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A B ST R A C T

In this paper we develop an algorithm to modify the trajectories of multiple robots in 
cooperative manipulation. If a given trajectory results in joint torques which exceed the 

admissible torque range for one or more joints, the algorithm slows down or speeds up the 
trajectory so as to maintain all the torques within the admissible boundary. Our trajectory 
modification algorithm uses the concept of time scaling developed by Hollerbach[10] for 

single robots. A multiple robot system in cooperative manipulation has significantly 

different dynamics compared to single robot dynamics. As a result, time scaling algorithm 
for single robots is not usable with multi-robot system. The trajectory scaling schemes 

described in this paper requires the use of linear programming techniques and is designed 

to accommodate the internal force constraints and payload distribution strategies. As the 
multi-robot system is usually redundantly actuated, the actuator torques may be found from 
the quadratic minimization which has the effect of lowering energy consumption for the 
trajectory. A scheme for generating a robust multi-robot trajectories when the carried load 
mass and inertia matrix are unknown but vary within a certain range is also described in 
this paper. Several examples are given to show the effectiveness of our multi-robot 
trajectory sealing scheme.



I. Introduction

There has been a considerable research interest in the area of multirobot systems in the 
recent years! 1, 2, 9, 11, 13, 15, 21, 22, 23]. This paper addresses the problem of 
modifying the given trajectory for the multirobot system such that the joint motor torques 

are maintained within torque constraints. We assume that an initial trajectory which 
includes path, velocity, and acceleration of the end-effector is given. If the given trajectory 

does not satisfy the motor torque constraints, our multi-robot trajectory scaling algorithm 

allows us to find new trajectory velocity such that the torque constraints are not violated. 
Our algorithm also allows us to incorporate constraints on the internal forces and 

accommodates a prespecified load distribution.

The trajectory time scaling concept was initially developed by Hollerbach[10] in 1984 
to modify a given trajectory for single robots. Sahar and Hollerbachfl8] used this idea to 
find the minimum time trajectory using a joint space tessellation technique. Graettinger 
and Krogh[8] used time scaling concept to modify the trajectory which violates the torque 
constraints for a wheeled mobile robot. It is not possible to directly apply 
Hollerbach’sflO] algorithm to the multi-robot case because of the closed kinematic chains, 

and force interaction between robots and the object held by the robots. Unlike single robot 

case, we need to consider the object dynamics because the object might be so heavy that it 
affects dynamics of the entire multi-robot system.

Additionally, if  there are n robots each with six degree-of-freedom involved in 
cooperative manipulation, there are total of k = 6n actuators available to actuate the load. 

Such a multi-robot system is redundantly actuated[15,23]. This allows us to minimize the 
energy expenditure during the trajectory execution. Such issues were not addressed by 
other trajectory scaling algorithms.

Minimum time trajectory planning for single robots was initially studied by Kahn and 
Rothri4] using Pontryagin5s minimum principle^]. Work of Kahn and Roth was rather 

limited because they linearized the nonlinear robotic system in order to apply the minimum 

principle easily. Without using the minimum principle, Bobrow, Dubowsky, and Gibson 

15,6] developed a more practical algorithm to generate the minimum time trajectory under 

the assumption that the path is fixed and parameterizable. Shin and McKayf 19, 20] and 

Pfeiffer and Johannif 16] also developed similar approaches.



The issue of incorporating robot dynamics into motion planning for coordinated multi- 

robot system was identified in the report by Koivo and Bekey[13], The research on this 

subject is scarce, and a few works are available for purely kinematic approaches[3). 
Ahmad and Y an[2] carried out an initial work on the minimum time trajectory for 
multirobots for a given path employing dynamics of both the robots and the object. In 

this paper, a multirobot trajectory scaling scheme which incorporates dynamics is 

presented. Assume that we are given the desired path and velocity profile which are 

planned without considering the dynamics of the manipulators and the object. The Velocity 
profile could be a trapezoidal curve or a sine curVe, for example. First we check if the 

trajectory violates the joint torques limits. If the torque constraints are violated, we can 
modify the trajectory by time scaling. Although the approach presented in this paper does 

not allows us to find the minimum time trajectory, we can identify the increased velocity of 
the end-effector and the corresponding time scaling factor, if it exists for the given torque 
constraints. Methodology to compute the joint torques for the redundantly actuated 

ipultirobot system is also presented in this paper.

