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ABSTRACT

- In this papér we develop an algorithm to modify the trajectories of multiple robotS in"~
‘_ cooperative manlpulanon If a given trajectory results in joint torques Wthh exceed the
adm1331ble torque range for one or more joints, the algorithm slows down or speeds up the
~ trajectory so as to maintain all the torques within the admissible boundary. Our trajectory
modlflcatlon algorlthm uses the concept of time scaling developed by Hollerbach[10] for ,
single robots. A multiple robot system in cooperative mampulauon has significantly
different dynamics compared to single robot dynamics. As a result, time scaling _algorithm
for single robots is not usable with multi-robot system. ~ The trajectory scaling schemes
described in this paper requires the use of linear programming techniques and is designed
to accommodate the internal force constraints and payload distribution strategies. . As the.
multi-robot sysfem is usually redundantly actuated, the actuato’r' torques may be found from '
thcquadratic minimization which has the effect of lowering energy. consumption for the
’trajcctory. A scheme forAgeneratin g arobust multi-robot trajectories when the carried load
mass and inertia matrix are unknown but vary within a certain range is also described in
‘this paper. Several exampleé are given to show the effectiveness of our multi-robot ~
vtrajcvctory scaling scheme.. | ’ | '



I. INTRODUCTION

' There has been\a considerable research interest in the area of multirobot sys'tems in the
recent years[l 2,9, 11 13, 15, 21, 22, 23]. This paper addresses the problem of
modrfymg the given traJectory for the multirobot system such that the joint motor torques‘
are maintained within torque constraints. = We assume that an 1n1t1a1 trajectory which
includes path velocity, and acceleration of the end- effector is glven If the given traJectory‘
does not satlsfy the motor torque constraints, our multi-robot traJectory scahng algonthm :
allows us to find new trajectory velocity such that the torque constraints are not violated.
Our algorithm also allows us to 1ncorporate constraints on the 1nterna1 forces and '

accommodates a prespecified load d1stnbut10n

- The trajeCtory time scaling concept was initially developed by Hollerbach[10] in 1984
to modify a given trajectory for single robots. Sahar and Hollerbach[18] used this idea to
find the minimum time trajectory using a joint space tessellation technique. Graettinger
and Krogh{8] used time scaling concept to modify the trajectory which violates the torque
constraints for a wheeled mobile robot. It is*not possible to directly apply
Hollerbach s[10] algorithm to the multi- robot case because of the closed kmematlc chains,
and force interaction between robots’ and the object held by the robots. Unhke single robot -
case, we'need to consider the object dynamics because the object mlght be so heavy that it
affects dynamics of the entire multi-robot system.

Additionally, if there are n robots each with six degree-of—freedom involved in
~ cooperative manipulation, there are total of k = 6n actuators available to actuate the load.
Such a multi-robot system is redundantly actuated[15, 23]. This allows us to minimize the
energy expenditure during the trajectory execution. Such issues were not addressed by
other trajectory scaling algorithms. o

Minimum time trajectory planning for single robots was initially studied by Kahn and
Roth[14] using Pontryagin’s minimum principle[4]. Work of Kahn and Roth was rather
limited because they linearized the nonlinear robotic system in order to apply the minimum
principle easily. Without using the minimum principle, Bobrow, Dubowsky, and Gibson
 [5,6] developed a more practical algorithm to generate the minimum time trajectory under
B the assumption that the path is fixed and parameterizable. Shin and McKay[19 20} and
Pfeiffer and Johanni[16] also developed similar approaches.



» g . The issue of incorporating robot dynamics into motion planning for'Coordinated'multiQ ‘
robot system was identified in the report by Koivo and Bekey[13].- The research on this o
' subject is scarce, and a few works are available for purely. kinematic approaches[3]
;v‘Ahmad and Yan[2] carried out an initial work on the ‘minimum time, traJectory for
multlrobots for a g1ven path employing dynamics of both the robots and the ObjCCt “In
jthls paper a multirobot trajectory scahng scheme which 1ncorporates dynamlcs is~
_ presented Assume that we are grven the desired path and velomty profile Wthh are
planned w1thout considering the dynamrcs of the mampulators and the object. The velocrty |
'proﬁle could be a trapezmdal curve or a sine curve, for example. First we check if the
trajectory violates: the joint torques limits. 'If the torque constraints are vrolated we can
modify the ua_]ectory by time scaling. Although the approach presented in this paper does

~ 'not allows us to find the minimum time trajectory, we can identify the increased velocrty of

the end-effector and the correspondrng time scahng factor if i it exists for the given torque
lconstrarnts Methodology to compute the jOlnt torques for the redundantly actuated
mult1robot system is also presented in this paper. . ' '

