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ABSTRACT

Symmetric nonlinear matched filters (SNMF’s) involve the transformation of the signal
spectrum and the filter transfer function through pointwise nonlinearities before they are multi-
plied in the transform domain. The resulting system is analogous to a 3-layer neural net. The
experimental and theoretical results discussed indicate that SNMF’s hold considerable potential
to achieve high-power of discrimination, resolution and large SNR. The statistical analysis of a
particular SNMF in the 2-class problem indicates that the performance coefficient of the SNMF
is about four times larger than the performance coefficient of the classical matched filter. In
terms of resolving closeby signals, there seems to be no limit to the achievable resolution.
However, intermodulation noise has to be carefully monitored.

1. INTRODUCTION

The matched filter was first described by North in 1943!. Since the development of the
Vander Lugt optical correlator?, matched filtering has been a major area of research interest in
the optics community. The classical matched filter (CMF) is the optimum linear time-invariant
(LTI) (or space-invariant, LSI) filter for detecting a known signal in additive, at least wide-
sense stationary (WSS) noise which is uncorrelated with the signal. The optimality of the CMF
is based on the maximum signal-to-noise ratio (SNR) achievable with the filter based on convo-
lution.

However, the optimum filter for a given application depends Strongly on the constraints of
the intended application. In pattern recognition, the problem is to classify a signal as belonging
to a particular class. In the CMF tuned to a particular class, signals belonging to other classes
are considered noise. Since such signals are usuaily highly correlated with the signal for the
particular class, the CMF is not optimal. Often, the problem is to detect a small image, say, a
target, in a global image. In this case, the reference image with which the input image is corre-
lated is different from the input image, and the properties of the CMF, such as the centroid of
the target being where the correlation peak is, do not necessarily hold. Another problem with
the CMF is that targets which are closeby cannot be resolved.

As most other filters, the CMF is based on convolution (correlation). If other types of
operations are allowed, the question of what filter is optimal is an open research issue. How-
ever, convolution is very powerful since it is easy to implement, shift-invariant and indicates the
position of the target at the position of the correlation peak. Any other type of filter 1o be sug-
gested needs to have similar properties.

In optical signal processing, the generation of complex spatial filters for real-time applica-
tions is not trivial. Computer-generated holograms® can be used to synthesize filters, but they
are not easily adaptable in real-time, and highly accurate positioning is needed. Some of these
restrictions can be removed by joint transform correlators®> for which a square-law detector is
needed in the focal plane of the optical system. Initially, due to the limitations of the spatial
light modulator (SLM) tfcchnology, a number of filters related to the CMF were developed. In



phase-only (POF) filters®, the amplitude of the filter is kept constant while its phase corrésponds
to the phase of the matched filter. In binary phase-only (BPOF) filters’, the filter transfer func-
tion value-at éach point is further reduced to 1 when the real (or the imaginary) part of the spec-
trum is positive, and -1 otherwise. This approach leads to a 2-D mask easy to generate in real-

In a recent paper®, we discussed generalization of such filters to symmetric nonlinear
matched filters (SNMF’s) such that both the filter transfer function and the input signal spec-
trum are passed through a nonlinearity before they are multiplied in the spectral domain. The
resulting system was shown to be analogous to a 3-layer neural network. -

In this paper, we will discuss further studies with nonlinear matched filters. The paper
consists of 10 sections. A review of nonlinear matched filters is given in Sec. 2. Experiments

in machine vision with SNMF’s are descnbed in Sec. 3. Performance of binary symmetric

filter, a particular SNMF, in terms of signal-to-noise ratio, is the subject of Sec 4. Detection of
a small image, for example, a target, in a global image is discussed in Sec. 5. The topic of reso-
lution, artifacts and intermodulation noise is covered in Sec. 6. The design of SNMF’s based on -
the cosine transforms is the subject of Sec 7. In Sec 8, a statistical analysis of SNMF’s is
~covered. ‘Sec. 9 is a discussion, especially related to optical implementations. Conclusions are
reached in'Sec 10. In all sections, the results are discussed in comparison to CMF’s. Some of
the properties of the CMF’s which are often overlooked in the literature also bccome clear in
this process. ‘ '

2. A REVIEW OF NONLINEAR MATCHED FILTERS

The symmetrical nonlinear matched filters considered i in this paper have a block dlagram
as shown in Fig. 1. Both the signal spectrum and the filter transfer function are- passed through
the nonlinearities N; and N,, respectively, before being multiplied in the spectral domam '

The transform T used in previous experiments discussed in Ref. 8 was cither the DFI‘ or
the RDFT. It was also shown that the RDFT-based filters are superior in terms of sxgnal-
discrimination, lack of false correlation signals and artifacts than the correspondmg DFl'-based
filters. For this reason, the RDFT will be the transform mostly used in the followmg sections. -
" In Sec. 7, the use of cosine transforms for easier optical implementations will be discussed. It is
noted that the CMF is the same whether it is implemented by the DFT or the RDFT. - '

, The 2-D RDFI‘ of the first kind is the dlscrenzauon of the 2-D real Fourier transform of
, the ﬁrst kmd which can be written for a signal s(x,y) as®

S(u v)= I I s(x, Y)°°s(27‘“"+9(“))605(21tvy+e(v))dx dy e O

whéré -
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The inverse transform is
soy)=4[ [ S(u,v)cosrux+6(w)cos2nvy+8(v))dudv 3)
The corresponding'z-D RDFT for a discrete 2-D sequence s(n;,n) of size Ny*Nj is given
by - | | |
” N‘—l Nz_ : )
S(nx m)= 3y 3 S(kx,kz)COS[ +9(n1)] cos{ +9(ﬂz)] @
ki=0k=0

with the mve,l_'se;t_ransfonn
. N;=1N;-1

, S(ﬂl,ﬂz)-“-"NlNz” -Zo p S(kl,kz)V(kl)V(kz)COS[ +9(k1)l OS[ ,+9(kz)](5)
. . kl k2 X
where |
0 <nsN/2
On)={n n>N2 ©®)
2
and
1 n#0,N/2
vin)= {lfl otherwise @

'I'he four quadrants of the 2-D real Fourier spectral plane involves 4 types of sine-cosine
- operations shown in Fig. 2. :

The relanonshxp betwcen the 2-D DFT and the 2-D RDFT cocfﬁczcms can bc written as
follows: .

F(n;,mp) = Sl(nlan)".] So(ng,n) ' (8)
where F (nl,nz) is the DFT coefficient, S;(n;,n,) and So(nl,nz) in terms of S(n;,ny) are
dcscnbed in Table 1. :

The fast computation of 2-D linear and circular convolution (correlation) by the 2-D
RDFT is discussed in Ref.8. The computations involved are outlined in the Appendix.

Use of RDFT leads to the definitions of the RDFT-based POF, and BPOF filters®. The
findl system is stll linear since no nonlinearity is applied to the signal spectrum, and the system
implements convolution.




" The2-D RDFT spectral coefficients are real when the input signal is real. ConseQuently,

amplitude and phase are defined differently from the way they are defined with the 2-D DFT.

