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ABSTRACT

Symmetric nonlinear matched filters (SNMF’s) involve the transformation of the signal 
spectrum and the filter transfer function through pointwise nonlinearities before they are multi* 
plied in the transform domain. The resulting system is analogous to a 3-layer neural ne t Hie 
experimental and theoretical results discussed indicate that SNMF’s hold considerable potential 
to achieve high-power of discrimination, resolution and large SNR. The statistical analysis of a 
particular SNMF in the 2-class problem indicates that the performance coefficient of the SNMF 
is about four times larger than the performance coefficient of the classical matched filter. In 
terms of resolving closeby signals, there seems to be no limit to die achievable resolution. 
However, intermodulation noise has to be carefully monitored.

L  INTRODUCTION

The matched filter was first described by North in 19431. Since the development of the 
Vander Lugt optical correlator2, matched filtering has been a major area of research interest in 
the optics community. The classical matched filter (CMF) is the optimum linear time-invariant 
(LTI) (or space-invariant, LSI) filter for detecting a known signal in additive, at least wide- 
sense stationary (WSS) noise which is uncorrelated with the signal. The optimality of the CMF 
is based on the maximum signal-to-noise ratio (SNR) achievable with the filter based on convo
lution.

However, the optimum filter for a given application depends strongly on the constraints of 
the intended application. In pattern recognition, the problem is to classify a signal as belonging 
to a particular class. In the CMF tuned to a particular class, signals belonging to other classes 
are considered noise. Since such signals are usually highly correlated with the signal for the 
particular class, the CMF is not optimal. Often, the problem is to detect a small image, say, a 
target, in a global image. In this case, the reference image with which the input image is corre
lated is different from the input image, and the properties of the CMF, such as the centroid of 
the target being where the correlation peak is, do not necessarily hold. Another problem with 
the CMF is that targets which are closeby cannot be resolved.

As most other filters, the CMF is based on convolution (correlation). If other types of 
operations are allowed, the question of what filter is optimal is an open research issue. How
ever, convolution is very powerful since it is easy to implement, shift-invariant and indicates the 
position of the target at the position of the correlation peak. Any other type of filter to be sug
gested needs to have similar properties.

In optical signal processing, the generation of complex spatial filters for real-time applica
tions is not trivial. Computer-generated holograms3 can be used to synthesize filters, but they 
are not easily adaptable in real-time, and highly accurate positioning is needed. Some of these 
restrictions can be removed by joint transform correlators4,5 for which a square-law detector is 
needed in the focal plane of the optical system. Initially, due to the limitations of the spatial 
light modulator (SLM) technology, a number of filters related to the CMF were developed. In
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phase-only (POF)Alters6, the amplitude of the filter is kept constant while its phase corresponds 
to the phase of the matched filter. In binary phase-only (BPOF) filters7, the filter transfer func
tion value at each point is further reduced to I when the real (or the imaginary) part of the spec
trum is positive, and -I otherwise. This approach leads to a 2-D mask easy to generate in real- 

. time.

In a recent paper8, we discussed generalization of such filters to symmetric nonlinear 
matched filters (SNMF’s) such that both the filter transfer function and the input signal spec
trum are passed through a nonlinearity before they are multiplied in the spectral domain. The 
resulting system was shown to be analogous to a 3-layer neural network.

In this paper, we will discuss further studies with nonlinear matched filters. The paper 
consists of 10 sections. A review of nonlinear matched filters is given in Sec. 2. Experiments 
in machine vision with SNMF’s are described in Sec. 3. Pwformance of binary symmetric 
filter, a particular SNMF, in terms of signal-to-noise ratio, is the subject of Sec 4. Detection of 
a small image, for example, a target, in a global image is discussed in Sec. 5. The topic of reso
lution, artifacts and intermodulation noise is covered in Sec. 6. The design of SNMF’s based on 
the cosine transforms is the subject of Sec 7. In Sec 8, a statistical analysis of SNMF’s is 
covered. Sec. 9 is a discussion, especially related to optical implementations. Conclusions are 
reached in Sec 10. In all sections, the results are discussed in comparison to CMF’s. Some of 
foe properties of the CMF’s which are often overlooked in foe literature also become clear in 
this process.

2. A REVIEW  OF NONLINEAR MATCHED FILTERS

The symmetrical nonlinear matched filters considered in this paper have a block diagram 
as shown in Fig. I. Both foe signal spectrum and foe filter transfer function are passed through 
foe nonlinearities Ni and N2, respectively, before being multiplied in foe spectral domain.

The transform T used in previous experiments discussed in Ref. 8 was either foe DFT or 
foe RDFT. It was also shown that foe RDFT-based filters are superior in terms pf signal 
discrimination, lack of false correlation signals and artifacts than foe corresponding DFT-based 
filters. For this reason, foe RDFT will be foe transform mostly used in foe following sections. 
In Sec. 7, foe use of cosine transforms for easier optical implementations will be discussed. It is 
noted that foe CMF is foe same whether it is implemented by foe DFT or foe RDFT.

The 2-D RDFT of foe first kind is foe discretization of foe 2-D real Fourier transform of 
foe first kind, which can be written for a signal s(x,y) as*

S(u,v) — J*° J"° s(x,y)cos(27tux+0(u))cos(2jtvy+e(v))dxdy (I)

where



The inversetransform  is

s(x,y) = 4 j ^ S(u,v)cos(2nux+0(u))(cos2jcvy+0(v))dudv (3)

The corresponding 2-D RDFT for a discrete 2-D sequence s(nj ,02) of size N ixN2 is given

Nl - I N 2il 27tkjni 2xk2n2
S(ni,n2)=  £  £  . s f t j . k i ^ E — ^ + 0 ( n i)] cos[— j ^ - + 0 ( n 2)] . (4)

k, =Ok2 = O 111 N2

with the inveree transform

4 N1- I N 2-I  2rtkini 2rcn2k2
s(nl tn2) = -j— 7 - £  £  S(kj,k2JvCk1 )v(k2)cos[— + 0(kj)]cos[— t- t -  + 0(k2)](5) 

n i n 2 k, =Ok2=O Ni N2

Where

0(n);

Ohd

v(n):

0 O ^ n sN /2  

y  n >N/2

I n#0,N/2 
1/2 otherwise

The four quadrants of the 2-D real Fourier spectral plane involves 4 types of sine-cosine 
operations shown in Hg. 2.

The relationship between the 2-D DFT and die 2-D RDFT coefficients can be written as 
follows:

F(ni,n2) = Si(nlsn2) - j  So(ni,n2) (8)

where F  (ni,n2) is the DFT coefficient, Si(HlfH2) and So(nj,n2) in terms of. S(Q^n2) are 
described in Table I.

The fast Computation of 2-D linear and circular convolution (correlation) by the 2-D 
RDFT is discussed in Ref.8. The computations involved are outlined in the Appendix.

D ie of RDFT leads to the definitions of the RDFT-based POF, and BPOF filters8. The 
final system is still linear since no nonlinearity is applied to the signal spectrum, and the system 
implements convolution.



The 2-D RDFT spectral coefficients are real when the input signal is real. Consequently, 
amplitude and phase are defined differently from the way they are defined with the 2-DDFT. 
The definition of the amplitude R(ni,n2) connects the 4 RDFT coefficients 
S(ni,n2),S(N i-ni,N 2-n2>, S(Ni - n j ,n 2), Sfo1,N2 - r i2) ®nd is shown in Table 2.