Th1s paper is organrzed into six sections. In Sect1on 2, multrrobot dynamrc model is -
.-presented The time scalrng of the multirobot trajectory and an algorithm to modify the
',glven tra_]ectory is given in Section 3, ‘Time scalmg of an a priori known trajectory w1th_
: prespecrﬁed force drstnbunon schemes are addressed in Sectron 4. The effect. of payload "
- variation on the range of time. scalrng constant is dlscussed in Section 5. Examples with
z_planar three degree of freedom mampulators are glven m Sectlon 6, and the conclus1on is
given in Section 7,

I’I.f THE DYNAMIC ,MODEL OF THE MULTI-ROBOT ',‘S‘Y',sTEM' S

Flgure 1 shows n mampulators graSplng a common Ob]CCt wh1ch is to be moved along
a glven path f from an initial point P, to the ﬁnal pomt Pf The or1g1n of the world reference

: ‘-frame 1s shown as O . Ongln of the base coord1nate of the 1—th manrpulator is O and O 1s :

- the or1g1n of a coordmate fixed in the camed object. The center of the mass of the Ob]CCt is
’ ’vassumed to be at O The dynamlc equatlon for each robot is known For i= l, . '

T = Di(qi(f)_“)fq;(ﬁ;)ecq;(t).c;(q_i(t))q;(r)+Gi<qi<.r>>+J§T('c,1;.<r)>F; LT 1;) |



where, q;(2) € R" is the vector of joint: position, and #, is the number. of“degree-of-freedomg
of the i-th robot, D;e R is the manipulator inertia matrix and C; e R™MXMX is the
tensor of Coriolis and centrifugal terms. The vector of gravitational terms is G; € R
and J; € RS is the manipulator Jacobian matrix. The vector of joint torques is T; € R”i.
The vector F; = [ £T, v;T 1T e RS is expressed in the base coordinate of the i-th robot,
where linear force f; € R3, the moment v; € R3 are exerted by the i-th manipulator onto the
carried object.  Note that D;, C;, G;, and J; are dependent only on the joint position,
while F is a function of joint position, velocity, and acceleration.  The position of the
object with respect to the world reference frame O, is given by p € R3 The onentatron of .
the object reference frame w1th respect to the world reference frame is glven by the Totation
matrix R, € R*®. The position of the contact point between the object and the i-th robot
 from the origin of the world coordinate frame is given by p; € R3, itis measured with
respect to the world coordinate frame. The contact point from the origin of the object
coordmate frame is denoted asr; € R3 with respect to Ob]CCt coordlnate frame Thus we

have
B =RYn +p | | . )

The manipulated object dynamics are given by the below equations.

mij(t'_)«+'mg=' iR‘i"fi’ v. o e SR :. | , -
' =1 : : . :

Io(r) +.6)(t)x1(o(t)=- ir-,x"R f; + ER v; , ' S @)

‘ . -l & E s

where, m € R is the mass of the object and I € R3*3 is the object inertia matrix.  Linear
' acceleratieh =1 px , By » P, 17T, and angular acceleration, & = [ 0, a)y , @, 1T, of the
obJect are expressed in the world coordinate frame. Since f; and v; are expressed in the i i-
th base coordrnateframe, we need to premultiply by the rotation matrix, Ri , to‘convert |
these into the World reference frame. Gravitational vector g‘e‘ R3is expressed in the

world coordinate reference frame, and acts along the posirive z-axis, thus. g =[ 0, 0, 9.8
: ]T, if z-axis of the world coordinate frame is upward with respect to the earth. Notice that



, we can ignore the first term in the right hand 51de of eq 4, 1f we assume ng1d contact '
’ between the object and the robots ‘

Cembining eq.(3,) and eq (4), we obtain

[ ma<t>+mg*] a | S

tyhere, Bic R is defined as follows.

[ RY 0 "
B@ = | cpw | O
where Sl e R3S is the skew symmetric matrix which is used to represent the vector

jproduct in the first term on the right hand side of eq.(4).

o 0 =Ty, l'iy 7 Lo :
Sir)=1| e O -1 | M
-ri‘y 'rix -0 '

where, r; =[T;,1;,, 1;, 1T is a vector from the center of mass of the object to the contact

| point with the i-th manipulator. -Clearly, B; is dependent only on the joint position.-

II. TIME SCALING OF THE MULTI-ROBOT TRA:]ECTORY

Assume that the preplanned joint trajectories, q(¢), for i = 1,.., n , and object
‘trajectories p(2), (z) for t € [0, t; ], are given. If it is necessary to modify the trajectories
in order to satisfy the torque constraints, the velocity of the joint trajectory can be altered

while keeping the end-effector path as prev1ously planned We assume that the joint
torques are constramed by constants along the path, i.c., T < 1(t) <t = 1, ot for

‘all¢ ,then

Csse | )



where, 1) =[ H@®T .. 0717, v=[ )T .. (3, )TIT, and
= (™) . @, HTIT |

L§:t the new joint trajectory q,® bc defined as
KGR qi(r(:)j . | =l for all | B
where, r(t) isa monotonically increasing function of time ¢ with
r0=0 and r(t)) = if | for some ¢, > 0. 10)

