
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

4-1-1990

Programming of Path Specific Robot Operations with Optimal Part Programming of Path Specific Robot Operations with Optimal Part

Placement Placement

Rick Guptill
Purdue University

Shaheen Ahmad
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Guptill, Rick and Ahmad, Shaheen, "Programming of Path Specific Robot Operations with Optimal Part
Placement" (1990). Department of Electrical and Computer Engineering Technical Reports. Paper 712.
https://docs.lib.purdue.edu/ecetr/712

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages

;v / . \ \% \ \v . \ ,<?.\v.J%v!%tT.*.,.,.,.,. « f ,.,,v .v .
S:x!-!oxox-:*:\x*x-ixo;*!^X\\v3i£®X\v!vl*

••.V.’.V.V.V.V.V.V.V.W.V.V.V.ViV.V.’.V.V.'.V

Programming of Path Specific
Robot Operations with
Optimal Part Placement

R ick Guptill
Shaheen Ahmad

TR-EE 90-24
April 1990

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Submitted to IEEE Transactions on Systems, Man Cybernetics, November 1989.

PROGRAMMING OF PATH SPECIFIC ROBOT

OPERATIONS WITH OPTIMAL PART PLACEM ENT

R ick GuptilI and Shaheen Ahmad

Real-time Robot Control Laboratory

School of Electrical Engineering

Purdue University

West Lafayette, IN 47907-0501, USA

A bstract

In this paper we describe a task level programming system for path specific robot

operations. We define path specific tasks as those robot tasks in which the path the

manipulator end effector has to follow is fixed and is given, such operations may include

welding or sealant application. The initial path selection is made through a graphical

interface using a pointing device (such as a mouse) to outline the desired path on a

CAD model of the workpiece. The final result of the system is the part location, which

enables the chosen manipulator to optimally perform the desired task. Optimality is

based on maximizing the manipulability of the manipulator performing the task using a

function of the jacobian. User defined constraints, joint limit constraints, and collision

avoidance constraints are used to guide the optimal location selection. The workable

task is then executed using calls to a "C" language based motion control library outlined

in [Guptill88] [Gnptill & Stahura 87]. The usefulness of the system described in this

paper is indicated by an example of two robotic devices performing a down-hand weld

ing operation.

/ I / schultzm/Ahmad/opt.pIace - 2 - November 22, 1989

I . Introduction

The motivation behind developing a task level programming system is to allow the

user to write a control program in the context of the task to be completed, independent

of the robotic actions needed to carry out the task. In the task level programming sys

tem described in this paper, the task domain is path specific robot tasks, such as weld

ing or sealant application. In this system, a user graphically specifies the desired path

on a graphic representation of the related part. The programming system then finds

the optimal location in the workspace to place the part to accomplish the desired path

following in the workable robot workspace which is free of Collision and other user

imposed constraints. A manipulator level program which uses this information to per

form the task is then executed.

The technique presented is general in that it will work with many different types of

manipulators and many different types of path specifications. This system requires a

inverse kinematics solution and the manipulator jacobian, neither of which need to be

in closed fqrm. It also requires a parameterized path specification. A method which is

illustrated parameterizes a path by using a "drive transform between points allowing

a series of points to define a path. Note that complete position and orientation of the

end effector is required for a point on the path.

See later for definition of the drive transform.

2. Previous Research

Previous work in task level programming for robotic devices has concentrated

mainly in the assembly domain, and the subproblems associated with it. Common to

each approach is a task level description in some form, and a target manipulator

language to execute the task. The differences lie in input modes and how much is

assumed about the environment.

Taylor [Taylor76] extracts equations relating object positions from a graph struc

ture of the assembly task. He used these as constraint equations and he used linear pro

gramming to find the solution which satisfies all constraints. The use of linear program

/ 1 / schultzm / Ahmad / opt .place - 3 - November 22, 1989

ming allows and optimal solution to be found, given a criteria for optimality. The tar

get manipulator level language used by Taylor was similar to AL [Mujtaba et al. 81]. ;

RAPT [Popplestone et.al.78] starts with a part assembly description in the form of

positional keywords, such as "Against" and "fits". Relationships between objects are

converted into mathematical geometric constraint equations and then these equations

are solved analytically to arrive at the location of the objects in the workspace. This

introduction of a mathematical basis extracted from the task description is an impor

tant Concept as it allows the program to obtain relational information without asking

the user. The target manipulator language used by [Poplestone et al. 78] was POP-2.

AUTOPASS [Lieberrnan & Wesley79] used a set of keywords to describe an assem

bly task. It is not a natural language but rather a "task level" manipulator language.

When an AUTOPASS program is compiled, the compiler asks the user for direction

when ambiguities arise. No artificial intelligence reasoning or mathematical formulation

■Was used. The target language generate was an Algol like language.

Induetiye learning to robot programming was applied by [Dufay & Latombe84].

