View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
4-1-1990

Time-Optimal and Contflict-Free Mappings of
Uniform Dependence Algorithms into Lower
Dimensional Processor Arrays

Weijia Shang
Purdue University, shaug@ecn.purdue.edu

Jose A. B. Fortes

Purdue University, fortes@ecn.purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Shang, Weijia and Fortes, Jose A. B., "Time-Optimal and Conflict-Free Mappings of Uniform Dependence Algorithms into Lower
Dimensional Processor Arrays"' (1990). Department of Electrical and Computer Engineering Technical Reports. Paper 717.
https://docs.lib.purdue.edu/ecetr/717

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://core.ac.uk/display/220146654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages

Time-Optimal and
Conflict-Free Mappings of
Uniform Dependence
“Algorithms into Lower
Dimensional Processor Arrays

Wéijia Shang
Jose A. B. Fortes

TR-EE 90-29
April 1990

School of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907

This research was supported in part by the National Science Foundation
under Grant DC1-8419745 and in part by the Innovative Science and
Technology Office of the Strategic Defense Initiative Organization and
was administered through the Office of Naval Research under contracts
No. 00014-85-k-0588 and No. 00014-88-k-0723.

~ TIME-OPTIMAL AND CONFLICT-FREE MAPPINGS OF
'~ UNIFORM DEPENDENCE ALGORITHMS
INTO LOWER DIMENSIONAL PROCESSOR ARRAYS

Wcma Shang and Jose A. B. Fortes o
School of Electrical Engineering
- Purdue University
- West Lafayette, IN 47907
shang@ecn purdue edu and fortes@ecn. purdue edu
(317) 494-3500 and (317) 494-3646

Key Words processor array; tlme-optlmal mapping; conﬂlct~free, nested loops,
: blt—level algorlthm

Abstract

‘Most, existing methods of mapping algorithms into processor arrays are res--

. tricted to the case where n-dimensional algorithms or algorithms with n nested :

loops are mapped ‘into (n—1)-dimensional arrays. However, in practlce, it is
interesting to map n—dlmensmnal algorithms into (k —1)-dimensional arrays where
k<n: For example, many algorlthms at bit-level are at least 4-dimensional (matrix
' multlphcatlon, ‘convolution, LU decomp051t10n, ete.) and most existing bit level
Processor arrays are 2-dimensional. A computational conﬁzct occurs if two or more.
computatlons of an algonthm are mapped into the same processor and the same
- execution tlme In this paper, necessary and sufficient conditions are. derived to
1dent1fy all mapplngs Wlthout computational conﬂlcts, based on the Hermite nor-
mal form of the mapping matrix. These conditions are used to propose methods
_of mapping any n-dimensional algorithm into (k—1)-dimensional arrays, k<n,
w1thout computational conflicts. When k>n—3 optlmahty of the mapping is
guaranteed '

!

This research- was supported in part by the National Science Foundation under Grant
DC1-8419745 and in part by the Innovative Science and Technology Office of the Strategic
Defense Initiative Organization and was administered through the Office of Naval
Research under contracts No. 00014-85-k-0588 and No. 00014-88-k-0723.. -

mailto:shaug@ecn.purdue.edu
mailto:fortes@ecn.purdue.edu

 List of Symbols

B: (n-1)x(n —~1) matrix; T'=[B, b]

b: (n—1)-entry column vector; T'=[B, b]
' D: dependence matrix; Deﬁmtlon 2.1

detB: determinant of matrix B.

d;: dependence (column) vector with n components; Definition 2.1 (4).
H: the Hermite normal form of mappmg matrix 7 Theorem 4.1.

L identity matrix.

J: index set; Definition 2.1 (1).

J column vector; index point; Definition 2.1 (1).

k: number of rows of mapping matrix 7} Definition 2.2.
- m: number of dependence vectors in D; Definition 2.1 (4).
NV: set of non-negative integers.
N*: set of positive mtegers
© n: algorithm dimension or number of entries of index points in J; Definition 2.1 (1) '

rank(A): rank of matrix A. :

S: space mapping matrix; Deﬁmtion 2.2.

si;: entry of S at ith row and jth column.

T mapping matrix; Definition 2.2.

U: multiplier of the Hermite normal form; Theorem 4. 1.
u,;: entry of U at ith row and jth column

V:.inverse of U; Theorem 4.1.

vyt entry of Vat ith row and]th column.

Z: set, of integers.

I1: row vector; linear schedule vector; Definition 2.2.
1I°: row vector; optlmal solution of Prob]em 2.2,

p: 3=UB o
"B ith entry of S.

7: conflict vector; Definition 2.3.

Vst tth entry of 7.

7 the ith upper bound of J; Equation 2.5.

7: linear mapping of algorithms into arrays; Definition 2.2.
{): empty set. »

0: a column or Tow vector whose entries are all 0.

| €| : cardinality of set C. -

| o | : absolute value of a.

1. ENTROQUQTIQN _ : : , _
Most emstmg methods of mapp,mg aEgorxthms mto processor arrays are res-
trieted to the cases where n-dimensional a];go;nthms, or algorithms with n nested
 loeps, are mapped into (n«l)mdxmenswnal processor arrays [2-13]. For example,g
the S-dtmensxonal matrix multi lieatmn a.IgorLthm is' usually mapped. into a: 2-
], [21], [32]. This paper considers

mappmgs of n—dtmensxonal algonthms mto (;-—1) ~dimensional, k<m, processor
ﬁarrasys, : Procedures are proposed to find mappings without - compwtatwnal :
‘conﬂwts, whkch means no two or more computatrons oi' the algorlthm are mapped

txme-optrmal :

oo Im SImple terms, the algomthms under consideration. in this paper are called
unzform dependence algorithms and can model nested loop algorithms. They are
"represented as partially - ordered subsets of a multidimensional 1nteger lattlce
(called indez sets). The points of this lattice correspond to (or index) computa-
tions, and the partial order reﬂects the data dependenc1es between these: computa—
tions: These data. dependencles are represented as vectors that connect points of
the lattice. Informally, if a glven dependence vector is always present when the
veetor dlﬁerence between - any two lattiee points ‘equals’ the dependence vector,
“then' ‘the dependence is said te be uniform. If all dependenc1es are umform then
the algorlthm is'said to be a uniform dependence algorithm. This algorlthm model
can be easily related to similar models and concepts in {1-13], [19] and s_evera,l
other works
| Examples of 2-dimensional bit-level processor arrays include GAPP [33], DAP
[34], MPP [35], Connection Machine [31] ete. Many bit level algorithms are four or
five dilnensional such as matrix multiplication, convolution, LU decomposition,
etc. How to automatlcally map these algorithms into 2-dimensional bit level arrays
s stlll a problem [28]. That is why in practice it is interesting to develop a method
" to map ‘n-dimensional algorithms into (k—1)-dimensional processor: arrays with -
Ck<n ThlS work was motivated by the implementation of RAB (Reconﬁguratlon
Algorithm for Bit level code) 26}, an experimental tool which maps a class of algo-
rithms programmed in ’C’ into bit level arrays. In this approach, algorithms are
first expanded into bit leVeI_algorithms, and second, the dependence relations are
analyzed and the algerithm is' uniformized. Then the global optimal solution,
which maps often a four or five dimensional bit]evel algonthm 1nto a 2-
‘dimensional bt level processer array, is to be found. .
| Several attempts have heen made to try to map algorithms inte lower dlmen— '
swnal systolic arrays [15], [22], [23] [25]. In particular, important steps towards a
formal solution to this problem were made in [23]. Based on the Lamport hyper-
plane transformation model [13], a procedure was proposed to find mappings of 3-
dimensional aigorithms into 1-dimensional or linear systolic arrays without com-
_putat_ional conflicts and data link collisions. Five conditions were given to guaran- -
~ tee the correctness of the mapping. The first condition ensures that dependence

2
relations among different computations of the balgorlthm are respected; the second
condition is about computational conﬁicts,the‘third "and fourth conditions deal
with the number of shift registers on links and the data travel directions; and the
fifth condition is to avoid data llnk collisions. The concept of data link collisions
and the conditions to avord such collisions are. 1ntroduced in this work. Detection
of computatlonal conﬂlcts is basrcally by analys1s of all computatlons of the algo-
rithm . and- the optimality of the mapping is not guaranteed In [22] further
results are reported in mappmg n—dlmenswnal algorlthms into (k— 1) dimensional
proccssor arrays. A suboptlmal solutlon for the reindexed transitive closure algo-
rithm (17} [23] was found by the proposed procedure in [22] by which the total
execution time is p(2u+3)41 where 1 is the problem size.
‘ This paper describes a method of mapping n-dimensional uniform dependence
algorithms into (k—1)-dimensional arrays, k<n, without any computational
conflicts. Based on the Hermite normal form of the mapping matrix, simple and
easy-to-use necessary and sufficient conditions are derived to guarantee a conflict-
free mapping. These conditions are used to formulate the problem of finding
time-optimal and conflict-free mappings as an integer programming problem.
Optimality is always guaranteed for the mapping of n-dimensional algorithms into
(n—1)-dimensional, i=1, ..., 4, processor arrays. Compared to the method in [22]
and (23], the main contribution of this paper is the easy-to-use and closed form
necessary and sufficient conditions for conflict-free mappings. In addition, based
on these conditions, this paper formulates the problem of identifying t1me~opt1mal
and conflict-free mappings as an integer programmmg optimization problem. For
some algorithms such as the matrix multiplication algorrthm and the transitive
closure algorrthm, the integer programming formulation can be further converted
to linear programming problems. In Section 5, the method proposed in this paper
is used to find the optimal solution for the reindexed transitive closure algorithm
which improves the total execution time of u(2/,c+3)+1 in [22] to u(u+3)+1.

‘This paper is organlzed as follows. Section 2 presents basic terminology and
deﬁmtlpns,lntroduces the concep_t of computational conflicts and provides state-
ments of problems addressed in this paper Section 3 discusses a simple case to
illustrate different aspects of, and provide insight 1nto, the conflict-free mapping
problem. Sectlon 4 dlscusses the conflict-free mappmg problem in general Sec-
‘tion 5 presents an optrmlzatron procedure and mteger programming problem for-
mulatxons ‘which find the’. t1me-opt1mal mappmg ‘without any computatlonal
conﬂlcts Sectlon 6 concludes thrs paper and pomts out some future work.

2. TERM]NOLOGY AND DEFINITION S ,

Throughout this. paper, sets,: matrzces and row vectors are denoted by capital
letters, column vectors are represented by lower case symbols with an overbar and
scalars correspond to lower case letters The transpose of a vector ¥ is denoted vT
The vector 0 denotes the row or column vector whose entr1es are all zeroes. The
" dimensions of vector 0 and whether it denotes ‘a row or column vector are 1mpl1ed

by the context in whlch they are. used The symbol I denotes the 1dent1ty matmx
The rank and the determinant of matrix A are denoted rank(A) and detA, Tespec-
tively. The set of integers, the set of non-negative integers and the set of positive
integers are denoted Z, N and. N*, respectively. The empty set is denoted (/. The
_notatlons 1 ¢ and |a| represent the cardinality or the number of elements of

set C and the absolute value of scalar ¢, respectively. Let v and % be two vectors.

