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PROGRAMMING OF PATH SPECIFIC ROBOT
OPERATIONS WITH OPT]JVIAL PART PLACEMENT

Rick Guptill and Shaheen Ahmad
Real-time Robot Control Laboratory
- School of Eleétrical Engineering -

| Purdue Univervsity,

- West Lafayette, IN 47907-0501, USA

Abstract

' In this. paper we describe a task level'prog’ramming system fbr.:ﬁath speciﬁ‘c‘rdbot
operations. We define path specific tasks as those robot tasks in WhiCh the path the
manipulator end effector has to follow is fixed and is given, such operations may include
| welding or sealant application. The initial path selectién ié madev through av graﬁhical
interface using a pointing device (such as a mouse) to outline the desired path on a
CAD model of the workpiece. The final result of the system is the part locatxon, Whlch
»ena.bles the chosen mampulator to optxmally perform the de51red task. Optlmahty is
- based »on ma.xlmlzmg the ma.mpulablhty of the manipulator performing the task uslng a
_-fun_ctioh of ’tlble jacobian. User defined constraints, joint limit constraints, and collision

‘avoidance constraints are used to'guide the optimal location selection. The workable
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task -isvthen ‘executed: uSing-calls to a "C" language vbas'ed'motion contrOI library ontlined
in [Gupt11188] [Guptlll & Stahura 87]. - The usefulness of- the system described in- th1s
paper is 1nd1cated by an. example of two robotlc dev1ces performlng a down hand Weld—:.

ing operation. -

1. Introductlon

The motivatvion" ’b‘eh‘ind developing a task level programming sys'tem'is" to allowthe
user to Wri‘te'a.c‘ontr’ol program in the context of the task rto be completed, 1ndependent
of the robotlc actlons needed to carry out the task In the task level. programmxng Syss

; tem descrlbed in thls paper, the task domain 1is- path speclﬁc robot tasks, such as weld— '

ing or- sealant apphcatlon JIn this system, a user graphlcally spec1ﬁes the deS1red path_- o

on a graphlc representat1on of the. related part. The programmlng system then . ﬁnds‘
the opt1mal location in' the workspace to place the. part to accomphsh the des1red path

following in ‘the ;Workable robot Workspace which 1s free of colhsron and other'user

imposed »vco'nstraints; A manipulator level program which uses this informathn tolpe‘r-‘ »
: formv the task“ is then executed. | | |

bThe'tec‘hniqne‘ present'ed is 'general in that it will work. vyith many '»di'fferent types of :
yman1pulators and many d1fferent types of path spec1ﬁcat1ons “This system requ1res b
1nverse k1nemat1cs solution and the manlpulator jacobian, neither of which need to be'
in closed form It also requ1res a parameter1zed path spec1ﬁcat10n ‘A method which is
1llustrated parameterlzes a path by usmg a drlve transformlL between pomts allovvlng
a‘serles of pomts to define a path. Note that complete,pos1tlon and orlentatlon of the

end effector is required for a point on the path,

l " See later for deﬁn:ition of the drive transform.
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2. Previous _Researc_ll

lPrevious ‘work ln task level ‘program"ming for robotic devices has concen'tt'ated‘ :
'mainly.'in the aSseinbly domain, and the subproblems assbeiated with it.. Common. to.
eac_h app_;'dach i‘sgaktask level description in s_ome form, .and a target manipulator
language. to eXecu-te the tasli.v_ : The differences lie in input modes and -how much is
assumed,,about'the environment. , | |

Taylor [Taylor76] extracts equations relating object positions from a graph struc-
ture ef the a‘ss‘embly 'task_. He used‘these»as constraint equations and he used linear pro-
gramrning to find the solution which satisfies all constraints. The use of linear program-
ming allows and 'optviyxnal solution to be found, vgiven a criteria for optimality. Thetar—

get manipulator level language used by Taylor was similar to AL [Mujtaba et al. 81].

RAPT [Popplestone et.al.78] starts with a part assembly descr1pt1on in the form of - -

pos1t1onal keywords, such as "Against” and "fits". Relationships between ob_]ects are .

Aconverted into mathematlcal geometri¢ constraint equations and_. then these equations
are sol_ved analytically to arrive at the location of the objects in the workspace. This
“introduction of a mathematlcal-basis extracted from the task description is an impo,r;
tant concept as it allows the program to obtain relational information W’ithout\ asking

the user.. The target manipulator language used by [Poplestone et al. 78] was POP{-21.