Execution traces were generated during a training phase. From these traces, the

description of the class of robot task is induced and a manipulator level program is

/ J/schultzm /Ahmad / opt.place 4 - November 22, 1989

synthesized. Typically, the system starts with an initial Set of knowledge and acquires

the information neeeded to complete a task in this initial set through teaching. The

ability to represent knowledge is a very important part of this system. The target

manipulator language is LM [Latombe & MazerSl].

PARR [Juan87] used an interactive CAD graphical interface to allow the user to

assemble a part at a CAD workstation. The motions graphically performed by the user

during the assembly are stored and converted into an RCCL program [Hayward & Paul

84] which then runs the PUMA robot. A world model is built from a solid model

description. Information such as, the grasping position, the function of the object, and

the part tolerances of the parts are stored with the world model. Lozano Perez has

addressed many aspects of task level programming system such as finding a collision

free path and grasping etc. [Brady et al. 81].

The main areas usually addressed by an automatic programming system are: the

find path problem or gross motion planning, fine motion planning, and grasping. The

problem domain is different in our task level system in that tke paddi is cornplptely

known, no grasping is required and, our goal is the location of the part which is usually

known in most previous approaches to task level programming. A numerical optimiza

tion technique is devised to solve for the part location which allows collision free task

execution while staisfying user specified constraints.

3, Organization

The task level programming system described below consists of five main com

ponents. The first component is a graphic modeling system. The robotic devices and

the parts used to perform the desired task are modeled using a method which will allow

the spatial relationships between them to be analyzed as the task progresses.

/ I / schultzm/Ahmad/opt.place November 22, 1989

The second component in the programming system forms mathematical functions

to describe the end effector path. The user specifies the path with respect to a coordi

nate frame located on the model of the part. An example of this is a seam weld robot,

has to make on a truck axle.

The third component of our system extracts constraints and produces a set of ine

qualities which bound the solution set of the position of the workpart. These con

straints are combined with additional user constraints to limit the optimal solution

space. An objective function is then formed to find the optimal location within this

solution space.

The forth component consists of a numerical optimizing algorithm which solves the

optimization problem. By virtue of being a numeric algorithm, substitution of other

robots requires only a change in function calls, no symbolic manipulation is required.

The output of the optimization is the position of the work part. This position is such

that the manipulator manipulability is optimized through out the task, while joint limit

constraints and user constraints are not violated, and collision free path execution is

achieved. Final part of the system converts the numerical solution into a manipulator

level language by calling a number of motion control libraries written in ‘C’ language

[Stahura & Guptill 87] [Guptill 88]. Graphical viewing of the task execution is also pos

sible.

4. Modeling Objects in the W orkspace

In selecting a set of graphic primatives to use to model the objects in the work

environment, we will put emphasis in two areas, ease of modeling, and ease of minimum

distance calculation. The basic use of the models is to determine if any collisions occur

while performing the task, and in many cases there may be no collisions at all.

/ 1 / schultzm / Ahmad/opt.place - 6 November 22, 1989

Gollision avoidance for our purposes is implemented by finding the minimum dis

tance between all objects moving relative to one another in the work environment.

This information is used to plan the next part location. Many procedures exist to find

the minimum distance between geometric objects in three-dimensional space. Gilbert et

al. [Gilbert et. al. 87] use an iterative algorithm to find the minimum distance between

polytopes in three dimensional space. Cameron et al. [Cameron & Culley86] used a

search procedure to find the minimal translation distance between two convex polyhe-

dra. Kliatib [Khatib86] used a time-varying artificial potential field to force the mani

pulator to move while under the effect of all obstacles’ region of influence.

For our purposes, we considered spheres and rectangular parallelepipeds. It is

computationally simple to find the distance between two spheres, and because many

robotic links are rectangular in nature, it is fairly easy to model the links using multiple

overlapping rectangular parallelopipeds. Also, minimum distance determination between

rectangular parallelopipeds are relatively straight forward. The fact that the faces are

rectangular speeds up this process. *'

Modeling with spheres, however, presents special problems. The procedure for

computing how many and what locations to place the spheres to model an arbitrary

object is difficult to determine. Even for a simple object such as a rectangular robot

link, the modeling procedure is not well defined. Therefore, we will combine the model

ing benefit of rectangular parallelopipeds and the easy distance calculation for spheres.

By using the minimum bounding sphere representation for a given rectangular paral-

lelopiped and finding no collisions present, we know no collisions would result if we used

^More exact surface and or boundary representation may be employed for precise
calculations. Our reasoning behind using sphere’s and rectangular parallelopipeds is the
ease of computation and system programming. Our main objectives in this paper is to
show nonlinear optimization methods can be used to solve robot programming in path
specific applications. Notice also that our whole system was written in ‘C’ language by
the .authors without using a cornmerical solid modelling package.

