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1. Abstract

Almost all industrial robots exhibit joint flexibility due to mechanical
compliance of their gear boxes. In this paper we outline a design of an
adaptive controller for flexible joint robots based on the arms energy.

The desired actuator trajectory in a flexible joint robot is dependent not
only on the desired kinematic trajectory of the link but also on the link
dynamics. Unfortunately, link dynamic parameters are unknown in most
cases, as a result the desired actuator trajectory is also unknown. To
-overcome this difﬁculty, a number of control schemes have suggested the use
of acceleration and link jerk feedback. In this paper we describe a control
scheme which does not use link jerk or acceleration. The control law we derive
is based on the energy‘ of the arm deviating from the desired trajectory and it
has two stages with two corresponding adaptation laws. The first stage drives
the actuator and the joints to a desired manifold, the second controller then -
seeks to drive the joints to their desired trajectory. On application of our first
controller there is an apparent structural reduction of the order of the system.
This apparent reduction in the structure is exploited by our second stba.ge
controller. - Our control scheme does not require link acceleration or jerk
measurements, and the numerical differentiation of the velocity signal, or the
inversion of the inertial matrices are also unnecessary. Simulations are
presented to verify the validity of the control scheme. The ‘superiorit'y‘ of the



-2

proposed scheme over existing rigid robot adaptive schemes is also illustrated
through simulation. '

2. Introduction

Many of today’s rigid robots are driven by actuators with high gear
ratios, the load due to the arm at the actuator is reduced by a factor of n,,
where, n; > 1, is the gear ratio. In fact, inertia of the arm experienced by the
actuator is reduced by (1/ ng), and as the actuator acceleration is n, times the
joint acceleration, the overall load is reduced by (1/n.). Thus the load
experienced by robots with high gear ratios are dominated by actuator
dynamics, link dynamics are secondary. Recent trend is towards high—
technology direct-drive robots. Here, the actuators are directly connected
~ links and the lack of high gear ratios and increasing demand for high-speed
operation, requires the control system to compensate for the dominant
nonlinear link dynamics. Robots which move fast (apparently with reasonable
manufacturing cycle times) and or carry large loads have additional problems.
It is experimentally found that most gearing systems are compliant, as a
result, actuators are connected to the robot links through effectively flexible
shafts. The presence of high gear ratios reduces the effective load experienced
at the motors, and the absence of gearing adds to the complexity of the
control problem. Experimental evidence indicates that joint flexibility should
be accounted for in both modeling and control of manipulators (Ahmad 1988)
(Widmann et al 1987) (Ghorbel et al 1989) The presence of joint flexibility in
the direct-drive high-speed actua.tors can be modeled by a "linear” torsional
spring. This flexibility may be attractive in practical applications especially
- when the robot must make contact with an unknown surface. \

Numerous techniques to control Flexible Joint Robots' have been
suggested [Widmann et al 1987, De-Luca 1988, Fu et al 1989, Khorasani 1989,
- Spong et al 1987, Ghorbel et al 1989). One approach is based on the idea of
feedback linearization, which requires the measurement of joint acceleration
and jerk to be used in the feedback loop (De-Luca 1988), (Spong et al 1987).
. Another method is based on the concept of reduced order system and requires
the restriction of the system to a suitable integral manifold in the state space
~ (Khorasani 1989). ' |



We propose a controller which drives - the FJR to i'track a desired
‘trajectory in two stages. The-first stage- dr‘ives‘ the actuator to the desired
actuator traJectory, while the second stage drives the arm to the its desired
trajectory. Similar to the work on rigidly jointed robots (Slotlne et al 1987,
1988), (Koditschek 1987), our controller design starts by selecting a Lyapunov

- function which is similar to the energy of the FJR. Our control scheme does - : .

not require link jerk, or acceleration feedback or the inversion of the inertia
- matrix, in addition parameter adaptatlon is easﬂy accommodated -