Thus, the trajectory traversal time is now changed from #; to ;. If f; > ¢, trajectory -
traversal time is increased, otherwise traversal time is shortened. Differentiating §;(z) in

€q.(9) with respect to time, we obtain

G0=T0 _HOF_ oy : ap

ql(r> a0) 20 + 47 0) ) N )
where 7, reprcsents dldr, d*dr? and *, ** represents d/dt , dz/dt : ‘

The equation of motion of the i-th manipulator along the new trajectory is

T (t) = l(ql)ql(t)+ql(t)Cl(ql)q1(t) +G@) + @) T (ql,qpql)
{D (qpq;"(N+q; (NC; (ql)ql (r)} 24D,(q)q; ()+Gi(q)+3i(q)T F; - (13)

where, T ; is the new input joint torques, and F; =F; (qi,qi,éii) is the new force/moment

applied onto the object. From now on, we will omit the dependence on a time ¢ or on the
function () in the arguments of terms, D; , C; , G;, J;, and F; as long as it is clear from

the context.  From t_he above equation, we can derive F;. For simplicity, we will assume
that J; is a 6x6 square matrix and it is nonsingular for all i = 1, .., n along the preplanried

path. Then

O F = Ji(@) 170 (D) (N+a (NC(@)a; (D} 2-Dy(a)a; ()7 - Gi(q)] (14)



The new trajectory of the object is given by p and 6, where p (t) = p(r), and 6(1) =

o(r) for all z. We can express the time derivatives of the new trajectory of the object as

follows.

H0- a'“(t) _ dggr)dr ) 1D

CBO= p"(r)_ P+ p() FO)

_dp) Ao,
a0 =200 - HOL_ o) iy

& = 0" FHD + 0 )

If we let,

r@=c -  forallz

1)

16

a7

(18)

- (19)

where, ¢ € Rt is a positive constant. Thus, r (ty) = ct; =t; . In such a case trajectory

velocity is scaled by a constant throughout the entire trajectory. Here ¢ is the trajectory

time scaling constant. Notlce if ¢> 1, we are speeding up and if ¢ < 1, we are slowing

down the trajectories.
The time scaled object dynamics is now given by

n ~ , mﬁ(t)+mg
Y Bia0) F = [ - }

1o(0)+0()XI6()

_ mp(r)” L [mel
=e [I¢(r)"+ o(r) xTo(r) ] «[¢]

We substitute the eq.(14) intoeq.(20). Then we have following equation.

Z B, (ql(r)) F;

2 B; (ql(r))J l(ql)'T[r (O-{D; (ql)ql”(r)+q1 ‘(NCi(q)q; (r)}c2 Gi(q)l

Let us define following quantities:

(20)

21)



L) ;,[le(qi(r»Jl‘(’ql(r»-T' ,.(q,,(r))J (qn<r>)T ] e RS,
%’(t) = ‘[’f‘l(vt)Tv e 7T JTe R6"

CGO= [Gi@O)T o Golau)T [Te RS,

PO = [ e ] c RS,
To()"+ 400 X190

Q- [g]eR6

D1(‘11(r))CI1”(r)+CI1 (r)Cl(Ch("))Q1 () ,
CE(r) = o e RS .
- D(q,(M) " (N+q, (7 )Cn(qn(r Ng, (N

Theh; cefhbining €q.(20) and eq.(21), and arranging terms-accordingi‘to cZ, we have

CLOTO-LO GO -Q = (PO + LOED) |
| =c {P(ct) + L(cr) E(cr) } | (22) .

If we chan'ge the argument of equation (22) from tto tlc, then we have
” Lo T(@/c) - L) Go) -Q=¢ (PO+LOE®)) @

We can obtain the perm1551b1e range of ¢ from eq.(23) if the torques hmlts are glven "
by eq.(8). In order to generate practlcally usable trajectories we need to limit the
~ magnitude of the internal forces. This is because the internal forces do not contribate to

~ the motion of the object' Internal forces are the ones used to hold the object. Obviously,
if the internal forces are too large then the object could be squeezed or stretched In order -
- to prevent these undesirable effects, we introduce following constraints.

ED

o pmin SF'sfFf‘"‘" D : fori=1,...,‘n o 24)

1 1




.
where, F7""and F7** are given in advance. This inequalities may be transformed by

substituting F; from eq. (14).

F'™ 377G, < 37T 17000 -0y aCad2] < FP™ + 577G, @5)

3.1. Linear programming method to find the range of the scaling constant

First, let x = [ £T(/c) , c2(t) 1T € RIS+ Then we can formulate a linear

programming problem[17] to find c2(?) as follows.