AUTOPASS [Lieberman & Wesley79] used a set of keywords to- describe an assem-
bly task. It is not a natural language but rather a -"task level" manipulator lang:uage.
When an AU‘TOPASv»S program is compiled, the compiler asks the user for direction
Wh‘en 'ambiguities arise. No artificial intelligence reasoning or mathemati‘eal fermulation

was used The target language generate was an Algol llke language

Induct1ve learnlng to robot programmlng was applied by [Dufay & Latombe84]
Execution traces ‘were ' generated during a training phase. From these traces, the

descrl'ption of the class of robot task is induced and a manipulator level pro‘gram is
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Synthesivi_ed.v Typically, the system starts with an initial set of k,nowledge,‘and ac’qufreS‘ ‘
the 'lnformati‘on»' ne'eeded to‘”comple‘tez a task in this initial set through teachlng.' f»The'
abifvlity,”‘to represent}knOWIedge is a very important part of this system. The _target
manrpulator language is LM [Latombe & Mazer81].. 9 -
PARR [Juan87] used an. 1nteract1ve CAD. graphrcal 1nterface to allow the user to;-j
assemble a part at a CAD workstatlon The motions graphically performed by the user.
durlng the assembly are stored and converted into an RCCL program [Hayward & Paul
] wh1ch then runs .the PUMA robot A world model is bu1lt from a solid- model
descrrptron Informatlon such as, the graspmg pos1t1on, the functlon of the ob_]ect and
the part-tolerances of. the parts are stored with the _w‘orld model. Lozano Pérez has.
addressed Iﬁany.aspects of .task. level programming system_such as ﬁndfng a collisi_on
f!reepath‘, and ‘grasping etc.‘ [Brady et al. 81]-.‘ | 7 |
The main areas usually addressed by an automat1c programmmg system are: the '
ﬁndpath problem or gross motlon plannlng, fine motlon plannrng, and- grasplng The-b
‘»problem domam is dlfferent in our task level system in that the: path zs completely_
lcnown\ no graspmg is requzred and our goal ts the locatzon of the part whzch s usually‘
known in most prev1ous approaches to task level programmrng A numerlcal optlmlza-‘
’ t1on techmque is devrsed to solve for the part locat1on whlch allows COlllSlOIl free taskf

‘ executlon. whlle stalsfymg user speclﬁed constra_mts.

3. .drganiZat.ion
The task level programmmg system described below consrsts of ﬁve mamv com-

ponents The ﬁrst component is a graphrc modelmg system The robotrc dev1ces and.;r

_t _ .the parts used to perform the des1red task are modeled usmg a method whrch wrll allowb

fthe spat1al relatlonshrps between them to’ be analyzed as the task progresses
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The second component in the prégramming system forms: mathematical func.tio,ns
to describe the end,effe‘ctor path. The usef specifies the path with respect to a cc;:o,rdi-:
nate frame located on the quel of the part.. An example of this is a seam Weld,,_'I‘ObQﬁ'_-:
has to make_oﬁ a trﬁck axle.". | i

oo ~'Th'eii:;ihir‘d ‘c"t)ﬁlPOhént 'of‘ our system extracts constraiﬁté azid produces a set of me-
qualities which bound the solution set éf rthe, posiﬁion of the Woi’kpart; These con-
straints’vare combined with additional .user constraints to limit the ‘optimal \sol.utib.'n'
‘space.' An objectiVe function is then formed to find the optimal location within this
solﬁtion space.

» The forth éomponent consists of a numerical optimizing algorithm which solves the
optimiz'ation problem. By virtue of being a numeric algorithm, substitutionvof _othér _
robots réQuires onlyb'a‘jchangve'irwi function calls, no symbolic manipulatidn is requ.ired..
The oﬁtputvdf the optimization is the position of the Wél_jk part. This‘;posititon is sﬁch-
that thé maﬁipuldto; manipulability is optimized through Aout the task, while joint .li'mit
cOnstr‘aint's" and user constraints are not violated, and collision  free path'exeéutio'n’ is
achieved. Final pért of ‘the system converts the numerical solution into a mahipulat_or
level lan‘gu‘a‘ge by caﬂling a number of motion control libraries written in ‘C’ language
[Stah’uvra & Guptill-87] [Guptill 88]." Graphical viewing of the task execution is »alsb.'po'_s-.‘-
sible. - A o

4. Mod‘elikng.;Objects in the Workspace

In Seléétiﬁg a set of graphic‘ primativesﬁo’ use to model the objects in the Work
envirbn’ment‘,v we will put eniphasis in two aréas, ease of modeling, ‘and ease of muumum ) o
‘di’stance calculation. The basic use of ‘vthe models is to determine ifk any collisions occur

while pefformiﬁg the task, and in many cases there may be no collisions at all; |
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Coll1s1on avmdance for our- purposes is 1mplemented by ﬁndmg ‘the minimum- dlS-
: tance between all ob_]ects moving: relatlve to one another in the work enV1ronment-
This. 1nformatlon is. used to plan the next part locatlon ‘Many procedures exist to ﬁnd
the IIllIllIIluIIl dlstance between geometrlc objects in three—dlmenswnal space Gllbert et
al. [Gllbert et al 87] use an iterative algorlthm to find the minimum dlstance between:.
| polytopes in- three dlmensmnal space. Cameron et al [Cameron & Culley86] used a
‘ search procedure to ﬁnd the mlnlmal translation dlstance between two convex polyhe—._v
dra Khat1b [Khat1b86] used-a t1me—vary1ng artlﬁclal potentlal ﬁeld to force the manl-v. "

pulator to move wh1le under the effect of- all obstacles’ region of 1nﬂuence

For our purposes, ‘we- cons1dered spheres and rectangular parallelop1peds It 1s”
computat1onally sun’ple- to find the dlstan'ce between two spheres,i a‘n’d;because many‘v
robotic hnks are rectangular in nature, it is fairly easy to model the links us1ng multiple
overlappmg rectangular parallelop1peds Also, minimum- dlstance determlnatlon between'
rectangular paralleloplpeds are relatively straight forward; The fact that the.fa_ces are
rectanéular speeds'up”this process. + : |