At this time, the only adaptlve control scheme for flexible _]omt robots
that we are aware of that uses position and velocity feedback is the one
" derived from singular perturbation arguments by Ghorbel, Spong and Hung

(Ghorbel 1989). Inorder to derive an adaptive scheme from - .a ‘singular
.perturbatlon argument several assumptions are necessary, these include
“sufficient joint stiffness and that it is possible to i 1gnore the higher order terms
~in the singular perturbation expanswn Assumptlons such as these are not‘
necessary in our derivations. '

- An important problem in adaptlve control is- that of parameter
convergence, providing a suﬁiclently rich trackmg signal has sometimes been
~ assumed to be adequate conditions for parameter convergence. However
tracking a persistently exciting trajectory does not mean that all of the
unknown parameters of a certain manipulator can be estimated. In- general,
the maximum number of parameters that may be estimated depends on the
trajectory used for estimation and on the kinematic stfucture' of the
manipulator (KhOSla 1989). These unknown parameters could be categorlzed
‘as uniquely - identifiable, identifiable in linear _combinations only, or
- unidentifiable. Typically, only those dynamic parameters that affect the
force/torque equations of at least one joint can be identified. ‘

3. Manipulator Models

- Experimental investigations of industrial robots with harmonic" drive
transmlsswn and other forms of gearing indicate that joint flexibility
contributes significantly to the overall dynamics of the system (Ahmad 1988);
(Spong 1987). The dynamic equations of the flexible joint robots are given as :

T =Dmam+Bm‘.1m+Ks(qm"‘q) o ' o (1)



0 =D(q)q+C(q,a)a+g(a)+Ks(q—qm) - (2)
where, an n-link manipulator becomes a 2n-degrees of freedom system:
D, : Diagonal motor inertia matrix € R®® ‘

Bp, : Diagonal motor damping matrix € R»®
K, : Diagonal drive shaft stiffness matrix € R™*
dp : Vector of sensed motor angles € IR
D(q): Link inertia matrix € R™*
C(q,q) : Centrifugal and Coriolis terms matrlx € R¥®

g(q) : Gravitational vector term € R™? |
q : Vector of link joint angles € R™¢

Matrices Dy, By, K, are positive definite matrices. Further, D(q) is
symmetric, positive definite and both D(q) and D™!(q) are both bounded as
function of q (Spong 1987), (Ghorbel et al 1989). When K; tends toward
infinity, the robot is considered to have rigid joints (i.e. g==qy ). The dynamic
equations which represent the rigidly jointed robot, with the same inertial and
coriolis matrices as the FJR defined above, are:

7= D(HDafi+C(e,+Balitel) (3)

Some properties of the rigid model concerning the inertia matrix, Coriolis -
and centrifugal force matrix were discussed by Koditschek. Those properties
remain valid for the flexible model (Ghorbel et al 1989). The first most
important property shows that D(q) and C(q,q) are not independent, but the
matrix (D—2C) is skew symmetric, this can be easily derived from the
Lagrangian formulation of the manipulator dynamics (see Appendix A). The
second property confirms that the individual terms of the right hand side of
equation (2), excluding the K (q—qn ) term, could be represented by a linear
relationship between a suitably selected set of unknown manipulator and load
parameters (Slotine et al 1987), (Ghorbel et al 1989), (Spong 1987), in other
words equation (2) could be rewritten as:

- 0=7Y(q,4,9) P +K; (4~ tm) - (4)

where Y(q,q,q9) € R™, is called the regressor matrix of known functlons, and
PeR™ isa vector of unknown parameters.



4. Trajectory Model

Let qq(t) €C* denote a desired link ‘trajectory in which case
qq(t),4q4(t),qq(t),q(t) are all bounded and continuously differentiable. The set
of desired motor trajectory can be derived using equation (4). The diagonal
stiffness matrix, K; € R™®, can be written. as K; = Diag [ kq, ke, -+ ks |,
where kg > 0, for i = 1,2,...,n , represents the spring constant of the ith drive
shaft. Since all of these constants are positive and K is a dlagonal matrix, as
a result matrix K is invertible and positive definite.