Find x which minimizes ( or maximizes)

[0,0,...,0,1Tx=2) @6
subject to v | o :
Ayx=b, | e

b, <A;x<b) | S ®

x <x<xt v R 29)
where, | ' |

Aj=1LO -POLEOE® ) e RAM61]
bi= LOGOH+Q
A, = [ Jp -JDE(f) ]  RSnwx6n+1]

JT 0 o0 .. 0 _
Jp= 0 LT 0o .. 0 e R6mx6n
0o o0 o .. JT4 ‘ o
_ FT™ + J,77G, FI"+1,77Gy
+ . : - IR
vbz: o b,=

max -T min T
F o+, G, F o +J, G,

x=[ @017 . x*=[aHT, T
If the solution to the above minimization(or maximization) problem exists, then the last
element of the minimizing(or maximizing) vector of x is ¢%7(¢) (or ¢2*(s)). The

dependence on the time argument ¢ in ¢Z°(£) (or ¢>*(#)) needs to be emphasized since the
coefficients matrices A; and b, are functions of time. - In the Appendix A, we prove that
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once we have €2 (@) and 2+ (o) it is guaranteed that any value of cz(t) e[c? "), c2+(t)]
satlsfies the constramts given by eq. (27) to (29). This implies that [ (), cz"'(t)] is the.
only interval which satisfies the torque and internal force constraints. If a feasible solution
to the above problern does not exist, then we can conclude that the multi- robot traJectory is
unrealizable. In such cases, we can change the path or try other velocity prof1les.

Finding the intersection of the intervals, [c* (1), c**(1)], over the duration of the
movement, ¢ '€ [ 0, # ], gives us the globally admissible range of time scahng constants [

¢z, c*.

e, M= OO, ) L Q=(riel0g]) 6D

After selecting an appropriate value of ¢? to modify the given trajectory, we can
determine the joint torques for trajectory execution. The originally given trajectories"can
“be employed by setting ¢? =1, if 1 € [c¥,c?"]. In the Appendix B, we show that the
shortest traversal tlme while satlsfylng Jomt torque and 1nternal force constraints can be -

achieved by selectlng c= \I 2t

3.2. Dealing with the redundant actuation.

We 1nd1cated earlier the multlrobot system is redundantly actuated, allowmg us infinite
p0551b111t1es in selectlng the Jomt torques. This fact is reflected in that the system of
~ equation (23) is underspemfled This allows us to determine the joint torques which may '

- satisfy the minimum energy criterion.  Consider the following minimization problem.’

- Find T (#/c) which minimizes the quadratic cost function ® (%)

@ (%) =TT W T(tlc) e ey
subjectto - , e
L) T(tc) =L GO + Q + 2 {P(1)+ L) E(®)} (32)
b, + 2 JpE® < JpT@e) < by +c JpE@®) » (33)
1 < T <t | | R (3‘4)_-.

" ‘where, the positive definite matrix W e RO™6n is a weight matrix. This matrix is selected -

by the trajectory 'planner according to the capaeity of each manipulator. The rnan{x W can
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~ be selected to be a diagonal matrix for simplicity. The torque selection can be effeeted by
the choice of the diagonal elements of the W matrix. Intu1t1vely, we can prevent the
torque saturation of the least. powerful ‘manipulator by setting the correspondmg d1agonal
element of the W matrix larger than others.  Similarly, the most powerful mampulator can
be ut1hzed by setting the correspondmg d1agonal element of W matrix smaller than others.
As this is a quadrat1c programming problem with linear constraints, we can read1ly use
: avallable optlrmzauon packages to find torque T(to[17].

 Remark S :
Notice that the total energy expended by the multi-robot system over the duration of

the movement, ¢t € [ O,‘ t; ], is given by &( 0, 1)

8(0 t1) ZI q (t) rl(z) dt

Therefore, the pointwise minimization ® (%) along the t_rajectory does not necessarily
ensure global minimization of energy €(0, t; ) for the given trajectory. f’However'

'mlmrmzatmn of @ (T) does have the effect of lowering expendlture as th1s m1n1m1zes the
magmtude of T. '

| In the Appendix C, we showed that a solution to the above quadratic programming |
- problem -satisﬁes the equations (8), (13), (20), and (24) which include the dynamics of the
object and the robots and constraints on the joint torques and internal forces. =~ Therefore
the algorithm in Section 3.2 can be v1ewed as the methodology to distribute forces F
exerted by i-th robot onto the Ob_]CCt We now state an algorithm MMTSF (Multzple

/ Mampulators Time-Scaling for Fixed. load) to scale multlrobot traJectones glven the 1ntemal
forces are constramed ‘

MM T.SF Algarithm-.

‘S:,tep 1. G1ven the 1mt1al robot trajectones find the range of cz(t) [ c? (t) 02+(t) ] usmg
’ the linear programmmg approach described in Section 3. 1 -
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Step 2».' . Find the global range of c?, [02 02"'] by takmg 1ntersect10n of [ 2 (t) cz"(t)] :

‘ over the duration of the movement. o

Step 3.1. If the range of ¢2 is not empty, then select avalue of ¢ € [ ¢? ; 'c2'+] and go to

e “Step 4. Notice that if . you select ¢2 = 1 the 1n1t1ally glven trajectones are".
v ‘unchanged. _

Step 3.2. If the range of ¢2 is empty, the mulu-robot trajectory is not reahzable Stop

o and generate an error message. ' o
Step 4. Calculate the joint torques via the method described in Section 3.2.