Then v>u means every component of ¥ is greater than or equal to the correspond-
ing component of 7. Finally, if zis an element of a set S, the notation z€Sis
used and this notation is also used to indicate that a column vector Tﬁj (or row o
vector M;) is a column (row) of a matrix M, i.e.) Ty GM(M €M) means m] (M;)is
a column (row) vector of matrix M. ' S

“Algorithms of interest in this paper. are the so—called unlform dependence
algorlthms defined as fo]lows) ' S

Deﬁnition 2.1 (Uniform dependence algorithm): ‘A uniform de'pendencc
algorzthm is an algorlthm that can be descrlbed by an equatlon of the form

,(J)—.‘IJ((J—d1)U(J—d2) feey: (J”'d)) (2.1)
Where , . '
(1) JEJCZ" is an index point (a column vector) J is the mde:z: set or zteratzon '
~space of the algonthm and n€ENT is the algorzthm dimension or the number‘
of components of 3 ‘ '

(2) g] is the computatlon indexed by 7, ie., a smgle valued function computed
“at point 7" in a single unit of tzme, ' -
(3) (J) is the value computed "'at 7", i.e., the result of computlng the rlght hand -
side of (2. 1) and ' . '
(4) .d EZ", =1, ..., m, mEN are dependence vectors, also called dependcnczcs,

which are constant {i.e., 1ndependent of]EJ), the matrix D= [dl, iy _d,',;] is

called the dependence matr_z:l;. }

The class of umform dependence algorlthms isa s1mple extensmn of the class
of algorithms described by uniform recurrence equations [1]. The main difference is
that uniform dependence algorlthms allow for different functions to be computed
(in a unit of time) at dlfferent pomts of the index set. From a practical v1ewpomt
unlform dependence algonthms can be easﬂy related to programs where (1) a sin-
gle statement appears in the body of a multlply nested loop and (2) the 1nd1_ce_s of

the variable in the left hand side of the statement differ by a constant from the

corresponding indices in each reference to.the same variable in the right hand side.
Alternative computatlons can occur in each 1terat10n as a result of a single condi-
tional statement as long as data dependencles do not change. Nested loop pro- -
grams with multiple statements can also use the techniques. of this paper together
with the alignment method discussed in [14] and [24]. Unlfotm dependence

4

»algorlthms occur frequently in sclentlﬁc computmg and dlgltal 51gnal processing
apphcatlons . RO : , R

' For the purpose of ﬁndmg tlme-optlmal and conﬂlct-free mappings, only
structural mformatmn of the algorlthm, i.e., the 1ndex set J and the dependence
matrlx D is needed Therefore, a uniform dependence algorithm with index set J
and’ dependence matrlx D is herem characterlzed s1mply by the pair (J D) Each -
index vector jET corresponds to a computatlon, and computation j depends on
computatlons J—~d E.I =1, ..., m. It is assumed that; as in- Definition 2.1, the
letters n and m always denote the algorzthm dtmenszon and the number of depen-
dence vectors, respectively. : :

Many models have been proposed to map algorlthms into processor arrays. -

The linear algorithm transformation method proposed in [2], [12] and [32] is used
in this paper and stated as follows. ’

Definition 2.2 (Linear algorithm transformation): A linear algorithm
transformation maps an n-dimensional unlform dependence algorlthm into a
(k 1) dimensional processor array according to the mapplng

gk 7 H=1f Vel @)
vrhere‘ T= ﬁ EZ"*” is the .maPPing‘ matriz, Sez*-1xn i the SPac‘ef maﬁbiﬁg

matrm:, and HEZIX” is the time mapping vector, or linear schedule vector The

computatlon mdexed by JEJ is executed at tlme H J and at processor . S7. . The

mapping 7 must satisfy the followmg conditions:

(1) TID >0. TR T

(2) SD=PK Where PEZ (k- 1) is the matrix of in_terc‘o_nnection primitives of the
’,target machlne, Kez r<m is such that ‘ :

: E ki <11 d,' , t=l, ..., m. Lo o (2.3)

(3) Vi1, J2€J, if J177;, then 7(71)#7(j2) or TH#Ts,.

(4) The rank of T isequal to]cﬂori,,ranlc(T)':]c.’

R Condltlon 1-in Deﬁnltlon 2 2 preserves the partlal ordermg 1nduced by the
dependence vectors It is clear that 1f this condltlon is satisfied, then computation
' lndexed by]EJ is scheduled to execute only after the executlons of computations
1ndexed by j—d EJ z-—l oy m because HD>0 and therefore the dependence rela-
tion is respected RO Lt _ v

4 The matrix- of 1nterconnect10n prlmltlves P descnbes the connection links of"
processors in the array. I'or'an -array W1th each processor connected to its four
nearest east, south, west and north nelghbors, it has four interconnection pr1m1—
00 1 —-1}

tives [0,:1]'7, [0, —1]%, [1,0] and [~1,0]% a_nd matrix P=1 1o ol

5

Condition 2 in Definition 2.2 guarantees that the space mapping can be ‘imple-
mented in a fixed systolic architecture with 1nterconnectlon prlmltlve matrix P.
The summation in the left hand 51de of the inequality in (2.3) is the number of
‘times of the usage of interconnection pr1m1t1ves to pass the datum caused by the
dependence vector d; from the source to the destination. The itern in. th-e right is
the time units between the source usage and the destination usage of that datum.
Assuming it takes one time unit for a datum to travel one interconnection primi- -
tive, “the inequality must be satisfied to have the datum arrive before it is used. -
Condition 2 in Definition 2.2 may not be required when a new processor arra'y is
des1gned specially for the algorlthm It is required only when the algorlthm is to '
be mapped into a processor array with a ﬁxed mterconnectmn structure. . '

Condition 3 is for avmdmg computatlonal conflicts because if 7(]1) = ’/"(]2)

'then the computations indexed by 7, and j, are mapped into the same processor

and ‘time and a conflict occurs. Condition 4 guarantees that the algorlthm is to be
mapped into a (Ic——l) dimensional array but not a ¢-dimensional array, q/<lc——1.
When rank(T)=q+1<k, there are exactly ¢-+1 linearly independent rows in T,

‘and all other rows of T are linear combinations of these ¢-+1 linearly independent B

rows. Let T’ be the matrix consisting of these ¢ +1 linearly 1ndependent rows; then

T can be transformed linearly to T’ which means the algorithm is actually

mapped into a g-dimensional processor array. r

‘More constralnts on the mapping 7 are possible for some 1mplementatlon
requlrements In addltlon, dlﬁ"erent constraint forms from those i in Definition 2.2
for the same implementation requlrement can be used. For example; in [23], ther
1nequal1ty in (2.3) is required to be an equality which, means data must arrlve_ :
right at the time of their usage and are not allowed to arrive before the usage
Also, in [23], constraints to avoid data link collisions are considered. _

Because the execution of any computation. needs one time unit as deﬁned in
Definition 2. 1, the total execution time by the linear schedule vector H is as fol-
lows:

t =max { IL (,71—32) Jl,Jzef}'*'l | _ | (2.4)

For a class of practical algorlthms, the loop bounds are constants ThlS kind
of algorithm is characterized by the constant-bounded indez set defined as

J {11,- o Tnl T 0<J;<Hu 5€Z, ENY, i=1, ..., n} o (28)

where zero and i correspond to the lOWeI‘ and upper ‘bounds' of the ith ‘loop,

'respectrvely Upper bounds Wiy t=1, ..., n, are called problem size varzables To

simplify the problem, this paper is restrlcted to the algorithms with constant— '
bounded index sets. ThlS assumption is summarrzed as follows. ' ’

Assumption 2.1: In this paper, the 1ndex sets. under consrderatlon are assumed
to be constant-bounded defined formally by Equatron 2.5. : '

Some other krnds of. algorlthms can be transformed into algorithms with

» 'constant—bounded 1ndex sets by a linear mapplng of the index sets [12] For an
algorrthm W1th a constant—bounded 1ndex set, because

| maX{H(Jl—J2) .71a JZEJ} “ﬂ-l I l7rn ”([:u'l; seey i.u'n‘]T—'a))r (2-6)

the total execution time ¢ in Equation 2.4 can be simplified to

n
t=1+3 |Imlpw A - (2.7)
i=1 e ‘ o
It is clear from Equation 2.7 that the vector Il which minimizes the objective
function ¢ in Equation 2.7 is such that the absolute values of its entries 7],
i=1, ..., n are as small as possible and with some constraints satisfied: In other
words, if the absolute value of any one of the entries of the optimal II is reduced
by one, then the resultlng vector is not a valid hnear schedule vector. This con-
clusion is also lndlcated in [10] and [11] and is summarlzed in the following

theorem

Theorem 2.1 [10] [11] The total execution tlme descrlbed in Equatlon 24 is a
monotonrcally 1ncreas1ng functlon of |m; |, ¢ =1, ..., n, the absolute values of
entrles of vector II. : ’

A conflict occurs 1f two or more computatxons are mapped into the same pro-
cessor and the same executlon tlme That is, for two distinct index points jy
]26] if T]l = sz, then- there is a conflict. For the case where k=n or T i is a
: square matrix, that rank(T)—-—n guarantees a conﬂlct—free mapping because T]l =
Tiq if and only if j; = Jj5. For the case where Ic<n, even when rank(T)=k, or '
matrlx T has full row rank there is at least one non-zero vector 7y such that
T')'—O ‘Let]1—]2+f)', then T]l = T]2 If both _71 and]2 belong to the index set,
then ' the computations 1ndexed by J1 and:]2, respectlvely, are mapped to the
same processor and the same execution’time and a conflict occurs. Therefore, it is
- much more dlfﬁcult to ﬁnd a mapplng w1thout conﬂlcts when k<<n than for the
case when k——n . SRR S :

One p0551b1e way to avord conﬂlcts is to ﬁnd the mapping matrix T such
tha.t for any arbitrary. mdex pomt]EJ and any y that is a non—zero integral solu-
tion of equatlon T’y—-O, J—I-'y does not belong to the index set J. This concept is
illustrated by Figure. 1 whlch shows a 2—d1mens1onal index set J_{[]l,]2] :
0<]1, _72<4, J1,J2€Z} I 7§ is ’yl——[l 1]7, then index points j=0 and
j-i—’)_’l =[1,1]T both belong to index set J and computations indexed by [0, 0]7,
1,197, 2,217, ..., [4,4]F will be mapped into the same processor and the same
" execution: time. Therefore, there is at least one conflict. However, if v is
Ya=[3, 5] , there will be no conflict at all because for any arbltrary JEJ, 747, QJ
- Intu1t1vely, if vector (3, 5]T is drawn with one end at [0 0] (or at any other index

J2

Y

J1

Figure 1. Non-feasible conflict vector 7; and feasible conflict vector Ya. Vector

%, does not meet any integral points inside the index set.

point of the index set), then the other end is out of the index set and vector |3, 5]T
does not meet any integer points in the index set. Therefore, the mapping with

this 7 is conflict-free. To describe these concepts formally, the following definitions
are 1ntroduced

Definition 2.3 (Conflict vector, feasible and non-feasible conflict vectors
and conflict-free mapping matrix): Given an algorithm (J, D) and a mapping
matrix T€Z kxf‘, an integral column‘vector"_y = [, vy 'yn]T is a conflict vector of
the mapping matrlx T if and only if T%=0 and gcdl(’yl, . '7,,)—1 If for any arbi-
trary 1ndex pomt jed, J+f7¢J then ¥ 2l is a feasible conflict vector. If there exists at

least one index point JGJ such that]+f7€J then v is called a non- feaszble conflict
vector. If all the conﬁlct vectors are feas1ble, thcn this mapplng matrix 7T is-
conﬂzct free. ‘

Example 2.1: Cons1der a 4- dlmensmnal algorlthm (J D) where
J——{]]EZ4 0<],<6, i=l, .4} -

Assume that thls algorlthm is to be mapped 1nto a 1 dlmensmnal or linear proces—
sor array and one poss1ble mapplng matrlx is. o

1711
1710

Consider the followmg solutlons of Tfy—-O '71-—[0 1 7 0] , '72-—[7 ——1 0, 0] and
V3= [1 0, —1, O]T Clearly, T’yl = THy = T’73—O and thelr greatest common divi- -
sors ‘of their entries are unity. So s ’)'2 and 73 .are’ conflict vectors of . mapplng
matrix -T. However vector [2,0,-2, O]T is also a solution of equation T% ~N=0 but is
not a conflict vector of- mappmg matrix T because the greatest common divisor of
its entrles is not umty Conﬁlct vectors ’)’1 and e are feasible because it can be
checked that for any arbltrary index pomt]EJ J+’y,¢J 1=1, 2. Conflict vector
N3 is not fea51ble because for the index pomt = [O 0,1,0] Tey,]-I-q'g =
[1 0,0, O]TEJ Therefore, T is not conﬂlct-free o :

Given an arbitrary algorithm, if it is possible to identify the set of all vectors
7, whose entrie’s'are relatively prime and such that for any arbitrary index point
- J€J, j-l—fygéJ then the mapping matrix T can be constructed subject to that all its
conflict vectors must be in that set. Unfortunately, it is not always easy to find
the set of all such vectors. For algorlthms ‘with constant-bounded index sets, the
common characteristics of such vectors are described in the following theorem.