The 'deﬁniticn of the amplitude R(n;,ny) connects the 4 RDFT  coefficients

S(n ,nz) S(N;—nl ,N2 =), S(N; —nj,np), S(nl,Nz —ny) and is shown in Table 2. _

, ‘The RDFT-based POF is obtained by normalmng the four related spectral values referred
to above by R(n;,n;). The RDFT-based BPOF is obtained by hard-limiting each individual

- spectral value to tay where a is a constant number If ag is 1, the nonlmeanty is the brpolar

‘ hard-hmrter :

1 S(ny, 20 ' '
Snn) = sgn[S(m,nz)] { oam)20 @

-1 otherwise
_ The corresponding symmetnc nonlinear matched filters are obtarned by applying the
operations described above to the RDFT spectra of both the signal and the filter. The resulting
filters are called symmetric POF (SPOF) and the symmetric binary filter (SBF), respectively.
Expenmentally, the RDFT-based SBF was found to be the best in terms of discrimination
ability among ‘all NMF’s®. In the next section, its performance in machine vision is further dis-
cussed : ‘ ' v

' 3. EXPERIMENTS IN MACHINE VISION

We studied the performance of the RDFT-based SBF in machme vrsron m companson to
'the CMF. The particular problem in machine vision we. mvestrgated is parts classrﬁcatxon and

‘inspection during the machining of parts. We were to classrfy the tools in the Cincinnati Mila- -

cron T10 tool chain in the Machine Vision Laboratory of Purdue University shown i in Fig. 3,
and to inspect whether they are broken or not after correct classification.

, There were thirty different tools located on the tool chain. In our 1mnal expenments, we
~ utilized 8 of these and a broken tool, shown in Figs. 4and 5. .

In this type of problem, there are as many matched filters as the number of classes N, but
~ only the correlation peak at the center of the correlation plane for each filter is of i mterest. The
- procedure for the implementation of the ith SBF tuned to a particular class i is as follows:

'1." The 2-D RDFT of the reference unage representing class i is computed The result is
passed thru the nonlmeanty given by Eq. (9). Let the final result be denoted by H;(n;,n,).

2. The 2-D RDFT of the mput image s(ny,ny) is computed, and the result is passed through

the nonlmeanty given by Eq. (9). Let the final result be denoted by S'(ny,np).

3. Usrng Eqs (A.1) thmugh (A.7) in the Appendix for the computauon of convolunon, 1t can
. be shown that the output of the 1th ﬁlter is given by - RS
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L1 Nt P
z@)= N.N > Y H (k;,k;)S (klgkz) o (10)
112 k=0 k,=0 - »

'If 2-D linear cross-correlation rather than 2-D circular cross-correlation is desired x(n;,ny)
and h(n;,n,) are zero-padded to size 2N; X2N,, and the transform size is doubled in both direc-
tions. This is what is done in all experiments dxscussed in the succeeding sections, except for
those mvolvmg cosine transforms. :

th 6 shows the binary image obtained by thresholdmg of the 2-D RDFT spectrum of tool
fo. 7. It is observed that the resulting SBF system is basically a 3-layer neural network, as
shown in Fig. 7. The first stage is the transform. This is followed by the pomtw:se nonhnea.n-
ties. The second stage W has elements Wik k, ngen by
vk, = oy k) oy
Since there are 8 classes, there are 8 output neurons. The class is decided by a winner-
take-all network whose input is the output of the NMF-based network. After the classification,
the part is inspected as to whether it is satisfactory. This is, for the time being, done by compar-
ing the output of the NMF-based network for the particular class with the expected output in
terms of a threshold value.

S In the experiments, the initial i images were of size 256 x 256. They were reduced to size
64 64 by averaging over 16 x 16 blocks in order to reduce variations in the lighting conditions
and to achieve higher speed of processing. The images were obtained with a camera located
over the TlO machine tool chain, whose output was digitized by an ITEX 150 real-time image

. processxng system and sent to a SUN workstation for further processing.

The 2 D SBF-based systeth was studied in comparison to the 2-D CMF-based system.’

E Tables 3 and 4 show the corresponding results. Each jtem was normalized by the largest item
- per row It is observed that the CMF-based system was very poor in terms of classification.

The SBF-based system was excellent, giving no classification error as well as showmg a very
htgh power of discrimination.

Table 5 shows how the mspection of Tool No. 7 is carried out after being chosen as the
correct class. We see here why it is important to have high power of discrimination. It makes _
possible to classify correctly, even though the tool is broken, since the correlation peak value is
consxdcrably lower than the peak value with the nonbroken tool.

An unportant consideration in such expenments is the lighting conditions. In many other
techmques it is necessary to segment the image. When the lighting conditions change, the seg-

* mentation results also tend to change. The NMF-based network does not need segmentation. In

addition, the light intensity level is immaterial due to the threshold nonlinearity after the spec-
ﬁ'éil ti‘énsfoﬁnaﬁon‘ We can also compensate for the cha.nging lighting conditions by having




learning the wcxghts optimally under such conditions. ] -
It is observed in Table 3 that the CMF-based network is a]ways choosing class 1. Thxs is

- expected to‘be due to the higher overall brightness of the class 1 image. The same typc_of result

is obtained even if class 1 is discarded and the experiments are repeated with 7 classes. It is
possible to normalize the image brightness levels, but this is expected to be not very reliable,

cspecnally under changing lighting conditions. Thc NMF-based network gets around such prob-

lerns due to the threshold nonlmeanty

4. PERFORMANCE OF BINARY SYMMETRIC FILTER IN TERMS OF SIGNAL-

TO-NOISE RATIO -

The CMF is optimal in terms of maximum SNR achievable with a LTI or LSI systcm for -

detecting a signal in additive, WSS noise uncorrelated with the signal. Thc total mput 51gnal to
the filter can be written as :

e S0 =600+ 1500 W
. where f; (x) 1s the sxgnal of interest and n;(x) is noise. The output of the ﬁlter is e
‘ ‘ y(x1) = fo(x) +ng(x) | o S a3)
- SNR;, thc sngnal -to-noise ratio for the CMF, is commonly dcﬁned as : L
£§(x0) |
'~ Emie 14)

- where xo is the time of mcasurcmcnt at which SNR; is maxtmum. Howcvcr, m connccuon‘

. with opucal matched filters, SNRI has been equivalently defined as’

. foxo)l 3 R N
NR = o as
SR = Emgeon™ i o)

’I‘hxs 1s the dcﬁnmon which is used in most of the experiments to be descnbed
In image detection by various matched filters, other definitions of - SNR have been

- developed. One such definition, to be referred to as SNR;, also known as the Homer cfﬁc1ency, -

. tsglvcnby
SNR;=k ¥ | R&) |/ T | R(x) I2
N A ISR
‘=kEA'/EA | . C (16)

3 | wherc R(x) represents the value at point x on thc correlation plane, kis a constant rcprescnnng

- “the fraction of llght that gets through the correlation filter, E, and E,’ are the cncrgtcs in the
. total output plane A and the region A’ corrcspondmg to the half-powcr (mtcns:ty) rcglon of thc" o

correlanon peak. k was chosen as 1 in thc experiments.




One problem in the definition of SNR; given by Eq. (15) i is how to estrmate the mean' '
square error m pracueal experiments. One possible way is to assume that i it is grven by

EIHO(X)]“N_]_N—AE IRE - an
: A

where NA is the total number of pixels, and N’ is the number of pixels under the 50% Tesponse
portion of the correlatron peak. Then, SNR; can be written as : '

NA[R(xr)]max . S T
SNR} = |1 SNRz)Z IRGx) 12 S ay

One drsadvantage of SNR;’ as defined above is that itis possrble to get 1solated regrons -
,vaway from the central correlation peak which grve values greater than [R (x)]mu/\E In order
10 prevent that these regions are also considered as belongmg to the signal, we mochfed the
.deﬁmtron of SNRl as follows :

The regions with values above [R (x)]mx/‘f_ 2 are quanuzed as 1 and all other regrons are
quantrzed as zero. Then, the "1" region and the "0" region are considered as the signal part and
-the noise part, respectively. E[n%(t)] is still estamated by Eq. (17), with N5 and Np* detenmned'
1from the two regrons : S

Based on the SNR measures described above, we studied the comparative performance of

the CMF and the SBF with the Purdue campus image shown in Fig. 8. This image was cor-
rupted by white Gaussian noise with standard deviation equal to 10, 20, 30, 40 50, 60 and 70.