The RDFT-based POF is obtained by normalizing the four related spectral values referred 
to above by Rfovfo2). The RDFT-based BPQF is obtained by hard-limiting each individual 
spectral value to ±ao where ao is a constant number. If ao is I, the nonlinearity is the bipolar 
hard-limiter:

S,(ni,n2) = sgn[S(n1,n2)]
I Sfo^n2)*  O

- ■

—1 otherwise
(9)

The corresponding symmetric nonlinear matched filters are obtained by applying the 
operations described above to the RDFT spectra of both the signal and the filter. The resulting 
filters are called symmetric POF (SPOF) and the symmetric binary filter (SBF), respectively.

Experimentally, the RDFT-based SBF was found to be the best in terms of discrimination 
ability arnottg allN M F’s8. In the next section, its performance in machine vision is further dis
cussed.

3. EXPERIMENTS IN MACHINE VISION

We studied the performance of the RDFT-based SBF in machine vision in comparison to 
the CMF. The particular problem in machine vision we investigated is parts classification and 
inspection during the machining of parts. We were to classify the tools in the Cincinnati Mila- 
cron TlO tool chain in the Machine Vision Laboratory of Purdue University shown in Fig. 3, 
and to inspect whether they are broken or not after correct classification.

There were thirty different tools located on the tool chain. In ouf initial experiments, we 
utilized 8 of these and a broken tool, shown in Figs. 4 and 5.

In this type of problem, there are as many matched filters as the number of classes N, but 
only the correlation peak at the center of the correlation plane for each filter is of interest The 
procedure for the implementation of the ith SBF tuned to a particular class i is as follows:

1. The 2-D RDFT of the reference image representing class i is computed. The result is 
passed thru the nonlinearity given by Eq. (9). Let the final result be denoted by Hifoi ,n2).

2. The 2-D RDFT of the input image sfoi,n2) is computed, and the result is passed through 
die nonlinearity given by Eq. (9). Let the final result be denoted by S'foi ,n2).

3. Using Eqs. (A.1) through (A.7) in the Appendix for the computation of convolution, it can 
be shown that the
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I Nj-1 Nj-1
2(i) = TTlT 2  I  HiCk1,k2)S'(k,.k2) ad)

. - • k,-0 k2=0

If 2-D linear cross-correlation rather than 2-D circular cross-correlation is desired x(nj ,n2) 
and h(nj,n2) are zero-padded to size 2Nj ^ N 2, and the transform size is doubled in both direc
tions. This is what is done in all experiments discussed in the succeeding sections, except for 
those involving cosine transforms.

Fig. 6 shows the binary image obtained by thresholding of the 2-D RDFT spectrum of tool 
no. 7. It is observed that the resulting SBF system is basically a 3-layer neural network, as 
Shown in Fig. 7. Tlie first stage is the transform. This is followed by the pointwise nonlineari
ties. The second stage W has elements WuciIjj given by

Wiklkj = H i(kj,k2) (11)

Since there are 8 classes, there are 8 output neurons. The class is decided by a winner- 
take-all network whose input is the output of the NMF-based network. After the classification, 
the part is inspected as to whether it is satisfactory. This is, for the time being, done by compar
ing the output of the NMF-based network for the particular class with the expected output in 
terms of ti threshold value.

In the experiments, the initial images were of size 256 x 256. Hiey were reduced to size 
64 * 64 by Averaging over 16 x 16 blocks in order to reduce variations in the lighting conditions 
ind  to achieve higher speed of processing. The images were obtained with a camera located 
over the TlO machine tool chain, whose output was digitized by an ITEX 150 real-time image 
processing systemand sent to a SUN workstation for further processing.

* - / ^y \ ' •- ■ V. . •
The 2-D SBF-based system was studied in comparison to the 2-D CMF-based system. 

Tables 3 and 4 show the corresponding results. Each item was normalized by the largest item 
per row. It is observed that the CMF-based system was very poor in terms of classification, 
th e  SBF-based system was excellent, giving no classification error as well as showing a very 
high power of discrimination.

Table 5 shows how the inspection of Tool No. 7 is carried out after being chosen as the 
correct class. We See here why it is important to have high power of discrimination. It makes 
possible to classify correctly, even though the tool is broken, since the correlation peak value is 
considerably lower than the peak value with the nonbroken tool.

An important consideration in such experiments is the lighting conditions. In many other 
techniques, it is iiCeesSary to segment the image. When the lighting conditions change, the seg
mentation reatiits Mso tend to change. The NMF-based network does not need segmentation. In 
addition, the light intensity level is immaterial due to the threshold nonlinearity after the. spec
tral tiMiMOtiiation. We can also compensate for the changing lighting conditions by having 
IiOfe than I Output value per class corresponding to different sample lighting conditions, or by
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leaming the weights optimally under such conditions.

It is observed in Table 3 that the CMF-based network is always choosing class I. This is 
expected to be due to the higher overall brightness of the class I image. The same type of result 
is obtained even if class I is discarded and the experiments are repeated Witii 7 classes. It is 
possible to normalize the image brightness levels, but this is expected to be not very reliable, 
especially under changing lighting conditions. The NMF-based network gets around such prob
lems due to the threshold nonlinearity.

4. PERFORMANCE OF BINARY SYMMETRIC FILTER IN TERMS OF SIGNAL- 
TO-NOISE RATIO

The CMF is optimal in terms of maximum SNR achievable with a L U  or LSI system for 
detecting a signal in additive, WSS noise uncorrelated with the signal. The total input signal to 
the filter can be written as

s(x) = fi(x) + ni(x) (12)

where fj(x) is the signal of interest and nj(x) is noise. The output of the filter is

y(x1) = fo(x) + n0(x) (13)

SNRi , the signal-to-noise ratio for the CMF, is commonly defined as

fo(xo)SNR1 (14)
E[ng(x)

where Xq is the time of measurement at which SNR1 is maximum. However, in connection 
with optical matched filters, SNR1 has been equivalently defined as7

|fo(xo)lSNR1
[E [n g (x )#

(15)

This is the definition which is used in most of the experiments to be described.

In image detection by various matched filters, other definitions of SNR have been 
developed. One such definition, to be referred to as SNR2, also known as the Homer efficiency, 
is given by7

SNR2 = k £ | R ( x ) | 2/ X I R ( x ) | -  
A' A

= IcEaTEa (16)

Where R(x) represents the value at point x on the correlation plane, k is a constant representing 
the fraction of light that gets through the correlation filter, Ea and Ea '  are the energies in the 
total output plane A and the region A ' corresponding to the half-power (intensity) region of the 
correlation peak, k was chosen as I in the experiments.
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One problem in the definition of SNRj given by7 Eq. (15) is how to estimate the mean 
square error in practical experiments. One possible way is to assume that it is given by

H[ng<x)]-— 1— -  £  I R(Xi) I2 (17)Na - N a a _a ,

where Na is the total number of pixels, and N'A is the number of pixels under the 50% response 
Pordonofthecoirelationpeak-Then1SN R icanbew rittenas

SNRi
NA[R<*i)]L.