Modehng w1th spheres, however, presents spec1al problems "YI‘-h'e procedure ifOr
computlng how ma.ny and what locations to place the spheres to model an arbltrary
»obJect is ‘dlfﬁcult;to,determme._ Evenfor a simple ob_]ect‘_such as a _rectangular,frobot ”
link,»the vrnodeling' procedure is not well deﬁne_d. Therefore, we will combine the model-
Ving; benefit of rectangular- p,arallelopipeds .and the easydlstance calculation ‘for"sphe'resl
By'using, the minimurn' bounding sphere r‘epresentation for a given. rectangular'paral-

leloplped and ﬁndmg no collls1ons present we know no colhsrons would result 1f we used' »

+More exact surface and “or boundary representatlon may be employed for precise .
“calculations. Our reasoning behind using sphere’s and rectangular parallelopipeds is the
ease of computation and system programming. Our main objectives in this paper is to . -
“show nonhnear ‘optimization ‘methods can be used to solve robot programming in' path =
:spec1ﬁc apphcatlons Notice also that our whole system was written m ‘C’ language by

the authors w1thout using a commencal solid modelling package ' ‘
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the. rectangular parallelopiped. If a- coll151on does result with the minimum bound1ng
,sphere We w1ll use the rectangular paralleloplped for the d1stance finding procedure In
th1s Way, we. take advantage of the low computat1onal costs of the sphere, Whlle still

malntalnmg accuracy Wlth respect to graphlc modehng

Meyer [Meyer86] presented an algorlthm to find the mlnlmum d1stance between"? ‘
- two: rectangular paralleloplpeds (RPP), he finds the mlnlmum d1stance between all
edges of the closest face with the other RPP. He then d1v1des the reglons around: the
RPP. 1nto four types From th1s 1nformat10n, the minimum- dlstance is extracted We
mod1ﬁed Meyer S - In1n1mum d1stance algorlthm to. suit our graphlc representatlon

scheme.

5. Spec1fy1ng The Task and The Path Graphically

To 1n1t1ate the task descrlptlon a graphic representatlon of the part Whlch was.
presumed to “have been des1gned on or at least transferred to a CAD system, is
d1splayed By allow1ng multlple views of the part as Well as zoom in" and ' zoom out"
capab1l1t}y, the usercan ‘move a coordinate frame around on the screen usrng a mouse
and s'elect‘v the desired‘path relative to a part coordinate frame.” st

Figure 1shows a part Wlth‘a possible task represented as a seri‘es of coordinate
frames Whlch descrlbe the path the mampulator is to follow The p01nts are numbered
in the order of task execution. Extractlng surface 1nformat10n from the part we can -

,ﬁnd a de51red or1entat10n of the tool ‘with respect to the surface of the part 1f 1t is
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required.

5.2. Mathematicé.l Replfésenta.tion of the Pat.h

Homogeneous transforms.are used to d_escribe‘t,he position and _Orientatio‘n‘ ijf?Iation‘f-... .
ships b‘étwe-én 6bje’¢ts in the workcell. Using the homogeneous tfansforms déﬁned_ in Fig-
ure 1, we can form a generic position équation. R

robot] [fool] = part] fpath)

The [robot] transform (€IR**) represents the position and orientation of the last

link of the manip{llatof with fespect to its first axis .origin. The [tool] (-6@4*4)

transform dés'cribésrvthevtool‘mounte'd» on the robot end effector. The [part) (ER4X4)
transform is u‘n‘d'eﬁ_ﬂed initially because it describes the location we wish to find
optiinally.“ The [part] transform can be written in terms of its roll (¢), pitch (6), and

yaw (1)) angles and a translation of (P> Py, P2) with reépe'ct to'the world reference frame.

We can define a vector (0 = [px,py,p;,¢; 9, Y|* €IR®, and the part transform as:

[part (5)] : Tlfans(p';7 Py, Pa) Rot(z, ¢) Rot(y, 0) Rot(z, ) ' (2)

‘We will let the path be a series of N poiﬁts.on the part which specify the desir_ed
path similar to those speciﬁ’ed in Figure 1. |
. For each',path segment, W'e cé,n vdetermi'n’e a drivbebtransform [Paul & ZhangSS]‘,
' Whi"c.]i.fm'ofrés' thé.’tb;(;l of the ’maﬁipulat,or along the désired path in a con’br%)lled étrai‘“ght
line. _'VBy mul.ti.p]ir_l_g-theb'drifré t»rans,fo}rm with the path defining tranéforms, we arrive :at
a set o“f. (N —1) ._bosition equations which describe the entire task. The path segments