2 ged(aq, oy qn) denotes the greatest common divisor of inﬁegers Gy ey Qg

Theorem 2.2: For algorithms with constant-bounded index sets defined by Equa-
tion 2.5, a mapping matrix T is conflict-free if and only if for each of its conflict
vectors Y=[Y1, «vey Vis vey f)',,] there exists an entry -y; such that |~; | >,LL,

Proof: (=>>). Because T is conflict-free, all the conflict vectors.of T are feasible.
Now suppose that 7 is a conflict vector of T and |~;|<w,, =1, ..., n. Consider

the index . point] = {Jl, ey Ju]T where 7;=0 if ’7,>0 and jy=-y; if 7;<0. It is
clear that both 7 and J+’)’ belong to the index set J defined by Equation ‘2.5
‘because |’y, I Ly t=1, ..., n. By Definition 2.3, 7is not feasible which is contrary‘
to the assumption. Therefore for each of the conﬁlct Vectors 7, there must exist’
‘an entry y; such that I Vi | >l _ . . '
(<==). Let ¥ R be a conflict vector of mapping matrix T and consider an arbltrary
index point 7 belonglng to the index set defined by Equatlon 2.5. Let 7 ==
[]1,. s Jn]T Because ‘there exists an entry -y of 7 such that [;i I>,LL, and

14 >7:>0, _7,—],—{—/*/,>,u, if ;>0 and j;=7;+7;<0 if +;<0. In both cases, 7' is not
in the index set Jand 7 is feamble This 1mp11es that T is conflict-free. O

'Accordi_ng to Theorem 2.2, for the algorithms with cons’pant—bounded index
set, fhé'set of feasible conflict vectors is {7: Fi | Sy 1€{1, ..., n} 'gcd_('ﬁ, ey
_ ’yn)=1}. This solution space is not convex and is very difficult to analyzé. ‘

In practice, it is interesting to find optimal conflict-free mappings with
respect to different criteria and based on different assumptions. To achieve this,
one has to identify first all feasible mappings that are conflict-free. Then it is pos-
sible to choose an optimal one with respect to a certain criterion from these
conflict-free mappings. The criterion could be the total éxecutlon'time for the '
algorithm, the VLSI area taken to implement this algorithm including the number
of processors and the length of the wiring, or the combination of the total execu-
tion time and the VLSI area. Two problems are addressed in this paper and are

formulated below. The first is about 1dent1fy1ng all’ conﬂlct-free mappings and the o

second is about ﬁndlng time-optimal mappings.

Problem 2.1 (Coniflict-free mapping problem): Given an n-dimensional uni-
form dependence algorithm and a (k-—1)-dimensional processor array, find neces-
sary and sufficient conditions for mapping matrix TE€Z¥" to be conflict-free, or
v equlvalently, 1dent1fy all conﬂlct—free mapping matrices T€Z kxn,

Problem 2.2 (Time-optimal and conflict-free mapping problem): Given an
n-dimensional uniform dependence algorithm (J, D) and a feasible space mapping -
matrix Sezk-1xn find an integral row vector [1°€Z1" which minimizes -

f=max{H(JTl —.7T2’)3.-7'_1:’.;-2 E'J}" ‘

HD>0

E k]‘ <II d;, where SD—PK
]-1 .

bject to -
sudject to rank(T)=k

| T=[§} is eonﬂr’ct~ffee

In Problem 2. 2, the objective function f 'diﬁ"elrs by one from the total execu-
- tion tlme ¢ in Equatlon 2.4. Clearly, fis m1n1mlzed if and only if ¢ is minimized.
P and K are as deﬁned m Deﬁmtlon 2.2, In general in Problem 2.2, space map—
ping matrix S i 1s glven and’ usually is not a function of problem size variables L4
t=1, ..., n. - The solutlon of a spec1al case of Problem 2.1 is discussed in Section 3,
and the general case is d1scussed in’ Section’ 4 followed by the discussion of Prob-
lem 2.2.° o) :

3. NECESSARY AND SUFFICIENT CONDITIONS FOR CONFLICT-
FREE MAPPING MATRIX Tez(n-xn - -

ThlS sectlon dlscusses the solution of Problem 2 1 or how to identify all
conflict- free mappmg matrlces TEZ(”"I)X" that map n-dimensional algorlthms
into (n—2)- dlmenswnal processor arrays Thxs sxmplest case can illustrate and give
an intuitive’ understandmg of different aspects of the. conﬂlct-free mapping prob-
lem. So the reader can follow the general dlscussmn in the next section more
easily. Practlcal appllcatlons are the mapping of 4-dimensional convolution algo-
rithm at bit-level [26] into a 2-dimensional systolic array and the mappmg of the
3-dimensional matrix multiplication algorithm into a linear systolic array [23].

Let ez, gez{n—2)xn and renk(S)=n—2. Consider the following equation

TH=0 or [ﬁ]f—y:b‘. | . - L (3.1)
Let’s first assume that rank(T)=n—1. Later in this section, conditions on II are
given"to guarantee that rdnk(T)—h —1. Clearly, there is only one linearly indepen-
dent solutlon of Equation 3.1. ‘Without loss of generality, let - T=[B, b] where B
contains the first n—1 columns of matrix T, rank(B)-n—l and b is ‘the last
~ column of T. Also, let B" and detB be the adjugate or adjoint matrlx and deter—"
'mmant of matrix B, respectlvely [18, pp 170] “Then all solutions of Equation 3.1
can be expressed as : :

| (32)

Where Xisa constant.

- If the first non-zero entry of a conflict vector is assumed to be posrtrve (thls
' lmphes no loss of generahty), then for the mappmg ‘mattix TEZ&‘"”X"‘ there is
only one unique conflict vector (otherwise, —7 would also be a conflict vector) :
" This- umque conﬂrct veetor 7 is expressed by E‘quatron 3.2 where X\ is such that is

- integral, its entrres are relatwely prime and the first non~zero entry is. posrtlve

Accordmg to Theorem 2.2 if this unique confliet Vector is feasible, then the |
corresponding mapprng is conﬂrct—free In addition, if Eiis sueh that there exists a
non-zero entry: fi(, 1<i<n, . them rank(T)=n —1 becavse f&('fﬁ, sy Tg) I8
the determmant of‘ the bmatmx of T eonsrstmg of all columns except the ith.one -
of T These facts are su ,_.marlzed in the followmg theorem ’

Theorem 3 1 (Necessary and sufficient condltlon 1): Let '7 be deﬁned in -
vKuatlon 3.2 where the constant X\ in Equatron 3.2 is such that ")’ is integral, its
: entrles are relastwely prime and the first non-zero entry is positive. Then mapplng,
, vmatnx Tezln—1pa 55 fea31b1e if and only if vector 7 is feas1ble The rank of
matrlx Tis n—1 if and enly 1f there exjsts a non-zero entry f,(7r1, veny 7rn), 1<z<n

| Proof Flrst it is shown as follOWs that there is only one conflict vector if the ﬁrst ,
non-zero entry of the conflict vector is assumed to be positive. Suppose there are:
two conflict vectors M and ’72 whose first non-zero entries are positive. Because ',
there is only one hnearly 1ndependent soiutlon of . Equatlon 3. 2, N and’ ’72 are-
linearly dependent Thus Y2 —c’yl, where ¢ is a constant If ¢=1, then %, = '72, if
=—1, then the first entry of one of the vectors is not pos1twe, if ¢ is a non-
integral ratiopal number, then 7, is non-integral because the greatest common
divisor of entrles of % ”7} is one; and if ¢>1'is integral, the greatest common divisor
of 7y is greater than unlty Therefore, in all the cases diseussed above, J» is not a
. distinct conflict vector whose first entry is posmve So there is ‘only one such
conflict vector of mapplng matrlx T and, therefore, Ti is feaslble if and only 1f ~ is
feasrble : R » »
It is trivial to show that if ranlc(T)—n -1, then there is a non-zero entry
fi(my, ..., m,) because otherwise, rank(T)=n. Now suppose there exists a non-zero
entry fi{mmy, «ey) Let a L RCI S

11

[Bu Bu o o Bl :

s | Bz Bp .. Buoy: | S

-2 L R 0 (33)
Bl (n— 1) Bz (n=1) .- B(n ~1), (" 1) |

. whete B,J, z,]—1 o n— 1 are the cofactors of matrix B (18, pp. 165]. Clearly, f;
lBlw 2oy Dn-1), :lb = Blzsl nt ot B(n-2) s(n —2),n + B(n 1) iTns 1<Ii<(& _1)’ -
vW1th little thought it can be seen that f; is the determinant of matrix B with its

ith column being replaced by b (18, pp 165] which is a submatrlx of T. Therefore, o
there is a submatrlx of T Whose determmant 1s_ non-zero . which means -

rank(T)=n -—1 O

Accordmg to Theorem 2 2 ‘the umque conﬂrct vector ~ in Equation 3.2 is
feasible if and only 1f the absolute value of one of its entries is greater than a cer-
tain value Therefore, glven a mapping matrlx T to see if it is conflict-free or not,
Equatron 3.2 has to: be used. Later in Sectlon 5, Equatlon 3.2 is used to formulate
Problem 2. 2 as an- 1nteger programmmg problem “If functions f; in Equation 3.2,
i=1, ..., n, are hnear, then'the- formulatlon is poss1bly an integer linear program-
ming problem. In the. followrng, it is shown that if the space mapping matrix S i is
given, functions f; in Equation 3.2, 1=1, ..., n, are linear functions of Ti J=1, ey

Pr:oposition 3.2: Functions f;, i=l, ..., n in Equation 3.2 are linear functions of
Tjy J=L, .y 0 ' ‘ ' :

Proof: Let B” be defined as in Equation 3.3. Clearly,,f,- = [Bi4, -+ B(n_;'l)_;;]l)—':
Byistn o+ - + B(a_9),iS(n=g)n + B(a-1),iTn; 1<4<(n—1). Cofactors By,
1<I<n—2, are the linear functions of 7;, j=1, . o n—1 because By is the deter-
minant of the submatrix of B obtained from removrng the lth row and the ith
column of matrix B. Thus, B;,.s, n.are linear funct1ons of Tjy J=1, ety n—.l ‘ Cofac—
tor. B(,_y),; is independent of Ty i=l, .., n because it is the determinant of the
submatrix of B obtained by removing the ith column and the (n ——l)th row Whlch
is II. Thus B(n-1),ibi-1 = B(n-1), iTp 18 2 linear function of m, Therefore, f,,-
t=1, ..., n—1 are lmear functions of 7, =1, ..., n. The last entry fa=detB i is also
a lmear l'unct1on of 7r], _7 1 . n—1 because 1t is the determmant of matrlx B O

Example 3.1: Consider algorlthm (J D) used in: [23] Where dependence matrlx D
and index set Jare as follows o
ool RO R .