We assume the link parameters and the load handled by the end effector
are time invariant, i.e. -

'P = Constant vector, thus, P =P =0 (5)

The above assumption is valid in a large class of applications. The desired
motor trajectory may now be computed as follows:

Gma (t) = K1Y (g, 40, 00)P + aa(t) ' )
a ()= K5 Y(dg,44,94)P + da(b) (7)
amd (t)= KS—IY(ada(ld:cM)P + z:id(t) ‘ (8) .

The subscript "d" is used to denote the desired trajectory.

Notice that the desired motor trajectory qmq(t), ama(t) and Gmq(t) are
dependent on the desired link trajectory qq(t), 4a(t) and q4(t) and also on the
unknown parameters P and the link dynamic structure represented by Ygq, Yd
and. Yd This makes it difficult to design a control law which utilizes the
desired motor position and velocity. :

Using equations (6), (7) and (8), removing subscfipts d, and using
equation (1) and (2), we can rewrite equation (1) in-link coordinates q as:

=D, K5'D(q)q*) +N(q,q¥,q®,q®) (8a)

=Y (a,aM,q®,4® )P’ - (8b)

where, N (.,.,.,.) is a nonlinear function € IR", q(i) is the i*® time derivative of
q. From the structure of equation (8a) we can see that the FJR can be
stabilized by feeding back a nonlinear function of the link position, velocity,
acceleration and jerk. Notice that the fourth order dynamics in the link.
coordinates can also be written in the regressor matrix form in terms of some -



“suitably selected vector of unknown parameters P

5. Selection of an Energy based Lyapunov function

If E is the total energy of the robot links and actuators, i.e. E is the sum
of the kinetic and potential energies of the actuator and linkages: _
.t . g
E="4: D 4m +724 D4+¥2(a—qm ) Ks(9—am )+8(q) (9

where, ®(q) is the gravitational potential energy of the hnkage Then the
power input to the FJR is through the actuator and is given as:

-
dt
Notice that when ®(q) = 0, E(qn,q,dm,q) becomes a quadratic in q,

= (T —Bnln)"dn | o | (10)

4, G, and 4y . Notice also, if we set 7o, = By 4 —Qqy,, then
=~ = 0 (11)
where, q, € IR®, and @ € R¥® > 0, such that x'Qx = 0, if and only if x = )
0. ]
We can conclude that, with an appropriate rate feedback, we may track a
static joint trajectory. This exposition shows why most FJR with appropriate

damping will track a static rate trajectory, i.e. hm (qm Qmq )— 0. ThlS -

exposition indicates to us that if we select a Lyapunov function similar to E
given in (9), we may stabilize the FJR along a nonstatic link trajectory by
suitable position and velocity feedback. -

Excluding the potential energy of the FJR, the energy of the robot arm
along a prespemﬁed trajectory is : :

E(t)= %DdaH(20—0ma) Ks (0 —Gma) H#ameDmiima - (12)
Likewise, the energy in the system which causes the FJR to deviate from the
desired trajectory is given as : ' '

V(t)=te'Dé-+h(e—em 'Ky (e—em)+ b D (13)

where, we define the error terms as: e = (qa -q)and ey = ( Qmg — Gm)-

dt

and V(t) should be dependent on e and ey, as well as e, and ¢ . We can make

Throughout the trajectory it is desired to have v < 0, furthermore V(t)



V(t) dependent on e, e, e, and ey by selecting:

V(6)=¥é D ém e Dé-tole—en) 'Ky (e—n)

