n4=[l, p+2, 1] and Tl5 =[p+2, I, I]. Vectors
n 2=[l, M, 1] anfI II3=[/v l, l] have the same execution time and are the optimal
solutions.

One more constraint gcd(fi, ...,/„)=I, where Ji, *=1, ..., n are as defined in
Equation 3.2, should be added to the formulation described by (5.1) and (5.2) to
guarantee the greatest common divisor of the resulting conflict vector is unity.
However, this makes the problem more difficult to solve. Hence, this constraint is
ignored and the resulting conflict vector is checked to see if it is feasible. This is
why II1 has a non-feasible conflict vector.

Let’s design the linear systolic array for mapping matrix T=

. If P ~ \I, I, —1] is chosen as the matrix of interconnection primitives

29

and K = I (the identity matrix), then SD=PK1 S &/i=H A1 —I,
. . ; /=1 ; .

EI d3= I and constraint 2 in Equation 5.3 is
3 ■ ' -3
S kj2=l< U J 2=IX=A1 Y kjz1
y-1 ■ . ' / “1_ 3 •/ :r :;V
satisfied. Because I ld2—Y kj2 =3 > three buffers are needed on the data link for

. ' y=i
d2 induced by data A. The systolic structure and the execution are shown in Fig­
ures 2 and 3, respectively. Notice that there is no data link collision because in
every column of matrix K there is only one non-zero entry Ica=I1 «=1, ..., 3. This
means that when data pass from the source to the destination, they use the data
link just once. Data link collisions occur only if data use links more than once
when passing from the source to the destination.

Discussion of Exam ple 5.2: Similarly, the integer programming problem in
(5.4) can be converted to the following two integer linear programming problems.

(I) min J=Ix(Tr1ATr2ATr2)

Subject to >1

(1) Ki>h *=2, 3, Tr1-Tr2-Tr2^ l 1
TTi — -JTfy A I . JT1 -

(2) Tr2AfxAl

(3) Tiez1x2

(8 .2)

(II) m in / = ^ tt1+ 7r2+7r3)

(1) 7Tv>l, * =2, 3, TT1-Tr2-TT2A l1
TTi-Tr2A l1 T T 1 - T T 2 A tA

(2) TT1AfXAl
(3) Hez1x3

subject to •

Again, because all coefficients of TTt-, * =1, ..., 3, in these inequalities are either I, 0
or —1, all extreme points of the convex solution subsets are integral and tech­
niques for linear programming can be applied, which check all extreme points of
the solution subsets. One of the extreme points with the minimum value of the
objective function / is the optimal one. Let’s first consider Formulation II in
Equation 8.2; the convex solution set is defined by { l l = ^ , tt2i tt2\x TT2AX1 7T3>1,
'kI-TT2-TT2A I1 TT1-TT2A l1 TT1-TT2A I, TT1AfxAl]. Each extreme point is the solution
of three of the following six equations: 7T2=1, 7r3= l, TT1-TT2-TT2= I1 TT1-TT2= I1
kI - kZ - I1 TT1=IxAl. There are four such extreme points H1 =[yuH-l, I, 1],
n 2=[/«+l, l, fi—l], n 3=[/U+I, I, fx] and 114=[/H-I, fx—l, I]. When)U>2, all the
above linear schedule vectors satisfy constraint HDAO. The corresponding conflict
vectors, according to Equation 3.2, are 7 i= [l, —(//+I), 0]T, 72=[l, —(/H-l), 0]r ,

30

^s=Ilj -(AH-I)j 0]r and ;74=[/U—I, —(aH-1), 0]J . Vectors 7 ,-, i — I, 3, are feasible
and is feasible if (x is an even number. Similarly, the extreme points for integer
programming problem I in (8.2) can be found. The extreme point with the
minimum value of the objective function / is H0=II1Ii= [aH-1,1, 1] and the total
execution time by H1 is //(/H-3)+l according to Equation 2.7.

If the matrix of interconnection primitives P=SD = [l, 0, —1, 0, —1] is chosen
and K=I, the identity matrix, then constraint 2 in (3.4) is satisfied. Similar to the
design for the matrix multiplication algorithm, there is no data link collision
because in every column of matrix K there is only one non-zero entry ka=l, i= l,
..., 3. This means that when data pass from the source to the destination, they use
the data link just once. Data link collisions occur only if data use links more than
once when passing from the source to the destination.

Proposition 8.1: Let mapping matrix T-

muj

«ii
S 21

s 15
s25

where! f a , TT5Ie^ 1x5 and

GZ2x5. If Sn=I and s22—Sg1S ^= I, then the last two columns of

tiplier U are as follows:

3̂4
C13
c 23 , ^33

c 14
c24

S i
I
0
0

"T
91

0
I
0

Pl ̂ 3

(8.3a)

c 13 C14 c 15
C 23 91^35 C 24 , 01 c 25
I 0 + — 0
0 92 I 9 2 0
0 0 I

(8.3b)

where

^33“ —7rl(s12S2lSl3—S12S23+S13)-f7r2(s21S13—S2S)+^) (8.4a)

Ij34= - 7r1(si2S2iS14—Si2S24+Si4)+7r2(s2iSi4—S24)+7F4> . (8.4b)
^35=—7rI (s 12S21S15 — S12S25+S15)+7r2(s21S15— S25)+ ^ , (8.4c)

H s=- 'S12 (s 21 S1 3 S23)~ S13 (8.5a)
C14= = S 12(S 21S 14- S 24) - S 14 (8.5b)

C i s = - S l 2 (^ 2 l S l 5 " S 25) —S1S (8 -5 c)

c 23 =S21 s 13— S2S (8.5d)

c24=S2lSl4—s24 (8.5e)

C 25 =S 21S15 S 25 (8>̂ 0

31

(8 .6)

(8.7)

The proof can be found in Chapter 6 of [30]. Expression 8.3 is expected to be
much simpler if the space mapping S is given in numbers and some special condi­
tions are considered; therefore, it is easier to construct the multiplier U for the I
with a specific space mapping matrix.

gi=gcd(h3z, h34), Pi h3z+ q l hu = g 1

g2=gcd{gi , h35), p 2ffl+92*>35 =02•

	Purdue University
	Purdue e-Pubs
	4-1-1990

	Time-Optimal and Conflict-Free Mappings of Uniform Dependence Algorithms into Lower Dimensional Processor Arrays
	Weijia Shang
	Jose A. B. Fortes

	tmp.1542052450.pdf.0SnpA