Step 5. Stop.

IV. TIME SCALING OF TRAJECTORIES WITH A FIXED FORCE DISTRIBUTION

In many apphcatlons it may be desirable to predetermme the force dlstnbutlon scheme
~such as even distribution of the payload among the n -manipulators and given time hlstory ":
of the 1ntema1.forces. - 'We-found that a predeterml_ned force dlstnbutlon reduces. the '
- computation time needed to find the trajectory Scaling constant. In order to simplify the
derivations, let us assume that the orientations of the base coordinates of each robots is
identical to the one of the world coordinate and all the end-effectors grasps the objeé_t
rigidly. ‘Assurr‘ling an equal load distribution with zero internal ‘forces, We‘ob'serve from
eq.(5) that '

o2 [ mpey ] ipme] e
B [I¢(r)"+ q)(r)’qu)(r)”] T [ 0 ] for all ; B CR))

* Therefore the new equations of motion are given as - -

T (t) =D, (ql)ql(t)+ql(t)C (ﬁl)ql(t) + Gy(@) +J; (q,) T F (ql’ql’ql) ,
=a;(r) 2+ by (r) : 36)

where
a; (r)— {Dl(ql)q{’(r)+q, (r)C (ql)q, (r)} + = J,(q,)T P(r)

b = G@+ - Jl(qu Q

- :'Si_l-’l.__lilarlby'ask in;Seetion 3, by changing argument of eq.(36) from  to tlc, we obtain -
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R
 Since the torque is llmited by constant values as in eq.(8), we have |
R TOR NGRS AEN N B )
- Notice that a;(r) isa 6-dimensional vector unlike the matrix.Lv('t) which was 6x6n in
Section 3. - The global range of c? can be found by intersecting all the ranges c_izj(t) over
B the‘duration of the traje‘ctory. |
(&, 1= 0o Eo, L (9)

where; K= {t,i,j It e[ 0, I ]_, i=1,..n, and j =1,..,6 ‘},*and cizjf(t)' is the m‘aximum:v'alue .
: ‘bf ¢? obtained from the j-th eomponent;of the i -th robot in’eq.(38), and similarly for cﬁf(t) .
' The algorithm to find ¢2 is similar to that of the single robot case, and the detailed
' -procedure.to find c»izj'(t) and cizj+(t) is given in Hollerbach's work[lvO]. o Beeause of the
 simplicity of this algorltlim the computation time to find ¢ is considerably lower. Notice

_}also that the -range of c obtained from this algorithm is conservatwe because of the
additional restnctlon on the load distribution.

‘V.:‘TIME SCALING OF TRAJECTORIES ,WITH LoAD VkA&RI‘AT»ION

- Quite often in manufacturrng applications, robots are required to handle d1fferent loads
71n a manufacturmg cycle In this section, we investigate the problem of robustness with.
respect to the load variation. We de51 gn a method whrch w111 guarantee that the tra]ectory

o 'stays inside the torque boundary w1th1n the predeﬁned range of load vanatron In order to

i develop a robust tra]ectory scalm g algonthm we w1ll assume that the 1nert1a matnx of the
f.man1pulated object is diagonal.  This is not a restrictive assumptlon smce the i inertia matrrx ‘
of an. Ob]CCt 1s dJagonal about its pnn01pal axes[7] Therefore our assumpt1on requlres us
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to locate the object coordinate frame to coincide with the principal axes of the object. Let

m and I be the mass and the inertia matrix of the uncertain object, then:

sk m o S 1)

o k 0 07rLe O 07
I=KI :l: 0 ky 0 :l [ 0 Iyy 0 ] v ' » R (41)
where m and I are the nominal mass and moments of inertia of the load. Assume the

ranges of load parameter variation are known in advance as 0 < & <k; < & + , for _] - m,

X,y, and z. Then the correspondmg equation (23) for the uncertain object becomes

L) T(t/c) - L) G@) - Q =c2 P+ 2L E(t) _ : ‘(42)
where ‘ | .

] v"dI_’ [ k(1) J
Q=knQ > 40 (t)_ KIG(2) + a()XKIa(?).