This paper is organized into six sections. In Section 2, multirobot dynamic model is 

presented; The tim e scaling o f the multirobot trajectory and an algorithm to modify the 
given trajectory is given in Section 3. Time scaling of an a  priori known trajectory with 
prespecified force distribution schemes are addressed in Section 4. The effect of payload 
variation on the range of time scaling constant is discussed in Section 5. Examples with 

planar three degree-of-freedom manipulators are given in Section 6, and the conclusion is 
given in Section 7,

II. The Dynamic Model of the Multi-Robot System

Figure I shows n manipulators grasping a common object which is to be moved along 
a given path from an initial point P0 to the final point Pf. The origin of the world reference 

frame is shown as Ow . Origin of the base coordinate of the i-th manipulator is Oi and Oc is

the origin of a coordinate fixed in the carried object. The center of the mass of the object is 
assumed to be at Oc. The dynamic equation for each robot is known. For i = I,.., n

TiC/) ^  D i(qi(0)qi(0 + qi(0 C i(qi(0 )q i(0 + G i(qi<0)^Ji'r (qii:0)Fi (D
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where, qjfr) e  R ni is the vector of joint position, and rtj is the number of degree-of-ffeedom 

of the i-th-robot, Dje R nixni is the manipulator inertia matrix and C i e  R nixnixni is the 
tensor of Coriolis and centrifugal terms. The vector of gravitational terms is G i e R ni 

and J i e  R 6xnH s the manipulator Jacobian matrix. The vector of joint torques is Xi e R n k 
The vector F i = [ fjT , ]T e R 6 is expressed in the base coordinate of the i-th robot, 
where linear force Ii 6 If3, the moment Vi e  R3 are exerted by the i-th manipulator onto the 

carried object. Note that Di , C i , G i , and J i are dependent only on the joint position, 
while F i is a function of joint position, velocity, and acceleration. The position of the 
object with respect to the world reference frame Ow is given by p e  RK The orientation o f

the object reference frame With respect to the world reference frame is given by the rotation 
matrix R w e  R3x3. The position of the contact point between the object and the i-th robot

from the origin of the world coordinate frame is given by Pi e R 3, it is measured with

respect to the world coordinate frame. The contact point from the origin of the object 
coordinate frame is denoted as Fi e  R3 with respect to object coordinate frame. Thus we

have

Pi = K n  + p  <2)

The manipulated object dynamics are given by the below equations.

m p ( r ) +  m g = E R rf ,-
i=l

'IdXr) + co(r)xIco(r) = I  Tix RTfi + £  R^vi

(3)

(4)

where, m e  R+ is the mass of the object and I  e  R3x3 is the object inertia matrix. Linear 

acceleration , p = [ px , py , pz ]T, and angular acceleration, d) = [ cbx , cby , cbz ]T, of the 
object are expressed in the world coordinate frame. Since f ; and Vi are expressed in the i- 

th base coordinate frame, we need to premultiply by the rotation matrix, RT, to convert

these into the world reference frame. Gravitational vector g e  R 3 is expressed in the 

world coordinate reference frame, and acts along the positive z-axis, thus g = { 0, 0, 9.8 

]T, if z-axis of the world coordinate frame is upward with respect to the earth. Notice that



we can ignore the first term in the right hand side of eq.(4), if  we assume rigid contact 
between the object and the robots.

Combining eq;(3) and eq.(4)* we obtain

m p(0  + m g

Id>(f) + co(r)xIco(f). i=l

where, BiE If6x6 is defined as follows.

(5)

BiCqi(O) -
«r 0

Si R” R”

where, Si e  Zf3x3 is the skew symmetric matrix which is used to represent the vector 

product in the first term on the right hmid side of eq.(4).

0 -r^ Tjy
fiz . B' -fix 

_ ~fiy fix B .
(7)

where, = [ rix, riy, Tiz ]T is a vector from the center of mass of the object to the contact 
point with the 2-th manipulator. Clearly, Bi is dependent only on the joint position.

HI. Time Scaling of The Multi-Robot Trajectory

Assume that the preplanned joint trajectories, q^r), for i = I,.., n , and object 

trajectories p(0, (|)(f) fo r /  e  [ 0, ], are given, if  it is necessary to modify the trajectories

in order to satisfy the torque constraints, the velocity of the joint trajectory can be altered 

while keeping the end-effector path as previously planned. We assume that the joint 
torques are constrained by constants along the path, i.e., Tf < XiCO < Xj+ ,1=  for

all f , then

X" < x(f)< X+ (8)
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where, x(f) = [ T1COt - -  Tn(0T ] T , ' f  = [ (T1- )T .... (Tn* )T ] T , and
t + = l (t/ )T .... (Tn+ )T ] T

Let the new joint trajectory q;(0 be defined as

Qi(O =  QiCrCO) / = I,..iii for all t (9)

where, r(t) is a monotonically increasing function of time t with

r(Q) = 0 and r{t{) -  % for some J1 > 0 . (10)

Thus, the trajectory traversal time is now changed from t{ to T1. If  0  > rf , trajectory 

traversal time is increased, otherwise traversal time is shortened. Differentiating IjiCO Ir. 

eq. (9) with respect to time, we obtain

where, f  j is the new input joint torques, and F1 = F i Cqi5Qi5Qi) is the new force/moment

applied onto the object. From now on, we will omit the dependence on a time t or on the 
function r(t) in the arguments of terms, Di , Ci , Gi , J i , and F i as long as it is clear from

the context. From the above equation, we can derive Fi. For simplicity, we will assume 
that J i is a 6x6 square matrix and it is nonsingular for all i = I , .., n along the preplanned 

path. Then

where ' , "  represents dldr, CL1Idr1 and \  represents d/dt, dz/d t2 .