( I - S N R 2) S  IR(Xi) I2
A

(18)

One disadvantage of SNRi'  as defined above is that it is possible to get isolated regions 
away frorn the central correladon peak which give values greater than [R (x)]max/ ^  In order 
to prevent that .these regions are also considered as belonging to the signal, we modifed the 
definition of SNR1' as follows:

The regions with values above [R (x)]max/V2 are quantized as I and all other regions are 
quantized as zero. Then, the "I" region and the "0" region are considered as the signal part and 
the noise part, respectively. E[n$(t)] is still estimated by Eq. (17), with Na and Na '  determined 
from the two regions.

Based on the SNR measures described above, we studied the comparative performance of 
the GMF and the SBF with the Purdue campus image shown in Fig. 8. This image was cor
rupted by white Gaussian noise with standard deviation equal to 10, 20, 30,40, 50, 60 and 70. 
Figs. 9 and 10 show the corrupted images with white noise standard deviation equal to 10 and 
70, respectively.

Table 6 shows the comparative performance of the CMF and the SBF as a function of 
SNRi without modification. Table 7 shows the same type of results when die modified SNR i 
with the SBI7 filter is used. Considerably larger SNRi with the SBF filter is observed even in 
very large noise.

5. DETECTION OF A SMALL IMAGE IN A GLOBAL IMAGE

In ninny applications, the problem is the detection of a small image, such as a target or a 
medical anomally, in a global image. It is often assumed that the CMF gives the correct loca
tion of the small image in the global image. This is not necessarily true, especially as die 
dimensions of the small image gets smaller. The experiments discussed below shows that the 
SBF gives more accurate results than the CMF in this problem.

The global image was chosen as the Purdue campus image of Fig. 8. The small image was 
generated by Choosing 4 different window locations as shown in Fig. 11. Both rectangular and 
Hanning windows were used. The windowed image was used as the reference image, to be 
correlated with the global image in additive white Gaussian noise. Different window sizes were



chosen, starting with a size of 64 * 64. The correct location of the correlation peak is the center 
of the correlation plane. The distance of the correlation peak from the center shows die amount 
of error. "  '

Tables 8 thru 11 show the average results with the rectangular window as a function o f 
window size and standard deviation of additive white noise. Tables 12 thru 15 are the 
corresponding results with the Hanning window. Averaging was done over the results of the 
four windows shown in Fig. 11. Tables 8 and 12 show the average distance of the correlation 
peak from the center of the correlation plane with the CMF system. Tables 9 and 13 show the 
cprrespondihg results with the SBF system. Bpth systems make errors as the window sire gets 
smaller, but the SBF system is considerably better than the CMF system at all noise levels. 
Tables 10 and 14 show the average modified SNRi with the CMF system. Tables 11 and 15 
show the corresponding results with the SBF system. Tlte SBF system is considerably better 
than the CMF system at all window sires and noise levels. One conclusion for both systems is 
that reasonably large SNR does not necessarily mean that the correlation peak is at the right 
position.

The experiments discussed above were repeated with images which were edge-enhanced 
by the Sobel operator. The results were worse than the results without edge-enhancement. 
These preliminary results indicate that edge-enhancement is not necessarily useful for correct 
positioning of the correlation peak or increased SNR.

Another important problem is to detect motion by correlation. The relative movement of 
the correlation peak of the CMF system shows exactly how much an object thoved in the x and 
y directions. The SBF system is not linear, and the question is whether it still has this property. 
To answer this question, we generated a 20 * 20 window at the center of the Purdue campus 
image arid moved it to the four comers of the image plane. Table 16 shows how much the 
actual window and the correlation peak moved in the x and y directions as a function of stan
dard deviation o f additive, white noise. It is observed that the two movements match exactly 
except at very large noise levels.

6. RESOLUTION, ARTIFACTS AND INTERMODULATION NOISE

By resolution, we mean the ability to resolve signals which are very close to each other. 
By artifacts and intermodulation noise, we mean false correlation peaks which may be identified 
as signal. Artifacts and intermodulation noise may also cause concealing of actual signals. In 
this section, we will discuss these issues with respect to the RDFT- and the DFT-based NMF’s.

First, we consider the increase of noise when a small image is correlated with a global 
image as in Sec. 5. Fig. 12 shows the output of the RDFT-based SBF when the Purdue image of 
Fig. 8 is correlated with itself in additive noise with a =  10. Fig. 13 shows the corresponding 
result with the DFT-based SBF. Figs. 14 and 15 are the same type of results except that the 
reference image is a  32 * 32 central block of the Purdue image. It is clear that the RDFT-based 
SBF is much better than the DFT-based SBF in terms o f noise.



Next, we will discuss two experiments to understand intennodulation noise. In the first 
experiment, a letter E was repeated four times to generate an image of size 32 * 32, and then the 
image was zero-padded to size 64 * 64. The filter was designed fra- one letter E. Fig. 16 shows 
the four correlation peaks obtained with the RDFT-based SPOF. The correlation peaks are of 
equal height. F ig .17 shows the corresponding result with the DFT-based SPOF. The correla
tion p < ^s are unequal and th w  are other peaks in the form of intennodulation noise.

The third experiment was similar to the second experiment except that 2 letters were 
changed to Fi Fig. 18 shows the four correlation peaks obtained with the RDFT-based SPOF. 
The two large peaks correspond to letter E, and the two smaller peaks correspond to letter F. 
The filter is very sensitive to the difference between letters E and F. Fig. 19 shows the 
corresponding result with the DFT-based SPOF. It is impossible to differentiate between the 
two letters and there is more intennodulation noise.

When two signals are in close proximity, CMF’s cannot resolve the two signals, and a sin
gle correlation peak is obtained. We studied the corresponding performance of SPOF. Figure 
20 shows the output of the RDFT-based SPOFwhen two letters E are detected. Figure 21 is the 
corresponding output of the DFT-based SPOF with intermodulation peaks. Figures 22 and 23 
shpw what happens with both filters when the two E ’s overlap and the hidden part of the under
lying E is removed.

No matter how close the two signals are, the SPOF is capable of resolving them. If the 
hidden part is not removed, but the two signals are simply added, the outputs become as in Figs. 
24 and 25. Again, the DFT-based filter results in intennodulation peaks.

%  N Q N I ^ ^ R  MATCHED FILTERS BASED ON COSINE TRANSFORMS

The results in the previous sections have shown that the RDFT-based NMF’s have superior 
performance. Digital implementation o f the RDFT is considerably simpler than the digital 
implementation of the DFT. On the other hand, the DFT can be considered to be die approxi
mation of the complex Fourier transform, which is stnughtforward to implement using coherent 
light and a Fourier lens. The RDFT can be considered to be the approximation of the real 
Fourier transform, which is not as simple to implement optically.

Itis  desirable to have the spectral coefficients real except for sign since the pointwise non
linear operations can be more easily achieved optically. One way to achieve this result is by 
making the input image symmetric, which reduces the complex Fourier transform to a cosine 
transform.

There are two possible symmetries resulting in two types of cosine transforms. Consider 
Fig. 26 with 4-fold symmetry. This leads to the reduction of the complex Fourier transform to 
the cosine transform of the first kind. If two images at opposite comers are skipped, 2-fold 
symmetry is obtained, and the complex Fourier transform reduces to the cosine transform of the 
second kind.