~We can now find the permissible range of c%(¢) from the solution of a nonlinear
programming problem formulated in the below. Ifwelety=[ Tk ky ky, k, , (1)

1%, we can find y which minimizes (or maximizes) cz(t) =[0, O . 0, 1_ Ty

' subJect to : Lo
L@) T(@We) = L®) G(t)+k Q+cX )P+ @) L) E(t) _. 43)
1T < F(o) < 1 | @)
0 < k7 <k< kT for j=m,x,y, and,z -~ . (45)

0< @) - o _ (46)

Notice that constraints on the internal forces are not incorporated into this formulation. If.
1t is desired to incorporate the internal force constraints, it can be done so using eq.(24) or
‘ (25) Slnce the above is a nonlinear programmlng problem, it may be difficult to find a

solution. If we assume that the object is constrained to linear motion without any rotation, v
‘then we can ignore the variation on the inertia matrix because the angular velocity is zero.
In this case, we can find the global range of c¢% by exhaustively searching along the range
- of kp us1ng linear programmrng technlques The joint torques can be found sfimilarly as

, .descrlbed in Sectlon 3,
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o Fmd T (#/c) which minimizes the quadratic cost function (D (T’)

()= i’(t/c)TW Z(tc) ST 47)
Sl]b_]CCt to ' o T
L) %) = L() G(r) + ka+¢ { P(:) + L(t) E(t)} (48)

1° <‘t(t/c)< t+ S @

~ If it is desired to gcnérate the reference torque profilcS'wc need to know éxact load

" parameters as in eq.(48). The significance of the above analysis is that, if the load changes

within the predefined range, trajectory replanning is not necessary as the torques will

remain within their limits. In addition, the trajeCtory execution time will also remain

constant for the specified load variation, which allows for robust scheduhng in a
manufacturmg workcell.

VI. EXAMPLES WITH PLANAR ROBOTS

‘Consider two planar robots each with three degrees of frecdomvopc'r}ating in the vertical
plane manipulating an object as shown in Fig. 2. 'We assume that the end-effectors grasp

the object rigidly, so there is no relative movement between the end- effectors zind the

jobject The dynamlc equatlons of motion can be found in [14] If lu’ j are thc length
and mass of the J- th llnk of the i-th robot then robot link lcngths and masses are as
follows; lu'= lo=1b = Lo=1m, 3= ly3=0.1m,and my; =5 kg, myp= 4 kg, m13 =
0.5 kg, my; = 5 kg, Moy =4 kg, and my3= 0.5 kg. We will also ‘assume each link is a

cylindcr,with radius r;j=0.1m, foralli,j. The inertia seen at joint j of the -th robot is
given by [7] '

I = (3r +l2)

L
2"

A traJectory for the object is selected such that it is moved along in the yl -axis w1thout ‘

» any rotation. The world coordinate reference frameis attached to the base of mampulator 1

whose origin is at O;. The position of O, is at (2.5, 0) with respect to O;. The initial

-position of theobjecvt center of mass O, is at (1.25, 1.0). «"Ihé imposed torque limits are
* =100 Nm, 11,"'=80 Nm, i3 =50Nm, 157 =100 Nm, 155" =80 Nm, 153" =
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50 Nm, and the lower torque limits are given as 7. =- 1.+ for all i and j. The desired -
ij ij

end-effector velocity profile is a sinusoid.

As expected, we found the trajectory scaling to be sensitive to the conﬂguratlons of the
arms ~In this example there are four possible configurations according to two p0551b1e
1nverse kinematic solutlons of the planar 3 degree-of-freedom manipulator with ng1d
contact, see Fig. 3. ‘Notice in practice not all configurations may be physically usable as
collision among robots and obstacles may occur during motion. Collision avoidance is not
addressed in this paper, therefore we will assume all configurations are usable. A
numerical example which demonstrates the effect of different conﬁguratmn on the range of

time scaling constants is glven in Section 6.3.
6.1. Time scaling with 3 different sets of constraints

In this example, the given trajectory does not violate the torque constraints.
However, we may want to speed up the velocity to shorten the traversal time. - The mass
of the manipulated object ism =0.5kg. The trajectofy velocity of the object is given as,
Py =0, p,=1.5sin6r,and w,=0 withz, =0and # = 0.523 sec. Thus the initial
»posmon of the object is (1 25, 1 0) and the f1na1 posmon is (1 25, 1. 5) without any
: rotatlon

(a) The range of ¢2 was found to be , [ ¢*, ¢**1=[0.0,3.988 ], if we do not impose
- any constramts on the internal forces. If we set ¢z = 3.988, the new traversal time is
shortened to 1 = 0.523/V'3.988 = 0.262 sec, and torque profiles are as shown in Fig. 4(a).
However, as we see in Fig. 4(b), the forces along the x-axis are very large and it could
break the object. | | |

(b)) In order to prevent large internal forces, we imposed the following constramts on the

internal forces, -2 N < f,, <2N,and -1 Nm <v;, <1Nm. Then the range of c was

now found to be reduced to [ ¢**, ¢?t] =[ 0.0 ,2.949 ]. The corresponding torques and -

forces of the new trajeetory in which we set ¢2 = 2.949 are given in Fig. 5(a) and 5(b).
The new traversal time was now shortened to 1, = 0.523/4/2.949 =0.304 sec. Although
 the traversal time is now increased by 42 msec over the case with unconstrained internal

forces, the internal forces exerted onto the object are now acceptable.
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(c) Next we found the range of ¢ with an even payload dlstrrbutlon and Zero 1nternal

forces as suggested in Sectlon 4. As we expected, the range [ cr, ) was smaller I