/1/schultzm/Ahmad/opt.place -7 November 22, 1989

the rectangular parallelopiped. If a collision does result with the minimum bounding

sphere we will use the rectangular parallelopiped for the distance finding procedure. In

this way, we take advantage of the low computational costs of the sphere, while still

maintaining accuracy with respect to graphic modeling.

Meyer [Meyer86] presented an algorithm to find the minimum distance between

two rectangular parallelopipeds (RPP), he finds the minimum distance between all

edges of the closest face with the other RPP. He then divides the regions around the

RPP into four types. From this information, the minimum distance is extracted. We

modified Meyer’s minimum distance algorithm to suit our graphic representation

scheme.

5. Specifying The Task and The Path Graphically

To initiate the task description a graphic representation of the part, which was

presumed to have been designed on or at least transferred to a CAD system, is

displayed. By allowing multiple views of the part as well as "zoom in" and "zoom out"

capability, the user can move a coordinate frame around on the screen using a mouse

and select the desired path relative to a part coordinate frame.

Figure I shows a part with a possible task represented as a series of coordinate

frames which describe the path the manipulator is to follow. The points are numbered

in the order of task execution. Extracting surface information from the part, we can

find a desired orientation of the tool with respect to the surface of the part if it is

/ 1/schu 11 z rn /Ahmad/ opt.place - 8 - November 22, 1989

required.

5.2. M athematical Representation of the Path

Homogeneous transforms are used to describe the position and orientation relation

ships between objects in the workcell. Using the homogeneous transforms defined in Fig

ure I, we can form a generic position equation.

[robot] [tool] = [part] [path] (I)

The [robot] transform (ElR4x4) represents the position and orientation of the last

link of the manipulator with respect to its first axis origin. The [tool] (GlR4x'1)

transform describes the tool mounted on the robot end effector. The [part] (GIR4x4)

transform is undefined initially because it describes the location we wish to find

optimally. 'Phe [part] transform can be written in terms of its roll (<;6), pitch (0), and

yaw (ib) angles and a translation of (px,py,pz) with respect to the world reference frame.

We can define a vector 0 = [px, py, pz, d>,0,‘ij\ 1 GlR6xl, and the part transform as:

[part (R)] -- Trans(px, py, pz) Rot(z, (p) Rot(y, 6) Rot(x, U) (2)

We will let the path be a series of N points on the part which specify the desired

path similar to those specified in Figure I.

For each path segment, we can determine a drive transform [Paul & Zhang85],

which moves the tool of the manipulator along the desired path in a controlled straight

line. By multipling the drive transform with the path defining transforms, we arrive at

a set of (N — I) position equations which describe the entire task. The path segments

may be straight lines or curves.

/I / schultzm/Ahmad/opt.place -9 November 22, 1989

The general form of the task position equation is given as

[robot] [tool] = [part] [point(k)] [D(r)] k = I, N (3)

where the drive transform]D(r)] = Trans(x(r),y(r),z(r))Rot(U, £>(r)) G li4x4, it represents

a translational of displacement of (x(r),y(r),z(r))t followed by a rotation of d>(r) about

axis U (see Paul [Paul8.lj or Craig [Craig86] for further detail). The scalar variable

rG[0,l] and as r goes from (0—>-1) the end effector moves from [point(k)] to [point(k-|-l)j.

When the robot is referenced with respect to [point(k)] and (r — 0) we have

^robot(k,r =O)] == [part] [point(k)] [D(O)] [tool]-1 (4)

when (r = I) robot end effector is located at [point(k-fl)] and,

[robot(k,r=l)] = [part]]point(k)] [D(I)] [tool]-1

= [part] [point(k+l)] [tool]-1 (5)

This gives us the transform [D(I)] along path segment (k,k+l) as:

[D(I)] = [point(k)]-1 [point(k+l)] (6)

solving this equation allows us to find (X(I)Jy(I)jZ(I))1 and (U,</>(1)). During the path

segment (k.k ! I) motion the robot joint angles and end effector position is determined

by:

[robot(k, r)j = ^(jpoint(k)l, [point(k+l)],r) (7)

where the function ^ () = [part] [point(k)]D(r)[tool]-1 GlR4x4 , this is also an implicit

function of [point(k-rl)]. Notice the path the end effector describes is determined by the

functions x(r),y(r),z(r),(u, </>(r)).

6. Developing Task Constraints

We need to convert the (N—I) equations into joint space. This is done by symboli

cally solving for the vector of joints angles (6) of the given manipulator using the

inverse kinematics function K-1O:

#(k, r)■. = K_1([robot(k, r)]) G K njxx (8)

/1/schultzm/Ahmad/opt.place -10 - November 22, 1989

where k == I,... N — I and nj is the number of joints. The (N—I) equations are func

tions of r and produce curved paths in joint space.