In Ae discrete domain, the 4-fold symmetry means, for 0<ni<Ni/2 and 0<n2<N2/2,

s(rii,n2) = S(N1-H ^ n 2) = SOilfN2-H 2) = s(Nt - n lfN2 - n 2) (19)

where Nl fN2 are the two dimensions of the image. With 4-fold symmetry, the 2-D DFT
reduces to the 2-D discrete symmetric cosine transform of the firstkind (DSGT1):

N1- I N 2- I  2 ^ ^  2ttn2k2
SOilfH2)=  £  X  s(klfk2)cos— J - J - c o s - - ^ -  (20)

. kj =Ok2=O w I-."

S(nlfn2) is  also 4-fold symmetric.

The 2-fold symmetry corresponds to

«(ni*n2> = SCN1-J i1,N2'- n 2) (21)

for 0<n1<N1/2,0<n2<N2. With 2-fold symmetry, the 2-D DFT reduces to the 2-D DSCT of the 
second kind (DSCT2):

N11-IN 2-I f I^k1 n2k2
S(nlfn2)=  X  E  s(klfk2)cos27t

k, =Ok2=O t  Wl .V2 .

SOi1 ,n2) isalso 2-fold symmetric.

The DSCT^based SBF is constructed the same way as the RDFT-based SBF. Figure 27 
shows the output of the DSCTl-based SBF when the Purdue image of Fig. 8 was correlated 
with itself after adding white noise with O= 10. Figure 28 shows the corresponding result 
When the reference image was the 32 * 32 central block of the Purdue image.

The image of Fig. 26 was correlated with itself using the DFT-based SBF. Because of 4- 
fold symmetry, this is the same as the DSCT2-based SBF, Hie result is shown in Fig. 29. The 
correlation peaks at the edges are believed to be due to the circular nature of correlation since 
no zero-padding was utilized.

We also repeated the experiments regarding SNR1 and detection of a small image in a glo
bal image with theD SCTl. Tables 17 and 18 show the average distance of the correlation peak 
from the center of the COTrelation plane with the DSCTl-based CMF and SBF, Tables 19 and 
20 show the average modified SNR1 with both systems. As before, we conclude that the SBF 
system is considerably better than the CMF system at all window sizes and noise levels.

In'(KM)Cltt îon,:'NMF*sconstructed with cosine transforms may be easier to implement opti
cally and give good performance. However, we expect to get intermodulatioh noise problems 
since they are actually a constrained version of NMF’s based on the complex Fourier transform.

& ANALYSES OF NONLINER MATCHED FILTERS

Binary filters for pattern classification have recently been statistically analyzed for the
two-class problem in which the input signals were assumed to be stationary and white& * * 9. In this
sectioh, we will extend this analysis to symmetric binary filters. For the sake of simplicity, I-D



- 1 3 -

/Midy&S)irifi/be presented.^

In the two-class problem, the filter will be Assumed to be designed for Class I. The perfor- 
mance measure can be chosen as the performance coefficient p defined by9

( d i - H 2)2
n i +112

(23)

where, for n = I or 2,

Mn = sup[E[Rn(x)]]
X

rIn — Sup[VAR[Rn(x)]]
X

(24)

R xtx) is ttib Obrrelation output for Class n, and VAR [Rn (x)] denotes variance of Rn(x). In Eq. 
(23), the term in the numerator measures the relative size of the correlation peaks for the two 
classes, whereas the term in the denominator indicates the average energy in the sidelobes, 
Consequently * p is a measure of how well the filter discriminates Class I from Class 2. When 
the Output Rn(X) is Gaussian, and the a priori probabilities of the two classes are the same, p is  
identical With the Bhattacharyya coefficient10.

In the linear case, the analysis of p for statistically uncorrelated pattern classes indicates 
that the binary filters provide classification performance comparable to, but bounded above by 
theCMF. In comparison, the SBF will be shown to be superior to the CMF in terms of p.

The signals Sj(X) for Class I and S2(x), for Qass 2, will be assumed to be sample realiza
tions Of independent, zero mean, stationary, white random processes with variances equal to o f  
and of* tispectiveiy,

H ie I-D real Fourier transform of s„(x) can be written as a pair of equations given by11

Sln(f) = £* sn(x)cos2ttfX dx (26a)

8^,(9®  £  Sn(X)ShtfJtfxdx (26b)

Widitheinveisetransform

Sn (X) = Jsj,i(f)cos2jtfx+S0n(f)sin2jtfxj df (27)

Sj (x) and Sj(x) will be limited to a window such that jx|£Wx. We Will also assume that 
Sn(f) is known for jfl^Wf, Then, Eqs. (26) and (27) can be written as
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W
Sln(0  = j-W, Sn(x)C0s27tfx fx 

Son(f) = I-W1 Sn(x)sin27tfx dx 

s„(x) = 2jQW' [s ln(f)cos2Jcfx+ Son(f)sin2jifxl df

(28a)

(28b)

(29)

Since Sn(x) for n equal to I and 2 are independent and zero mean, 
Sii(0,Si2(O.Soi(f)»So2(0 can be assumed to be independent, zero mean, Gaussian random 
processes according to central limit theorem. Then, the following statistics can be written:

E [S in(f)Son(f)J=0 (30)

E [Sln(^)Sin(I2)] = O 2 Wx |sinc2Wx(f1- f 2)+sinc2Wx(f1+ f2)] (31)

E [Son(f1)Son(f2)] = o 2 Wx [sinc2Wx(f1 - f 2)-sinc2W x(f1 + f2)j (32)

E [sgn(Sln(f))j =O (33)

E [ |S ln(f)!] = ^ l+ sinc4W xf (34)

E [sgn(Sln(f1))Sgn(S1„(f2))] = ~ s in -1 T j f 1J 2) (35)

JjslnJ 1) I |Sin(f2)l] 2Wxo n i_ i_ '■ ■:::
(I + sinc4Wxf i ) 2 (I +sinc4Wxf2) 2 ( I - T ^ f 1J 2) ) 2

+ (sinc2Wx (fi -  f2) + (sinc2WxJ 1 + f2))sin_1 T1 (fi.fa)] (36)

where Ti(fi ,f2) is the correlation coefficient between Sln(fj) and Sln(f2)» given by

^ sinc2Wx J 1 -  f2) + sinc2Wx(f1 + f2)
■ ■ r i f i J z ) =  - j - - ---------- — j -

(1+sinc4Wxf i ) 2 ( I +sinc4Wxf2) 2

(37)

We will also need the correlation coefficient T11J 1J 2) between Son(fi) and SonJ 2). It is 
given by
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sinc2Wx(fj - f 2)-sinc2W x(f1 + f2) 
“ ~  T " " X

,2 n _ f . \ 2
Toifuh) =

. • • (I - sinc4Wxf j ) 2 (I -  sinc4Wxf2)

In the case of the CMF, the correlation outputs are given by

R1 (x) = 2joW< ĴS n  (f)+ Soi (f)j  cos2?tfx dx

R2(x) = 2jo f Js!i (OS 12(f)+ Soi(OSo2(f)j cos2?tfx dx+ 2ĵ Wf

|Soi (0Si2(0 -  S11 (OSo2(f) j sin27tfx dx 

The means and the variances are9

I ii=POi

P2 = Q

Til = 4p 2G ?a(p )

Tl2 = 2p2o f o2a(p)
Where p is the space-bandwidth product equal to 4WX Wf, and

a(p) = I)1 (I-uX sincpu)2 du 

The performance coefficient pM for the CMF becomes

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
2a(p )(l+ 2o2) 

where a 2, called the class spread ratio, equals O i/o2.