Figs. 9:and 10.show the corrupted images with whrte noise standard devratron equal to 10 and o

70 respecuvely |
Table 6 shows the comparative performance of the CMF and the SBF as a functlon of

:SNRI ‘without modification. Table 7 shows the same type of results when the modified SNR} o

- with the SBF filter is used. Consrderably larger SNR, with the SBF ﬁlter is observed even in
very large noise. h S

s, DETECT ION OF A SMALL IMAGE IN A GLOBAL IMAGE

" In many applications, the problem is the detection of a small image, such as a target or a
medical anomally, in a global image. It is often assumed that the CMF gives the correct loca-
-tion of the small image in the global image. This is not necessarily true, especially as the
,drmensrons of the small image gets smaller. The experiments discussed below shows that the '

SBF gives more accurate results than the CMF in this problem. o

‘The global 1mage was chosen as the Purdue campus image of Fig. 8. The small image was -
generated by choosing 4 different window locations as shown in Fig. 11. Both rectangular and
~Hanning windows were used. The windowed image was used as. the reference image, to be
correlated with the global image in additive white Gaussian noise. Different window sizes were
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chosen, starting with a size of 64 x 64. The correct location of the correlation peak is the center
of the correlauon plane. The distance of the comrelation peak from the center shows the amount
of error. - T

. ‘Tables 8 thru 11 show the average results with the rectahgular window as a. "fiincuon of
window size and standard deviation of addmve white noise. Tables 12 thru 15 are the

o correspondmg results with the Hanning wmdow Avcragmg was done over the results of the

. four windows shown in Fig. 11. Tables 8 and 12 show the average distance of the correlation
~ peak from the center of the correlation plane with the CMF system. Tables 9 and 13 show the
‘corresponding results with the SBF system. Both systems make errors as the window size gets
smaller, but the SBF system is considerably bcttcr than the CMF system at all noise levels.
Tables 10 and 14 show the average rnodlﬁed SNRI with the CMF system. Tables 11 and 15
~ show the corresponding results with the SBF system. The SBF system is considerably better
than the CMF system at all window sizes and noise levels. One conclusion for both systems is
that reasonably large SNR does not necessarily mean that the correlation peak is at the right
position. . L , S
- The expenmems discussed above were repeated with images Wthh were cdge-cnhanced

by the Sobel operator. The results were worse than the results without edge-enhancement.
These preliminary results indicate that ‘edge-enhancement is not necessanly useful fox correct
positioning of the correlation peak or increased SNR. R

“Another nnportant problem is to detcct motion by correlation. The relative movement of
the correlation peak of the CMF system shows exactly how much an object moved in the x and
~y directions.  The SBF system is not linear, and the question is whether it still has this property.
To answer this'question, we generated a 20 * 20 window at the center of the Pu“rdu,er campus
image and moved it to the four corners of the image plane. Table 16 showS'_ how much the
~ actual window and the correlation peak moved in the x and y directions as a function of stan-

dard deviation of additive, white noise. It is observed that the two movements match exactly
v except at vcry large noise levels. ‘ ' o

- 6. ‘R_ESOLUTION, ARTIFACTS AND INTERMODULATION NOISE

" By resolution, we mean the ability to resolve signals which are very close to each other.
* By artifacts and intermodulation noise, we mean false correlation peaks which may. be identified

as mgnal Amfacts and intermodulation noise may also cause concealing of actual s1gnals In
v thls scctlon, we wxll dlscuss these issues with respect to the RDFT- and the DFI'-bascd NMF s.

, Flrst, we oon31dcr the increase of noise when a small image is comlated thh a global
1mage as in Sec. 5. Fig. 12 shows the output of the RDFT-based SBF when the Purduc image of

b Fig. 8 is corrclated with itself in additive noise with ¢ = 10. Fig. 13 shows the: con‘espondmg

) _'Vrcsult wnh thc DFI‘-based SBF. Figs. 14 and 15 are the same type of results except that the
' rcference unage is a 32 x 32 central block of the Purdue i image. It is clear that the RDFI‘»based
SBF 1s much bettcr than the DFI‘-based SBFin tenns of noxsc RIS
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' Next, we: wrll drscuss two expenments to understand mterrnodulauon noise. In the ﬁrst :
experiment, a letter E was repeated four times to generate an image of size 32 x 32, and then the
image was _zerofp_added to size 64 x 64. The filter was designed for one letter E. Fig. 16 shows
the four correlation peaks obtained with the RDFT-based SPOF. The correlation peaks are of |
equal height. Fig. 17 shows the corresponding result with the DFT-based SPOF. The t:orrelat-
tion pea.ks are unequal and there are other peaks in the form of intermodulation noise.. | -

. The-third: experiment was similar to the second experiment except that 2 letters were
ehanged to F. Fig. 18 shows the four correlation peaks obtained with the RDFT-based SPOF.
The: two: large peaks correspond to letter E, and the two smaller peaks correspond to letter F. -
The filter is very sensitive to the difference between letters E and F. Fig. 19 shows the
corresponding result with the DFT-based SPOF. It is impossible to differentiate between the
two letters and there is more intermodulation noise.

When two srgnals are in close proximity, CMF’s cannot resolve the two srgnals, and a sin-
gle. correlauon peak is obtained. We studied the corresponding performance of SPOF. Figure
20: shows the outpue of the RDFT-based SPOF when two letters E are detected. Figure 21 is the
corresponding‘output of the DFT-based SPOF with intermodulation peaks. Figures 22 and 23
show: what happens with both filters when the two E’s overlap and the hidden pan of the under-
lying E is removed.

No matter how close the two signals are, the SPOF is capable of resolving them If the
hrdden .part is not removed, but the two signals are simply added, the outputs become as in Frgs _
. 24and 25. Agam the DFT-based filter results in mtermodulauon peaks.

7. NQNLHN_EAR:MATCHED FILTERS BASED ON COSINE TRANSFORMS

The. resuits in the previous sections have shown that the RDFT-based NMF’s have superior
performance Digital implementation of the RDFT is considerably simpler than the drgnal
implementation. of the DFT. On the other hand, the DFT can be considered to be the approxi-
mation of the complex Fourier transform, which is straightforward to implement using coherent
light and a Fourier lens. The RDFT can be considered to be the approximation of the real
" Fourier transform, which is not as simple to implement optically. v _

It is desirable to have the spectral coefficients real except for sign since the pointwise non-
linear operations can be more easily achieved optically. One way to achieve this result is by
making. the input image symmetric, which reduces the complex Fourier transform to a cosine
transform.

There, are two possible symmetries resulting in two types of cosine transforms Consider
Frg 26 with 4-fold symmetry. This leads to the reduction of the complex Fourier transform to
the. cosine. transform of the first kind. If two images at opposite comers are skipped, 2-fold
symmetry is obtarned and the complex Founer transform reduces to the cosine transform of the
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In thc discrete domam, the 4-fold symmetry means, for O<n;<N;/2 and 0<nz<N2/2 _
s(ny,ng) = s(N; —ny,np) = s(ny, N2 —np) =s(N; =n;,Na —ny) - (19)

~ where Nl,Nz are the two dimensions of the image. With 4-fold symmetry, the 2-D DFI"
reduces to the 2-D discrete symmetric cosine transform of the first kind (DSCT1): .

N;-1N;-1 27!!111(1 21tn2k2 o . e
S(nr,nz) =Y Y s(kky)cos NS R ; @)
: - kl 0 kz =0 1 2 S R U

S(ny,ny) is also 4-fold symmetr'ic.