D=|0 1.0| * J={;: jEZ*, 0<5;<p, i=1, .., 8} . L (34)

l;y' [2“3]3 d?ependen,ee vecwns dl, dz andi dr& ate induced bi‘ B A and '
h 1&; @;i?hen words, the: eomputatmn, mdexedz b}n]« need di a.‘ A from:

I‘b iss elsea:r ﬁhah T’y=@ I T is chosem such bhat —7r-25—7r3;é@ or T +7r3 ;é@, or
T, —7r25é@§ ’o*henx rank(l’)—— n—1=2.

Example: &.,2 Consider another algomth—m (F. D) used: in [22] where dependence
matrix D and? index: set Jare as follows.

60 1 1.1

ez, 0<],<,U, i=l, ., 3F . (3.6)

This. nni'fbrm dependence algorithm, can. model the: 'rei‘hd‘ex‘ed’ transi'tive ‘closn‘re
algorlthm 'How the dependence matrix and the index set. are derwed from the
Fortran code of the transitive closure algorithm: is shown in [17] and- 23]. If the
space mapping matrix is: chosen as the one used in [22] S—[@ 0; 1] then mappmg: :
ma.trlx T and 1ts conflict vector 7 are as follows.

0 0 1 o g
T=| =X [—my |
Ty Ty »7“335%_ b

It is Z@iﬁéar' that T’_yz-—@_ If I is chosen such that my#0 or v7r*‘1 A0 ,then
. mnk-(-T)=n—1=2, (] R : ' v .

(3.7)

‘ GENERAL CASE««»NECESSARY AND: SUFFICENT CONDITIONS '
A F@‘R CONFLICT-FREE MAF ‘ -
" This: section: dlscusses and presents the: solutxon te: the: general case of Prob-
lem 2.1, ie., it prov1des necessary- and sufﬁaent conditions: for conflict-free map-
pings where n—dlmensmnal algerithms are. mapped into: (% —-1) dlmensmnal proces- '

SOT arrays. In these mappmgs, TEZ"X" T = H , HEZ bn and SEZ (k~ 1)

@,onsade,x:« the.equatmﬂs , o ,

13

e | J - , | 1 ,

=0 or '[[[]’Y=0 ‘ ' | o (41) !
If ranlc(T)—k then there are n—Fk linearly independent solutions of Equation 4.1.
Let Vi, ooy Vnok be the hnearly ‘independent integral solutions of Equation 4. 1,
whose entries are relatively prime, then all solutions ¥ of Equation 4.1 can be

represented as hnear combinations of the n—k lmear mdependent vectors as fol- -
lows ' ' : '
TN e B)

Clearly, Vi, -y Tn—k are conflict vectors of T. _ |
In general the mapping matrix T has more than n—k conflict vectors when
k<n—1 because a linear ‘combination of these n—-k conflict vectors may be a
dlﬁ”erent 1ntegral vector whose entries are relatlvely pnme and therefore another
conﬁlct vector of T ThlS new conflict vector may or may not be feasible. Thus,

n I)X” descrlbed in Sectlon 3, it is not guaranteed

unlike the mapplng matrlx TEZ (n
that all conﬂlct vectors of T are feas1b1e even 1f the. n-—lc llnearly independent solu-
tions '7,, i=1,".., n——lc of equatlon Tfy-’O are all fea51ble This is 1llustrated by the

following example

Example 4.1: Cons1der the 4- dxmensmnal algorlthm of Example 2. 1 and the'
mapping matrix 7T in Equatlon 2.8. Let =0, 1, =7, 0] and ’72—[7 -1, 0,0]7.
Clearly, T’yl = T’yg—ﬂ 71 and 7, are linearly independent, and they are feasible
conflict vectors of 7. Let § = 1/77 + 1/79, = [1, 0, —1, 0]%. Vector 7 is also a.
solution of equatlon T’y—O and its entries are relatlvely prime. By Definition 2.3
and Theorem 2.2, 7 is a non-feasible conflict vector of T. Therefore, as mentioned
above, for a given mapping matrix TEZ*" with k<n—1, there are poss1b1y more
than n—k conflict vectors, and T may not be conflict-free even if there are n—k
hnearly 1ndependent feasible conflict vectors of .00 '

From Example 4.1, an interesting observation is that one difficulty in making
all conflict vectors of mapping'matrix T feasible is that non-feasible conflict vec-
~ tors can result from rational linear combinations of the n—k linearly 1ndependent

- feasible conflict vector‘s Ay vy Tnok like = 1/77; +1 /7’)'2 in Example 4.1. Let’s
consider another way to select the n—k linearly" independent conflict vectors of T
such that constants N, 1=1, ..., n—k in Equatlon 4.2 must be integral in order for -

Y tobe integral. To achieve th1s, the notion of the Hermlte normal form is intro-
: duced

Theorem 41 (Hermite normal form [29 pp. 45]) Let TEZkX"' nd
ranlc(T)—-k Then there exists a unimodulart matrix UEZ™" such that TU=H=|L,
- 0] (0 denotes a zero-entry matrix) where LEZ.k?d‘ is a nonsingular and. lower

14 i 7 s

trian'gular ;In_atriic‘. Matrix H is called,v.the Hermite nor‘m'alv form of T.

The deﬁmtzon of the Hermrte normal form used here is shghtly dlﬁerent from
the one used conventronally and in [29], Where each diagonal element of matrix L
is required to be positive and be the maximum of all absolute values of elements in
that same row. ‘This is because for the purpose of this paper it is enough to know
that matrix T can be. transformed into a lower tr1angular matr1x [L 0] by rlght ,
multxplrcatlon of a ummodular matrix U, : : "
For a glven mapping matrrx T, let H be the correspondmg Hermlte normal
form and T~—HV where V=U~ 1 U—[ul, s un] and V=lvy, - ‘, vy} " Then Equa-
tion 4. 1 can be rewrrtten as HV"=0 Let H— | =51, +s ,6’.,,]. and y= Ug: ‘Then
the followmg statements are’ true : ‘
Theorem 4.2 ‘ S e
(1) H[3’=0 if and only if ﬁl, .y ﬁk are zero. 7
(2} Vector % is integral if and only if (is integral.
(3) Vector 5 is a conﬂlct vector of mapping matrix T if and only 1f

ﬁk+1
ﬁn

where Bis 1 -——,k.-l—l o n, are arbltrary lntegers whrch are not all ZEro and are: rela—

(3

’7:‘.[Ek.+1": sevy “n]

. tively prime.

' Proof (1) Because H—~[L 0] and HB = L[B,, ..., Bx]¥ where LEEZ"X"c is a-non~

singular- lower triangular matrix, 3, ..., O are zero if and only if H ,3—0 '

(2) By deﬁn1t1on, a matrix is unimodular if and only if it is integral and the abso-
lute value of its determinant is unity. So U is unimodular means that matrix

V=U 2_' is also unimodular. Therefore, ¥ K 1s mtegral implies that ,3 is 1ntegral and

. vice versa. :

- (3) By Theorem 4.2 (1) and (2), all integral solutions 7. of equation- Tfy——O are

represented by Equatlon 4.3 where §;, i=k-1, ..., n, have to be arb1trary 1ntegers RO

because non-integral values of ,3,, z—k+1 o n result in a non-mtegral vector 7.

Next it is shown that the greatest common d1v1sor of ﬁ,, i=1,".., nis unity if andv
only 1f the greatest common d1v1sor of Yir z——l . N is unlty Suppose gcd (ﬂl, .y
ﬂn)~—1 and gcd(’yl, ey ")',,)-—c>1 Then A=c Where 4 is 1ntegral and its entrles

are relatlvely prime. Because ,3— Y = cV+ where, obviously VA€Z", the ;
greatest common divisor of ﬁ,, i=1, ..., nis at least ¢>1. This is contrary to the
assumptron So, the greatest common dlvrsor of ﬁ,, 1=1, ..., n is unity implies the

T A matnx is ummodular 1f and only if it is mtegral and ‘the absolute value of its:
determinant is one. : : .

B . 1ﬁ5 o . |
greatest common d1v1sor of ’7,, z—l “ n is unlty Wlth 51mllar reasomng, the
reverse can. be shown Therefore, the ,3,, z—lc+1 . n, in Equation 4.3 have to be
: -relatlvely prrme integers, otherW1se the greatest common d1V1sor of entries of vec-
tor ¥ is greater than one, whlch is not a conﬂlct vector by Deﬁmtlon 2.3. o

What Theorem 4 2 1mp11es 1s that all conﬂlct :vectors of mapping" matrlx T
can- be represented by Equatxon 4.3 Where ,Bk_,_l , ","f B, are arbltrary 1ntegers- ‘
' Wh1ch are not all zero and relatlvely prlme Notxce _that a non-integral valtue of

any one of the ﬁk+1, iy ,8,, results in a non—mtegral vector 7 according | to »
Theorem 4. 2 So in thls representatlon, the case Where a new conﬂxct vector of T |
can be obtamed by a non-lntegral hnear combmatlon of the n—k hnearly 1ndepen-' »
dent solutlons of Equatlon 4. 1 is av01ded [

Example 4.2: The Hermlte normal form of the mapplng matrlx T in Equatlon
2.8 is : - '

11 0 00
U—. —t.
H 1 —100]
~ where : | . .
11— -7 li7a1a
CU=|. ' -and V=U—;lb=0x.: ~’1v
Sloe 10 ~|oo1of.
’0_ 1;-0-“0,] o 0100

| vAll conﬂlct vectors of . T are the 1ntegral comblnatlons of the thlrd and fourth
~ columns of matrix U as follows o :

'Where ﬁ'g‘, ‘andﬂ4 i_are" inte'gers Whlch are n_ot all '_'zero" and »relati‘velyl prime;-D" i
So far, a better representatlon of all conﬁlct vectors of T has been found

'Whlch requlres 1ntegral comb1nat10ns of n—k llnearly 1ndependent conﬂlct vectors
of ‘mapping matrrx T Howover, 1t is stlll not guaranteed that-all conflict vectors

- are feasible unless’ matrlx U satlsﬁes some condxtlon S A_;The followmg six theorems o

describe - these necessary and sufficlent condxtlons for mapplng matrlx T to be
conﬂrct—free S : - - ; ‘

| Theorem 4 3 (Necessary condltlon 2) Let v,J be the entry of matrix V at the
ith row and the]th column If mapplng matrlx %T lS conﬂlct-free, then at least one

of the ﬁrst k entries of each and every column of V must be non-zero, that is, the
followmg condition holds.
(17 70\ v91 #0\/.. \/vg1 70)N\
(v1270\/v35#0\/. ..\ v #0) A\ |
e | (4.4)

(1470V/ 0200V \/ U 40)

Proof: Let 5 be an arbitrary conflict vector of mapplng matrix T. If T is conﬂlct—
free, then 7 is feasible and it has at least two non- zero entries ’)’1750 and ’7]7&0
‘Next, it is shown that 5 has two non-zero entries if and only if Equatlon 4.4 holds.
(<*—) Suppose that ’)’ has only one non-zero entry, then 5 = [0 ; 0, 1" 0,

: Equat..lon 4V4\>‘there ex_lsts a non-zero element vl,E{vl,, ey vk,} Whlch means ﬁzyéo,
1§l§kThls ls contrary to Theorem 4.2 (1) that §;=0, i=1, ..., k. Therefore, 5
has at least two non-zero entries. ' ,
(=>>). Suppose there exists a column v; of matrix V whose first k entries are all

-zero, then = [0, «ry 0, Vg iy oons vni] T, Let f=v;. Because the first k entries of
. v; are zero, H B==0 and F=V"!Bis a conflict vector of mapping matrix T. However,"
’7~—V v = [0 , 0, 1,0, O]T whose entries are all zero except that the ith

entry is umty So, mapplng matrix T has a conﬂlct vector with only one non-zero
ventry which is contrary to the assumption. This means Equatlon 4 4 holds. O

Theorem 4.4 (Necessary condition 3): If mapping matrix T is feasible, then

Ug41, -y Uy are feasible conflict vectors.