: m‘ay..be sti':_iight lili_’es or curvés.
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- The general formbf ‘the task position equation is given as
[robot] [tool] = [part] [pomt(k)] [D(r)] k= 1,' N o 3)

Where the drlve transfor'm’[ (r)] = Trans(x( ),¥(r), z(r))Rot(U ¢(r)) EIR“*‘*, it represents
“ a translatlonal of dlsplacement of (x(r ),y(r) (r))t followed by a rotation of ¢(r) about
axis U (see Paul [Paul81] or Cralg [Craxg86] for further detall) The scalar variable
r€(0,1] and as r goes from (0—.>1) the end effector moves from [point(k)] to [pomt(k—I—l)].,‘

When the robot, is referenced with respect to [point(k)] and (r = 0) we have
' [robot(k,r = 0)] = [part][point(k)][D(0)][tool] " L (4)

when (r = 1) robot end effector is located at [point(k+1)] and,

[robot(k =1)) = [part][point()]D(1) ftool] 2

'E[partnpomt(k+1)utoou1 I

This gives us the transform [D(1)] along path segment (k,k+1) as:

ID(1)] = [point (k)| [point(k-+1)] ©)
soiving this equation allows us to find (x(1),y(1),2(1))* and (_ﬁ, P(1)). During the path
segment (k,k+1) moﬁon the robot joint angles and end effector position is determiﬁed :
by: |

[robot(k r)] = ([pomt(k)] [point{k+1)], r) o (7)
where the function 'F( ) = [part] [pomt(k)]D(r)[tool] L eR** | this is also an implicit

function of [point(k—{—l)]. Notice the path the end effector_ describes is determined by the

functions x(r r), (u, #(r)

8. Developing Task Constréints
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- We need to convert the (N—1) equatlons into Jo1nt space This is done by symboh—
cally solvrng for the vector of _)omts angles (_9’) of the glven man1pulator using the

inverse k1nemat1cs funct1on K ()

o r>-lf',K,,"1v([r°b°,t<k, gert

' where k=1,. N‘—— 1 and ny is the number of _]omts The '(N—1I) equations are func-

t1ons of r and produce curved paths in Jomt space.

6.1. The Obje'ct'iVe:':Funct'ion '

ﬁxn“»' is the locally l1near1zed transformatlon'

The manrpulator _]acoblan matr1x JeR
matrrx Whlch maps 1ncremental changes in the man1pulators Jomt Varlables to ‘the
correspondmg lncremental changes in Carte31an pos1t1on and or1entat1on dx E]R6><l and

1s given by:

To enable the ‘I'nanipulator ‘to respond equally Wellin all Cartesi‘andlrectiorls, ‘the Jaco—
. b1an transformat1on should be as homogeneous as poss1ble The range‘ of 5{, ‘-kvsrh»en d—g.
V'takes values sat1sfy1ng ||d9||2 < 1is an elhps01d which is- called the mampulabIhty:

ell1psord [Yoshlkawa85] The closer the ellipsoid to a sphere, the more homogeneous the

Jacoblan transformatlon For non-redundant manipulators, the volume of the elhpsmd

is d1rectly proport1onal to ldet J [Uch1yama et al.85].

When the manlpulator _]acoblan is smgular, the manipulator loses capablhty of
movmg in a certain dlrectlon and is least dextrous The determinant of the-' Jacoblan is

a good measure of WOI‘klIlg point manrpulablhty [Kleln & Blaho 87]

Manlpulator smgularltles are joint angles in Wh1ch the _]acob1an is s1ngular, i.e. its

determxnant is equal to zero. When a manlpulator tries to move in cartes1an coordlnates .
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through a singular‘point, excessive joints rates results and control of thé manipulator is
degradéd.v These singular points should be avoided. To magnify the effect of being
ciose t6 Vaﬁsingﬁlar péinm ahd avoid joint configurations close to the singularity, one over
the :‘«Lbsol'ut‘e :vahié of the determinate of thé jacobian can be miniﬁiiz'ed. “This is done
:i‘lvbhghegach path and 'suinined over éil paths k =1,..N—1. Thus the ‘_m'anipuiability
objective fuﬁction :is; | | |

— 1

();"

6.2. Joint Motion Limits
The maniplilator ‘joint limits provide inéquality constraints which bound the solu-
tion set in joint space.
67, < Gk, 1)< 6" l=1,.n5, k=1, N—1 . (11)

where nj is the number of joints of the manipulator and z?’(k,r) = (6, (k,,r),...,ﬁnJ(k,r))t.