+1ee'K, e—{—l/zeil“nKpm em | | (14)

where, K, € R™®, K, € R™™ are some positive gain matrices. The
derivation of 7, to make V(t) < 0 and proportional to the variables ¢, ey, €

and ey, will be addressed in the next section. v

6. Control and Adaptatibn Law Design

As the dynamic parameters of the arm are unknown, we can define the

parameter error vector as e, =P —P, where P is the estimated parameter

vector. Notice e, =f’, as P =0. Based on the estimated value of the
parameter vector f’, we obtain an estimate of the desired motor position as
dmq using equation‘ (6). Similarly, we can compute the estimated motor
“velocity and acceleration. We can define the following motor error as

~

€m=(dmd —qm ). Similar terms for ém and ém can be defined. Based on the
above Lyapunov function (14), we can find the energy of the trajectory
deviating from the desired trajectory as :

£

V(6)=48 Dy 0 126 Dé-Yo(e—51n) K. (e—5m)
+1/2ethe+1/Zé;Kpmém+1éegMep | (15)

The last term in (15) is added to account for parameter adaptation, where
Kp, Kpm € R™®, and M € R™ are some positive gain matrices. -
For convenience let us define: -

D(q)da+C(a,9)da+e(@)=¥(da,%a,%H)P | (16)
where, ¥ € R™, and '
Y =Y(da,24,9) | (17)

where, Y4 € IR™, and let A be some positive diagonal matrix € R™®, then
we let '

I(da, 44,9, )P=D(q)[dq+A¢]+C(q, q)[qa +Ae]+g(q) | (18)

where, I' € R™, Furthermore let us define the following variables:



s € R", s=(é+Ae). Let us also define a region where gmi = amdi —Qmi as:

Prmin(D) < €mi = Hmag(i) for i=1,2,...,n (19)

where, Pemin (1), and fyax(i) ‘are real scalars. Let us also set vector
X = (Aq,...An)" € R® be defined such that: '

A = %Dy {Sgn(si)[u‘min (i)_“max(i)]"i":u’min (i)+:uma.x(i)} ‘ (20)

for i=1,2,...,n .

+1 ifs >0
where, Sgn(s;) =9—1 ifs <0 = ) (20a)
' 0 if 5 = 0

Theorem 1:

The system given by the dynamical model (1) and (2), subjected to the
- following two stage control and adaptation laws, achieves desired trajectory
tracking.

7-=Dm‘€1md +Bn Qm +K (Elmd —dq ) +Kpm ém +Kim ém

-~

EalP

if ”é’m B > ¢ > 0, for a scalar ¢, and

+

b ~ Ao ot -
6 (Y4 P+HKpe)+é Kyéte K etem Kpm ) (21)

otherwise, 7=I(qq4,44,0, Q)P+Dp, Gma+Bm m HKgs—\ (22)

where, Kym, Kq € R™® are some positive gain matrices. Corresponding to the
two stage control laws we have the following adaptation laws.

if [alP>e, P(t) =M ¥%dq,d0,4,9) & - (23)
and otherwise,
| P(£)=M""T%(a4, 4,9, q)[é-HAe] o (24)
Proof of Theorem 1:



Differentiation of the candldate Lyapunov function V(t) in equa,tlon (15)
~ yields the following:
t

V(t):ém _[Dm'é:m +K (ém _e)+Kpm ém] ‘
& [DEHADEHK  e-+K, (e~ )| +ebMeé, —é (D —C)é (25)

. .4 d .