Let sgn(Smn(0) be denoted by S ^ O -  Then, the con-elation outputs of the SBF can be 
written as

R 1(X) = 2 ^ '  [ s n (0 + S o i(o  j  cos2icfxdf (47)

R2(x) = 2|)Wf [s '„(OS'12(0+Soi(OSm(o] cos2itficdf+2j^Wf

jsoi (OS 12(f) ~ S 11 (OSo2(o ] sin2itfx df (48)

It Cah be shown that the means and the variances are given by
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IIIipH
=L (49)

0
 Il1

(50)

. ■ ■' . ■ \ T l l = O (51)

T|2 =  sup V A R  | r 2(x)J (52)

w here : ■

[sin_1r i  ( f i , f 2) j  +  ^sin_ 1ro ( f i ,f2) j 2 co s2rcfi xcos2jtf2xdfi d f2

+  ^  Ĵ W7 7 f s in ' l r i ( f 1,f2)sin” l r ° ( f i ,f2) sin27tf i  X S ^T tf2X dfjdf2 (53)

T h e p e rfo rm a n c e c o e ff ic ie n tp fo r th e S B F b e c o m e s

s 16W }
P  ~ -I'

Tl2
(54)

where Tfe needs to be evaluated numerically fromEqs. (52) and (53).

An interesting observation is that ps does not depend on o f  and o f. On the other hand, p s 
depends on Wx and Wf separately rather on than their product.

Table 21 shows the performance coefficients pM and ps as a function of the class spread 
ratio O2 and the window sizes Wx and Wf. It is observed that ps is almost four times larger 
than pM. 9

9. '.DISCUSSION

Above we discussed a number of techniques for symmetric nonlinear matched filtering. A 
major question is how to implement sUch techniques optically.

The 2-D RDFT can be implemented by a number of techniques used in digital 
optics12,13,14. Such techniques may be especially well-suited for coupling light into arrays of 
nonlinear optical devices as discussed subsequently.

The nonlinear operations discussed in the previous sections can be achieved by a number 
of electro-optical and all-optical techniques. Nonlinear filters such as POF and BPOF were ini
tially developed because of ease of implementation with optical devices such as spatial light 
modulators.

Perhaps the simplest approach for the real-time nonlinear control of the signal spectrum is 
tile video or the photodiode array registration of the signal spectrum which is modulated by a 
coherent reference wave, nonlinear modulation of the resulting signal by analog electronics^ 
writing of the transformed signal to a spatial light modulator, and further optical processing.



This is why cosine transform implementations may be especially easy.
A number of integrated optical devices hold great promise for the same purpose: Two 

such technologies are the arrays of Fabry-Perot etalons containing semiconductor nonlinear 
refractive materials15, and the quantum well self-elecuo-optic devices (SEED)16. The first 
technology requires high input optical power at the moment. The SEED’S, on the other hand, 
require very little switching energy.

Certain types of spatial light modulators can also be used for nonlinear processing. One 
example is the microchannel spatial light modulator, which is capable of analog thresholding 
antireal-time hard-clipping17.

In this paper, only the hard-limiting nonlinearity is considered. This can be replaced by 
Other types of nonlinearities. The biopolar threshold function corresponds to a very high degree 
of discrimination. It is possible to choose the nonlinearity adaptively, as shown in Fig. 30. 
When the nonlinearity gets steeper than linear as in (A), the discrimination power of the net
work increases. The linear case(B) corresponds to the CMF, When the nonlinearity has slope 
which is less than linear as in (C), the discrimination power of the filtering system decrease 
further, and, more and more, patterns which have some resemblance are characterized as 
belonging to the same class.

1 0 .e o N c c u s i o N s

The experimental and theoretical results discussed indicate that symmetric nonlinear 
matched filters hold considerable potential to achieve high power of discrimination, resolution, 
and large SNR. They are analogous to 3-layer neural networks.

The statistical analysis in terms of the 2-class problem indicates that the perform once 
coefficient of the SBF is about four times larger than the performance coefficient of die CMF. 
This is in agreement with all the experimental evidence. Similar analysis is needed for the M- 
class problem, other SNMF’s and nonlinearities other than the hard-limiter.

The resolution properties of the SNMF’s are highly intriguing. TTictc seems to be no limit 
to the achievable resolution. However, intermodulation noise needs to be carefully monitored 
in order not to misinterpret false correlation peaks. In this sense, the RDFT-based filters give 
the best results.

Symmetric nonlinear matched filters can be further developed by incorporating general
ized matched filtering techniques in order to achieve minimum intraclass and maximum inter- 
class separations. Their analogy to neural nets should be further studied to arrive at more 
optimal and adaptive structures.

The nonlinear operations involved in these new filters can be achieved by a number of 
elecmo-optical and all-optical devices such as the microchannel spatial light modulation, 
Fabry-Perot etalons and the quantum well self-elcctro-optic devices.
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A PPEN D K

FAST COMPUTATION OF 2-D CIRCULAR CORRELATION BY 2-DRDFT

We will discuss circular correlation of 2-D Sequences x(ntn2) and Ii5Cn1 ,n2X giving 
y 'O U ,^), in terms of the 2-D RDFT. Let the 2-D RDFT’s of x (y). and y'(-,*) be denoted
by X (v). H '(v )  and Y1(S4)tIespectively. In terms of the 2-D circular correlation theorem with 
the 2-D RDFT, it can be shown the Y1Ccdotj-) can be written as 
Yi(OjO) = X 1 (0,0)H|) (0,0)

YiCN1 /2 N 2/2) = X 1 Cn1/2, N2/2)H\ Cn1 /2, N2/2)

W henCkn1 =O jN1̂ j and (kn2<N2/2,

^ YiCnlrn i) 

YiCnl jN2 -H2)

When Ckn1MN1̂ jH2 =O jN2^ j

YiCnljn2) 

Yi(Nl jH2)

Otherwiset

HiCnl jH2) Hi(Nl jn i -H2) 

Hi(Nl j -H2)-H iCnljn2)

HiCnljn2) Hi(N1-Hljn2) 

HiCN1 -n j.n jJ -ffC n j.n j)

XCn1 ,n2)

XCn1 ,N2-H2)

XCnl jH2)

X(N1-H ltH2)

' - y ' X . ' 4  .
Y iCnl tH2) ‘ I 0 I 0

• V i(n l tn2)

y ;y- • ■ YiCN1- n ltn2) 0 I 0 I YbCn1 tn2)

- y \  y -  ; Y5Cnl tN2 -H2) 0 1 0 - 1 Yi1CN1- n l tn2)

YiCN1 -H1 ,N2 -H2) - I  0 I 0 YbCN1-H1 tn2)

where

YiCnl jH2)

YbCn1 tn2)
. » . ' *

Y i(N 1^ n l j H2) 

YbCN1 - L n 2)

H 51CnljH2 (HbCnljn2) 

HbCnl jH2) -H suh liCnljn2)

HiCN1-Ii1, ^ )  HbCN1-H1jH2) 

HbCN1 ^n1 ,n2) -H 11 CNj "®i .n2)

X 1CnltH2) 

XoCn1 tn2)

X1CN1 - n l tn2) 

X0(N1- L n 2)

(A. I) 

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

Let S1CnltH2), S0Cn1 ,n2), SCn1 tn2) denote either X 1Cnl tH2), X0Cn1 tn2), XCn1 tn2), respec
tively, or H i(n l tn2), HbCn1 tn2), H1Cnl tH2), respectively. The relationship between S1 Cn1,Hi). 
S0(nl tn2)t and S(nl tn2)isshow n in Table 4.3.1.
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Table I. The Relationship Between S1 Oh , n2 ), Sq Cn1 , n2 ) and S Cn1 , n2 ).