‘The 2-fold symmetry corresponds to ‘ -
| e s(n1,n2) = s(N; —ny N2 ~np) e :
. for O<n <N, /2, 0<nz<N2 With 2-fold symmetry, the 2-D DFT reduces to the 2-D DSCl‘ ofthe
second kind (DSCT2): ,
S(nl,nz) = 2 Y s(k;,kp)cos2n @
| Nr N o

k=0k=0
S(n1 ,n2) is also 2- fold symrnetnc ’

The DSC’I‘-based SBF is constructed the same way as the RDFT-based SBF Frgure 27'
‘shows the output of the DSCTI-based SBF when the Purdue image of Frg 8 was correlated
with itself after adding white noise with 6= 10. Figure 28 shows the correspondmg result
when the reference image was the 32 x 32 central block of the Purdue image.

.~ The image of Fig. 26 was correlated with 1tself using the DFT-based SBF Because of 4-
fold symmetry, this is the same as the DSCT2-based SBF. The result is shown i m Frg 29. The
correlation peaks at the edges are believed to be due to the circular nature of correlauon srnce
no zero-paddmg was utilized.. >
We also repeated the expenments regarding SNR] and detection of a small unage ina glo-
' bal i image with the DSCT1. Tables 17 and 18 show the average distance of the correlation peak
from the center of the correlation plane with the DSCT1-based CMF and SBF. Tables 19 and
20 show the average modified SNR; with both systems. As before, we conclude that the SBF
system is consrderably better than the CMF system at all window sizes and noise levels.
In conclusion, NMF’s constructed with cosine transforms may be easier to unplement opti-
cally and give good performance. However, we expect to get mtermodulauon noise problems
sinc':'e they are actually a constrained version of NMF’s based on the complex Fourier transform.

8. ANALYSES OF NONLINER MATCHED FILTERS v ;
* Binary ﬁlters for pattern’ classification have recently been statistically analyzed for the

- two-class problem in which the input signals were assumed to be stationary and white?, In this

’ sectron we wrll extend this analysrs to symmemc brnary filters. For the sake of srmplrcrty, 1-D
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analysxs wﬂl be presented

~Inthe two-class problem the filter will be assumed to be deslgned for Class l The perfor- .
' thance measure can be chosen as the performance coefficient p defined by |

_ -p)” @)
8 MM S
where, forn =1or2,
Ho = SUP[E[R, (x)]
T=spVARR.O @4

- R, (%) is the correlation output for Class n, and VAR [R;,(x)] denotes variance of R,(x). In Eg.:
(23), the tetm in the numerator measures the relative size of the correlation peaks for the two
classes, whereas the term in the denominator indicates the average energy in the sidelobes.
Consequently, p is a measure of how well the filter discriminates Class 1 from Class 2. When
the output R;(x) is Gaussian, and the a priori probabilities of the two classes are the same, p is
identical with the Bhattacharyya coefﬁcxentm , ‘

~In the lmear case, the analysls of p for statistically uncorrelated pattern classes 1nd.1cates
' 'that the bmary ﬁlters provide classification performance comparable to, but bounded above: by
the CMF. In cornpanson the SBF will be shown to be superior to the CMF in terms of p.

The slgnals $;(x) for Class 1 and sy(x), for Class 2, will be assumed to be sample reallza-'
. tons of mdependent, zero mean, stationary, white random processes with variances equal to 6%
~ and 6}, reSpecuvely

;. The 1-D real Founer transform of sn(x) can be written as a pair of equatlons gwen by

Su®=[" scos2ntxdx @62)
Sw®=[" nsin2nxa @6
. with the i mverse transform | |
0= [ [Sln(t)cos2nfx+son(t)sm21tfx] df en

sl (x) and sz(x) will be limited to a window such that Ix|SW, . We will also assume that
- §,(f) is known for lflSWf Then, Egs. (26) and (27) can be written as ‘ -
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Sln(f):I.vvle Sn(_x)cpsZ‘ttfx fx N o . (28a)
Son‘(ﬁf)"'f:; Sn(x)sinZifxdx 7 R ‘ 3 R : -(,285)  o
sp(x) = 2L [S;n(f)c0521tfx+so,,(ﬂs1n21tfx] df D 9)

, Smce sn(x) for n equal to 1 and 2 are independent and zero mean,
Su(f),Su(f),Sm (6),S02(f) can be assumed to be mdependent zero mean, Gaussian random .
. processes accordmg t0 central limit theorem. Then, the following stanstlcs can be wntten '

[slnm smol<0 o
‘ E}[Si#(fl )s lr;(f;)] = o2 W;s ‘[sinczwx(fl £ +sinc2w,(flv+f2'5] 'j;( iy
| E[sgn(sl,,(m];ov - 6y

| 'E,[Isln(0|]='+—~\lzi’/v_&' N vy S

| E [sgn(Slh(fl))Sgn(Slﬂ(fz))] = %sm’; n(.6H) G5
zw,‘on T
['Sln(fl)' 'Sln(fz)'] — [(l+smc4W f1)2 (l+smc4W £,)2 (l—r](fl,fz))

N[o-

g +(smc2W (fl f2)+(smc2W,(f1+f2))sm n (fl.fz)] - (36)' :

“wherer; (f1 ,fz) 1s the correlanon coefficient between Sl,,(fl) and Sl,.(fz), given: by A
- ‘ smc2W (f1 - f2)+smc2W (£, +£6) : '

rl( 1y 2)"'. = l l IR (37) -

q +smc4W f)2a +smc4W f2) 2 ' '

We wxll also need the correlanon coefﬁcxent ro(f, ,fz) between So,,(fl) and So,,(fz) It is

o glven by
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sinc2W, (f; = f5) —sinc2W, (f; +f,)
ro(fy.f) = L AL )

(1-sincAW,f;) 2 (1-sincdW,f,) 2

In the case of the CMF, the correlation outputs are given by

., .
Rix)=2f" [s%l ) +8h (f)] cos2nfx dx 39)
. W, . ‘ W,
Ra()=2])" [S1 95120+ Son (D02 (P | cos2mx ax+2],

[Sm (f)Slz(f)—Su(f)Soz(t)]sinznfx dx (40)

The means and the variances are’ |
 py =po} | @)
H2=0 » . 42)
n =4p’ciap) @3
2 =2p*clclap) @

where p is the space-bandwidth product equal to 4W, W¢, and
alp) = jol (1—u)(sincpu)? du | - (45)
‘The performance coefficient p™ for the CMF becomes _

M= & | - @6)

" 20(p)(1+262)
‘where 62, called thciclass spreéd ratio, cQuals c?/o3.

Let sgn(Smn (D) be denoted by S;m(f). Then, the correlation outputs of the SBF can be
written as ' '

Ri(x)=2 jow’ [s'{l )+ So; (f)] cos2nfx df @7
Ry =20 [S11OS120+Sin (08520 cos2mtx at+2[

[be OS 120~ S11 (OS2 D |sinzetx df 48)

‘It can be shown that the means and the variances are given by
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#2=0 e
M2 = sup VAR [R'z(x)]". - | R (52)

.' where' .
‘ w, w [ L 82l ;_
VAR [R (x)] = —-jo jo [sm n (fl,fz) [sm' ro(fl,fg)] ¢0s21cf1xcos21tf2xdf1df2
+§3 jo ¢ j ‘-sin-lr, (fl,fz)sin_-lro(fl,fz)sinznflxsinzufzxdfldfz‘, S (53)

The performance coefﬁcnent p for the SBF becomes -
A oS = 16W f
| : : . n2 C
.- where 112 needs to be evaluated numencally from Egs. (52) and (53)

- An interesting observation is that pS does not depend on 6% and 0'2 On the other hand p

' depends on W,‘ and Wi separately rather on than their product

. Table 21 shows the performance coefficients pM and p® as a functron of the class spread
ratio 0'2 and the wmdow sizes W, and Wy. Itis observed that p is almost four nmes larger

e

9, DISCUSSION v _ |
© - ‘Above we dlSCllSSCd a number of techmques for symmetnc nonlmear matched ﬁltenng A