In order to simplify equation (25), we have subtracted the term e (2D—C)e =
0, see (Appendix A). Simplifying equation (25) and substituting the dynamic
equation of the FJR given by (1) and (2), we have :

V =em{DQOd+Ks(qmd _Qd)'l“Kpmém [ qm+Ks —Q)]}
&' {Dija+ 0 K, (42 —ma) D+ CHKs (a0 2(a)]

+Kpe+g(q) et Me,

%

-
~

=€m [Dm Amd HKs(Ama—a4 )+Kpm €m+Bmdm _T]

R ) . . ;
+& [Dda+Caa +K(aa—Gma) +Kpe-+g(a) tepMé, (26)

Let us now assume that IEmIF > €>0, where ¢ is a suitably small number
determined to guarantee the numerical stability of the simulation. Then by
substituting the controller (21) into (26), using the definition of ¥ given by
equation (16), and by using the fact that Ks(qd—émd)=—-Yd15 derived from
~ (6), we get: : :

(t)=é:n{_Kdmém'— . =
|- IP

+6' (WP Y, B+K pe] el Me,

.4 ~ A 1t -
[e ((\D_'Yd)P +er)+e Kde'i'ethe'I'eprmem]}

2B 2 IS T ~t I .
=——enKqmém—¢ Kde—»ethe—eprmem—e \I’ep—l-ef,Mep

Lt M .t /. t . ~t ~ ’t . tey
=€ Kimem—€ Kge—e'Kye—en Ky en +ep [Me,—~¥'e (27)
Since, ép=15—P, and as, P=0 (robot arm parameters are time invariant), we
can substitute the adaptation law (23) into (27) and the final expression for
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the derivative of the Lyapunov function is given as:

(t) —emKdmem—e Kde—etK e—eprmem =0 (28)

Which guarantees the convergence of e em, e, €m, a.nd e as tlme goes to infinity.

Let us now consider the case when "em B < ¢. We cannot use 7 defined

in equation (21) as ”em [P — 0, then 7 — large value. At this stage the motor
is. tracking the estimated actuator trajectory in velocity, but a steady state
_error may exist between the actual and desired motor position. Therefore we
should use the second stage control given by (22).

: Notlce now as Hemll2 — 0, a structural reduction in the system is
apparent as the "Lyapunov" function V(t) in (15) resembles that of a rigid
robot, as the first term is zero. We Will’exploit this property in the second
stage control. The dynamic equations (1) and (2) can be combined by simple
addition to obtain a single system equation: |

7 =D()§+C(0,4)a+8(0) P dm+Bmlm (20)
Let us define a surface, s=(e+Ae) € R®, along which we desire the link
trajectory to track. Let us consider the Lyapunov functlon candidate W(t):

W(t)= 1/2(e-l—Ae)tD(e+Ae) + 1/2epMep | ' (30)

Differentiating W{(t) with respect to time, substituting the defined value of T
given by (18), and using the dynamic equation (29) leads us to:

W(t)=s*[D(6-+Aé)+D(e+Hhe)] + ebMe,
=s*[Dq+DAS-C(q, 4)(da+Ae)—(DF+C(q, §)d)] + e5 M,
=s*[D(dq+A&)+C(q, a)(dq+Ae)+g(q)
»+Dm21.m+Bm(.]m—T] + e;‘,Mép |

=s‘[[' P +qumd Dmem—l-qum 7} + epMep o (31) |
Substituting for 7 from equation (22) into (31) yields,

W(t)=s'[-T ep —Kas—Dpén+N + eiMé, |
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=—stI‘5=:_p —sthé.a—st [Dmgm =N+ e;“)Mép

= —sths —st [Dm'é'm—X]-i—e" [Mep——I’ts] (32)

Notice that, e,(t) = P(t ) since P=0, now let us substitute P(t) given by
equation (24) into (32), it yields:

(

Wi(t)= —s*Kys —s*[Dpém—N-+ eg[m-lr*s-r*s]

= —s'Kgs—Y)8i(Dmimi—N) <0 | (33)
i=1 o

A substitution for the values of Ny from equation (20) guarantees that
W(t) is upper bounded by zero and decreases for any nonzero (s=é+Ae), s
converges to zero with time going to infinity for positive gain matrices A, and
Kg. Consequently, this implies that both é(t) and e(t) decreases as time goes to
infinity.