6.1. T he O bjective F u n c tio n

The manipulator jacobian matrix J G IR6xnj is the locally linearized transformation

matrix which maps incremental changes in the manipulators joint Variables to the

corresponding incremental changes in Cartesian position and orientation dx GIR6xl and

is given by:

dx = J d# (9)

To enable the manipulator to respond equally well in all Cartesian directions, the jaco

bian transformation should be as homogeneous as possible. The range of dx, when d6

takes values satisfying ||d# ||2 < 1 is an ellipsoid which is called the manipulability

ellipsoid [Yoshikawa8o]. The closer the ellipsoid to a sphere, the more homogeneous the

Jacobian transformation. For non-redundant manipulators, the volume of the ellipsoid

is directly proportional to jdet j | [Uchiyama et. al.85].

When the manipulator jacobian is singular, the manipulator loses capability of

moving in a certain direction and is least dextrous. The determinant of the jacobian is

a good measure of working point manipulability [Klein & Blaho 87].

Manipulator singularities are joint angles in which the jacobian is singular, i.e. its

determinant is equal to zero. When a manipulator tries to move in cartesian coordinates

/ I / schultzm/Ahmad/opt.place -11 - November 22, 1989

through a singular point, excessive joints rates results and control of the manipulator is

degraded. These singular points should be avoided. To magnify the effect of being

close to a singular point, and avoid joint configurations close to the singularity, one oyer

the absolute value of the determinate of the jacobian can be minimized. This is done

along each path and summed over all paths k = 1,...N—I. Thus the manipulability

objective function is:

fm(H)
N - I

k = I

I
r . i. A rJ
0 det J(k, r)

Qi (10)

6.2. Jo in t M otion L im its

The manipulator joint limits provide inequality constraints which bound the solu

tion set in joint space.

0~~\ < #i(k, r) < I = I,... nj , k = I, N — I (11)

where nj is the number of joints of the manipulator and #(k,r) = (^1 (k,r),.... Onj (k, r))1.

6.3. Collision A voidance C o n stra in ts

To perform collision avoidance, we need to find the minimum distance between all

combinations of the two modeling primatives we selected. If we name our shortest dis

tance function d istance, then given two objects, object I and object2, we can find the

shortest distance between them by passing the object descriptions as arguments, or;

min_dist = d istance (objectl, object2) (12)

Given two algebraic spheres in space, the minimum distance between them is found by

the following formula.

/ 1 / schultzm / Ahmad / opt.place 12- November 22, 1989

min_dist (centerl — center2) — (radiusl + radius2) (13)

where centerl arid center2 are vectors in cartesian coordinates of the sphere centers with

respect to the origin. Notice that 11 112 is the Euclidean norm of a vector.

Given a rectangular parallelopiped and an algebraic sphere we can find the

minimum distance between the two by the following formula.

min_dist = (closest point on the RFP — center) radius (14)

where the vector (closest point on the RPP) is in cartesian coordinates and it is found

using the algorithm described in [Guptill88] min_dist returns the minimum distance

between the RPP and the sphere.

6.4. User Specified Constraints

There are two types of constraints the user may invoke, inequality constraints,

used to bound the solution space of the part to a desired region, and equality con

straints which are used to assign one of the part locating variables.

For example, if we wanted to find the optimal table height on which to locate the

desired part, we could set the pitch and yaw angles of the part locating vector Cl to

zero. Assuming the coordinate frame on the part was aligned such that a stable resting

surface was parallel to the x-y plane, this equality constraint would force a solution

which allowed the part to be rested on a table.

A set of constraints such as z = 400.0 mm, pitch angle — 0.0, yaw angle = 0.0,

-100.0 mm < x < 100.0 mm, and 0.0 < y < 250 mm, would confine the solution space

to that of a pre-existing table top, for example.

/ 1 / schultzm / Ahmad / opt.place - 14 November 22, 1989

the terminating point is also feasible.

7.1.1. J o in t L im it P e n a lty Function

In order to impose a penalty when the joint limits of a robotic device are exceeded,

it is necessary to construct a function which is smooth, monotonically increasing away

from joint limits, and goes to zero as the joints move to inside their limits. We will use

a penalty function which is zero if no limits are exceeded and the difference between the

joint value and the joint limit squared if the joint limit is exceeded, or

: n - i 1 . n - i
tJ (n) = £ / P i (k, r)d r= S ■

k • I 0 k=l
/ j I". Y ^nll- (16)

Notice that (5(1) = 0) if the joint limit is not exceeded and (5(1) = I) if the joint limit is

exceeded. The objective function is now given as:

f (3) = fm(n) + /?j„int fj(s7) (17)

where oint is a monotonically increasing scalar function.