Proof: Mapping matrix T is feasible implies that all conflict vectors 7y of T are -
- feasible. Such a conflict vector 7y is represented by Equation 4.3 Wheré Brs1s -3 Pn
are arbitrary integers which are relatively prime and not all zero. Let B be a vee-
tor whose entries are all zero except thdt the ith entry, k+1<¢<n, is unity. Then
the corresponding conflict vector 7 = #;, ¢ =k+1, ..., n. Therefore, is a conflict
vector and must be feasible because T is feasible by assumption. (] |

Theorem 4.6 (Sufﬁclent condition 4) Ma.ppmg matrlx Tis conﬂlct—free if the |
followmg conditions are met.

(1)» There exist B1y orey fnme kE{l ., n} such that

: 717;f

e ‘-QCd(uzl k+1’ utl,k+2’ . u’tl n)>“t»

',ng(uzo,k+1’ ul‘),k+2? -‘ * uﬂz;“)>u‘2 o

':.",‘lycd(uin_;,vk'frlz”"vl'i',,'..'.',‘,»k~l~2‘7 o] u:,, ,,,n)>:u'z,, e
ui],k""l uil,k+2 e uil,n

Uiy k+1 Uiy kt2 - Uiyn

@ det| : " 0

u'i,,_-k,k-l-l» ut;,._‘_l,,k+2 s ui,,_k,

Proof: Let 3 be an arbitrary conﬂict vector of mapping matrix Tirepresented By
Equation 4.3 where (41, ..., B, are arbitrary integers which are not all zero and
relatively prime. Because L i ' -

Uikl Uik e Ui

Uiy k41 Uiy k4g - UYipn

. ﬁi,,_bk,k%r"- ué;,,,"z;;zf “i..‘—k,ﬁj
20 By, - By are ok all sero, there exists i€{iy, - fp_i) such that
] ﬁk+2 =%#0 . B (4.5)

Accordlng to’ condltlon (1), gcd(u, kbls voor u,,n) = >u,+1 If I'y, | <u,+1 then
a; does’ not divide y; Whlch means, accordmg to [27], Equatlon 4.5 has no integral

[uz,k+lyuz,k+21 ooy uz,

‘solution and ﬂk+1» i P are’ not, all mtegral Thus 7 'is_not integral and not a
~ conflict vector Therefore, it must be - |’7,|>u,+1 'By Deﬁmtlon 23 and
' Thoorem 2 z 'y is f(,ablble a.nd T is conﬂlct-free Cl

Theorem 4. 6 (Suﬂiclent condltlon 5 for TEZ n- 2)"") Mappmg matrlx '
Tez (n= Z)X" 1's conﬂlct-free if the followmg condltlons are met. : C
(1) There exxsts 16{1 wy n} such that gcd(u, A1yt ,,)>p,,+1 _ .
(2) Let ,Bn 1 and: ,6’,, be relatlvely prime- mtegers, not both zero “and such that -
B,._ lu,n 1+ ,Bnu, n=0, there exists.]E{l 5 n} J#z, such that |ﬁn_1u]n 1 —}—“-
o ﬂn] n' >,U'] ‘

: ’Proof Consrder all 1ntegral values for ,3,,*1 and 3, Whlch are not both zero, rela- E

tively prime and B,_; Uin—1 + ﬂnu, »7#0. Let the correspondmg conflict vectors be)

f\/ Because ;70 and gcd(u, n—1s U ,,)-—oz,>/,e,+1 Ify, | >pi+1. Otherwrse, o; does

18

not: divide v;; and! equation: £, ui ux + Bptti . = Vi hias: no: integral solution: [27].
"Fherefore;, 3.1 amd! F},, the: corresponding: confliet. vectors: are
feasible: Now: letls: consider the: integrall values: for 8,y and f,, which« are not.
bboﬁhk zer@:; reladnvely p:mme and} ﬁn 1,u,, n—t F Opttyn=0: For the corresponding
Ly vy TS T, such: that | Bzt pmrs +

for these: values: @

; : ‘ 5 feasible:. Therefore;, mapping
ma‘ﬁrlx Ti rs conﬂlct f‘nee be(;azuse all of itis: conﬂlcb vectors: are: fe351b]e l) o

cessary and sufficient, condition: 6 for Tezl»). Map-

2 i, conﬂlct-free if and: only 1f\ the: following; conditions are

: =Euz,n 1: + u'z RS | >luz
u]‘;(_,n:—- L u’; 75 1 I\ >:U'_1' -

B) vhn a:nd U, are: fea31ble> conﬂlct Vectors

Proof: B%ca;xiée TE’Z“(’”:FZJX”", its: conflict vectors are described by Eqﬁation 4.3
where k=n—2;. Bn..l and 4, are arbitrary integers that are not both zero and rela-
tively prime:. ' ’

(<=)x Suppose conditions (1), (2) and (3); are met. Let's: consider the:case where
one:of B, 1 and ,@n is: zero: Then: the correspending: conflict vector q' equals either
" Up_p OF U, and is. feasible. in. either case because of condition (3). Let’s consider
the second case: where: 3,0 and (3,70 have the same sign and the correspond-
ing conflict vector 7. By condition (1), there exists i€{1, ..., n} such that Win—1y
Ui n, have the same sign: and’ |’u;,n_1" + ui,nv|‘>u;., Because. un;l.v.'has the same sign
as u, and [, _; has the same value as f,, 7 = |8 LUin—1 T Bplin §
=|Bac1tin1 P+ 18nun | >l uney + in F>u;. Therefore, v 'is feasible. Now
let’s consider the third' case where B, 170 and (3,0 have opposite signs and the
_corresponding conflict vector .. Accordlngﬁ.‘to condition. (2), there exists JE{L,

n} such that-‘w};n_,_,l;:,.: Wip, have: opposite signs and | U n1Uj n | >u;. Because
Bn-1 and [, have different signs, [yl = |Bi-rtin-1tFutynl
> | uj a1~ p || >uj. Therefore, 7 is feasible.

(=>): Suppose T is conflict-free and therefore all its conflict vectors are feasible.
Suppose conditions 1 in. Theorem: 4.7 does not. hold. Thus, there does not exist
1€{1,. ..., n} such that Uijn—ty Wign . have the same sign. and I'u, n-1 T g | >,
Let (,_;=1 and: B;, = 1 and: consider the conflict vector ¥ = B, 1%, _1 + B,1 Up =
Up—17+uy,. Because: condltlon (1): does not hold [| <, :-—1, .-y 0. which means

7 is not feasible:and. T"is: not. conﬂlct-free Slmllarly, it can. be shown that. condl— .

tion 2 holds. By Theorem 4.4, condltlon 3 holds.

'F-lfieor:em:- 4.7 pr©v1s necessary and. .s-uﬂ_i_ci"em';., c_ox;dii-bion& for _méppingf; .
maxﬁnifces-f‘-flv’EZ:(‘” ~2n which. can be applied to: map 5-dimensional algorithms. into -
2-dimensional processor arrays and can be used to handle most frequently

occurrmg mappmgs in’ RAB [26] such as thc mappmgs of a bit level matrix multi-
pllcatlon algorlthm and a blt level LU decomposmon algorlthm The reasoning

used in Theorem 4.7 can also be used to derive similar - necessary and sufficient

_conditions for mapping Tnatrices TEZ(""3)X” ' TEZ(" 4" and so on. These condi-
- tions are stated as follows for mapping matr1ces TeZ(n=3x" without proofs, which
is s1m1lar as the proof of Theorem 4.7. '

Theorem 4.8 (Necessary and sufﬁclent condition 7 for TeZ" n—3) ><") "Let
the sign of the number zero be defined as either positive or negative. Then map-

ping matrix -T€Z (n=3)pm 55 conflict-free if and only if the followmg condlt_lons are
met. . ‘ ' o '
(1) There exists 11€{1, ..., n} such that u;; ,_o, Ui1,n—1 and u,l n have the same

- sign and luzln 2 T U1 n= 1+uzln|>pzl

(2) There exists 12€{1, .. vy n} such that Uig n—2 and Uig n-1 have the same sign

and wu;3p, has an oppos1te sign from w5 ,_2 and Uig 1 Also, |u,2,,,_2 4+

u1.2n 17 uzZnI >p‘12 - .
~ (3) There exists 136{1 . 'n} such that Ui3 n—2 and Uiz, have the same srgn and

Uiz, n—1 has an opposrte sign from Ui3,n—2 and- u,3,,' Also, Iu,3 n9 u,3 n— 1 +
Ui3,n l >:U'13 ' ' '

(4) There exists 246{1 . n} such that iy ;4 and u,4 » have the same'_sign a_ndt' o

Ujg n—g has an oppos1te sign from u;4 1 and u,4 ne Also, |~u,-4,n_2_ +_u,~:4,'n71_ +

Ui, n l >H14 : o
(5) un 25 Up—1 and un ‘are feasxble conﬂlct vectors El ..

From the d1scuss1on above, it is clear that the multlpher matrix U is 1nvolved _
in most of : the necessary and sufficient conditions’ for ‘conflict-free mappxngs and
the key point is to have matnx U satlsfy certaln condltlons in order to make the
mapping matrix T conﬂlct-free ‘Given a mappmg matrlx T in numbers, there are
several numencal methods to compute matrix. U in polynomlal time [20] When
the entrles of T ‘are symbols (varlables), computmg matrlx U becomes more
dlfﬁcult However, when the space mapping matr1x S is known, it is possible to
express matrlx Uas:-a functlon of H Proposmon 8 1 in the appendix computes -
matrix. U as a funct1on of H for the mappxng matrlx TEZ S,

5. TIME-OPTIMAL CONFLICT-FREE MAPPINGS

Solut1ons to Problem 2.1 have been dlscussed in the above sectlons TIn this
section, Problem 2.2 and its solutions are dlscussed that is, how -to ﬁnd the
optimal vector TI° which contributes a conflict-free mapping matrix T and satisfies
some other constraints. Two approaches are proposed, one of which is an intelli-
gent search of the solution space by employmg the basic strategy in [11] and the
other is to. formulate Problem 2.2 as an integer programming problem where the
- solution can be obtained by using existing standard algorithms for 1nteger pro— :
grammmg problems v 3 » : . |

o ’.B-y Theorem 2.1, the fotal :_exeeution time .increases ‘monotonically- with. the |
sum ‘of the weaghted a.bsolute values of entries of vector IL. Therefore, to find the
solution -of Problem 2.2, one simple way is-to modify the method in {11] where

' ‘candldafbes are enumerated in an ‘increasing order of- thelr total execution times.