' maJor quesnon is how to implement such techniques optically. o v -
The '2-D RDFT can be unplemented 'by a number of techmques used in d1g1tal "
optics!213:14_ Such techniques may be especially well-sutted for couplmg light into arrays of

~ nonlinear optical devices as discussed subsequently . . o
~._The nonhnear operations discussed in the previous sectxons can be achieved by a number
“of eleclro-optrcal and all-optncal techmques Nonlinear filters such as POF and BPOF ‘were ini-
tially developed because of ease of 1mplementatlon wnth opttcal dewces such- as spaual light
modulators. , SR -
| Perhaps the sunplest appmach for the real-umc nonlinear comrol of the stgnal spectrum is

' the'video or the photodiode array registration of the signal spectrum which is modulated by a

B coherent reference ‘wave, nonlmear modulauon of the resulting s:gnal by analog electromcs, Ll

s wntmg of the txansformed sngnal to a spatxal hght modulator, and further optrcal processmg
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Thxs is why cosine transform implementations may be especially easy.

A number. of integrated optical devices hold great promise for the same purpose Two
such technologies are the amrays of Fabry-Perot etalons containing semiconductor nonlinear
refractive materials 1°, and the quantum well self-clectro-optic devices (SEED)'®. The first
technology requires hlgh input optical powcr at the moment. The SEED’s, on the other hand
require. very little switching energy.

Ccrtam types of spatial light modulators can also be used for nonlinear processing. One
example is the: mxcmchanncl spaual light modulator, which is capable of ana]og thresholding
‘and real-nmc hard-chppmg ,

In this paper, only the hard-lnmung nonlinearity is considered. This can be rcplaced by
other types ¢ of nonlinearities. The biopolar threshold function corresponds to a very high degree
of dlscnmmanon It is possible to choose the nonlinearity adaptively, as shown in Fig. 30.
When the nonhneanty gets steeper than linear as in (A), the discrimination power of the net-

~work increases. The linear case(B) con‘esponds to the CMF. When the nonlinearity has slope

which is less than linear as in (C), the discrimination power of the filtering system decrcasc
: .funh@:.r, and, more and more, patterns which have some resemblance are characterized as
~ belonging to the same class. ' |

- 10. CONCLUSIONS |

The -experimental and theoretical results discussed indicate that symmetric nonlinear
matched filters hold considerable potential to achieve high power of dxscnmmauon resolution,
and large SNR They are analogous to 3-layer neural networks.

“The: stansucal analysis in terms of the 2-class problem indicates that the perform once

- coefficient of the SBF is about four times larger than the performance coefficient of the CMF.
This is in agreement with all the experimental evidence. Similar analysis is necded for the M-

-+ class problem, other SNMF’s and nonlincarities other than the hard-limiter.

The resolution propcmes of the SNMF’s are highly intriguing. There seems to bc no limit
to the achievable rcsoluuon However, intermodulation noise needs to be carefully monitored
in order not to misinterpret false correlation peaks. In this sense, the RDFT-based filters glvc
the best results.

- Symmetric nonlinear matched filters can be further developed by incorporating general-
jzed matched filtering techniques in order to achieve minimum intraclass and maximum inter-
class separations. Their analogy to neural nets should be further studied to arrive ‘at more
optima! and adaptive structures.

.~ The nonlmear operations involved in these new filters can be achicved by 2 ‘number of
elcctro—optxcal and all-optical ‘devices such as the microchannel spatial light modulauon.
j Fabry-Perot etalons. and the quantum well self-clcctro-opuc devices.
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~ APPENDIX
- FAST COMPUTATION OF 2-D CIRCULAR CORRELATION BY 2-D RDFT

- We will discuss circular correlation of 2-D sequences x(n, nz) and h'(nl,ng), gmng |
oy (nl,nz). in terms of the 2-D RDFT. Let the 2-D RDFT’s of x(,), hi(,*) and y i¢,9) be denoted
by X(,°), H‘( *) and Yic, ),respecnvely In terms of the 2-D circular conclanon theorem w1th

" the 2-D RDFI‘ it can be shown the Yi (cdot, ) can be written as

@s

a6

Y0.0=X00H00 e
YL 2.2 = Xy o0 2N DB o 2. N 2) o S wy
‘When O<n; =0,N;/2, and 0<np<N,/2, | e
Yiopn) | |[HOnn)  HEn-n) »y X(,np) | et
1Y Na-np) | [HINy, =np)-Hi(n;,np) X(n1,N=n)
© When O<n MN;/2,n; = 0,No/2, o S
Yo, | (Hopn) HE-nm) | [Xewn) ] J(A:i)
YiNm) | [H N -npmp)-Himgng) | [X®h-mem)| T
Otherwise, - ‘
_ . Akiyf(m,nz) | 101 0 Y:i(n;,nz)
. Yi(Ni-ni,n) | 1010 1| [Yo(m,n)
Yo, No—np) 010-1f IYiN;-n;,mp)|
_Yi(Nl -n;,N; -nz)J | -? 010 _YB(Ni ‘nx,nz)Jw
where | | |
4 Yi(n,nz) __Hix(nl.ﬂz MHbmny.np) X (y.n2)]
~IYb(ngnp)|  [Hb(ny,np) —Hsuhli(ny,np)| [Xo(mi,mg)|
A'Yimx‘nx,nz) ~ [Hi(Ny =ny,n2) HY(N; =ny,n2) xlml-n,,n» (M)
Yb(Nl'-l n) | [HoMN; -ny,n2)-Hi(N; —nl.nz) Xo(N; '1 ﬂz) .

Let Sl(nl nz). So(nl.nz), S(nl,nz) denote either X;(n;,n2), Xo(n;,n2), X(nx.nz), respec-
uvcly, or H,(nl,nz). Ho(nl,nz), H!(ny,ny), rcspecuvely The relatlonshlp between Sl(nl,nz),_, -
So(nl,nz) and S(nl.nz) is shown in Table 4.3.1, o S A

ay
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' Table 1. The Relationship Between S, (ny , nz ), So (ny , n; ) and S @y , ny ).

o “’ Sitou.ma) S1(N1~n;,n2) Solny.my) - “SoMNy-mmg) .
o |own 500 500) 0 o
N2 | ooNi Sen.n2) Sn.m2) 0 0
o fomauz|  som SO.m) ) SO.N;-02)
B3 °°’2<"1’2 SN 2,2) S(N.2.n2) SON 2.Ny-n2) S(Ni2.N;n3)
omae| o 5010 5010 SNy-01.0) SN0
OmNiz| N S0N.N2/2) St Na2) SMym N2 | S No2)
| °¢1<Nxﬂ °<hz<Nzﬂ s.(ﬂh_nz)-s(Nl-nl»Nz-ﬂz) S(m mg#S(N;~n1,N3—n3) S(RI-Nz-nz)*S(Nx-ﬂuﬂz) S(n; Nz—02)-S(N;-n;.12)

Table 2. The 2-D RDFT Amplitudes.

m ny R%(n;,ny)
0 0 $2(0,0)
Ni/2 N./2 $%(ny,n2)
0 . 0O<ny<N,/2 $2(0,n2)+5%(0,N2-ny)
N2 | Ocmp<Ny2 | SP(N12,mpHSP (N1 2, Npmmp)
{02 |0 $%(ny,00+8%(N;-n;,0)
Jom<2 | N2 | S N 2SR -m/Naf2)
[ o< <N1 2 | 0<ny<No2 | S2(ny,np 82Ny -0y, N2mmp) |
+52(ny,No=ny+S2(N;—n;,n3)
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Table 3. Classification with the CMF System.