7.1.2. Collision A voidance P en a lty Function

In our system, we modeled every link as a union of rectangular parallelopipeds and

algebraic spheres. As each links movement is a function of r, £[0,lj over the current

path segment. Notice if a manipulator joint limit is not violated, there may still be col

lision between two or more links of the manipulator. In such cases, the links of the

robot which can collide with itself can be modeled in sections. Those link section

always in contact are not checked for collision, only those portions of the link where an

undesirable collision could occur are checked. We will include the tool as being part of

the manipulator. Therefore, to check for collisions, we need only check if the links

/ 1/ schuItzm/Ahmad/ opt.place - 15 - November 22, 1989

(including the tool) of the manipulator collide with the part and other objects in the

workspace. We are also required to check for manipulator self collisions. Hence we

have the following distance function;

min_dist (I, k,r) = d istance (link(l), part) | l = I, n j+ l+ T , k — I, N —

This is useful for checking collision between the objects and the manipulator. Manipu

lator self collisions can determined from:

min_dist(j,I,r) = distance (link(l),link(j)) and j = I, n j+ l+ T (19)

(18)

and I ^ j ; I = I, nj-j-l-fT

where nj is the number of joints and T is the number of rectangular parallelopiped

which make up the tool.

As long as all links of the manipulator, including the tool, maintain a user select

able safe distance, which we will call SD, from the part during the path execution, then

the part location is acceptable as far as collision avoidance. The exception to this safe

distance is the end of the tool which is required to follow the path.

The penalty function for collision avoidance is selected as;

■= _* N - I T +H j + I
U t y = E E

k - I I + I .
j - i

/ (Pc,(H, f, k! I I’ ju '.r..i.l.k!i ,Ir (20)

where P ca() monitors collision between the robot linkages and the environment and

P cs () monitors the robot self collison. Pca() is given as:

Pca = 0 if (min_dist(l, k, r) > SD)

/ 1/schultzrn/ Ahmad/ opt.place - 16 - November 22, 1989

Pca = (min_dist(l, k, r) — SD)2 if (0 < min_dist(l, k, r) < SD)

center I — center2 radiusl + radius2 +SD2 (21)

if (min_dist(l, k, r) < 0)

where radiusl and radius2 are the distances from the center to the intersection points

for both objects respectively. Figure 2 illustrates the collision avoidance penalty func

tion. The penalty function P cs(fl,r,j,l,k) is given by an expression similar to equation

' '" O '1+ -

7.1.3. User Constraints Penalty Function

To form penalty functions for the user constraints, We again follow the convention

of forming a monotonically increasing function which returns a larger value for the

more extreme violation of the constraint. Thus with inequality constraints such as

(y < 100) we form the function;

if(y < TOO) fu = 0 (22)

and if (y > 100), fu - (y - IOQ)2

Adding the user inequality penalty function onto the objective function yields;

m = fm (^) + /(jointfj (^) + /^cafca(^) + A iserfu (^) (23)

where ,Busei /?joint and /̂ ca are monotonically increasing scalar functions.

Equality constraints, on the other hand, are used directly in forming the unknown

H vector of the part. That is, if (z =400) is a user equality constraint, then , the

/1/schultzm/Aimad/opt.place - 17 - November 22, 1989

optimization problem is solved with (z = 400).

7.2. Numerical M ethods

Numerical optimization method we employed can be found in literature [Gill et al.

81] [Dennis et al. 83].

Normally, in an unconstrained optimization problem we do not give special con

sideration to the choice of a starting location for the search. However, the presence of

singularities in our manipulability objective function and the limited range of the

K-1 () function of the robot force us to determine an acceptable initial location.

As the forward and inverse kinematic maps are not one to one, a degeneracy condi

tion exists, as more than one set of joints angles maps to the same homogeneous

transform. Control is not degraded by a degenerate condition, but a choice needs to be

made as to what set of joint values (i.e. manipulator configurations) are used to position

the manipulator. The point at which a given arm configuration changes from one

degenerate configuration to another is a sufficient condition for the determinant of the

manipulator jacobian to go to zero.

To find the initial location of the part so that the robot starts within a region sur

rounded by singular points, we perform three Steps. First, we place those joints which

do not determine a singular condition in the middle of their travel. Second, we place

those joints which determine singular points in the middle of their range between the

singular location and the joint limit on the same side of the singular point. Finally,

using the initial joints in the above positions, we solve for the robot transform [robot]

= configuration) and then solve for the part location [part]

= [path] _1 [robot; [tool]

We have observed that this method of selection also guarantees the joint solution

will remain within the allowable joint range. It also ensures that the joint penalty

function is not initially violated. Using this fact we can start the Pj0Jnt scalar at a high

value to keep the robot within its work envelope and prevent the K-1 () function from

returning an incorrect value. Given this initial position we have the objective function

we wish to minimize in the form

 ̂ ^ ’ (24)
U.- ."' . . '"O i == 0

/ 1/ schultzm/Ahmad/ opt.place - 18 - November 22, 1989

which [Fiacco & McCormick66] have shown produces convergence in the minimization

of a convex function as 6\ —► oo. Using the numerical technique derived in [Dennis et.al

83], we can approximate the determinant of the jacobian as a convex function, as long

as We stay within boundaries of the singular points. Thus, by dividing the entire feasi

ble region into sections separated by singular points, we are guaranteed to find all

optimal locations.