-2 1  -

n I '* ' • » 2  ■ S j(I iitIi2) S i (N i- ^ ltB2) So(Bl l Il2) S o (N i-B stB2)

0 OtN i/2 S(O1O) S(O1O) 0 C

N j/2 0*N2/2 S (n ,,n 2) S(Iil l Ii2) 0 . 0

0 0<3i2<N 2/2 S(O1Ii2) S(O1II2) S(O1N 2-I i2) S(O1N 2-H 2)

N 1ZZ O1Crt2 < N i)2 S (N 1ZZ1H2) S (N i/2 fn2) S (N 1ZZ1N 2-A 2) S (N 1ZZ1N 2-A 2)

0 ^ ij< N j/2 0 S(Iil l O) S(Iil l O) S(N 1-I i l l O) - S (N i-A l l O)

0 c ii< N |/!2 N a/2 S(N l l N 2ZZ) S(Iil l N 2C ) S ( X m i 1N 2ZZ) - S ( N 1-A l l N 2ZZ)

0 < h i< N i/2 Oon2CN2ZZ S(ni fn2) -S (N i-H ifN 2-B 2) S(ni tn2 K S (N i-f ii  .N 2-B 2) S(ni f N 2-B 2 >4*S(Ni -B i .**2 ) S(nsN 2- f i2) -S (N i-n i  fn2)

Table 2. The 2-D RDFT Amplitudes.

ni n2 R2Cn1,n2)

0 0 S2(0,0)

N i/2 N2/2 S2Cn1,n2)

0 0<n2<N2/2 S2 (0, n2 HS2 (0, N2- n 2)

N i/2 0<n2<N2/2 S2(N1R n 2HS2CN1R N 2-H2)

0<ni<Ni/2 0 S2CnltOHS2(N1-HlsO)

0<ni<Ni/2 N2/2 S2Cn1 ,N2/2HS2(N1- n 1/N2/2)

d<ni<Ni/2 0<n2<N2/2 S2Cnlt n2H S2(N1- n 1,N2-n 2) 
+S2Cn1 ,N2-H2HS2 (N1-H1 ,n2)



Table 3. Classification with the CMF System.

Tool
Number .

No.l No.2 No.3 No.4 No.5 No.6 No.7 No.8

No.l 1.0000 0.97610 0.97965 0.97160 0.96361 0.99113 0.97654 0.99111

No.2 1.0000 0.98097 0.98241 0.97460 0.96612 0.99231 0.97934 0.99320

No.3 1.0000 0.97886 0.98298 0.97360 0.96607 0.99221 0.97895 0.99299

No.4 1.0000 0.97913 0.98166 0.97677 0.96574 0.99164 0.97864 0.99208

No.5 1.0000 0.97865 0.98214 0.97374 0.96910 0.99238 0.98102 0.99268

No.6 1.0000 0.97727 0.98072 0.97210 0.96483 0.99283 0.97777 0.99286

No? 1.0000 0.97891 0.98207 0.97369 0.96804 0.99238 0.98154 0.99279

No.8 1.0000 0.97816 0.98151 0.97255 0.96514 0.99288 0.97820 0.99395

Table 4 Classification with the SBF System.

Tod
Number

No.l No.2 No.3 No.4 No.5 No.6 No.7 No.8

No.l 1.00000 0.25954 0.26660 0.26458 027214 0.38480 022394 0.34123

No.2 0.25954 1.00000 0.39639 0.27884 026760 028446 033868 <126397

No.3 0.26662 0.39643 1.00000 0.28699 029358 0.30710 0.34722 028611

No.4 0.26459 0.27885 0.28699 1.00000 028469 027654 028996 025437

fco.5 0.27214 0.26760 0.29355 0.28467 1.00000 028450 026289 031970

No.6 0.38480 0.28446 0.30707 0.27653 028450 1.00000 025671 038788

No.7 0.22394 0.33868 0.34719 0.28994 026289 025671 1.00000 028540

No.8 0.34123 0.26397 0.28608 0.25436 0.31970 0.38788 0.28540 1.00000
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Table 5. Inspection of the Tool No.7 in Term softhe OutputValue.

Tool
Number'

No.l No.2 No.3 No.4 No.5 ; No.6 5 N6.7 I Nb.8*

No.7 
; Broken

248349 356038

I

370329

>

296586 283256 '262712 949853 300918

INotBroken
=.  ■ - . ■

237875 359750
. ■

; 368784 307978 279244 272674 1062189 303156

Table 6. Comparative Performancefor theCMF endthe SBF asaFunction 
o f SNRi without Modification.

System

GaussianNoiseStandardDeviatibn

10 1 20 30 40 50 60 70

NMF
.s  '.

197.666 133,667 101.007 81.182 68.036 58.287 50.937

CMF 6.162 6.155 6.148 6.143 6.138 6.133 6.129

Table I .  Comparative Performance of the CMF and the SBF as a Function
of the Modifi ed S NR i .

System

GaussianNoiseStandardDeviation

10 ! 20 f 30 40 50 60 70

NMF 197.668 133.671 i I O l i O Q S 81.182 68.036 158287 150338

CMF 4.085 I 4.081 j 4.076 4,073 4,070 4.067 i 4.065



Table 8. The A verage D istance o f  the Correlation Peak from  the Center
o f  the Correlation Plane with the CFM  System (Rectangular W indow).

Window ■ . Gaussian Noise Standard Deviation
Size 10 20 30 40 50 '60 : 70
64 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32 72.000 72.000 71250 71.000 71.000 54.250 54.250
20 87.250 87.000 87300 87.500 70550 71.500 71.500
18 86.250 86.000 86.000 86.000 86.000 111550 111.000
16 81.250 81.250 81-550. 81.250 81550 81.250 79.750
14 81250 81.250 81550 81.250 81550 81.250 81.250
12 81250 81.500 81.750 81.750 82.500 82.500 82.500
10 81.000 81.500 81300 82.250 83.250 83.500 83.500
8 63250 63.500 63300 64.000 64.000 90.250 90.250
6 V 80.500 82.500 83300 83.500 83.500 83.500 83.500
4 82.000 84.250 86.000 86.000 87.500 87.500 87.500
2 84.250 83.750 88550 88.250 89.500 89.500 72.500

Table 9. The Average Distance of the Correlation Peak from the Center 
of the Correlation Plane with the SBF System (Rectangular Window).

Window
Size

GaussianNoiseStandardDeviation
10 20 30 40 50 60 70

64' ; 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000

■' 18 0.000 0.000 0.000 10300 26.250 34.750 34.750
16 0.000 0.000 0.000 0.000 24.750 44.250 60250

>. ■- 14 '■ 0.000 0.000 0.000 42.750 80.250 80250 70.000

12 0.000 25.000 25.000 80300 76.000 73250 64.750

10 24.250 39.250 39.250 42.250 56.030 56.000 54.750

' 8 23.500 47250 29.250 62.000 62.000 65.000 65.000

6  : { 66,500 73.000 52.750 57300 34.250 61.250 62.000

81.500 73.000 64.000 69.000 69.000 69.000 69i(X»
2 78.500 73.750 86.250 65.500 75.500 68.000 75.000
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Table 10. The A verage M odified SN Rj with the CM F System (Rectangular W indow).