- In the modlﬁed method, besides other con51derat10ns, each candldate should be
' chetked to see if it contributes a conﬁlct-free mappmg .This method is descrlbed
in the foliowrmg procedure, : »

Procedure 5.1 (Fmdmg optama.l] g of Problem 2.2)

“'Input Algorlthm (J, D) and the space mapping SEZUc L - :
E Output: An integral row vector I1° which is the solution of Prob]em 2 2.
Step 1: Set I=1. Co=(:

~ Step 2.: 'C:ons‘tru:ct 'a candidate set ’_C’,"———{H; |7r, |,u,<a:IEN+}

a0 M;

-,

c_c, c,nc, . Let | C]=c. .
Step 3: Sort and assign indices to all candidates in C such that t(1I;) < t(H s
. o '0<z<g<c, where t(H) is the function described in Equatlon 2. 7 '
- Step 4: Set z :

- ”Step 5 -Consuier candxda,te H,, set T' [I% } and ch.:eck'if’ H, meets the folloWing

v»cond.ltlons
(1) TD>0.
(2) rank(TH=k. = o : S :
(3) T'is conflict free. If T eg(n- I)X" test the condltlon in Theorem 3.1;
it T'egz(=2x" " check the condltlons in Theorem 4.7; if T° ‘cyln “3)”"_
check the conditions in Theorem 4.8 and otherwise, check the conditions
in Theorem 4.5. _ . ' o
- (4) SD=PK and Z ki <Ilg i=l,.., m. ‘where P and K are as
~ defined in Deﬁmtloh 2.2.
Step 6: I II; meets all the three conditions above, then H"—H and stop. If H
“does not meet any one of the conditions above, ignore this candidate, set -
o i=i4L , ’ '
| Step 7: If t>c, set l—l+1 x;—xl—i-cv a€N+ and go to Step 2. If 1<c, go to Step
5 '

Clearly, for mappmg matrices T EZ(” I)X" TEZ(""2) and TEZ("3)X" Pro-
cedure 5.1 finds the optimal solution because in Step 5 (3) it uses the necessary "
and sufficient condltlons in. Theorems 3.1, 4.7 and 4.8, An upper bound on the ,'
computational complex1ty of this. procedure " is O(n**1) where p=min{u;: N
=1, ..., n} This is because the search starts at H=0 and the possible values for -

Ty z—.l ., nare0, +1, ..., 2u,;. Obvrously, the candxdate ﬂ where the absolutev :

21
values of m;, =1, ..., n, are small does not contribute a conflict-free mapping. So
more sophisticated methods of finding the solution of Problem 2.2 2 may be possi-
ble. In general, together: wrth Theorem 2.1, these necessary and sufficient condi-
tions described in Theorems 3. 1, 4.5, 4.6, 4.7 and 4.8, depending on the- dimension
of the mapping matrix T, should be used to guide the solution search which is
under investigation. Usually, Procedure 5.1 is .the last choice for ﬁn-ding' the
optimal solution. In the following, a much more preferable approach, mteger
linear programming approach is discussed.
For the mapping matrix TeZ(n—1)xn Problem 2.2 can be formu]ated as an

integer programmmg problem as fol]ows ' . .

min f—-E | m; I,u, - | T B - (5.1)
(1) HD>0 N |
R (2) SD=PK and 3 k;gﬂ E,-,' i=l, .,m
- subject to R ¢ o (6.2)
o (3) -:—1’ lfi(vﬂ-l""" n)|>:u1 .
@ ez "

Where"T;—i[ISI]' S and' P are ‘gi’ven'and f,-," { —'——1' ' ,n are 'as’deﬁned in Equation 3.2.
The last two constralnts requlred by Deﬁnltlon 2 2 are 1ncluded implicitly in (5.2) ‘
because by Theorems 2 2 'and 3.1 they are 1mp11ed by constraint 3 in (5.2). Also,
constraint 2 is not requlred if a new processor array is designed specially for the
algorrthm By Prop081t10n 3. 2 constraint 3 in (5 2) is linear. So the formulation
in (5.1) and (5.2) is an 1nteger linear programmlng problem if, as in Examples 5.1
and 5. 2 constralnt 1in (5.2) requlres that m;>0, z—l .- n. Actually, this integer '
linear programming problem can be further converted to a linear programming -
. problem for some applications as indicated by Examples 5.1 and 5.2. As a matter
of fact, if 7r,; i=1, ..., n are required to be posrtrve (usually by constraint 1 in
(5.2)) and all entrres of dependence matrix D and space mapping matrrx S take
values 0, 1 or —1, 1e, 54y d,JE{ ~1, 0, 1} t=1, ..., n-and J=1, ..., 'm, then the
“integer programming problem defined by (5.1) and (5.2) can always be converted
to several linear programming prob]ems This is because in this case, the objective

function is linear, the coeflicients of =, 1=, ..., n, 1n the constraints of the integer - -

linear programming problem in (5.1) and (5 2) are 1, 0 or —1, and therefore all
~extreme points of the solution sets are integral. : o

The general integer programming problem is NP complete [29 PpP- 245]
However, for each fixed natural number n, there exists a polynomial time algo-
rithm Whlch solves the integer linear programmrng problem [29, pp. 259] This

algorlthm is a polynomra] functron of the number of constraints of the 1nteger'

22
- linear programming problem and a logarithmic fnnction of the problem size vari- 77
ables yy, t=1, ..., n. Many existing standard algorithms can be used to SOIVe the

formulation in (5 1) and (5.2) efﬁclently because in practice, the number of con-
stramts and the algorithm dimension n are not large.

Eicarnple 5 1: Consider the matrix mu‘ltiplication algorithm in Example 3.1
Where the space mapping matrix is given as S=[1, 1, —1]. The dependence matrix

D and index set J are shown in Equation 3.4. To satisfy condition 1 in Equatlon 7

5.2, each entry of the linear schedule vector 1I must be positive or 7T,_>.'1 =1, ..
3. Therefore, the problem of finding an optimal linear schedule vector for the,
matrix multlphcatlon algorithm is formulated as an integer linear programmlng '
problem :
: m\iﬁ; f =p{my+mp+m3) .
- v (5.3)
(1) m>1, i=1, 2, 3
' r -—
‘ (2) SD=PK and Y k;; <Il d;, i=1, ..., 3
subject to - =1 : :

(3) Tp M3 >utl, or T +my>ut1, or | m—my |>u+1
(4) H6Z1><3

Where the 1nequaht1es in constralnt 3 are derived in Example 3.1 and. shown in
Equatlon 3.5. As 1nd1cated in the appendix, this problem can be converted to .
three:linear programming problems because all extreme points of the convex solu-
tion space are integral. In the appendix, techniques for solving linear program-
ming proble‘ms are used to find the optimal solution. If the problem size variable

pi=4,then the optimal solution of this algorithm is either T =[1, u, 1]=[1, 4,1 or

Hg—[,u, 1,1]. The derivation of the solution is shown in the appendix. Let's choose o

[I°=Il, =1, g, 1]. The total execution time is ¢=(2+u)+1 according to Equation
2.7. ‘The matrix of interconnection primitives is P=S=[1,1, —1] and K=I, the
identity - matrix. Figure 2 shows the block diagram of the linear array and Figure 3
shows the execution of the matrix multiplication algorithm by mapping matrix

14 1
cuted at processor S] and at time IIj. Clearly, there are mno computational .
conflicts. Also, as shown in Fi igure 3 and explained in the appendix; there is no
link collision either which means no two data use the same link at the same time.
As shown in Figure 2, three data links are used, one for data 4 traveling from left
to right, one for data B traveling from left to right and one for data C travehngx

11— .- : - ...)
[. Computation c¢;; j2=6;1 ;3'b;3 ;2 indexed by 7=[41, 72, J3] T is exe-

- from right to left. Three buffers are needed for each processmg element on the -

link for data A or for dependence vector d2

,§

=
= PE PE o . .

Figure 2: Block dia.kraiﬂ of the linear array for the matrix hlultiblication algorithm. Data A and
B travel from left to right and Data C travel from right to left. Three buffers are needed in data
link for A. L T T L : : :

time

o s R s i CIO00Y Ot 000 Qeren eIy oy O

24

oot D CIr=EN, HONH O Y=o ANOCN tir=ifl ROery O
30 O [XX3) AoV Q0 oY 3OO ROY |0 O Q0 0 O
e eOHON QI HENCT vt HOD: eDR T [EA=] NNO . O

Nttt CUH=H ¢ et QICDCD, SHEH r-0Derd CICIEN OEIeD r-1ENCY OO r—trir—t Orri SO
meReR, - CIEEY SHEAH retrmd et DA DO OIr=HEY I r= vl O —iCN QO Wil O O
.0 O ROL B0 GO0 o0 AL GOV AoV A0V oV SO P /OO B0 O [Y= X
COHEND. CUHET ~<HEDOD wei~ir— cAENEN OHOD: AT HENIET eSO e AN <P N OO

<t OOt HODED I O et CICDED CACICT 06D EICIAT COED r—ENEN Clr—tr— I T Oy OO DO
Q0 W SOV BO0 GO0 GOV 30 G000 OV AV GOV N ROV GOV GOV QO QOO GO Q0 O
ot CIHOD HonH r—HOT OV O~H CIDET HAIND ricr CACIET O I H—HA =IO MO N HO™ [el=l=

g O <HODON OIHH OO HOICT CIEDEN CACIAT wiD0D CICICT Or=ir reCET Ol O] ririr NOQ Ot v [l)
IR - Er— OO AN CIODET T =i\, DD Or=C) QAT PO === VAN OO CIr=E A r—1Or COr=icD NSO
€0 0 ROV GLV ROV GOV ROV GO0 GO0 GO0V GO0 ROV o0 GO0V G000 ROV A0Q AV 400 B O
BT =D e OPCN QI HEFTH o IENMD Oedr AICICN HeD r=ear (i OO Nirirt HOON O O (==

it OOt D ORENED THOIGT CIEDCD CNCICT Hr—tri CICIC] OOt rEIET QT CREICD Tirr=d CIDD: Orird =OO oo
DY SRS EET San IR0 SRS HAU AT HaT RAT 300 I3 ¥RY 4AC Rag 228 Aay WA
i< O~ e OO AT DN CICID e F=ENCN (D10 OO AN DD rdr—ir MON OO CAOT -oo

4¢c30
2¢01 3¢

0

31
8is 1697 8t

B
C
B
C
%ﬁ
c01
4c¢20
1
0
2
0

23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

PE-4 PE-3 PE:2 PE-1 PE0 PEl PE2 PE3 PE4 PE5 PE6 PE7 PES

plication algorithm. The small block

Figﬁre 3: The execution of matrix multi
with the left most column being [;,, sz, 73]

T corresponds to the computation c;,;,

a;173°bja;, Which is executed at processor j,+j,—7s and at time j,+475+73.