Oiice a solution has been found, we can check if any of the penalty functions have

non-zero values along the path. If they do, we know the solution is not acceptable. At

this point we divide the path into shorter paths and repeat the optimizing process,

finding the optimal location for each subpath. This process is repeated until each sub

path can be executed without violating the penalty functions.

8. Examples of Task Programming

As an example session of the task level programming system, a path is chosen on a

box-like part shown in Figure I. The Cybotech TH8 robot, is chosen to perform the

task, and the optimizing process is appropriately initialized and started.

The TH8 has only one singular point, that being when joint angle five is zero.

Therefore, a joint vector is chosen which places each joint in the center of its travel

with the exception of joint five, which is placed near the center of zero and its limit of

/1/schultzm /Ahmad / opt.place - 19 - November 22, 1989

95 degrees, or about 45 degrees. Joint five could also be placed at -45 degrees to obtain

the optimal solution on the other side of the singularity. To determine the initial posi

tion and orientation vector of the part, the TH8 tool tip is placed in the middle point of

the path and the transform equation is solved for the location of the part. This initial

position is shown in Figure 3.

.Figure location as found by the optimizing algorithm. As

shown, the final position is fairly close to the initial position. This is not surprising as

joint five was chosen to be between a singular position and a joint limit, and the deter

minate of the jacobian of the TH8 is proportional to the sine of joint five.

Introducing the user constraints pitch angle = 0 and yaw angle = 0 we can force

the optimization algorithm to find the optimal location such that the part can be placed

on a flat stationary table. The initial position is the same as shown in Figure 3, and the

final optimal location is shown in Figure 5.

If we extend the part shown in Figure 6 to provide a collision with the TII8 in its

optimal location, we can see how a new optimal location'is chosen to maintain a safe

distance from the robot in Figure 7. The graphs in Figures 8 through 11 show the con

vergence toward an optimal solution with the safe distance reached on iteration five.

Once this happens the optimal placement algorithm moves the part back slightly to

optimize the objective function taking into account the collision avoidance boundary.

The z variable does not change from its initial value because it does not cause a joint

out of limit and joint two is not part of the determinant of the TH8 jacobian. Shown

in Figure 7 is the part moving from its initial position to its optimal location which

maximizes the manipulability of the TH8 while avoiding collisions.

8.1. Coordination of M ultiple Robotic Devices for Down-Hand W elding

/1/schultzm/Ahmad/opt.place - 20 - November 22, 1989

In down hand welding a TH8-robot manipulates a welding gun along a specified

path on a part. The part is mounted on a two axis orienting table (a robotic motion

device) which simultaneously moves with the robot to make the weld point accessible.

Given the geometry of the orienting table, the robot and the part and the specified path

we wish to determine the optimal location of the table with respect to the robot for suc

cessful task execution. During the welding operation the surface normal of the weld

point is constrained to remain anti-parallel to the gravity direction. This is to prevent

the weld plasma from flowing away. This constraint requires the robot to weld in a

"down-hand" maimer, i.e. the weld gun pointed approximately in the direction of grav

ity. W

As an example task we wish to weld a "spiral" on a rectangular parallelopiped.

The part is mounted on the table is as shown in Figure 12.

The constraints relating to the "down hand" welding for the table is obtained from

the transform equation, (the transforms are defined in Figure 12):

[table_base] [py_table] [part] [weld_path(h)] = [down_hand] (25)

where h(E[0,1] and at it is the parameterization for the weld path, (h == 0) at the start of

weld, (h = I) at the end of weld.

The rotational part of [down-hand] is defined as;

Rotational part of [down_hand]
(V -

0 0

.0

0
I

(26)

This ensures the z axis of the surface normal at the weld point is anti-parallel to

the gravity direction.**

**Kinematics of down-hand welding with redundant robots can be found in [Ahmad &
Luo 89].

/ I / schultzm/ Ahmad/opt.place 21 - November 22, 1989

If we set [b] = [table_base], [DH] = [down_hand] and [PT] = [path] [weld—patk(h)].

Then we notice the (3,3) element of [py—table] = [b]_1[DH] [PT]-' 1 is zero.

^ax Pnz S.»p0J + bay (S^Pjlz + Ct-,P0J + bazpEz 0 (27)

where b ax = (1,3) element of [h], bay = (2,3) element of [b] and baz = (3,3) element of

[b]; Pu., = (3,1) element of [PT], p0 = (3,2) clement of [PT] and P â = (3,3) element of

[PT]. We can solve the above triangular equation for angle %b as:

ip = tan • I
.. ki + tan 1

(\
- ' V kI2 + k22 — k32

k2\ /

CO

\ /

where Ici = b ^ p ^ + bayp0z; k2 = baypnz - baxp0z; k3 = - b a.paz.