Window 
' Size

Gaussian Noise Standard Deviation
10 20 30 40 50 60 70

; 64 17.141 4286 4286 4287 4286 4287 4288
32 16.290 4.072 4.076 4.081 4.085 4.086 4.076
20 4.073 4.069 4.065 4.056 4.054 4.050 4;045
18 4.075 4.066 4.062 4.062 4.068 4.072 4.079

16 4.097 4.095 4.098 4.103 4.112 4.126 4.139
14 4.215 4221 4231 4241 4250 4258 4269
12 4.364 4.371 4.379 4.390 4.399 4.412 4427

10 4.543 4.537 4.539 4556 4.577 4.608 4.640
8 4363 4.585 4.612 4.649 4.686 4.728 4.773
6 4.920 4.977 5.048 5.121 5.194 5267 5.336
4 5.153 5241 5-358 5.486 5.621 5.761 5.888
2 5.418 5.573 5.770 5.962 6.144 6.307 6.446

Table 11. The Average Modified SNR j with the SBF System (Rectangular Window).
; ■ • ' . • . . . .

Window
Size

GaussianNoiseStandardDeviation
10 20 30 40 50 60 70

64 261.633 50.716 40.320 33.268 28.420 24.647 21.601
32 117500 22.859 18.305 15.353 13.132 11303 10.080
20 19.621 15254 12.440 10.370 8.797 7.489 6.670

18 16.656 12.642 10.053 8.435 7.649 7256 7.009
16 14.538 11.528 9.800 8.107 7.184 6.947 7.014

14 12.321 10.056 8.532 7.636 7254 6.924 6357
12 9.725 8.086 6.891 6.369 6263 6.359 6.488

10 9.508 8.342 8.061 7.083 7294 7.059 6.757

8 10.558 8.590 7.707 7.339 7.Q75 6.715 6314

/ . ..6 . 8.713 7.600 7.175 6.860 6.650 6370 6.681

..... f 7,734 7.176 7225 7.014 6.955 6.879 6.831

7.779 6.986 6.917 6.767 6.762 6.652 6.618



Table 12. The Average Distance o f  the Correlation Peak from  the CJenter
o f  the Correlation Plane with the CM F System  (Hanning W indow).

Window
Size

GaussianNoiseStandardDeviation
10 20 30 40 50 60 ■ . 70

20 55.250 55250 55.250 54.750 54.750 80.250 80.250
18 79.250 79250 77.250 77.000 77.000 56.500 56.500
16 79.250 19250 79.250 19250 79.250 19250 78.750
14 78.750 78.500 78.500 78.500 78.500 78.750 78.750
12 78.500 78.500 78.750 80.000 80.500 80.500 80.500
10 78.000 78.250 78.750 80.000 80.250 80,250 80.250
8 61.250 61.750 63.250 64.500 64.250 64250 64.250
6 77.750 81.750 82.000 82.000 82.000 82.000 82.000
4 82.000 85.500 85.750 85.750 85.750 85.750 85.750

.;hv.2^.'; 81.750 81250 86.500 86.500 87.750 87.750 70.750

Table 13. The Average Distance of the Ctnrelation Peak from the Center 
o f the Correlation Plane with the SBF System (Hanning Window).

Window
Size

GaussianNoiseStandardDeviation
10 20 30 40 50 60 70

20 0.000 0.000 0.000 2.750 2.750 2.750 26250

18 0.000 0.000 0.000 29.750 29.750 45.500 37.000 .
16 0.000 27250 23250 24.750 23250 53.500 49250
14 23.000 0.000 0.000 26.500 60.000 59.750 64.500
12 22.750 26.750 54250 38.000 38.000 38.000 38300

■. 10 17.750 25.750 65250 63.750 54.000 63.000 75.000
8 28.500 46250 46250 52.250 21.000 34.500 21.000
6 73.000 53.000 53.000 68.750 72.000 96.000 96.000
4 103.750 104.000 88.750 77.750 77.750 71.000 71.750

2 75.000 74250 107.500 86.750 91.750 84.250 91250



Table 14. The Average Modified SNr ’j with the CMF System (Hanning Window).

Window 
; Size

Gaussian Noise Standard Deviation
10 20 30 40, 50 60 70

20 4.073 4.069 4.069 4.068 4.067 4.070 4.073
18 4.089 4.090 4:092 4.095 4.101 4.106 4.116
16 4.173 4.175 4.178 4.182 4:i88 ; 4.196;:; 4206
14 r t w 4.310 4.316 .■-4322' ; " 4328\ 4.334 4.343
12 4.458 4.456 4.453 4 m 446$ 4.484 4302
10 4.602 4.600 4.610 4.634 ; 4.660 4.693 4.728
8 4.595 4.608 4.632 4.674 4.718 4.763 i: '4;8il"
6 4.950 4.997 5.062 5.133 5.198 5.264 5329
4 5.178 ■ 5.260 5.395 5.536 5.682 5.826 5.957
2 5.416 5.571 5.768 5.961 6:i42 6.303 6.443

Table 15. The Average Modified SNr 'i with the SBF System CHanning Window).

Window
Size

GaussianNoiseSundardPeviation
10 20 30 40 50 60 , ?0

20 17.617 13.576 11.138 9365 8.335 7.513 7.225
18 15.736 11.723 9.565 8.158 7:578 7.062 6.760
16 13.417 10.677 9322 8.132 7.518 7.150 6.946
14 11.466 9.322 8.055 7.054 6.868 6.409 6.432

I? 10315 8.841 7.908 7.136 6.920 6.507 6.271
10 9257 7.861 7.153 6.423 6.437 6216 6.120
8 11.093 9.222 8.494 7.843 7.577 7.046 6.876
6 7J917 7.045 7.025 6.993 7.147 6.722 6.732

..... 4 ‘ 7253 6.538 6.483 6.545 6.574 6323 6.376
• 2 7.451 7.156 6.951 6.996 6.847 6.636 6.549
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Table 16. Com parison o f  the Distances the Actual W indow and the C oncation
Peak has M oved as a Function o f  Noise Standard Deviation.

Window

location

GaussianNoiseStandardDeviation

O "V-.. 10 20 30 40 : '50' ' 60 70

(0,0) ( 0. 0) ( 0, 0) ( 0, 0) ( 0 , 0) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0)

(5030) ( 50, 50) ( 50, 50) ( 50, 50) ( 50, 50) ( 50, 50) ( 56, 53) ( 56, 53) ( 56, 53)

(-5030) (-50,-50) (-50,-50) (-50,-50) (-50,-50) (-50,-50) (-50,-50) (-50,-50) (-103,-12)

(50.-45) ( 50,-45) ( 50,-45) ( 50.-45) ( 50,-45) ( 50,-45) ( 50,-45) ( 4,-98) ( 4,-98)

(45.50) (-45, 50) (-45, 50) (-45, 50) (-45, 50) (-45, 50) ( 4 5 . 50) ( -99. -3) (-99,-3)

Table 17. The Average Distance of the Correlation Peak froth 
the Center of the Conelation Plane with the DSCTl-Based 

CMF System (Rectangular Window).