. 3 i

In [23], w1th the same space mapplng matrlx S5 .the linear schedule vector
1I'=[2, 1, y] is used and the corresponding conflict vector is y=[- (u+1), 2+, 1]7.
When p=3, TI' is the optimal solution. However, when u=4, it is not. When u=4,
the total executlon time by I is t'——u(3+u)+1 Whlch is longer than the optimal
linear schedule II°. Also, the number of buffers is E(H' d; ——1) = 4. The systolic

o i=1 :

array des1gned in th1s paper only needs three buﬁers on data link for data A or ,
dependence vector d2 ' L

,Example 5.2: Consider the transitive closure algorithm in Example 3.2 Whe'r‘e"'the”
- space mapplng matrix is given as $=[0, 0, 1]. The dependence matrix D and index

- set J are shown in Equatlon 3.6. To satisfy condition. 1 in Equation 5. 2 it must

have m, >0, 73>0 and 7 —7m, >0 or m >y >0. “This 1 means each entry of the linear
schedule vector II must be positive. . Therefore, the problem of finding an optimal
linear schedule vector for the transitive closure algorlthm 1s formulated as an
integer hnear programmlng problem ‘ '
‘min f—,u(7r1+7r2+7r3) B S
{- (1) m>1, i=2, 3, 7r1—7r2——7r3>1 '
E ‘, —7r2>1 7r1-—7r3>1 -
o subjeet to (2)3‘SD——PK and g i g H d,, =1, 0,3
S 13) ”_7r2>u+1 or. 7r1 >,u+1
' (4) : HE Z1><3 o

Where constralnt 3 is derlved in Example 3.2 and shown in Equatron 3.7, Agaln,
as: 1nd1cated in the. appendxx, thls problem can be. formulated as two linear pro-
grammlng problems “The - optimal solutlon of thlS algorlthm is H”-—[u—l—l 1,1}
 when ,u>2 The: derlvatlon of the. solutlon is shown ‘in the appendix. The total ’
’ executxon tlme is t—u(3+u)+1 accordlng to Equatlon 2. 7. As mentioned in Sec-

tion 1, the solution found by the heurlstlc procedure in [22] is [I'=[2p-+1, 1,1]

(notlce that- the lower and upper bounds for 1ndex pornts are 1 and n in [22] and ‘
therefore, u=n-1 in [22]) and the total execution time is- t’—p,(2u+3)+1 which is-
much longer than for II°. The matrix of ‘interconnection prlmltl,ves is
P—SD——[l 0 —1, 0, —1] and K =I, the ldentlty matrix. Clearly, there are no com-

00 1f

} +1 1 1

is 7—{1 —(/H-l) O]T Whlch is feasible accordlng to Theorem 2 2. Also, as explalned
in the appendlx, there is no- link collision elther Whlch means no two data use the)

‘ putatlonal conﬂlcts because the conﬂlct vector of the mapplng matrlx

“same hnk at the same time. D

TR LR A e M S

, 24
Problem 2.2 can be formulated as an mteger programming problem in gen-
‘ »eral if the multipier matrix U can be e.xpr_.essed as a function of II. Proposition 8.1

 in the appendix expresses matrix U as a function of II for the mapping matrix

T €Z7%8, Therefore, Problem 2.2 can be formulated as an_integer programming
problem as follows by using the necessary and sufficient condition in Theorem 4.7.

(1) ID>0
- H2) rank(T)=k -) |
(@) Fiet, o5} Tuabus [>m, wews>0
L (@) ie{t, 5 Twa—us | >m, waus<o |
. subJect to 7* (5) :Iz'-’e{i 55}] dm T - o ~ (5.6)
) Fire(, o5y Lujs | >u A

(7) SD=PK and -53 ki <Ild; =1, .., 5
=t

(8)' _nglx?» |

whéré Tj= ﬁ] Clearly constralnt 2 in (5.6) is lmear because the determmant of T

is a llnear functlon of m;, i=1, ..., n. If it is requlred that us >0 z—l . n, the
obJectlve functlon in Equatwn 5 5 is linear and the integer programming problem
- in (5.5) and (5.6). can be transformed to be linear because the constraint u; 4 u;5>0
~ can be replaced equlvalently by {ui4, ui5>0 or uyy, 4;5<0} and so can the con-
straint u4° w5 <0. Constraints 5 and 6 ensure #, and u. us are fea31ble conﬂlct vec-
tors as required by Theorem 4.7. Again, instead of mapping the alg}orlthmv into a
‘tai-'gei; machine with fixed interconnections, if a new processor arrayb is designed
specially for that algorithm, constralnt 7 can be removed as illustrated in Exam-
ples 5.1 and 5.2. This formulatlon is belng used to find the optimal design of a 2-
dimensional bit level processor array for the bit level matrix multiplication algo-
'rithmj and the results will be :reported in a separate paper due to limited space.

8. CONCLUSIONS AND FUTURE WORK .

The maln contributions of this paper are ﬁrst the necessary and sufficient
conditions for computatlonal conflict-free mappings, and second, the optimization
,_procedu,re and the integer programming problem formulation of finding optimal
solutibns to map algorithms with n nested loops into lower dimensional processor
arrays. Without these necessary and sufficient conditions for conﬁlct-free map-
pings, the integer programming formulation is impossible,’ and even the optimiza-

tion procedure has to enumerate all index points of the algorithm to see if thereis

a computational conflict. These teéhniques can be applied to map algorithms with -

25

" n nested loops into linear or 2—d1men31onal processor arrays Wlth the total ‘execu-
- tion time minimized; they are especially useful for programmlng blf level processor
" arrays such that the total execut1on time is minimized. -

Future work includes consideration of the - number of buffers and length of
wires required by the mappmgs and investigation of the following two problems.

Problern_ﬁ.l (Space—optirnal and'conﬂict-free mapping problern): Given
an n-dimensional uniform depende_nce algorithm and a linear schedule vector, find

H
1

a space mapping matrix Sz~ such that T= S is conflict-free and the
number of Processors plus the wire length of 'the*a’rra& vis'fmin'imized.: ' |

Problem 6 2 (Optlma.l conﬂlct-free mapplng problem) Given an n-
dimensional uniform: dependence algorithm and a (lc_-l) dimensional processor

kan

array, find a conﬂ1ct—free mappmg matrlx TE such that a certa.ln criterion is

optlmlzed

In general, in Problem 2 2 space mappmg matr1x S is given and usually is
not a function of problem size variables y; =1, ...," n; in Problem 6. 1, linear
schedule vector 11 is g1ven, possibly by the optlmlzatlon procedure proposed in
[16], :and usually is not a function of problem size variables; and in Problem 6.2,
both S and I are not given and poss1bly are both functions of problem size vari-

= ables.

7. REFERENCES
~[1] RM. Karp, R.E. Miller and S. Wlnograd "The Orgamzatlon of Computa.—
tions for Uniform Recurrence Equations,” JACM 14, 3, Jul. 1967, pp. 563-
~590. | L
[2]" D.L Mold()van and J.A.B. Fortes, "Partitioning and Mapping Algorithms into -
' leed Size Systolic Arrays, IEEE Trans. Computers, Vol. C-35, No.. 1 Jan.
1986, pp. 1-12.
[3] P.R. Cappello and K. Ste1glltz, 'Umfylng VLSI Arra,y Designs with Geometnc
. Transformatlons, Proc. of 1983 Int'l Conf on Parallel Processxng,‘pp. 448-
457 5 - _ |
[4] _P. Quinton, Automatlc Synthe31s of Systohc Arrays from Unlform Recurrent
' ’Equatlons, Proc. 11'th' Annual Symposxum on Computer Archltecture, 1984
 pp. 208-214. »
[5] S.K. Rao, 'Regular Iterative Algorlthms and Thelr Implementatlons on Pro-
cessor Arrays,. Ph D Dlssertatmn, Stanford Un1ver31ty, Stanford, California,
Oct. 1985. @ = "
[6] M. Chen, "A Des1gn Methodology for Synthesmng Parallel “Algorithms and
Architectures,” Journal of Parallel and Dlstr1buted Computmg, Dec. 1986
pp. '461'-491. . : S

8
9]
10}

[11]

[12]

26 -

J.-M. Delosme and L. C. F. Ipsen, "An Illustratloh of a Methodology for the

Construction of Eﬁic1ent Systolic Architectures in VLSI ' Proc. Second Int’]

» Symposmm on VLSI Technology, Systems and Apphca.tlons, 1985, pp. 268-

273,

8. Y. Kung, VLSI Array Processors, Prentlce—Hall Englewood Chffs, N.J.
1987. '

C. Guerra and R. Melhem, k Synthesmng Non—Unrform Systolic Desrgns,
Proc 1986 Int’l Conf. on Parallel Processing, pp. 765- 771. _
G.-J. Li and B. W, Wah, "The Design- of Optimal bystollc Arrays,”" IEEE

Trans. Computers, Vol C-34, Jan 1985, pp. 66-77.

M. T 0O'Keefe and J.A.B. Fortes, "A Comparative Study of Two Systematlc
De31gn Methodologles for Systolic Arrays, Proc. 1986 Int’l Conf. on Parallel

Processmg, pp. 672-675, :
J.A.B. Fortes, F. PaI‘ISl Presicce Optlmal Llnear Schedule for the Parallel

Execution of Algorithms,” Proc. of 1984 Int’l Conf. on Parallel Processing,

- pp- 322-328.

18]

[14]

[15]

[16]

[17]

18]
[19]

(20]

21]

:[22]

L. Lamport, "The Parallel Execution of DO loops,”" Comm. of the ACM', Vol. -

17, No. 2, Feb. 1974, pp. 83-93.
J.-K. Peir and R. Cytron, "Minimum Distance: A Method for Part1t10n1ng

Recurrences for Multlprocessors, Proc. 1987 Intl Conf on Parallel Process-

"1ng, pp 217-225.

V. P. Roychowdhury ‘and T Kailath, 'SubSpace Scheduling and Parallel
Implementatlon of 'Non-Systolic ‘Regular Iteratlve Algorithms," Journal of
VLSI Signal Processing, 1, 1989. o
W. Shang and J.A.B. Fortes, "Time Optimal Linear Schedules for Algorithms

with Uniform Dependencies,” Proceedings of Int’l Conf. on Systolic Arrays,
May 1988; pp. 393-402 (also to appear in IEEE Trans. on Computers).

S. Y. Kung, S. C. Lo and P. S. Lewis, "Optimal Systolic Design for the Tran-
sitive Closure and the Shortest Path Problems," IEEE Trans. on Computer,
Vol. C-36, May 1987, pp. 603-614. ”

G. Strang, "Linear Algebra and its Applications,” Second Edition, Academic
Press 198C. . _

R. Cytron, "Doacross: Béybhd Vectorization for Multiprocessors (Extended
Abstract)," Proc. of 1986 Int’l Conf. on Parallel Processing, pp. 836-844.

R. Kannan and A. Bachem, "Polynomial Algorlthms for Computing the
Smith and Hermite Normal Forms of an Integer Matrix," SIAM J. on Com-
puting, Vol. 8, No. 4, Nov. 1979, pp. 499-507.

H.T. Kung and C.E. Lelserson, "Algorithms for VLSI Array Processors, in C.