G D

(12)

The equation of motion of the i-th manipulator along the new trajectory is

TiCr) = DiCqijqiCO+QiCOCiCqOqiCr) + GiCqi) + J iCqi) T F i (% ,$ & )

={Di(Qi)qi,'(D+qiXDCi(qi)qiXD)'-2+Di(qi)Qi'CD>:+Gi(qi)+J1(qi)T Fi (13)
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The new trajectory of the object is given by p and <|), where p (t) = p(r), and (J)(r) = 
(j)(r) for all t. We can express the time derivatives of the new trajectory of the object as 

follows.

= 0 5 )

P 0  = p " W r 2(r>+ (16)

m(0 = dt
d§{r) dr 

dr dt <j>'(0 KO

«5(0 = §"(r) 'r2(t) + (J)'(r) KO 

If we let,

r(t) = ct for a ll/

(17)

(18)

where, c e  R + is a positive constant. Thus, r (Z1) = Ctl = Zf . In such a case trajectory 

velocity is scaled by a constant throughout the entire trajectory. Here c is the trajectory 

time scaling constant. Notice if c > 1 , We are speeding up and if c < I, we are slowing 

down the trajectories.

The time scaled object dynamics is now given by

n
Z BiIqi(K)) Fi

mp(t)+mg

_l65(t)+65(/)xl65(/)_

4  m  i f f  I + T mS l
_I<t>(r)"+ <j)(r) yXl(J)(r) J  *- 0 J

(20)

We substitute the eq.( 14) into eq. (20). Then we have following equation.

£  BKqi(K)) Fi
. i=l -  ;.:.V V ; .

= £ B i(qi(r))J1(qi)-T[ti(/)-{D1(qi)qi» + q iK/-)C1(qI)qiKr)}c2-G1(q1)] (21)
i=l

Let us define following quantities:
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L(r) = [ B 1(q1(/'))J1(q l(r))-T . . .  Bn(qn(r))Jn(qn(r))-T ] e  6x6« , 

m  = [ T1Wt •••• f n(r)T ]T e R6" ,

Gir)=, [ G 1(q1(r))T . . . .  Gn(qn(r))T ] T € R 6n,

P (0
mp(r)"

.! (K r )" + ( K r ) W r ) ' .
R 6,

Q= m  -  ^

E(r)
■D1(q1(r))q1"(r)+q1 '(r)C Kq1(U)qi '(r)‘

LDn(qn(r))qn/,(r)+qn"(r)Cn(qn(r))qn"(U J
e  R t

Then; combining eq.(20) and eq.(21), and arranging terms according to c2 , we have

■L(r)%) - L(r) G(r) - Q =  c2 { P(r) + L(r) E(r)}
=  C2 { P(cr)+ L(ct) E(ct) } (22)

If we change the argument of equation (22) from t to tic, then we have

L(f) ? (t/c) - L(t) G(t) -Q  = c2 ( P ( t)+  L(t) E ( t )} (23)

We can obtain the permissible range of c2 from eq.(23) if the torques limits are given 
by eq.(8). In order to generate practically usable trajectories we need to limit the 
magnitude of the internal forces. This is because the internal forces do not contribute to 

the motion of the object; Internal forces are the ones used to hold the object. Obviously, 
if the internal forces are too large then the object could be squeezed or stretched. In order 

to prevent these undesirable effects, we introduce following constraints.

Fj"in < F j < F ^ ax for i=  \,..., n (24)



where, F”un and F™ax are given in advance. This inequalities may be transformed by 

substituting Fi from eq. (14).

F f in+ J f rGi < J f T [ W e )  -(D i Qi-HqiCi(Ii)C2 ] <  F ^  + J f vGi (25)

3.1. Linear programming method to find the range of the scaling constant

First, let x = [ T Tfi/c) , C2(Z) ]T e If l6n+1!. Then we can formulate a linear 

programming problemf 17] to find C2(Z) as follows.

Find x which minimizes ( or maximizes)

[ 0, 0,..., 0, I |Tx = C2(Z)
subject to 

A 1 X = B1

< A2 x < b+

X" < X ^  X+

where•'9
A 1 = I Lfi) -P(z)-Lfi)EG ) ] e J f 6̂ 6n+1] 

Ij 1 = L(Z) Gfi) + Q
A2 = [ J 0 - J 0 E fi) ] e  R6nx[6n+1]

F r  + Jn-TGn
. b:

_ F f n + J n 'T« n  J

(26)

(27)

(28)

(29)

J f T 0
0 J 2-T

O
 O

rO
 O

^  2j6nx6n

0 0 

■ F™ax + J f

0 .. 

-tG 1 I

J - TJ n -1

" F f n H-J1-7G 1 "

I (x~)T , 0 ]* , x+ = [ (T+) 1 , so ]+\T

Tf the solution to the above minimizationfor maximization) problem exists, then the last 

element of the minimizing(or maximizing) vector of x is c2'(Z) ( or c2+(z)). The 

dependence on the time argument t in c2_fi) ( or c2+fi)) needs to be emphasized since the 
coefficients matrices A 1 and bq are functions of time. In the Appendix A, we prove that



once we have c2"(j) and C2+(J) it is guaranteed that any value of c2(j) e  [c2"(J), c2+(t)] 

satisfies the constraints given by eq. (27) to (29). This implies that |c 2"(J), C2+(J)J is the 
only interval which satisfies the torque and internal force constraints. If  a feasible solution 
to the above problem does not exist, then we can conclude that the multi-robot trajectory is 

unrealizable. In such cases, we can change the path or try other velocity profiles. 
Finding the intersection of the intervals, Jc2-(J ) , C2+(J)], over the duration of the 
movement, J e  [ 0, Jf ], gives us the globally admissible range of time scaling constants, [

c2' , c2+J.