6.3. Collision Avoidance Constraints

To perform collision avoidance, we need to find the minimum distance between all
‘combinations of the two modeling primatives we selected. If we name our shortest dis-
tance fun_étion distance, then given two objects, objectl and dbje’th,’ we can find the

shortest distance between them by passing the object desc,rip}tiovns as arguments, of.; :

min_dist = distance (objectl, object2) ‘ i RIS (12)

Given two al"gebr'aic, spheres in space, the minimum distance between them is found by

*the following formula.
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min._dist = vl(centerl _ center?) |2' — (radiusl + radius2) e (13)°

— — : i

where centerl ‘and center2 are vectors in cartesian coordinates of the sphere centers With
respect to the origin.  Notice that || ||, is the Euclidean norm of a vector.
" Given a rébtaﬁgular p'zi_rallelopiped and an algebraic sphere we can find the

" minimum distance between the two by the following formula.

~radivs . (14)

min_dist = |(closest point on bthe RPP — center)]|,

where the vector (closest. point on the ‘RPP) is in cartesian copi‘d_inates' aﬁd it is ‘fo‘und,‘ »
- using the algoriﬁthm\ described in [Guptill88] min_dist returns the minimum distance

betWeen the RPP va,nd‘the.sphere.r

6.4. User Speciﬁed C‘onstraints

. .There are t‘Wv(>)i tyPes_ .of coﬁstraints the user may invoke‘, -inequality éonétrqiﬁts,
used  to bouﬁd tﬁe solution space of fhe part to a desired regioﬁ,‘ and 'équélity'véon-
straiﬁts’ which are ‘usedb to assign one of the part locating variables. | |

For ex;:impl_e:, if Wé W:;nted to find the optimal tablg height on ‘v'Which’ to locate the
desired pért, We could set the pitch and yaw angles of the p‘art loca:ti‘ng vector 0 to
Zero. Assﬁmix_ig the coordinate frame on 'the'p'al"t was aligned such thét a sﬁable résti’n'g‘
: ’su.rfa(:é ‘was parallel to the x-y blane, this equality constraint would forcefé solut.'ionr.
vahich allowed the pért to ‘be rested on a table.

A set of constramts such as z = 400 0 mm, pitch. angle = 0. 0 yaw. angle = 0 0,

_-100 0 mm < X < 100. 0 mm, and 0.0 < y < 250 mm, would conﬁne the solutlon space .

to that of a pre—ex1stmg table top, for example
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the ter‘minating po‘int is also feasible. .

| ‘7;i.~1.'Joint'Lirnit Penalty Function |

' In order to 1mpose a penalty When the Jomt llmlts of a robotlc deylce are exceeded

' 1t 1s necessary to construct a functlon wh1ch is smooth monotonlcally 1ncrea51ng away
,vfrom Jomt llmlts, and goes to Z€TO 2as the Jomts move to 1n51de thelr llmlts We will use‘
a penalty functlon Whlch is zero 1f no limits are exceeded and the dlfference between the

: Jomt value and the _]01nt llmlt squared if the Jo1nt limit is exceeded, or

@ ="% [ Ry =Y I{E (0 — o7 >26<1>]d o)
G k=10 o ke o =D G
Notlce that ( () = 0)7 if the joint limit is not exceeded and (5(1) = 1) if the fjoint limit is

exceeded The obJectlve functlon is now given as:

- f(ﬂ) = fm(ﬂ) + ﬁjoint fj(m _ L ‘ IR | (17)
v where: Bioint 1s a monotOnically'increasing scalar function.

7;1.2. Collision Avoidance'Penalty Function
~In our system, we modeled every link as a union of rectangular paralleloplpeds and '

) algebra1c spheres As each links movement is a function of r, €[0,1] over the current‘

' path segment Notlce 1f a manipulator Jomt limit is not violated, there may still be col— v

. 1131on between two or more hnks of the mampulator In such cases, the llnks of the -

' robot whlch ‘can colhde W1th 1tself can be rnodeled in sectlons Those llIlk sectlon
always in contact are not checked for COlllSlOIl, only those portlons of the lmk Where an
v _unde51rable colhs1on could occur are checked. We will 1nclude the tool as belng part of

“the manlpulator. Therefore, to check for colllslons, ‘we need only check if the links
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(including the tool) of the manipulat(_)r collide with the part and other objects in the.
workspace. We are also required to check for manipulator self collisions. Hence we
have the following distance fu_nction;'

"min_'dist (1, k,r)v-,: distance (link(l), part) {1 =1, ny+H+T, k=1, N— 1} (18)

This is useful for check.ing collision between the objects and the manipulator. 'Manipﬁ-'

lator self collisions can determined from:

min_dist(j,1,r) = distance (link(l),link(j)) and j =1, nJ—{—1+T' (19)

and l;éj;lzl, ny+1+4+T

where nj ié the numbef of jdints and T is the number of ‘rectangu-lar parallelopip’ed
Which make up the 'toél. A 7

L As 10ng as all »linké,éf the I‘Iiahipulator,' including the tool, maintain a ,usef select-
able ’safé distan‘ce," whiéh we will call SD, from the part during the path execu‘tibn, thén
' the'p‘art locatioﬁ is acceptab‘le as far as collision avoidance.. The excbeption to this safe

distance is the end of the tool which is required to follow the path.