Once the angle, ip is found, we can solve for [py_table] for a given value of h. We

can then use the table inverse kinematic function to solve for the table joint angles. A

penalty function which places a high cost on violating the joint limits, similar to the one

used for the robot, is constructed to retain the table within the joint limits. The value

of this penalty function is multiplied by a scaling factor and added to the objective

function. This satisfies the second constraint by keeping the table joint angles within

their limits. The objective function that is minimized in this application is the sum of

the following; robot joint limit penalty, the table joint limit penalty, the penalty func

tion measuring the collision between the robot and the table and the workpiece, and the

robot manipulability measure (as defined in equation (10)). As before the optimal loca

tion is found by minimizing this objective function without activating any of the

penalty functions.

Note CJr - COSTp and S.̂ /, = sinIp where rIp is some angle about the Z axis of the world
reference.

/I/schu Itzm / Ahmad/opt.place -22 November 22, 1989

The synchronization constraint, that of keeping the robot in a down hand position

during the path execution, and maintaining robot and table trajectories synchronized is

achieved by solving for the robot angles once the table angles have been determined.

The following position equation describes the kinematic relationship of the robot, the

table, and the part.

[robot-base] [TII8] [weld_torch] = [table_base][py_table][weld_path(h)j (29)

By solving for the [TH8] transform as,

[TH8] = [robot—base]-1 [table—base] [py_table] [weld—path(h)][weld^torch]_1

the TH8 joint angles are determined next using the K 1 Q function.

To chose an initial feasible solution, the robot joint vector is chosen to align the z

axis of the weld torch with gravity. The initial table position and orientation is found

by solving equation (29) for the [table-base] transform.

The initial position is shown in Figure 12. The final optimized location is shown in

Figure 13. Figure 14 shows the optimal location when the user constraints pitch and

yaw angles are set to zero.

9. M anipulator Level Execution

A subroutine user-task () [Guptill Sc Stahura86], which runs on the same graphic

workstation used to model the part and define the path, uses the numerical information

generated by the optimal placement algorithm. The user_task () is written to read in

the desired path and optimal part location, and then perform the task using position

equation (I) by making subroutine calls to the motion control library described in [Gup

till Sc Stahura 86]. The motion control library supports multiple robotic devices and

/1/sckultzm/Ahmad/ opt.place - 23 - November 22, 1989

graphics and kinematic models for the robotic devices exists on the system device list.

For the down hand-welding task, we use the same equations in the user_task () for

execution of the task as we used in the optimizing process, that is equation (29). The

same user_task Q which runs in simulate mode can then be used to execute the task for

a real workcell environment.

10. Summary '

This paper described a programming system for path specific robot tasks. The

input is a graphic representation of the desired path in part coordinates. The output is

the location to place the part in the workcell of the chosen robot. The location is

optimal in that it maximizes the manipulability of the robot while avoiding collisions

and keeping the robot within its joint limits. The desired path can then be executed

using a software package "user-task ()" running on the graphic workstation, or on an

actual robot controller. The placement algorithm was implemented on a VAX 11/780

computer, the graphic simulator was run on an APPOLLO workstation. The robot task

execution was graphically demonstrated on the APPOLLO workstation, files were gen

erated which could have led to task execution on Purdue’s RCCL* library or on

Purdue’s multirobot programming package [Guptill & Stahura 8^].

v. References

[Ahmad & Luo 89] Ahmad S., Luo S., "Coordinated Motion Control of Multiple Robotic

Devices for Welding and Redundancy Coordination through Constrained Optimization

in Cartesian Space." IEEE Transaction of Robotics and Automation, August 1989, Yol.

*RCCL is a ‘0 ’ library package which enables robots to be programmed and controlled
from a "C" language and UNIX operating system environment on a VAX 11/780.

/ 1/ schultzm/ Ahmad/opt.place - 24 - November 22, 1989

5, No. 4, pp. 409-417.

[Brady et al. 82] Brady, M., Hollerbact, J. M., Johnson, T. M., Lozano-Perez, T.,

Mason, M. T., "Robot Motion, Planning and Control." MIT Press, Cambridge, MA,

1982.

[Cameron & Culley 86] Cameron, S. A., and Culley, R. K., (1986). "Determining the

minimum translational distance between two convex po lyhedr a," IEEE Conference on

Robotics and Automation, San Francisco, pp: 591-596.

[Dennis & Schnabel 83] Dennis, J. E. .Ir., and Schnabel, R. B., (1983). Numerical

Methods For Uncomtrained Optimization and Nonlinear Equations, Prentice-Hall, Inc.,

New Jersey.

[Dufay Sc Latombe 84] Dufay, B. and Latombe, J.C., (1984). "An approach to

Automatic Robot Programming Based on Inductive Learning", Robotics Research, The

First International Symposium, Edited by M. Brady and R. Paul, The MlT Press.