Tool | Nol | No2 | No3 | Nod4 | NoS | Nos | No7 | No8 |
No.l | 1.0000 | 097610
| No2 | 1.0000 | 0.98097 | 098241 | 097460 | 096612 | 0.99231 | 097934 | 0.99320

No3 | 1.0000 | 097886 | 0.98298 | 097360 | 096607 | 0.99221 | 0.97895 | 0.99299 | |

m

096361 | 099113 | 0.97654 099111

097965 | 0.97160

Nod | 1.0000 | 097913 | 098166 | 0.97677 | 096574 | 099164 | 0.97864 | 0.99208
No.5 | 1.0000 | 0.97865 | 0.98214 | 097374 | 096910 | 099238 | 0.98102 | 0.99268
No6 | 1.0000 | 097727 | 0.98072 | 097210 | 0.96483 | 099283 | 0.97777 | 0.99286

No7 | 10000 | 097891 | 098207 | 097369 | 096804 | 099238 | 098154 | 099279
No8 | 10000 | 097816 | 098151 | 097255 | 096514 | 099288 | 0.97820 | 0.99395

Table 4. Classification with the SBF System.

"Tool | Nol | No2 | No3 | No4 [ No5 | No6 | No7 | Nog -
Number e ' | ‘ | e

No.l | 1.00000 | 0.25954 | 0.26660 | 0.26458 | 027214 | 0.38480 | 022394 | 034123

| No2 | 025954 | 1.00000 | 0.39639 | 0.27884 | 026760 | 028446 | 0.33868 | 026397

No3 | 026662 | 039643 | 1.00000 | 028699 | 029358 | 030710 | 0.34722 | 028611
Nod | 026459 | 027885 | 0.28699 | 1.00000 | 028469 | 027654 | 028996 | 025437
NoS | 027214 | 026760 | 0.29355 | 0.28467 | 1.00000 | 028450 | 026289 | 031970

No6 | 038480 | 0.28446 | 0.30707 | 0.27653 | 028450 | 1.00000 | 025671 "(_).38788
No7 | 022394 | 033868 | 0.34719 | 0.28994 | 026289 | 025671 | 1.00000 | 028540
No8 ‘| 034123 | 0.26397 | 0.28608 0.25436 | 031970 | 0.38788 | 028540 | 1.00000
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3 'l?ible:fii% ' Ihspcéﬁon' of the Tool No.7 in Terms of the: OutputValue

Nol i No2: |’ No;3_:f . No4: :;’.N,O,.-'s_"ﬁ ' " No6' - N057'"=': N08

75, |- 359750 | 368784 | 307978 | 279244 | 272674 | 1062189. | 303156

% .Comparatwc Pcrformancc for the CMF a,nd the SBF asa. Funcuon
' of SNRI wnhout Modification. :

- -Gaussian-Noise Standard Devnauon

syem [0 T [ % @ [0 Je0 l i
[ [NMF | 197.666 | 133.667 | 101.007 | 81.182 | 68.036 | 58.287 | 50937 |
fomE {6162 | 6155 | 6148 | 6143 | 6138 | 6133 | 6129

Table 7 Comparauve Performancc of the CMF and-the SBF asa: Funcnon
. ofthe Modlﬁed SNR;. ’ -

Gaussian Nox_se Standard Deviation

8: 1 133:671 | 101:008: |81 , | 58287 | S
| 4081 | 4076 | 4073 | 4070 | 4067 | 4065 |
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Table 8. The Average Distance of the Correlation Peak from the Center
of the Corrclation Plane with the CFM System (Rectangular Window).

‘Window | "~ Gaussian Noise Standard Deviation —
Sze [10 | 20 | 30 @0 | 50 & 70
—64 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000

32 72000 | 72.000 | 71250 | 71.000 | 71.000 | 54.250 | 54.250

20 | 87250 | 87.000 | 87.500 | 87.500 { 70250 { 71.500 | 71.500

18 .| 86.250 | 86.000 | 86.000 | 86.000 | 86.000 | 111.250 | 111.000

16 81250 | 81.250 | 81250 | 81.250 | 81250 | 81.250 | 79.750

14 | 81250 | 81.250 | 81.250 | 81.250 | 81250 | 81.250 | 81.250

12 81250 | 81.500.| 81.750 | 81.750 | 82.500 | 82.500 | 82.500 -

10 | 81000 | 81.500 | 81.500 | 82250 | 83.250 | 83.500 | 83.500 . |

63250 { 63.500 | 63.500 | 64.000 | 64.000 | 90.250 | 90.250

80.500 | 82.500 | 83.500 | 83.500 | 83.500 | 83.500 | -83.500

'82.000 | 84.250 | 86.000 | 86.000 | 87.500 | 87.500 | 87.500
84.250 | 83.750 | 88250 | 88.250 | 89.500 | 89.500 [ 72.500 |

IFSE-IF)

Table 9. The Average Distance of the Correlation Peak from the Ccni:crk “,
of the Correlation Plane with the SBF System (Rectangular Window), - -

‘Window | .~ . - Gaussian Noise Standard Deviation

Size 110 | 20 .30 40 50 60 2700 |
64 | 0000 | 0.000 0.000 |- 0.000 0.000 0.000 0.000 |

32 ] 0000 | 0000 [ 0000 | 0000 | 0000 [ 0000 [ 0000
20 | 0000 | 0000 | 0000 | 0000 | 0000 | 0.000 | 0.000
18- | 0000 | 0000 [ 0000 | 10500 | 26.250 | 34.750 | 34.750 |
16 | 0000 | 0000 | 0000 [ 0.000 | 24.750 | 44250 | 60.250
_ 14 | 0000 | 0000 | 0000 | 42750 | 80.250 | 80250 [ 70.000 |
1 12- | 0000 | 25000 | 25.000 | 80.500 { 76.000 | 73250 | 64.750 |
10 | 24.250 | 39250 | 39.250 | 42250 | 56.000 | 56.000 | 54.750 |
8 | 23.500 | 47.250 | 29.250 | 62.000 | 62.000 | 65.000 | 65.000
6. | 66500 | 73000 | 52.750 | 57.500 | 34.250 | 61.250 | 62.000 |
| 4 | 81500 | 73.000 | 64.000 [ 69.000 | 69.000 | 69.000 | 69.000 |
2 | 78.500 | 73.750 | 86.250 | 65.500 | 75.500 | 68.000 | 75.000 |
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 ‘Table 10. The Average Modified SNR} with the CMF System (Rectangular Window).

1 [ 0 T % T 471 % T & [ 70
17.141 | 4286 | 4286 | 4287 | 4286 | 4287 | 4288 |
16290 | 4072 | 4076 | 4081 | 4085 | 4086 | 4076 |
4073 | 4069 | 4065 | 4056 | 4054 | 4050 | 4045 |
4075 | 4066 | 4.062 | 4.062 | 4.068 | 4072 | 4079 |
[ 4097 | 4095 | 4098 | 4103 | 4012 | 4126 | 4139 |
| 74215 | 4221 | 4231 | 4241 | 4250 | 4258 | 4269 |

4364 | 4371 | 4379 | 43%0 | 4399 | 4412 | 4427 |
| 4543 | 4537 | 4539 | 4556 | 4.577 | 4608 | 4640 |
| 4363 | 4585 | 4612 | 4649 | 4686 | 4728 | 4773 |
4920 | 4977 | 5048 | 5121 | 5.194 | 5267 | 5336 | -
4 | 5153 | 5241 | 5358 | 5486 | S621 | 5761 | 5888 |
~.2 | 5418 | 5573 | 5770 | 5962 | 6.144 | 6307 | 6446 |-

© Table 11. The Average Modified SNR} with the SBF System (Rectangular Window).