Mead and L. Conway, "Introduction to VLSI Systems," Addlson-Wesley,
1880, Section 8.3. - |

P. Lee and Z. M. Kedem, "Mapping Nested Loop Algorithms into Multidi-
mensional Systolic Arrays,”" IEEE Trans. on Parallel and Distributed SysL(ms,

Vol. 1, No. 1 January, 1990, pp. 64- 76

27 .

[23] P. Lee and Z. M. Kedem, ' Synthesrzrng Lrnear Array Algorithms from Nested
For Loop. Algonthms," IEEE Trans. - on Computers, Vol. 37, No 12,
December 1988, pp. 1578-1598. SR

[24] D.'A. Padua, "Multiprocessors: Discussion of Theoretrcal and Practical Prob-
lems," Ph.D Thesis, Univ. of Illinois at Urb Champ .» Rept. No. UIUCDCS—
R-79-990, Nov. 1979. - : '

[25] Y. Wong and J.-M. Delosme, Optlmal Systohc Implementatron of N-
dimensional Recurrences, IEEE Proc. ICCD, 1985, pp. 618-621. 4

[26] V E Taylor and J.A.B. Fortes, Us1ng RAB to Map Algorlthms 1nto Brt—level
Systohc Arrays, ,Proc of Int’] Conf. on Supercomputmg, May 1987.

[27] L.J. Mordell Dzophantme Equatzons, Academlc Press, New York, 1969, pp-
30. ' '

(28] M. T. O’Keefe and J.AB. Fortes, 'Blt Level Processor Array: Current Archl—
tectures and a Design and a Programmlng Tool 1988 Int’l Symposrum on

, Circuit and System, Helsinki, Finland, June_.19$8, pp 2751-2755. _ .

(29] A. Schrijver, "Theory of Linear and Integer Programming,” John Wiley &
Sons, 1986. AR

[30] W. Shang, "Scheduling, Partitioning and Mapping of Uniform Dependence
Algorrthms on Processor Arrays, Ph.D Thesrs, Purdue Un1versrty, W. Lafay—
ette, IN 47907, May, 1990.

[31] W.D. Hrlhs, 'The Connection Machine," MIT Press: Cambidg’e, MA 1985.

[32] Moldovan, D. I, "On the Design of Algorithms for VLSI Systohc Arrays

. Proc. of IEEE, Vol 71, No. 1, Jan. 1983, pp. 113-120.

[33] R. Davis and D. Thomas, "Systolic Array Chip Matches the Pace of Hrgh-
Speed Processmg, ‘Electronic Design, Oct. 31, 1984. ’

>[34] R.W. Hockney and C.R. Jesshope, "Parallel Computers Arch1tecture, Pro-
gramming and Algorrthms, Adam Hilger Ltd.: Bristol, 1981, pp. 178-192.

[35] K.E. Batcher, "Blt-Serlal Parallel Processing Systems, IEEE Trans on Com—' .
puters, Vol. C-31, No. 5, pp. 377 384. e

8. APPENDDC o
Discussion of Example 5.1: Let’s deSIgn a new. hnear systohc array for the
matrix multrpllcatxon algorithm. Thus, constramt 2" in Equation 5.3 can be
ignored at this moment For an integer linear programmmg problem with convex
solution set, if all of its extreme points are mtegral then one of the extreme points
is the optrmal solutlon of that problem [29, pp. 232]. Now the solution set of the
integer programming problem in Equatlon 5.3 is not convex because of constraint
3 although all extreme points are integral. One. way to solve this problem is to
partition the solution set- as’ three convex subsets ‘and. then to ﬁnd all optimal solu-
. tions for all the solutron subsets If the one w1th the smallest value of the objec-
tive functlon is. satrsfactory, then it is the optlmal solutlon of the 1nteger program-
ming problem in Equatron 5. 3. ’ e :

28

- Now let’s partition the solution: set of the _integ’érrprogrammiﬁg problem in
Equation 5.3 as three subsets which are expressed as follows.

(I) min f=p(m+my+7s)
. : (1) m>1, i=1,2, 3
subject to 1 (2) My+my>pt1
i (3) Tlez™®
‘ (II) min [=p(my +my+ms)
| @) 7>, i1, 2,3
subject toq (2) m+maSutl
- (3) liez™®
(1) min f =li.(7T1+7T2v+7T.3) . S

(1) m>1, =1, 2,3
subject to { (2) |m—my | >pt1
(3) HEZIXS

Each of the above problems is an integer linear progra}nming problem with a con-
vex solution set. Because the coefficients of 7;, i=1, ..., 3, in these inequalities are
eithér 1, 0 or —1, every extreme point of the convex set is integral and one of the
extréme points is the optimal solution of that problem. Let’s first consider F ormu-
latlon I in Equation 8.1; the convex solution set is defined by. {lI=[m, 7y, 73]
T 21, Te 21, m3>1, Ty +7r3>u+1} Each extreme point is the solution of three of
the following four equations: m =1, my==1, m3=1 and my+m3=p+1. There are two
such extreme points II;=[1, 1,] and IIy=[1, p4, 1]. II; is not feasible because the
corresponding conflict vector [1, 1, O]T is not feasible. When u is an even number,
I1, is feasible and the corresponding. conflict vector is [— (u+1), 2,(-—u)]T. Simi-
larly, the extreme points for the other two integer linear programming problems in
Equation 8.1 are Il3=[g,1,1), I,=[1, u+2,1] and Tlz=[p+2,1,1]. Vectors
My=[1, 4, 1] and II3=[u, 1, 1] have the same execution time and are the optimal
solutions. | ’ ‘ : o '

One more constraint ged(fy, ...,f,)=1, where f;, i=1, ..., n are as defined in
Equation 3.2, should be added to the formulation described by (5.1) and (5.2) to
guarantee the greatest common divisor of the resulting conflict vector is unity.
However, this makes the problem more difficult to solve. Hence, this constralnt is
ignored and the resulting conflict vector is checked to see if it is feasible. This is
why 1I; has a non-feasible conflict vector.

s] o
m| =

Let’s design the linear systolic array for mapping matrix T=

11 —1
qjLop 1y

If P=(1,1, -1} is chosen as the matrix of interconnection primitives

29 |
and K=I (the identity matrix), then SD -—PK 3 k=11 d1_1
. : J=1)

by]2—1<H dg—u——4 E 3-—-H ds=1 and constramt 2 in Equatlon 5.3 is
J=1 ‘]=1 o

satisﬁed. Because [ld,— L ;2=3, three buffers are .heeded on the data link for

d2 induced by data A. The systolic structure and the executlon are shown in Fig-
ures 2 and 3, respectively. Notice that there is no data link - collision because in
every column of matrix K there is only one non-zero entry k=1, i=l, ..., 3. This
means that when data pass from the source to the destination, they use the data
link just once. Data link collisions occur only if data use links more than once
when passing from the source to the destmatlon

Discussion of Example 5.2: Similarly, the integer programmingi problem in
- (5.4) can be converted to the following two integer linear programming problems. -

(I) min f —u(7r1+7T2+7r3)

(1) m>1, 1=2, 3, 7r1—-7r2—7r3>1
m—my>1, m—m3>1

(2) m>p+1

(3) Mlez3

subject to 1

_(II) min f—-,u(7r1+7r2+7r3) s
(1) 7r,>1, 1=2, 3, 7r1—772—7r3>1
T —Ty 21, 7r1——7r3>1 :

(2) m2p+l
| (3) TIez>s

subject to 1

Again because all coefficients of m;, 1=1, ..., 3, in these inequalities are either 1,0
or —1, all extreme points.of the convex solutlon subsets are integral and tech-
niques for linear programming can be applied, whlch check all extreme points of
the solution subsets. One of the extreme points- w1th ‘the’ minimum value of the
objective function f is the optimal one. Let's first. cons1der Formulatlon Il in
Equation 8.2; the convex solution set is defined by {H-—[7r1, Ty, M3)t Mp2> >1, m32>1,

M —My—M3 21, M —Mp 21, m—TM32>1, m >u+1} Each extreme point is the solution
of three of the following six equatlons To=1, 7r3——1 7r1 —Tg—Tg=1, T —Ty=1,

Ty—T3=1, =y+1. There are four such: extreme points II;=[u+1, 1, 1],

Hy=(p+1, 1, p—1], Iz=[p+1,1, y] and H4—{u+1 pz-—l 1] When p>2, “all the
above linear schedule vectors satisfy constraint HD>0. ‘The corresponding conflict

vectors, according to Equation 3.2, are 7;=|l, —(,u+1),‘0]T, Fa=[1, —(u+1), 0],

30 i

Fa=[1, —(p+1), 0]T and F4=[u—~1, —~(u+1),0]7. Vectors 7;, 1=1, ..., 3, are feasible
and 4 is feasible if i is an even number Similarly, the extreme points.for integer
programmmg problem I in (8.2) can be found. The extreme point with the
minimum value of the objective function f is H"—Hllt— (441, 1, 1] and the total
execution time by I is u(u+3)+1 according to Equatlon 2.7.

If the matrix of interconnection primitives P=SD = [1, 0 —1,0, —1} is chosen
and K =I, the identity matrix, then constraint 2 in (5.4) is safisﬁed Similar to the
de51gn for the matrix multiplication algorithm, there is no data link collision
because in every column of matrix K there is only. one non-zero entry k;=1, 1=1,

., 3. This means that when data pass from the source to the destination, they use
the data link just once. Data link collisions occur only if data use links more than
once when passing from the source to the destination. '

| ’ '
Wheré!ﬂ = [Ty, ooy T5]€EZP® and

Proposiﬁon 8.1: Let mapping matrix T=[I'5i

$11 .+ S35 . .
S= €225 If s;;=1 and sg3—S9; S19=1, then the last two columns of
S21 S25 ' Bo

multiplier U are as follows:

€13 €14 |
174#—% c?"‘l‘% €(1§4 o :(‘8.'3‘a) |
0 0
€13 _ Ci4 €15
¢ .
=" ’g-’;“ cgz —qlg}:‘“ {;4 = c§5 . (8.3
0 0 1
where .
has=—T1 (812521 513—612523+513)+Ta(521813—523) 73, (8.42)
hs4=—W1(31232i314—512324‘1'314)4‘”2(5:2'1314—324)+7T§a , (8.4b)
has=—T1 (512521515 512525 +515)+72(S21815—525)+7s5, (8.4¢)
€13==512(521513—523) 513 o (8.52)
c14=—812(521514—524) 514 | | ' (8.5b)
e15=—512(521515—525)—515 ‘ ~ (85¢)
€23=621513 7523 o | | . (8-5d)
C24=S2151452¢4 | S ' | (8.5¢)

C25=821515 525 : , ' | (8.5f) :

31

91=90d(h33, h3s), Pi1h3z+qihze=gy | | (8.6)
92=gcd(g1, h3s), P291+q2hss=gs. (87

The proof can be found in Chapter 6 of {30]. Expression 8.3 is expected to be
much simpler if the space mapping S is given in numbers and some special condi-
tions are considered; therefore, it is easier to construct the multiplier U for the T
with a speciﬁc space mapping matrix.

	Purdue University
	Purdue e-Pubs
	4-1-1990

	Time-Optimal and Conflict-Free Mappings of Uniform Dependence Algorithms into Lower Dimensional Processor Arrays
	Weijia Shang
	Jose A. B. Fortes

	tmp.1542052450.pdf.0SnpA