[ C2- , C2+J -  O l c 2-(J) , C2+(J)J , G = J j I j e  [ 0, Jf J } (30)

After selecting an appropriate value o f c2 to modify the given trajectory, we can 

determine the joint torques for trajectory execution. The originally given trajectories can 
be employed by setting c2 = 1, if T e  [c2", c2+J. In the Appendix B, we show that the 

shortest traversal time while satisfying joint torque and internal force constraints can be 

achieved by selecting c = V  c2+ .

3.2. Dealing with the redundant actuation.

We indicated earlier the multirobot system is redundantly actuated, allowing us infinite 

possibilities in selecting the joint torques. This fact is reflected in that the system o f  

equation (23) is underspecified. This allows us to determine the joint torques which may 
satisfy the minimum energy criterion. Consider the following minimization problem.

Find X (tic) which minimizes the quadratic cost function 0  (T)

O (T ) =T(JZc)t W T(JZc) (31)

subject to
L(J) T (JZc) = L(J) G(J) + Q +C2 JP(J)+  L(J) E(J)J (32)

b ' + C2 J dE(J) < J d T(JZc) < b j  + c2 J dE(J) (33)

T" < t (jZc) <  T+ (34)

where, the positive definite matrix W  e  R6nx6n is a weight matrix. This matrix is selected 

by the trajectory planner according to the capacity of each manipulator. The matrix W can



be selected to be a diagonal matrix for simplicity. The torque selection can be effected by 
the choice of the diagonal elements of the W  matrix. Intuitively, we can prevent the 
torque saturation of the least powerful manipulator by setting the corresponding diagonal 

element of the W matrix larger than others. Similarly, the most powerful manipulator can 

be utilized by setting the corresponding diagonal element of W matrix smaller than Others. 
As this is a quadratic programming problem with linear constraints, we can readily use

available optimization packages to find torque ?(z/c)[17].

Remark / r
Notice that the total energy expended by the multi-robot system over the duration of 

the movementj r e  [ 0, Z1 ], is given by £ ( 0, Z1):

.6(0. Cl )

n ■ . Vtiv-x Mi=l Jo
T(Z) 'Ti(Z) dt

Therefore, the pointwise minimization O ( t )  along the trajectory does not necessarily

ensure global minimization of energy £ (  0, Z1 ) for the given trajectory. However, 

minimization of d> (T) does have the effect o f lowering expenditure as this minimizes the 

magnitude of f  .

In the Appendix C, we showed that a solution to the above quadratic programming 
problem satisfies the equations (8), (13), (20), and (24) Which include the dynamics of the 
object and the robots, and constraints on the joint torques and internal forces. Therefore 
the algorithm in Section 3.2 can be viewed as the methodology to distribute forces F i

exerted by z-th robot onto the object. We now state an algorithm M M TSF{Multiple 
Manipulators Time-Scaling for Fixed load) to scale multirobot trajectories given the internal 
forces are constrained.

MMTSF Algorithm

Step I. Given the initial robot trajectories, find the range of C2(Z), [ c2'(i), c2+(t) ], using 

the linear programming approach described in Section 3.1.



Step 2. Find the global range of c2, [ c2'  , C2+], by taking intersection of [ c2 ^ ) , e2+(0 3
over the duration of the movement.

Step 3.1. If the range of c2 is not empty; then select a value of c2 e  [ c 2' ,  c2+ ]and  g6 to 

Step 4. Notice that i f  you select c2 = I , the initially given trajectories are 
unchanged.

Step 3.2. If the range of c2 is empty, the multi-robot trajectory is not realizable. Stop 
and generate an error message.

Step 4. Calculate the joint torques via the method described in Section 3.2.
Step 5. Stop.

IV. Time Scaling of Trajectories With A Fixed Force Distribution

In many applications it may be desirable to predetermine the force distribution scheme, 

such as even distribution of the payload among the n -manipulators and given time history 
of the internal forces. We found that a predetermined force distribution reduces the 
computation time needed to find the trajectory scaling constant. In order to simplify the 

derivations, let us assume that the orientations of the base coordinates o f each robots is 
identical to the one of the world coordinate and all the end-effectors grasps the object 
rigidly. Assuming an equal load distribution with zero internal forces, we observe from 

eq.(5) that

„2
F; = — m p(rf

.!(KU"+ ( K U W U '
for all i (35)

Therefore the new equations of motion are given as

(̂D" -  D ^ i)^ !^  +J iCqi) T Fi ( î,^i-,̂ i)
= a j(r) c2+ b i(r) (36)

where, ...