-~ |'Wwindow | . Gaussian Noise Standard Deviation -
| osiee [0 T 20 T 3 [ 4 [ 50 [ 60 [ 70
[T 62 [ 261633 | 50716 | 40320 | 33.268 | 28420 | 24647 | 21601 | -
32 [ 17500 | 22859 [ 18305 | 15353 | 13.132 | 11.303 | 10.080 |
20 | 19621 | 15254 | 12440 | 10370 | 8797 [ 7489 [ 6670
18 ] 16656 | 12642 | 10053 | 8435 | 7.649 | 7256 | 7.009
T 16 | 14.538 | 11528 | 9.800 | 8.107 | 7.184 | 6947 | 7.014
[ 14 12321 | 10056 | 8532 | 7.63 | 7254 | 6924 | 6857
[ 12 | 9725 | 8086 | 6891 | 6369 | 6363 | 6359 | 6488 |
] 710 ] 9508 | 8342 ] 8061 | 7.083 | 7294 | 7059 | 6757
T8 | 10558 | 859 | 7.707 | 7.339 | 7075 | 6715 | 6514
"6 | B713 | 17600 | 7.175 | 6360 | 6650 | 6570 | 6681
" a4 | 734 | 7076 | 7225 | 7014 | 6955 | 6879 | 6831

2 | 7719 | 698 | 6917 | 6767 | 6762 | 6652 | 6618 |
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Table 12. The Avérage Distance of the Correlation Peak from tthcntcr "
.. of the Correlation Plane with the CMF System (Hanning Window). . "

IWindow ]~ Gaussian Noise Standard Deviation ]
Size |10 | 20 | 30 | 40 50 & | 0 .
20 | 55250 | 55250 | 55.250 | 54.750 | 54.750 | 80250 | 80250 |
18| 79250 | 79250 | 77.250 | 77.000 | 77.000 | 56500 | 56.500 |
T 16 | 79.250 | 79250 | 79.250 | 79250 | 79.250 | 79250 | 78.750 |
14 | 78750 | 78.500 | 78.500 | 78.500 | 78.500 | 78.750 | 78.750 |
12 | 78.500 | 78500 | 78.750 | 80.000 | 80.500 | 80.500 | 80.500 |
10 | 78.000 | 78250 | 78.750 | 80.000 | 80.250 | 80250 | 80.250 |
8 | 61250 | 61.750 | 63.250 | 64.500 | 64.250 | 64250 | 64.250 |
6. | 77750 | 81.750 | 82.000 | 82.000 | 82.000 | 82.000 | 82.000 |
4 | 82000 | 85500 | 85.750 | 85.750 | 85.750 | 85.750 | 85.750 |
2| 81750 | 81250 | 86.500 | 86.500 | 87.750 | 87.750 | 70.750 |

'I‘ablc 13 The Avcragc Distance of the Corrclanon Pcak fmm the Center i
of the Correlanon Plane with the SBF System (Hanmng Wmdow)

Wiﬁdowa . * Gaussian Noise Standard Deviation B
“size [10 . | 20 | 30 .| 40 50 60 70}
20 | 0000 | 0000 | 0000 | 2750 | 2750 | 2750 | 26250 |
18| 0000 | 0000 | 0000 | 29.750 | 29.750 | 45.500 | 37.000 |
© 16 | 0000 | 27250 | 23250 | 24.750 | 23250 | 53.500 | 49.250 |-
~~14 [ 23000 | 0000 [ 0.000 | 26.500 | 60.000 | 59.750 | 64.500
-~ 12 ]722750 | 26750 | 54250 | 38.000 | 38.000 | 38.000-}.38.500 |
10 |172.750 | 25750 | 65250 | 63.750 | 54.000 | 63.000. | 75.000
8 | 28500 | 46250 | 46250 | 52.250 | 21.000 | 34.500 | 21.000 |
16 ] 73000 | 53.000 | 53.000 | 68.750 | 72.000 | 96.000 | 96.000 | -
f 4 1103750 | 104.000 | 88.750 | 77.750 | 77.750 | 71.000 | 71.750
2 | 75000 | 74250 | 107.500 | 86.750 | 91.750 | 84.250 91250 |
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Table 14. The Average Modified SNR} with the CMF System (Hanning Window).

"~ Gaussian Noise Standard Deviation
20 ] 30 | 40 | s0 | 6 | 10 |
073 | 4.060 | 4060 | 4068 | 4067 | 4070 | 4073 |
9| 4090 | 4092 | 4095 | 4101 | 4106 | 4.

| 4175 | 4178 | 4182 | 4188 | 4196 |
3| 4310 | 4316 | 4322 [ 4328 | 4334 ]
458 | 4.456 | 4453 | 4458 | 4468 | 4484 |
602 | 4.600 | 4610 | 4634 | 4660 | 4693 |
595 | 4.608 | 4632 | 4674 | 4718 | 4763 |

950 | 4997 '5.062 | 5.133] 5.198 | 5264 .
T 5260 | 5395 | 5536 | 5682 | 5826 |

5571 | 5768 | 5961 | 6142 | 6303 | 6443 |

Table 15. The Average Modified SR} with the SBF System (Hanning Window).

Window | Gaussian Noise Siandard Deviation
sze [0 T 2 ] %0 | @ | 50 | & | 0
T | 17617 | 13576 | 11138 | 9.365 | 8335 | 7.513 | 7.225 |
11723 | 9.565 | 8.158 | 7.578 | 7.062 | 6.160
10677 | 9322 | 8.132 | 7.518 | 7150 | 6946
w1 | 7908 | 7% | 690 | 6307 | eanl
7861 | 753 | 6423 | 6437 | 6216 | 6120
792227 | 84% | 7843 | 7.577 | 7045 | 687 |
T7.045 | 7025 | 6993 | 7.047 | 672 | 6732
6538 | 6483 | 656 | 65% | 6323 | 631 |
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Table 16. Comparison of the Distances the Actual Window and the Correation -
Peak has Moved as a Function of Noise Standard Deviation. o

Window| Gaussian Noise Standard Deviation

locaion{0 | 10 [ 20 | 30 | 40 0 ] & | 70
00) (0,0 [(0,0[(00{(00|(0 0((0 0](0, 0j (0 0

(50.50) {( 50, 50) |( 50, S0) [¢ 50, 50) | 50, 50)|( 50, S0) | ( 56, 53)|( 56, 53)|( 56, 53)

(-50,50) {( -50, -50) | ( -50, -50) |( -50, -50) | -50, -50) } ( -50, -50) | ( -50, -50) | ( -50, -50) |(-103, -12)

(50,-45) {( 50,-45) |( 50,-45) (' 50, -45) |( 50, -45) | ( 50,-45) {( 50, -45) | ( -4,-98) | ( -4, -98)

(-45,50) | (45, 50) | (45, 50)|(-45, 50){(45, 50)|(-45, 50) (45, 50)|(-99, -3) [ (-99, -3)

* Table 17. The Average Distance of the Correlation Peak from
the Center of the Correlation Plane with the DSCT1-Based
CMF System (Rectangular Window).