- 0.0,2.779 ). The traversal time for this trajectory is ; = 0. 523/\/_2—777— 0.314 sec and

: the joint. torque proﬁles are as given in Fig. 6. Notice that th1s trajectory requires 10. ms
-more to execute over the constra1ned 1nternal force example, desplte the relative s1mp11c1ty |
of the computatlon

Notlce the we1ght matrix W = Igq (a 6X6 1dent1ty matnx) was used to calculate the

torques and a rigid grasp between the end-effectors and the object was assumed.
6.2. Tra jectorles which needs to be siowed down to satisfy the constraint_s >

~ In this example the velocity along the .y—axis is increased, such that py =35 sin 20z
Then trajectory scaling was found tobe [ ¢2°, ¢2*]=[0.0, 0.265 ], when the internal
forces were constrained such that -2 N <fiy<2N, and -1 Nm <v;;<1Nm. The
glven trajectories are unrealizable and we need to modify the trajectories by choos1ng c?
from the above range. If we select ¢2 = 0.265, then the torque profiles are as' shown i in
Fig. 5. The overall traversal time is now extended from ;= 157 msec to t; = 157//0. 265
= 304 msec . This is consistent with the case in Section 6.1(b) as the motion is along the
' same trajectory except the initially given tra]ectory was fast : S

6.3. Configuration dependence of traject‘ories

In this example, themanipulator configuration is changed from that in Section 6.1 to
shoulder down-up configuratlon in Fig. 3 (b). Intuitively, this conﬁgurauon is-not
suitable for lifting a heavy ob]ect - For the trajectory described in Sectron 6.1 we found
the range of c2tobe [ %, ¢2*] =[0.0,2.:516] when the 1nternal forces were

constrained such that -2 N <fy <2N,and -1Nm Sv, <1Nm.  Tfwe select c? =

2. 516 the modlﬁed torque proﬁles are as shown in Fig. 7(a). = The new traversal t1me is
reduced from 304 msec in Section 6.1 to 1 = 523/\]75_1_ 330 msec. Notice i m F1g

7(b) that the fly and f2y have opposite signs after about 50 msec . and the drfference'

‘between fly and f2y reaches 25N near the end of the trajectory. Such large forces mlght

lead to damage of the object. This can be avoided by employing even d1str1but1on of
payload with zero internal forces. - The even payload algorithm ‘yields [ c2_' ,;(:2+] =[0.0
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, 2. 406] If we select 02 2. 406, then tl = 523N 2. 40 337 msec and the correspondmg '

torque profiles are as given in F1g 8.
6.4 Effe_cltv_ of Load Variation :

In th1s example, we will assume that the mass of the ob_|ect m may be varymg R
_ between O 1kg and 3kg and all other 1nformat10n perta1n1ng to the system w1ll remam as
descrrbed in Section 6 1. We exhaustrvely searched along the range of the mass, and

found that the global range of c?as[c?, ¢*]=[00, 1. 358] which occurred at m =3
kg when the internal forces were: constrained such that -2 N <£f;<2N,and -1 Nm <

<1 Nm. Now, the execution time is extended from 304 msec in Section 6.1-to tl =
523/\) 1.358 = 448 msec. - The reduction in the range of c? results from the. fac,t"ftha'tf the
trajectory is now designed to accommodate unspecified objects, m € [0.1, 3] kg. B

o VVII.-'CONC»L'U'SION ‘

In this paper we- developed a methodology to-alter the traJectory of cooperative
multrrobot operatlons, such ‘that torque constraints were not v1olated “Our algorithm
employed the concept of time scalmg introduced by Hollerbach[lO] There isa s1gn1f1cant »
: d1fference between the scaling of multi-robot traJectones over that of scaling single robot
t‘r‘ajectories. The difference results from the d1fferences in the dynamic equatlons of the
two systems In the multi-robot system, there is the force interaction between the |
' mampulators Wthh is related to the payload distribution. Also it is usually redundantly
actuated ' '

We have shown that we can determine the range of the time scahng constants by using
linear programmmg methods We can alsoaccommodate constraints on the internal. -
- forces Slmphﬁcatlon to the time scaling can be found if a known payload distn'bution'is
desued ~The joint torques can be found from a quadratrc mlmmlzatron which has the effect v
~of lowermg the energy consumptron durmg cooperative operatlon Extens1ons to our’

N : algorrthm were developed which would allow robust traJectory planmng when the mass =

““and inertia of the payload is known to vary within certaln bounds. Several s1mulat10ns
" were grven to show the effectiveness of our schemes to generate practlcally usable mu1t1- :

robot trajectones
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APPENDIX A