■-" =  t P icW>«i"fo+<fe'('')ci(<ii)qi'C':j} + i j i ® T P w

bi(r) = Gi(Qi)+ i  Jj® t Q

Similarly as in Section 3, by changing argument of eq.(36) from t to tic, we obtain
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’iiir- ■
SfcTi(JZc) = ^ (J )  cT+ b- (J) (37)

Since the torque is limited by constant values as in eq.(8), we have

X' - ty (J) < aj (J) c2 < x+ - bj (j) (38)

Notiee that aj (J) is a 6-dimensional vector unlike the matrix L(J) which was 6x6« in 

Section 3. The global range of c2 can be found by intersecting all the ranges C1-(J) over

the duration of the trajectory.

[ C2- ,C2+ ] = n  [C^(J), C ^ (J)] ,

whereJK% {j , i, j  I J e  [0 , Jf ], /,= l,..,n , and j  =1 ,..,6 }, and Cfc+(J) is the maximum value 

of c2 obtained from the ;-th component of the j -th robot in eq.(38), and similarly for c^ (j) .

The algorithm to find c2 is similar to that of the single robot case, and the detailed 

procedure to find Cjj (J) and c^ (J) is given in Hollerbach’s work[ 10]. Because of the

simplicity of this algorithm, the computation time to find c2 is considerably lowed Notice 

also that the range o f  c2 obtained from this algorithm is conservative because of the 
additional restriction on the load distribution.

V. Time Scaling of Trajectories With Load Variation

Quite often in manufacturing applications, robots are required to handle different loads 

in a manufacturing cycle. In this section, we investigate the problem of robustness with 

respect to the load variation. We design a method which will guarantee that the trajectory 

stays inside the torque boundary within the predefined range of load variation. In order to 

develop a robust trajectory scaling algorithm we will assume that the inertia matrix of the 

manipulated object is diagonal. This is not a restrictive assumption since the inertia matrix 

of an object is diagonal about its principal axes[7]. Therefore our assumption requires us
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to locate the object coordinate frame to coincide with the principal axes of the Object. Let 

m and I  be the mass and the inertia matrix of the uncertain object, then:

km m (40)

' K
K I  = 0

0

0
ky
0

0 I fi Ixx 
0 0
K  J I  o

0

V
0

0 H 
0

Iz z -
Y $1)

where, m and Ijj are the nominal mass and moments of inertia of the load. Assume the 
ranges of load parameter variation are known in advance as 0 ^  k f  <= k-} ky  , for j  = m, 
x, y, and z. Then the corresponding equation (23) for the uncertain object becomes

L(Z) T(ZZc) - Lfi) Gfi) - Q = c2 P  fi) + C2 Lfi) Efi)

where

Q =km Q , and P  fi)
kmmp(t)

.KIcb (0 + co(0xKIco(0.

(42)

We can now find the permissible range of c2fi) from the solution of a nonlinear 
programming problem formulated in the below. If we let y = [ f T , Jtm , kx , ky , k , , c2(t)

]T, we can findy  which minimizes (or maximizes) c2fi) = [ 0 ,0 ,... ,  0 , 1 ]T y 
subject to

(43)
x ‘ < x(t/c)< X+ (44)
0 < k f  <kj< ky for j  = m ,x, y, and, z (45)

()< <P-(i) (46)

Notice that constraints on the internal forces are not incorporated into this formulation. If 
it is desired to incorporate the internal force constraints, it can be done so using eq. (24) or 
(25), Since: the above is a nonlinear programming problem, it may be difficult to find a 

solution. I f  we assume that the object is constrained to linear motion without any rotation, 

then we can ignore the variation on the inertia matrix because the angular velocity is zero. 

In this case, we can find the global range of c2 by exhaustively searching along the range 
oi km using linear programming techniques. The joint torques can be found similarly as

described in Section 3.



Find T{tic) which minimizes the quadratic cost function O (f) 

O  (T) = ?{t/c)T W ?{t/c)
subject to

L(Z) ?{t/c) = L(z) G(Z) + kmQ + c2 { P(Z) + L(Z) E(z)} 
T' < X {tie) < T+

(47)

(48)

(49)

If it is desired to generate the reference torque profiles we need to know exact load 

parameters as in eq.(48). The significance of the above analysis is that, if the load changes 

within the predefined range, trajectory replanning is not necessary as the torques will 
remain within their limits. In addition, the trajectory execution time will also remain 
constant for the specified load variation, which allows for robust scheduling in a 
manufacturing workcell.