The penalty function for collision avoidance is selected as;

L, N-1T+n,+1 b . R

fa() = ¥ )y [(Pea(Q, 1, 1, k) + Pes(0,1,,1,k)) dr| . (20)
1 E o | D IR
~where P, () monitors. collision b:(_atween the robot linkages and the envil’_'(_)i‘im'e_ant. and

Pl monitors the ro_b'.ot self collison. Pe,() is given as:

Pu =0 if (min_dist(l, k, r) = SD)
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P, = (min_dist(l, k, r) —SD)*  if (0 < min_dist(l, k, r) < SD)

|

- if (min_dist(l, k, r) < 0) .

— —

‘centerl — center2

, radiusl + rab,dius2]z +SD?% S (21) '

where radiusl and radius2 are the distances from the center to the intersection points- '
for both objects respectively. Figure 2 illustrates the collision avoidance penalty func- '
tion. The penalty function.Pcs(ﬁ,r, j;1,k) is given by an expression similar to equation

| (2'1).‘ |

| 7.1.3. Uéer C'ons‘tra.Aints’:Péna.lty Fﬁnction |

To form penalty fﬁhctions for‘ the user constraints,. we again follow _thé conveﬁﬁén

- of forming‘a, monoto_nically increasing function which returns a lai'ger Yélue for the

mofe extreme violation of the constraint. Thus with inequality constraints _such as

(y <: 100) we form- the function; | o
ifly < 100) £, =0 ~ (22

and if (y = 100), f, = (y — 100)?

’Adding the user inequality peﬁalty function onto the objective function yields;

() = £al®) + B (@) + Sl + Al (9)

- where Syeer ﬂjoiﬁt and f., are monotonically increasing scalar functions.
Equality constraints, on the other hand, are used directly in forming the unknown

0 vector of the part. That is, if (z = 400) is a user equality constraint, then the
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optimization problem is solved with (z = 400).

7.2. Numerical Methods

Numerical optimization method we employed can be found in literature [Gill et al.

81] [Dennis et al. 83]. -
- Normally, in an unconstrained optimization probleﬁl we do not give special con-
sideration to the choice of a starting location for the search. However, the presence of
singularities inyour manipulaBi]ity objective function and the limited range of the

K~!() function of the robot force us to determine an acceptable initial location.

As the forward and inverse kinematic maps are not one to one, a degeneracy condil—, -
tion exists, as more than one set of joints angles maps to the same homogeneous
transfo\rm. Control is not degraded by a degenerate condition, but a choice needs to be
made as to what set of joint values (i.e. manipulator configurations) are used to position
the manipulator. The point at which a given arm configuration changes from one
degenerate configuration to another is a sufficient condition for thé deferminént of the

manipulator jacobian to go to zero.

To find the initial location of the part so that the robot starts within a region sur-
roﬁnded by singular points, we perform three steps. First, we place those joints Which
do not determine a singular condition in the middle of their travel. Second, we place
those joints which determine singular points in the middlé of their range between the
singular location and the joint limit on the same side of the singular point. Finally,

using the initial joints in the above positions, we solve for the robot transform [robot]
= K(—anitial,conﬁguration) and then solve for the part. location [part]
= [path]~} [robot][tool]

We have observed that this method of selection also guarantees the joint solution

will remain within the allowable joint range. It also ensures that the joint penalty
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- function is not 1n1t1ally v1olated Using: th1s fact we can start the Bioint scalar at a hlghi

value to. keep:the robot within its Work ‘envelope and prevent the K ‘() function from
.returnmg an 1ncorrect value leen th1s initial position we have the obJectlve functlon:,
4 'We W1sh to- mlnlmlze 1n the form |

F(_)) (ﬂ)p+ 5 5ed) (24)

v1——0 -

which _[F_i-acco& chCormick66]'v have shown produces con_vergence in the ;mini‘mization‘
of a convex fu'nction;as,,@i,%r',oo. Using the numerical technique derived in [Dennis et.al
‘8‘3], vve caniapproXimate the determinant of the jacobian as a convex function, as long
as we stay wlthin boundaries‘ of the singular points.- Thus, by d1v1d1ng the entlre feasi-
ble region 1nto sectlons separated by smgular pomts, we are guaranteed to ﬁnd all

optlmal locatlons. ‘ |

- Ormce a solut1on has been found, we can check if any of the penalty functions have
DON-Z€ro Values along the path If they do, we know the solut1on is not acceptable At
~this pomt we d1v1de the path 1nto shorter paths and repeat the optlmlzlng process,
'ﬁndlng the optlmal locatlon for each subpath. This process is. repeated untll each Sub-,

| path can be executed Wlthout v1olat1ng the penalty funct1ons

8 Exarnples- of _TaSk Prog'rarnrning
) As an example Session ‘of the'task level programming svstem, 3 path is cﬁoseﬁ'on a
: box—llke part shown in F 1gure L. The Cybotech THS robot, is chosen to perform the
task and the optlmlzmg process is approprlately 1n1t1a11zed and started [
_ The T‘H8"v;has only one srngular pomt, that being when joint angle ﬁve 1s - zero.
vTherefore, a joint vector is chosen which places each joint in the center of‘ its travel