Window
Size

GaussianNoiseStandardPeviation
10 20 30 40 50 60 70

20 2.000 2.000 3.750 3.750 3.750 3.750 4.750
18 2300 2.500 2.750 4.500 4.500 4.500 4,750
16 2.500 2.500 3.250 3.250 3.250 3250 3250
14 3.750 3.750 4.000 2.750 2.750 2.750 4300
12 6250 6.250 6.250 6.250 6.250 6.250 5250
10 10.250 11.500 11300 10.500 10300 10.500 10.500
8 6.000 9.000 9.000 12250 12250 12.000 12.000
6 8.000 8.250 8.250 11.000 13.500 13300 13.750

■■ 4 : , y 23,250 23250 12.000 15.000 15.000 15.000 13.750
2 20.500 20.500 32.250 32250 32250 37300 34.000



Tabfc 18. The Average Distance of the Correlation Peak from the 
Center of the Correlation Plane with the DSCT-I Based SBF System 

(Rectangular Window).

Window
Size

Gaussian Noise Standard Dcviation
10 20 30 40 50 *0 70

20 0.000 0.000 0.000 0.000 14300 25350 21.000

18 : 0.000 0.000 14.000 36.500 44150 50250 50.250
16 0.000 0.000 10.500 19300 26.500 45250 29250
14

■ O 0.000 0.000 28.750 30.000 30.000 59350 66.750
12 16.000 23.750 i 19.750 18.500 14.500 19.000 34250
10 12.250 14.500 17.000 42250 43.000 42150 42150 ’

; 8  . . ; l 10.000 20.000 34.250 28.750 45300 34.000 37.500
37.250 33.000 40.000 30250 57.750 j 57.500 44.750

4 40.500 45.750 55.500 58.250 49.500 49300 45.500
■ : 2 ; - 47.750 33.250 42.500 24.750 52.000 64.750 50150

Table 19. The Average Modified SNRi with 
the DSCTI-Based CMF Systems (Rectangular Window).

Window
Size

Gaussian Noise Standard Deviation

6
■4;'

2.205
2.243
1264
2.281
1293
1381
1446
2.646
2.764
1939

2.208
2147
2167
2186
2.308
2391
2.441
2.633
2.755
2.995

2.214
T 252~

2177
2194
1325

j m _
1445
2.621
2.773
3.078

2121
2159
2188
2304
2.344
2.433
1457
2.623
2.810
3.151

2129
2172
2199
2314
2365
2.460
2.483
2.644
2.856
3115

2237
2184
2.310
2323
2385
1485
2311
2.674
2.906
3270

1248
2297
2321
2.336
2.408
2313
2338
2.702
2.954
3343



Table 20. The Average Modified SNRi with 
the DSCTl-Based SBF System (Rectangular Window).

- 3 0 -

Window
Size

CaussianNoiseStandardDeviation
10 20 30 40 50 60 ' 70

20 10.119 7.979 6.706 5.681 5.153 4.769 4.519
18 8.293 6.541 5.452 4.630 4.528 4.376 4.135
16 7.627 6.038 5.343 4.745 4.512 4217 4245
14 6.408 5.351 4.790 4.485 4245 4.137 4.118
12 5.122 4.599 4277 4.200 4234 4.165 4.091
10 5.321 4.860 4.742 4208 4.046 3.887 3.891
8 5.996 4.874 4.693 4.421 4.445 4237 4.144
6 4.679 4.185 4.247 4.067 4.203 4.096 4.062

4.194 4.078 3.950 3.970 4220 4.183 4.146
2 4.211 3.955 3.822 3.924 3.939 3.938 4.097

Table 21. The Performance Coefficients of the CMF and the SBF as a 
Function of Class Spread Ratio and Window Sizes.

O2 P Wx Wf pM P8

0.05 128 V ir V32 5.86 202.4

0.05 128 4 8 5.86 201.8

0.1 128 VSI ■ € 1 10.74 202.4

0.1 128 4 8 10.74 201.8

1.0 128 >/32 42.95 202.4

1.0 128 4 8 42.95 201.8

2.0 128 ^ 2 5124 202,4

2.0 128 4 8 5124 201.8

3.0 128 ^Ii2 5522 202.4

3.0 128 4 8 55.22 201.8



Fig. I . Block Diagram for Symmetric Nonlinear Matched Filtering.

Figr % The Cosine and Sine Operations in the Foot Quadrants of the 2-D Real Fourier 
Transform Spectrum.
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11£. : Fhc Cincinnati Milacron TlO tool chain with camera overhead.

Bitikai Nianhs"? Tool

Fig. 4. Ilie  Image of the Broken No. 7 Tool.
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Fig. 5. The Images ot the 8 Tools.



Fig. 6. The Binary Image Obtained by Biharization of the Spectrum of Tool No. 7,

Transform Nonlinearity

Fig. 7. The Three-Layer Neural Network Interpretation of the Nonlinear Matched Filter.
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Fig. 10. Purdue Image 'Corrupt̂ .! h y  White H..-. si . i t ;  *.\>i e .-I* Suuuhird I\-\
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Fig. 12. The Output of the RDFT-Bascd SBF when the Purdue Image is Correlated with itself.
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Fig. 13. The Output of the DFT-Based SBF when the Purdue Image is Correlated with itself.
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Fig. 14. The Output of the RDFT-Based SBFwhen the Purdue Image is Correlated with its 
Central 32 * 32 Block.

Pig* 15. The Output of the DFT-Based SBF when the Purdue Image is Correlated with its Cen- 
ttal 32*32B lock.
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Fig. 16. The Output of the RDFT-Based when the Letter E Repeated Four Hmes is Detected.

Fig. 17. The Output of the DFT-Based SPOF when the Letter E Repeated Four Times is 
Detected.
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Hgi 18. The Output of the RDFT-Based SPOF when 2 E’s and 2 F’s are Detected with the E 
Filter.

Fig. 19. The Output of the DFT-Based SPOF when 2 E ’s and 2 F ’s are Detected with the E 
Filter.
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Fig. 20. The Output of the RDFT-Based SPOF when 2 Letter E ’s are Detected.

Hg. 21. th e  Output of the DFT-Based SPOF when 2 Letter E ’s are Detected.
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Fig. 22. The Output of the RDFT-Based SPOF when a Letter E and Another Qoseby Letter E 
PartiallyHiddenandHiddenPartRemovedisDetected.

1699.20 -I

Fig. 23. The Output of the DFT-Based SPOF when a Letter E and Another Qoseby Letter E
PaitiallyFhddenandHiddenPartRemOvedisDetected.
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Fig. 24. The Output of the RDFT-Based SPOF when a Letter E and Another Closeby Letter E 
Added Together is Detected Without Hidden Part Removal.

63 * 0
Fig. 25. The Output of the DFT-Based SPOF when a Letter E and Another Goseby Letter E 

Added Together is Detected Without Hidden Part Removal.
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Fig. 26. 4-Fold Symmetric Image.

!3  ? ! 2 ?  i

Fig. 27. The Output of the DSCTl-Based SBF when the Purdue Image is Correlated with 
Itself.
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Fig. 28. The Output of the DSCTl-Based SBF when the Purdue Image is Correlated with its 
Central 32 x 32 Block.

Fig. 29. The Output of the DSCT2-Based SBF.
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Fig. 30. Three Types of Nonlinearities: A) Stepper than Linear B) Linear Q  Less Steep 
than Linear.
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