VL Examples With Planar Robots

Consider two planar robots each with three degrees of freedom operating in the vertical 

plane manipulating an object as shown in Fig. 2. We assume that the end-effectors grasp 

the object rigidly, so there is no relative movement between the end-effectors and the 
object. The dynamic equations of motion can be found in [14]. ,Iffy , my are the length

and mass of the j-th link of the i-th robot, then robot link lengths and masses are as 
follows; Z11 =Z12=Z2I -  Iyi -  I Z13=  Z23 = 0.1 m ,  a n d ' kg,  m\2 = 4 kg, m 13 = 
0.5 kg,M2I = 5 kg, In2I=Akg, an d M2i= 0.5 kg. We will also assume each link is a 
cylinder with radius ry = 0.1 m, for all i, j. The inertia seen at joint j  o f the i  -th robot is 

given by [7]

% 1 2 ^ + Aj2 )

A trajectory for the object is selected such that it is moved along in the yj-axis without

any rotation. The world coordinate reference frame is attached to the base of manipulator I 
whose origin is at O 1. The position of O2 is at (2.5, 0) with respect to O 1. The initial 

position of the object center of mass Oc is at (1.25, 1.0). The imposed torque limits are 

T11I+ = 100 Nm, t12+ = 80 Nm, t13+ = 50 Nm, T21+ = 100 Nm, t22+ = 80 Nm, t23+ =



50 Nm, and the lower torque limits are given as TiJ- = - TiJ+ for all i and j. The desired 

end-effector velocity profile is a sinusoid.

As expected, we found the trajectory scaling to be sensitive to the configurations of the 
arms. In this example, there are four possible configurations according to two possible 

inverse kinematic solutions of the planar 3 degree-of-freedom manipulator with rigid 
Contact, see Fig. 3. Notice in practice not all configurations may be physically usable as 
collision among robots and obstacles may occur during motion. Collision avoidance is not 

addressed in this paper, therefore we will assume all configurations are usable. A 
numerical example which demonstrates the effect of different configuration' on the range of 
time scaling constants is given in Section 6.3.

6.1. Time scaling with 3 different sets of constraints

In this example, the given trajectory does not violate the torque constraints. 

However, we may want to speed up the velocity to shorten the traversal time. The mass 
of the manipulated object is m = 0.5 kg. The trajectory velocity of the object is given as, 

Px = 0, py = 1.5 sin 6 t , and wz = 0 with J0 = 0 and Jf = 0.523 sec. Thus the initial 

position of the object is (1.25, 1.0), and the final position is (1.25, 1.5) without any 
rotation.

(a) The range of c2 was found to be , [ c2' , c2+] = [ 0 .0 ,3 .9 8 8  |, if we do not impose 

any constraints on the internal forces. If we set c2 = 3.988, the new traversal time is 
shortened to J1 = 0.523/^3.988 = 0.262 sec, and torque profiles are as shown in Fig. 4(a).

However, as we see in Fig. 4(b), the forces along the x-axis are very large and it could 
break the object.

(b) In order to prevent large internal forces, we imposed the following constraints on the 
internal forces, -2 N  < fix < 2 N, and -I Nm < viz < I Nm. Then the range of c2 was

now found to be reduced to [ c2' , c2+J = [ 0 .0 ,2 .949  ]. The corresponding torques and 

forces o f the new trajectory in which we set c2 = 2.949 are given in Fig. 5(a) and 5(b). 
The new traversal time was now shortened to J1 = 0.523/V2.949 = 0.304 sec. Although

the traversal time is now increased by 42 msec over the case with unconstrained internal 

forces, the internal forces exerted onto the object are now acceptable.



(c) Next, we found the range of c2 with an even payload distribution and zero internal 

forces as suggested in Section 4. As we expected, the range [ c2' , c2+] was smaller, ! 
0 .0 ,2 .779  ]. The traversal time for this trajectory is q  = 0.523A/2.779 = 0.314 sec and

the joint torque profiles are as given in Fig. 6. Notice that this trajectory requires 10 ms 
,more to execute over the constrained internal force example, despite the relative simplicity 
of the computation.

Notice the weight matrix W  = I6x6 (a 6x6 identity matrix) was used to calculate the 

torques and a rigid grasp between the end-effectors and the object was assumed.

6.2. T ra jec to ries  which needs to be slowed down to satisfy  th e  co n stra in ts

In this example the velocity along the y-axis is increased, such that py = 5 sin 20f.

Then trajectory scaling was found to be [ c2' , c2+] = [ 0 .0 ,0 .2 6 5  ], when the internal 
forces Were constrained such that -2 N < fix <2 N , and -I Nm < viz < I Nm. The

given trajectories are unrealizable and we need to modify the trajectories by choosing c2 
from the above range. If we select c2 = 0.265, then the torque profiles are as shown in 
Fig, 5. The overall traversal time is now extended from rf = 157 msec to I1 = 157/V0.265

= 304 msec . This is consistent with the case in Section 6.1(b) as the motion is along the 

same trajectory except the initially given trajectory was fast.

6,3. C o n fig u ra tio n  dependence of tra je c to rie s

In this example, the manipulator configuration is changed from that in Section 6 .1 to 
shoulder down-up configuration in Fig. 3 (b). Intuitively, this configuration is not 

suitable for lifting a heavy object. For the trajectory described in Section 6 .1 we found 

the range o f  c2 to be [ c2'  , c2+] = [ 0 .0 ,2 .5 1 6 ]  when the internal forces were 
constrained such that -2 N  < fix < 2 N, and -I Nm < viz < I Nm. If we select c2 =

2.516, the modified torque profiles are as shown in Fig. 7(a) 
reduced from 304 msec in Section 6.1 to i\

The new traversal time is 
330 msec . Notice in Fig.523/V2516

7(b) that the / ly and f 2y have opposite signs after about 50 msec and the difference 
betw een/ly and / 2y reaches 25 N  near the end of the trajectory. Such large forces might 

lead to damage of the object. This can be avoided by employing even distribution of 

payload with zero internal forces. The even payload algorithm yields [ c2~ , c2+] = [ 0.0



, 2.406]. If we select C2 = 2.406, then Z1 = 523/^2.406 = 337 msec and the corresponding 

torque profiles are as given in Fig. 8.