'leth the exception of joint five, which is placed near the center of zero and its limit of
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95 degrees, or ab’ou‘t., 45 degrees. Joint five could also be placed at -45 dég'rees tg obi_;,ain
the optimal solution oﬁ the other side of the singularity. To determine thé initiéi;ﬁbsif . ._
tion and orientation %sr_ec:tor of the part, fhe THS tool tip is placed in f,he mid_dle pomtof
t‘h»e‘pa.th‘and t_he.tra,n_sform ,}eq‘ua.ti‘on is solved for the location of the part. This initi;ifil‘
positiani_s shkon‘ ip} Figure 3. | B
“Fi&g‘,‘lur,e 4_\_sbhoWs the optimal location as fou‘nd'by«,t:hevoptimizing algor.ithx_n." As
shown, thefﬁnal positioln‘;i‘s fairly close to the initial position. This is not‘sﬁrpfisiné_'as'
joint five was c'hosen'tq be between a singular position and a joint limit, an(i _the_,,de'tgr'_-'.
minate éf the jacobian of the THS is proportional to the sine of joint five. | o
;" Introducing the user constraints pitch angle = 0 and yaw aﬁgle = 0.we can ;f(.).;r'.cerr
the optimization algorithm to find the optimal location such that- the part can -bé placed |
on a flat stait_ionary table. The initial position is the same as shown in Figure 3, and :_thé_
~ final optimal location is shown in Figure 5. | |
I we extend’vthe part shown in Figure 6 to provide a collision with the TH8 in i't,ér
optimal. 10cation,’ we cén see how a néw optimal location'is chosen to mﬁintain'é. safe
distance from the"r'obbf in Figure 7. The graphs in Figuresv8 through 11 shoﬁr -.therzco'n.;
vergence toward aﬁ optimal solution with the‘ safe distance reached oﬁ iterat.‘ioxr:l; ﬁve
‘ane this happens ’the optimal placement algorithm moves thev‘ part back _‘ shghtly ffO'
optimize the ob'jecvt‘ive fﬁnction t‘dking into account the collision avoidance boun'dar:y,‘,_
The z variable does not change from its initial value because it does not‘-.cal.i-sé a j'o.i;flt
out of limit an’d‘j oiﬁt' twp risinot‘ part of the determinant of the THS8 jaéobi.an-.___'s_hj:o:wg'
in F igﬁre 7 is the pa’rt‘ mOVingifrom its initial4position to'its:opti’inél l(liljiéé,,tion( Whlch '

maximizes the manipulability of the TH8 while avoiding collisions. - »

8_,1’._.Cbordihation of Multiple Robotic Devices for Down-Hand Welding R
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'In 'doWn hand Welding‘ a THS8-robot manipulates a welding gun alohg a specified
path on a.part. The paft is mOunted on a two axis .orien‘ting table (a robotic motioﬁ
dev-ice) which simull‘ta;ﬁeously‘ moves with the robot to make the weld point accessible.
Given: the geometry of the orlentmg table, the robot and the part and the spec1ﬁed path_
iwe WlSh to determme the optlmal location of the table Wlth respect to the robot for sue-
cessful task executlon Durlng the welding operatlon the surface normal of the weld
point is constramed to remain antl—parallel to the gravity dlrectlon. This is to prevent
the Weld‘ ﬁlaéma f‘rem‘ flowing away. This constraint reqﬁires the robot tvo weld in a
'}'down—hand" menner, iv.e.' the weld gun pointed approximately in the direction of grav-
ity. |

 As an example task we wish to weld a "spi;al" on a rectangular parallelopiped.
The parf is m"o‘unted on the table is as shown in Figure 12."
~ The constraints relating to the "down hand" Welding for the table is obtained from

, the'tran»sform equation, (the transforms are defined in Figure 12):
[table_base]'[py*table] [part][weld_path(h)] = [down_hand| » (25)

Where hE[O l] and at it is the parameterlzatlon for the weld path, (b = 0) at the start of

weld, (h = 1) at the end of weld.

The rotational p‘art of [down_hand] is defined " as;

B . , Cy —Sy 0
Rotational part of [down_hand] = {8, Cy 0| , (26)
e o o 1

This ensures the Z a)iis of the surface normal at the weld point is anti-parallel to

the gravity directio’n.** |

**Kinematics of down-hand welding with redundant robots can be found in [Ahmad &
Luo 89].
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If we set [b] ‘ [tablenbasel [DH] = |[down_hand)| and [PT| = [path] [weld——’path(‘h)].

Then we not1ce the (3 3) element of {py—table] [b] 1[DH] [PT] ~1 is zero.