[Gilbert et al. 87] Gilbert, E. G., Johnson, I). W., and Keerthi, S. S., (1987), "A Fast

Procedure For Computing The Distance Between Complex Objects in Three Space,"

IEEE Conferehee on Robotics and Automation, North Carolina, pp. 1883-1889.

[Gill & Murray 74] Gill, P. E., and'Murray, W., (1974). Numerical Methods For Con

strained Optimization, Academic Press, London.

[Guptill & Stahura 87] Guptill, R. L., & Stahura, P. A., (1987). "Multiple Robotic Dev

ices: Position Specification and Coordination", IEEE Conference on Robotics and

Automation, North Carolina.

[Guptill 88] Guptill R., "Multiprocessor Based Control for Multiple Robots: Software

and Kinematic Programming Methodology," Ph.D. Thesis, August 1988, Purdue Univer

sity.-

[Juan 87] Juan, Juan, (1987). 'Planning Automatic Assembly for Robots (PARR),"

PhD. Thesis, Purdue University.

[Khatib 86] Khatib, O., (1986). 'Real-Time Obstacle Avoidance for Manipulators and

Mobile Robots," The International Journal of Robotics Research, Vol. 5, No. I, pp.90-

98.

[Klein & Blaho 87] Klein, G. A., and Blaho, B. E., (1987). "Dexterity Measures for the

Design and Control of Kinematically Redundant Manipulators,", The International

Journal of Robotics Research, Vol. 6, No. 2, pp.73-83.

[Latombe MMazer 81] Latombe, J. C., & Mazer, E., (1981). "LM: a high-level program

ming language for controlling manipulators," I l th International Symposium on Indus

trial Robots (ISIR), Tokyo.

[Liberman & Wesley 79] Lieberman, L. I., and Wesley, M. A., (1979). "AUTOPASS: An

Automatic Programming System for Computer Controlled Mechanical Assembly.", IBM

Journal of Research and Development, No. 34.

[Meyer 86] Meyer, W., (1986). "Distance Between Boxes: Applications to Collision Detec

tion and Clipping,", Proceedings 1986 IEEE International Conference on Robotics and

/1/schultzm/Ahmad/opt.place - 25 - November 22, 1989

/I /schultzm/ Ahmad/opt.place - 26 - November 22, 1989

Automation, April 7-10, San Fransisco, pp. 597-602.

[Mujtaba et al. 81] Mujtaba S., Goldman R., "AL Users Manual," AIM-344, Stanford

University, Dec. 1981.

[Paul & Zhang 85] Paul, R. P., & Zhang, H., (1985). 'Robot Motion Trajectory

Specification and Generation", Robotics Research: The Second International Sympo

sium, MIT-Pfess Series in Artificial Intelligence.

[Popplestone et al. 78] Popplestone, R. J., Ambler, A. P,, and Bellos, I., (1978). 'RAPT:

A Language for describing Assemblies", The Industrial Robot.

[Taylor 76] Taylor, R.H., (1976). "Synthesis of manipulator control programs from

task-level specifications," Memo AIM 228, Al Lab.

[Uchiyama et al. 85] Uchiyama, M., Shimizu, K., and Hakomori, K. (1985). "Perfor

mance evaluation of manipulators using the Jacobian and its application to trajectory

planning," Robotics Research: The Second International Symposium, eds. H. Hanafusa

and H. Innoue, pp. 447-454, Cambridge: MIT Press.

[Yoshikawa 85] Yoshikawa, T., (1985). "ManipulabiIity of robotic mechanisms," The

International Journal of Robotics Research, Vol. 4, No. 2, pp. 3-9.

Point #1

[Robot]

Point N

Point #2 \ J r V _
x

Reference

Figure I
Homogeneous transforms and desired path

Va
lu

e
Re

tu
rn

ed

Distance
Between
ObjectsCenters Collision SD

coincide
Figure 2

Collision avoidance penalty function

FigureS
Initial position of TH8

Figure 5
Optimal location with user constraints

of part being placed on a table

I C

Figure 7
Motion o f the part to find optimal solution

avoiding CoHision With TH8

Ite ra tio n s
Fi gure 8

Convergence of the X-value of the part
avoiding Collision Uith TH8

« itit.it

11».n t ; i v ir \ e » it »
Iterations
Figure 9

Convergence o f the Y-value of the part

avoiding Collision With THfl

SI I .OTH

Itera tions
Figure 10

Convergence of the objective function

AMOidinq Collision With TH8

Figure 11
Convergence of the roll angle for the table

The down hand weiding .system initial location

Rgure 13
The down hand weiding system opdmal location

withpitch = 0andyaw = 0

Figure 14
The down hand welding system optimal location

	Programming of Path Specific Robot Operations with Optimal Part Placement
	

	tmp.1542052450.pdf.kmh3n