7. Simulation Results For A
Two-Link Planar FJR.

We now describe the computer simulation for a two-link planar
manipulator with revolute joints (see Figure 1). The linkage are composed of
two identically uniform beams which are infinitely rigid, with actuators
mounted at the joints (see Figure 2). We assume that the load carried by the
end-effector is a part of the second link. From equations (1) and (2), the
- dynamic equations of the two link manipulator are given as : | '

71} |dmi 0 |[9m1|, [Pm1 O [|9mi|, ka1 0 ||9mi—% (34)
Tl | 0 dmellgu,| | © Pm2ffdu.| | O ke|dme—a| - '

0] [din dizf|@i|, e cz{|@ q1—qm1 | (35)
Of [dar dazlfg,| |ea1 Cazffqy ‘1) 0 ks2 9 —dm2|

where the coeflicients can be derived from the Lagragian formulatlon (similar
to that in Paul’s book 1986). Notice that g €IR! is the gravitational

and,
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acceleration and it is assumed to be 9.81 ms™2.

dy1 =I; +lp -Hm; +4my ) +my 13 +4myl; 1y cos(qs)
- dyp=dy; =Ty-+m,13-+2myl;lycos(qp)

dge =T, +m,15

¢11=—4myl;15q5sin(qz)

c19=—2myl;15q,sin(q)

g1 =2myl; 15y sin(qs)

cg9=0, and [;=.33m; lJ?‘ +.01m; lj2 for j=1,2

g1(q)=g[(m; +2my)l; cos(q; )+mszlycos(q; +qz)]
-~ g2(q)=emylycos(q; +q3)

For notational convenience let us define

S;=sinq; Cy=cosq; Cja=cos(q;+qs)

82 —_—Sinqz CQ ==C0S(Q9 S 12 =sin(q1 +dz )

We can rewrite the manipulator dynamics in the regressor form with the

unknown parameters appearing linearly as :

o] |d1 (g1+dz) (0‘02—,3282) gC; gCyo
O [0 (4;+ds) (41C2+a1S:) O 8Crz

+

kg 0 ||a1—9m1
0 keollaa—Ama|

where, o =2q; + g3 and 8 = 2q;95 + Q2

Furthermore, the unknown parameter vector P is given as:

py| |Ti+my13+4myl}
P2 12 +m21§

P= P3F= 211121112
P4 1 (my +2my)
Ps my 12 ]

P
P2

P4

Ps| -

(36)

(37 )

(38)

Therefore the vector functions of unknown pardmeteré P € R® and the

regressor matrix Y(q,q,q) € IR>® are well defined. After choosing the desired
links trajectory, we use equations (6), (7) and (8) to derive the desired motor
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_ trajectory.

The control law given in equation (21) and (22) and the adaptation laws -

given (23) and (24) were used with the following definitions of ¥ and I':

T dia (d1a+d2d4)  (@1C2—B1S;) g€y 8Cia
0 gCye

(d1a+4d2a) (d1a Cy +q1441S2)

where, o = 2q;4 + qz2q and f) = 24;4G2 + dead2

and

r_|(@a+a) % (02 C2—F28,) gC1 gCr2
O % (Gua+a)CoHaa+e)q S 0 8Cr

- where, oy = 2(qyq+a)+ dag+b , F2 = 2(qya+c)az + (Gzq+d)qs

and v;=(q1q4+dea+a+b) , V2=(q1q+d2q4+a+b)

assuming a, b, ¢, and d are derived from :

a

b

- _le
Ae= and Ae= d

(39)

(40)

(41)

(42)

(43)

We selected a sampling period of 10x10™% seconds corresponding to a
servo rate of 100 Hz. We selected, € = 1, and second controller was activated

when, ||5m I[P < €. The value of ¢ is quite large and is selected to ensure
numerical stability. The following bounds were used in the definition of N

—2=< ”.e”'mi [<2, for i =1,2. Table S-1 shows the numerical values of the

parameter vector P, and the known motors parameters.
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parameter value

K1 =kgo 50 N m rad™!
Dy =dpe .05 kg m®
Dpi=bne .05 N m sec rad™!
P, | 1.66

P, 0.42

P, 0.63

P, 3.75

P 1.25

L=l 25 m

m; =m, 5 kg ' ' T

Table S-1 : Actual parameters values

Three different cases were simulated to show the improvement obtained over
current adaptive control schemes for robotic manipulators. The need for
adaptive control is also illustrated through simulations.