’ b:;.x (_C'sznz —' S't,bpoz) + bay (S1/)pnZ + C'gbpoz) + bazpaz =0 R v‘(27)

where b,y = (1,3) element of [b], b,, =(2,3) element of [b] ‘and b, =(3,3) element of
(b]; Pn, -=v(3., 1,) element of PT], po; = (3,2) element of [PT] and P, - - (3,3) element of

[PT] We can solve the above triangular-e‘quation for angle 1) as:

| My | o
ks

k2 14 tan

where k; = ba;;pn'z- + baypoz; ky = baypnz - baxpoz'; ky = —baipa.z;

Once the angle Z/JI»isl found, Vwe can solve. for [py_table] for a given value of h. We
can then use the table inverse kinematic function to solve for the table JOlnt angles. 'A
penalty functlon Whlch places a h1gh cost on violating the joint limits, 51m1lar to the one
used for the robot, is constructed to retain the table W1th1n the joint limits. The value
of thls penalty functlon is Inult1pl1ed by a scaling factor and added to the ob_]ect1ve v
functlon -This satisfies the second constraint by keeping the table _]01nt angles’ W1th1n
their hnnts. The ob_1e‘et1ye function that is minimized in this application is the sum of
the following; .fobot joint limit penalty, the table bjoint liInit penalty, the ‘penalty funé-
tion measurmg the coll1s1on between the robot and the table and the Workplece, and the .
robot man1pulab1hty measure (as defined in equatlon (10)). As before the optlmal loca—
tion is found by m1n1m1z1ng thls obJectlve funct1on Wlthout actlvatmg any of the» ’

_ penalty functlons

Note C¢ = cos’(b and Sd’ = Sln’lﬁ where ’QP is some angle about the 7 axis of- the World
\reference = ‘ . -
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The synchronlzatlon constramt that of keeplng the robot i 1n a down hand position
-durmg the path executlon, and malntalnlng robot and table traJectorles synchronlzed 1s‘ )
achleved by solvmg for the robot ‘angles once the table angles have been determlned ‘v
-'”The followmg pos1t1on equatron describes the klnematlc relatlonshlp of the robot the{ |

‘table, and the part

- [robot;base] [THS] [weld_torch] = [table_base][py_table][weld_path(h)]  (29)

By solvmg for the [THB] transform as,

[THS] = [robot_base] 1[table_base] [py_table] [Weld_path(h)] [weld_.torch]

) the TH8 JOlIlt angles are determmed next usmg the K () function.i

To chose an. 1n1t1al fea51ble solutlon, the robot 301nt vector is chosen to allgn the z A
"‘ax1s of the Weld torch W1th grav1ty The initial table pos1t10n and orlentatlon is fOund

by solvmg equatlon (29) for the [table_.base] transform.

.The 1n1t1al p031t10n is shown in Flgure 12 The ﬁnal optimized locatlon is shown in -
Figure, 13.: Flgure 14 shows the optlmal locatlon. when the user ;constra;ntsr- p.1tch,. andﬁ

yaw angles are set-to zero.

: 9 Mampulator Level Executlon

A subroutlne user__task () |Guptill & Stahura86], which funs on the same graphlc |
:-'_Workstatron used to model the part and define the path, uses the numerlcal 1nformat10n’ -b .
generated by» the optlmal placement algorlthm The user_task () is ertten to read in
_the de31red path and optlmal part location, and then perform the task usmg posrtlon
‘ equat1on (1) by maklng subroutine calls to the motion control hbrary descr1bed in [Gup-

trll &,Stahura ’86] The motion control llbrary supports multlple robotic. dev1ces and



/‘l‘/schultz‘m/Ahm‘a_d'/opt._p,lacev R - -23- ST Y'No‘v’ember 22, 1989

graphics .and‘lkine‘matic j}modelsj for the robotic devices exlsts on _th'e.-systemde\'f‘ice list. “‘
. For the »‘do‘Wn_ hand-'we‘lding task.,-: tre use the vsameequationsVinbv‘the;user‘fv_ﬂtask?(«) for
execution ‘of the task as we used in the op.timizi'ng' process', that is equat‘ion (29) The |
same user;_task 0 which runs. in _simulate mode can then be -used to execute the task for

a real workeell environment.

10 Summar’y rE

" This :paper -descr:ibed a‘programming. system for vpath specific robot 'tasks.fThe
input is | a ‘graphic'r‘ep-rese-ntation of the desired path in p'artifco,ordinates.‘_The output is
the location to’ place the part in the workcell of the chosen robot. The location is_
optlmal in that 1t maximizes. the mampulablhty ‘of the robot Whlle avo1d1ng collisions
and keep1ng the robot within its joint limits. The de51red path can then be executed
using’ a software package user_task 0" running on-the graphlc workstat1on, or on an
actual robot controller The placement algorlthm was 1mplemented on a VAX 11 /780
‘ computer, the graphlc s1mulator Was run on an APP OLLO workstation. The robot task
7 executlon'was -graplncally demonstratedron the APPOLLO- workstation, ﬁles ‘were gen- -
‘erated Wh1ch could have led to task execut1on on Purdue’s. RCCL* llbrary OF -on

v 'Purdue S multlrobot programmmg package [Guptlll & Stahura 87-
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Figure 12
The down hand weiding system initiai location

‘ Figure 13
The down hand welding system optimal location
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Figure 14
The down hand welding system optimal location
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