6.4. Effect of Load Variation

In this example, we will assume that the mass o f the object, m, may be varying 
between 0.1kg and 3kg and all other information pertaining to the system will remain as 

described in Section 6.1. We exhaustively searched along the range of the mass, and 

found that the global range of C2 as [c2' , c2+] = [ 0 .0 ,1 .358 ] which occurred at m = 3 
kg when the internal forces were constrained such that - I N  < fix < 2 Ni and - 1 Ntn < 
V iz < I Nm. Now, the execution time is extended from 304 msec in Section 6.1 to Z1 =

523/V 1.358 = 448 msec. The reduction in the range of c2 results from the fact that the 
trajectory is now designed to accommodate unspecified objects, m e  [0.1, 3] kg.
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: VIL’'Conclusion ;

In this paper we developed a methodology to alter the trajectory o f cooperative 

niultirobdt Operations, such that torque constraints were not violated. Otif algorithm 
employed the concept of time scaling introduced by Hollerbachf 10). There is a significant
difference between the scaling of multi-robot trajectories over that o f scaling single robot 
trajectories. The difference results from the differences in the dynamic equations of the 
two systems. In the multi-robot system, there is the force interaction between the 

manipulators which is related to the payload distribution. Also it is usually redundantly 
actuated.

We have shown that we can determine the range of the time scaling constants by using 
linear programming methods. We can also accommodate constraints on the internal 
forces. Simplification to the time scaling can be found if  a known payload distribution is 
desired. The joint torques can be found from a quadratic minimization which has the effect 
of lowering the energy consumption during cooperative operation. Extensions to our 

algorithm were developed which would allow robust trajectory planning when the mass 

and inertia of the payload is known to vary within certain bounds. Several simulations 

were given to show the effectiveness of our schemes to generate practically usable multi- 

robot trajectories.
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Appendix A

Proposition I  : Given the following equation 
A 1X + bj = Icyl

y~2 S A2 X-Tb2 < y +

X' < X < X+

where A 1 e  Rmxn , A2 e  R mxn, b f e  R m ,b 2e  R m^ylE R rn, y +e  R m , y "e  R m ,

x + e  R n , and x+ e  Zfn are known. The vector x e R n is bounded by equation (A.3) 
and T e R + , m <n . Assume that T0 and Ic1 are greatest lower bound and least upper

bound respectively, which satisfies the equations (A .l), (A.2), and (A.3). Then any 
T e  [ T0 , T1 ] satisfy the equations (A. I), (A.2), and (A.3).

proof : In order to show that any T e  [ Ie0 , T1 ] satisfies the equations (A .l), (A.2), 
and (A.3), it is enough to show that the convex combination of T0 and T1 satisfies the 
equations (A .l), (A.2), and (A.3). Considertheconvex com binationof Ie0 and T1, T jl' := 

X Ie0 + ( I- X ) T1-, where O < X < I. Let x0 and X1 be one of the corresponding 

values of x to T0 and T1, respectively, satisfying the equations (A .l), (A.2), and (A.3), 

i.e ., ’

(A .l)

(A.2)

(A.3)

A1X0 + b x = T o y 1 (A.4)

J 2 ^ A 2 X0 -T 0 b2 < y + (A.5)

X- < x0 < x+ (A.6)

A 1X1 + b j  .S=-Tjy1 (A.7)

y2 < A 2 Xj -T 1 b2 < y j  (A.8)

X -^ X 1 < x + (A.9)

Now it is enough to show that there exist Xjl such that which satisfies the equations (A. l), 

(A.2), and (A.3). Consider

*T y = { ^ *o + ( I- X) T1 Jy1 = X T0 y\ + ( I- X ) Ictfl
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=  Ti ( A 1 x 0 +  B 1 ) +  ( I -  X ) ( A 1X 1 . +  b j )

= A 1 ( X x 0 + ( I -  X ) X1 } + bj (A. 10)

Nowdefine -  X x 0 + ( I -  X)  X1 . Then eq. (A. 10) becomes

kx y = A i xk + b i (a .11)

Now consider
A2 Xx - kX *>2 = A2 {X x0 + ( I- X ) X1 }- { X k0 + ( I- X fX 1 } b2

= X{ A 2 X0 - b2 } ■+( I - V ) { A 2 X1 - &i b 2) (A. 12)

Thus we have

y 2 =Xy’ + ( !- X )y2 < A2 x% - Icl  b 2 < Xy * + ( I- X ) y* = y 2 (A. 13)

Since X x" < X x0 < X x+ and ( I- X )X" < ( I- X ) X1 < ( I- X )x+ . Combining these 

two inequalities, we get

x" < X x0 + ( I- X ) X1 < x+ (A. 14)

We showed that for any Iĉ , 0 < X < I, there exists Xjl which satisfies the equations 

(A .I), (A.2), and (A.3).
Q . E. D.