As seen from table (S-1), the robot considered here has extremely flexible
joints. A load of 5 kg, when the arm is fully extended and parallel to the
horizontal plane, results in the inner joint q; to deflect by 1 rad or 57.3°.
Current industrial robots have joint stiffness in excess of several hundred Nm -
rad™!. Notice also, this manipulator is not light and each link has a weight of
5 kg.

In the below simulations, we assume the manipulator is initially at rest
with q; = —90°, and q; = 0°. The desired trajectory is given by:

mdﬂ=&%+a%ﬂmmm.- | (44)

Qsq(t) = [—0.3 + 0.3cos(7t)]rad. : (45)

Casedf1:

In order to show that current rigid robot adaptive schemes are ineffective
- when applied- to FJR. In this case, we applied the elegant adaptive control
schemes suggested by (Slotine et al 1987) to the FJR described in table (S-1).
“As this controller was derived on the assumption that the joints are rigid,
equation (3) was used for the rigid robot model and the rigid robot control law
was:
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r=T(da;da, 3 )P +Dm(Ga+Ae)+Bnd+Kq(6+Ae)  (46)
and the adaptation law was:
B()=M T {aa, 40, 0)fe+Ae] (47)

The controller gains were found to be

0.25 0 |10
KP=KPm=[ 0 0.25] Ka=Kam=|0 1 (48)
ot N
_lo2s o 1o
=["0o 0.25} M=l 1 (49)

The response of the manipulator to Slotine and Li’s adaptive control law.
is shown in Figures (3a, 3b, and 3c). Figure 3a shows the link angle responses,
the motor responses are shown in Figure 3b, and parameter 151 is shown in
Figure 3c¢. Notice all the parameters behave similarly to f’l, shown in Figure
3c. > From Figures 3a and 3b, it can be seen that unacceptable link and
motor responses are obtained before the sy‘stem: goes unstable. Figure 3¢ shows
that the parameters vary wildly before diverging.

We expect that all other rigid robot adaptive control schemes would also
produce unstable responses when applied to control FJR’s with such low joint -
- stiffness. These simulations indicate clearly the need to develop new adaptive B
control schemes for the FJR. Note that the rigid control law (46) gives
acceptable responses for very large joint stiffness.

Case#2:

In order to show the need for adaptation and the effectiveness of the
derived control scheme, we applied the control scheme given by equations (21)
and (22). We assumed the parameter vector f’=[2,1,1,3.5,1], The parameters
are different from their actual values given in table S-1, the response of the
FJR to the control scheme without the adaptation is given in Figures (4a, and
4b). We can see the tracking errors of the links in Figure 4a, and the tracking
~errors of the motors in Figure 4b. Notice that the scheme given in equations
(21) and (22) is more effective in tracking the FJR trajectory than Slotine and
Li’s scheme, which gave unstable responses. The controller gains were found to

be
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10 0 30
KP:.KPm=[0 10] Ka=Kam=ig 3 (50)
12 0 120 '
A=lo 2} M=lg 2 - (51)

We can see a significant steady state errors develop, clearly this is
undesirable in many applications. In order to compensate for the steady state
- tracking error, it is desirable to employ an adaptive control scheme. Notice,
even if P was determined such that, f’——P=0, the need for adaptation is not
eliminated as the robot may pick up unknown loads and therefore -alter the P
vector. This would once again result in steady state tracking error.