Window Gaussian Noise Standard Deviation .
Size 10 20 30 40 O | 60 0 |
[ 20 | 2000 [ 2.000 | 3.750 | 3.750 | 3.750 | 3.750 | 4.750 |

18 2.500 | 2.500 | 2.750 | 4.500 | 4.500 | 4.500 | 4750 | .
16 | 2500 | 2.500 | 3.250 | 3250 | 3250 | 3.250 | 3250 | -
14 | 3750 | 3.750 | 4000 | 2750 | 2750 | 2750 | 4500 |
12 | 6250 | 6250 | 6250 | 6250 | 6250 | 6250 | 5250 |
10 | 10250 | 11.500 | 11.500 | 10.500 | 10.500 | 10.500 | 10.500
8 6.000 | 9.000 | 9.000 | 12.250 | 12250 | 12.000 | 12.000 | -
6 | 8000 | 8250 | 8250 | 11.000 | 13.500 | 13.500 | 13.750 |
"4 | 23250 | 23250 | 12.000 | 15.000 | 15.000 | 15,000 | 13750 |
2 20.500 | 20.500 | 32.250 | 32250 | 32.250 | 37.500 | 34.000
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Table 18. The Average Distance of the Correlation Peak from thc
Centcr of the Correlation Plane with the DSCT-1 Based SBF. System_
(Rectan, gular Wmdow) :

Wihdow T v “Gaussian Noise Siandarﬂ?Deiiaﬁorg ’

| ske [10 ] 20 | 30 | 4 | %0 | & | W |

] 0000 | 0.000 | 14.000 | 36.500 | 44250 | 50.250 | 50.250 | -

.| 0000 | 0000 | 10500 | 19.500 | 26500 | 45250 | 29250

[ 0:000 | 0.000 | 28.750 | 30.000 | 30.000 | 59.750 | 66.750 |

| 16000 | 23.750 | 19.750 | 18.500 | 14.500 | 19.000 | 34250 |

| 12.250 | 14.500 | 17.000 | 42.250 | 43.000 | 42.250 | 42.250 | -

{ 10,000 | 20.000 | 34.250 | 28.750 | 45.500 | 34.000 | 37.500

37.250 | 33.000 | 40.000 | 30.250 { 57.750 | 57.500 | 44.750 |

40.500 | 45.750 | 55.500 | 58.250 | 49.500 | 49.500 | 45.500 |

47.750 | 33.250 | 42.500 | 24.750 | 52.000 | 64.750 | 50.250

Table 19 The Average Modified SNR; with
--the DSCT l-Based CMF Systems (Rectangular Window). -

[Window | Gaussian Noise Standard Deviation

{70000 | 0000 | 0:000 | 0.000 | 14500 | 25250 | 21000 |

Size [10 |20 [30 |40 [0 Je 70 _
20 | 2205 | 2208 | 2214 | 2221 | 2229 | 2237 | 2248

I8 | 2243 | 2247 | 2252 | 2259 | 2272 | 2284 | 2297

716 | 2264 | 2267 | 2277 | 2288 | 2299 | 2310 | 2321

14° | 2281 | 2286 | 2294 | 2304 | 2314 | 2323 | 2336

12 | 2293 | 2308 | 2325 | 2344 | 2365 | 2385 | 2408

T10 | 2381 | 2391 | 2409 | 2433 | 2460 | 2485 | 2513

2446 | 2441 | 2445 | 2457 | 2483 | 2511 [ 2538

2646 | 2633 | 2621 | 2623 | 2644 | 2674 | 2702

8
4 | 2764 | 2755 | 2773 | 2810 | 2856 | 2906 | 2954
2 | 2939 | 2995 | 3078 | 3151 | 3215 | 3270 | 3343
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- Table 20. The Average Modified SNR} with
" the DSCT1-Based SBF System (Rectangular Window).

" [Window Gaussian Noise Standard Deviation

Size {10 20 |30 40 50 & |70
20 | 10119 | 7979 | 6706 | 5681 | 5.153 | 4.769 | 4.519 |
18 | 8293 | 6541 | 5452 | 4630 | 4.528 | 4376 | 4.135
16 | 7627 | 6038 | 5343 | 4745 | 4512 | 4317 | 4.245
14 6.408 | 5351 | 4790 | 4485 | 4245 | 4.137 | 4118 |
12 5122 | 4599 | 4277 | 4200 | 4234 | 4.165 | 4.091 |
10 | 5321 | 4860 | 4742 | 4208 | 4046 | 3.887 | 3.891
T8 | 5996 | 4874 | 4693 | 4421 | 4445 | 4237 | 4144
6 4679 | 4185 | 4247 | 4067 | 4203 | 4096 | 4.062
4 4.194 | 4078 | 3950 | 3970 | 4220 | 4.183 | 4.146
2 4211 | 3955 | 3822 | 3924 | 3939 | 3938 | 4.097|

“Table 21. The Performance Coefficients of the CMF and the SBF asa
’ Function of Class Spread Ratio and Window Sizes. '

@ o | w|w ™M
005 | 128 | V32 | V32 | 586 | 2024
005|128 4 | 8 | 586 | 2018
01 | 128 | \32 | V32 | 1074 | 2024
o1 |128| 4 | 8 |1074 |2018]
10 | 128 | \B2 | 32 | 4295 | 2024
10 128 4 | 8 |4295 2018
20 | 128 | V32 | V32 | 5154 | 2024
20 {128 4 | 8 |s154 | 2018
30 | 128 | V32 | B2 | 5522 | 2024
30 128 | 4 | 8 |ss22|20ms
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| Fig. 1. Block Diagram for Symmetric Nonlinear Matched Filtering.
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: T'he Cincinnati Milacron T10 tool chain with camera overhead. |

Broken Number 7 Toal -

Fig. 4. The Image of the Broken No. 7 Tool.



Number 7 Tool | Number 8 Tool

'Fig. 5. The lmagcs of the 8 Tools.
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'———»{ Transform }———a- Nonlinearity f—= W

Fig.7. The Three-Layer Neural Network Interpretation of the Nonlinear Matched Filter.
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T X Purdue Campus Image of Size 128 x 128.







Fig. 11

. Four Different Window of S;izc 20 <20 in the Purdue Image. .
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"~ Fig/13. TheOurputof the DFT-Based SBF when the Purdue Image is Comrelated with itself.,



-39-

-1472 80 4 ?

692 00 ¢ o
PR ‘,,vn'az 07 4 | | _ : |
J('I ‘ )
o 1332 134 i h’%fn‘;. l
MJ\F‘N V wml ‘ J ‘ M “"V’w
""// et ;‘ ‘4/ o;’"'m s m,». ﬂ

‘ ”"’V W,’A“

63 % g a"‘\‘)

Fig. 14. The Output of the RDFT-Based SBF when the Purdue Image is Corrclatcd with us'
“Central 32 x32 Block. :
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- Fig. 15. 'I'he Output of the DFT-Based SBF when the Purdue Image is Correlated with its Cen-
- tral 32 32 Block. .
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Fig. 16. The Output of the RDFT-Based when the Letter E Repeated Four Times is Detected.
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Fig. 17. ‘The Output of vtthFT-Based SPOF when the Leiter E Re peatedFOm- Tisds Is .

Detected.
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Fig; 18. The Output of the RDFT-Based SPOF when 2 E’s and 2 F‘é are Detected with the E
Filter.

4189.86 1

Fig. 19. The Output of the DFT-Based SPOF when 2 E’s and 2 F’s are Dct_c‘ctéd with the E
- Filter. R :
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Fig. 21. The Output of the DFT-
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Fig. 22. The Output of the RDFT-Based SPOF when a Letter E and Another Closeby Letter E
Partially Hidden and Hidden Part Removed is Detected.

Fig. 23." The Output of the DFT-Based SPOF when a Letter E and Another Closeby Letter E
Partially Hidden and Hidden Part Removed is Detected. -
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~ Fig.24. The Output of the RDFT-Based SPOF when
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- Fig. 25. The Output of the DFT-Bascd SPOF when a Letter E and Another Closcby Leter E



- Fig. 26. 4-Fold Symmetric Image.
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- Fig.28. The Output of the DSCT1-Based SBF when the Purdue Image is Correlated with its
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" Fig. 29. The Output of the DSCT2-Based SBF.




-~ Fig.30. Three Types of Nonlinearities: A) Stepper than Linear B) Linear C) Less Steep
 than Linear. '
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