Note that the vector notations in the Appendix A are different from the those in the 
paper. The following correspondence lists has been used.

A1 = L(r), A2 = J 0 , b i = -L (0 G (0  - Q > ;b 2 = J DE ( r ) ,

>, = P cn -l.tn K irt, y t  = I* !  y >  b, .

x = ?(r/c ), x+= x +, x ' = t”, Ic = c2{t)
where, the left hand side terms are the ones used in the Appendix A and the ones on the 
right hand side are used in the paper.
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Appendix B

Proposition 2 : Let p(z) be the initially given trajectory and p(z) = p ( C 1Z) be the 

modified trajectory with C1 = V c2+ , where the range of c is given as [ V c2' , V c2+ I 
from the algorithm MMTSF. If t{ was the original traversal time, new traversal time is 

Z1 = ZfVc1 . Then Z1 is the shortest traversal time which can be obtained from time scaling 

of trajectories.

proof : Assume that there exists a time scaling constant C2 such that Z2 = ZfVc2 < Z1 . 

Since Z2 < Z1 , it implies C2 > C1 . It means that C2 > V c2+ , thus C2 ^  [ V c2' , V c2 + ] 
. Therefore, the trajectory corresponding to Z2 does violate the constraints at least one point 
during the motion. Thus Z1 is the shortest traversal time we can obtain from the trajectory 

scaling algorithm.

Q. E. D.

Appendix C : -

Proposition 3 : A  solution to the quadratic programming problem, eq .(31) through 

eq. (34), satisfies the followings;

(i) torque constraints expressed by eq, (8),
(ii) internal force constraints expressed by eq. (24),

(iii) multi-robot dynamics expressed by eq. (13),
(iv) object dynamics expressed by eq. (20),

proof : Notice that a solution to the above quadratic programming problem satisfies eq. 

(32), (33), and (34). Since (i) and (ii) are restatements of eq.(34) and eq.(33), 
respectively, we only need to show that eq. (32) implies (iii) and (iv). Object dynamic 

equation and multi-robot dynamic equations are related by the forces, Fi , for i =  I , .., n , 

which are unknown and found from a quadratic programming problem. Since eq. (22) 

results from the change of argument from tic to Z, eq.(32) implies eq.(22). Eq. (22) may be 

written as:
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c2 P+ Q = £  Bi(qi)J i(qi)-T[Ti(0-{I>i(qi)qi,'+qi'C i<qi)qiGc2-Gi(qi)l ( C l )
i=i ■ ■ ;

If we let,
Hi = J i(qi)-T|Ti(r)-{Di(qi)qi"+qi'C i(qi)qi'}C2-Gi(qi)l (C.2)

Then from eq.(C .l) and (C.2), we obtain following two equations.

c2 P + Q  = £  B ^q i) H i (C.3)
■■■ i=l

TiIO = (I)i(qi)qî q i'<:.(q.K|i -|,:* I C iCqi) + J M iI t Hi . (C.4)

Since F i in equations (13) and (20) are arbitrary, (C.3) and (C.4) are equivalent 

expressions for eq.(20) and (13), respectively.

Q. E. D.
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manipulator I

manipulator n
f  manipulator 2

Figure I. Multiple Manipulators Holding a Common Object.

Robot 2Robot I

Fig. 2. Dual S-DOF robots in cooperative manipulation.



(a) (b)

Hg. 3. Three configurations according to shoulder position 
(a) shoulder up-up (b) shoulder down-up 
(c) shoulder up-down
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Fig, 4(a) Torque Profiles from the algorithm without constraints 

on the internal forces ( C2 = 3.988 ).
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262 msec

Fig. 4(b) Force profiles from the algorithm without constraints 

on the internal forces ( c2 = 3.988 ).



304 msec

Fig. 5(a) Torque Profiles from the algorithm with constraints 
on the internal forces, -2 < f ix < 2, and -I < V iz <  I

( c2 = 2.949).
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Fig. 5(a) Force Profiles from the algorithm with constraints 
on the internal forces, -2 < fix < 2, and -I < Viz < I

( C2 = 2 .949).
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-I(X)
300 314 msec

Fig. 6 Torque Profiles from the algorithm with the even distribution 
with zero internal forces ( c2 = 2.779).
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300 330 msec

Fig. 7(a) Torque profiles from the algorithm with constraints 
on the internal forces,-2 S f ix < 2, a n d -I S v iz < I

in down-down configuration ( c2 = 2,516).
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100 300 330 msec

Fig. 7(b) Force profiles from the algorithm with constraints 
on the internal forces, -2 < fix < 2, and -I < V iz < I

in down-down configuration ( c2 = 2.516).
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0.0 100 200 300 337 msec

Fig. 8 Torque profiles from the algorithm with even load 

distribution with zero internal forces in down-down 
configuration ( C2 = 2.406 ).
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