Case£3:

In order to show the effectiveness of the results derived in this paper
given by equations (21) through (24), we applied our control scheme to the
FJR. The response is given in Figures (5a, 5b, and 5c). Figure 5a shows the
responses for the links, while Figure 5b shows the responses of the motors, and
Figure 5¢ shows the estimates of the parameters. We can see that the motor
and the link tracking errors go to zero. The parameters also do not diverge,
although they do not converge to their exact actual values, they oscillate
about their true values. The controller gain matrices given in equations (50)
and (51) were used for this case. Clearly, the response of the manipulator to
the adaptive FJR scheme described in this paper is significantly better than
applying rigid robot adaptive schemes as seen in case #1. Notice also the
adaptive scheme has superior performance over the non-adaptive control law
simulated in case #2, which developed significant steady state errors.

~ 8. Conclusion

In this paper we have presented an adaptive control scheme for the FJR
without employing linearization techniques such as (Fu et al 1989)..
Acceleration and jerk measurements, as well as inertia matrix inversion were
not needed. Adaptive controller for the FJR was derived using Lyapunov’s
second method. From the simulation results, it is clear that the improvement
in the tracking and parameter estimation is significant over rigid robot
adaptive schemes, and therefore it is necessary to account for joint flexibility
effects when deriving control schemes for industrial robots with such
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compliance.

We required a rich reference. signal and good initial guesses of the
parameters. It is obvious that some correction scheme could be added to the
derived. adaptation law to improve the robustness of our controller in the
~ presence of bounded disturbances or unmodeled dynamics (Ioannou '19'86).
Experimental work will also be necessary to Vérify the practicality of our
scheme. It is important to point out that most industrial robots use feedback
sensors mounted on the actuator and in order to compensate for joint -
flexibility additional sensors must be mounted to measure the joint angles and
velocities.
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10. Appendix A : To show [D — 2C] is Skew Symmetric.

Here we will show that D(q) and C(q,q) are not independent, but the .
matrix (D—2C) is skew symmetric (Slotine et al 1988), (Ghorbel et al 1989),
(Spong 1987). This can be easily derived from the Lagrangian formulation of
the manipulator dynamics. In order for a square matrix W to be skew-

symmetric, we need W8 = —W. From equation (2), we can represent the
(kj)th element of C(q,q) by '
b Bdkj L 8dij . S :
Cxi = — % QG Al)
kj ig_ [ aqj | 8(]1( ] . : ( )

where, di; is the (kj)*® element of the inertia matrix D(q) Now, by
interchanging the (i,j) indices and using the symmetry property of D (q), we -
note: - v

o 8dkj 1 o 8dkj 8dki ’ - : '
=1 + ‘ A2
z gyt oy ] | (A2)

Therefore, we can substitute (A2) into (A1), and:

Oq;
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‘Let, W(q, Q)=[]5(q)—2C(q, q)], then the (jk)* elément of W is:

ij =dkj —_ 2ckj

n 8dk- 8dk Bdk ad;; .
=3 aj—(aj+al—81])]ql
i=1 94 qj qj . Qe
- - . : A4
| l231[ 8qk aqj G | ] (A4)
Since D(q) is symmetric, it is clear from (A4) that, Wwyj = —Wjx. Therefore,

W(q,q) is skew symmetric, furthermore the diagonal entries of W are zero as:

n 9d;; '8dji]._0 ' o s (A5)
=1 qu' 8Qj b | A '

Wij =

Again by the symmetry property of D(q), (A5) is straight forward.

Now we can conclude that W(q,q)= [D(q)—.‘ZC(q,q)] is skew symmetrlc

with zero dlagonal entries, which yields

qt[(q)—zc(q,q)]q= - . (A6)‘
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Figure 1. The Two Link Planar Manipulator.
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Figure 2. Conceptual Diagram of Two Link Conipliant Manipulator.
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