Proposztwn I: G1ven the followmg equation: R o

y2$A2x~kb2»_<_y; R -“,V(Atz)}

where Al € Ran A € R™X, b € R™ bze R™,y;e R™, y2+-ep R™, y,e R™,

xte HR“ ,and x* ¢ R™ are known. The VeCtor X € Rn is bounded by equation (A.3)
and ke R* , m<n. Assume that k, and k, are greatest lower bound and least upper

bound respecti_vely,».which,satisﬁes the equations (A.1), (A.2), and (A.3). = Then any ’
k € [k, k; ] satisfy the equations (A.1), (A.2), and (A.3). '

- proof : Inorder to show that any &k € [ & ,: kl ] satisfies the equatibns (A.1), (A‘ '2)
and (A 3),itis enough to show that the convex combination of kg and k, satisfies the
equatlons (A.1), (A.2), and (A 3).  Consider the convex combination of ko and k4, kl =

‘Akg + (1- X)ky, where 0< 7{, Let xpand x; be one of the corresponding
values of x to kO and kl, respectlvely, sat1sfy1ng the equatlons (A 1), (A. 2), and (A.3),

ie.,
A, X, +b1— k0 Y1 | | D G
y25A2X0'k0b2<y2' o . (A.5)
X" <, <x+ o IR : (a8
CAx) +by= k1 )’1 v . ‘ e (AT v‘
Y, SArx; -k b, Sy; o Ay
Cx sy <xt S @

Now it is. enough to show that there ex1st Xj, such that Wthh sat1sf1es the equatxons (A 1),~

(A.2), and (A.3). Con51der

kly‘{)\'kO +(1 X)kl }yl = xkoyl +(1 }‘)klyl -
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‘ _}\.(A1XO +b1)+(1- k)(Alxl +bl) ’ v ) .
= A {Axg+ (1- A) x; } + by | (A.10) -

" Now definé X3 = AX -i-.(l- A) x;. Then eq. (A.10) becomes.
_ A X0 1- ,
kY = Ajx +b TR RN . % B

" Now consider- ‘ ‘ ‘ o
Ay X -k by= Ay {Axg+ (1-A) Xy }- {Akg +(1- )k ) by |
=AM Arxg -koby} +(1- A) { Ay x; -k by} (A12)

Thus we have
- - - + NENC SRR SRR ,
Y, =Ay,+H(1- M)y, SAs X3 -k by <Ay, +(1- My, =y, (A.13)
Since AX" < Axg<Axtand (1- A)x" < (1- 1) x4 < (1- A)x*. Combining these
two inequalities, we get R '
"< Ax+ (1-A) x < x* | (A1)

We showed that for any k) ,0 < A < 1, there exists Xy, {Vhiéh satisfies the equations
(A1), (A2), and (A.3). | |
Q. E. D.

 Note that the vector notations in the Appendix A are different from the those in the
paper The followmg correspondence lists has been used. ’

- A =L@, Az—JD,b1 =-L() G -Q, bz—JDE(t)
yi = P(t)+L(t)E(t) y2 = b y, = ba2
X —T(t/c) xt=1t, x =1 k—cz(t)

where, the left hand side terms are the ones used in the Appendlx A and the ones on the
nght hand 51de are used in the paper. '
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APPENDIX B

Proposition 2 : Let p(t) be the initially given traJectory and p(2) = p(cyt) be the'-
modified trajectory w1th = \/— where the range of ¢ is given as | \/‘— \/ c2+ ]
from the algorithm MMTSF. If t; was theoriginal traversal time, new traversal time is
ty=t¢/c,. Thent, is the shortest traversal time which can be obtained from time scaling -

of trajéctories.

proof : Assume that there exists a time scaling constant ¢, such that Iy =tglcy <ty
Since t,<t?, ,itimpliesc,>c,. It means that ¢, > V ¢t thus ¢, €l Ve V]
. Therefore, the trajectory corresponding to ¢, does violate the constraints at least one point
during the motion. Thus ¢#; is the shortest traversal time we can obtain from the trajectory
scaling algorithm.

| - Q. E. D.

APPENDIX - C

Proposmon 3:A solut1on to the quadratic programming problem, eq. (31) throu gh
eq.(34), satisfies the followings; -

(i) torque constraints expressed by eq.(8),

(ii) internal force constraints expressed by eq. (24),

(iii) multi-robot dynamics expressed by eq. (13),

(iv) object dynamics expressed by eq. (20),

proof : Notice that a solution to the above quadratic programming problem satisfies eq.
(32), (33), and (34). Since (i) and (ii) are restatements of eq.(34) and eq.‘(33),
respectively, we only need to show that eq. (32) implies (iii) and (iv). Object dyhamic
equation and multi-robot dynamic equatlons are related by the forces Fl yfori=1,.,n,
- which are unknown and found from a quadratlc programmlng problem Smce eq. (22) :
_' results from the change of argument from t/c tot, eq (32) 1mpl1es eq. (22) Eq.(22) may be

wntten as:



AP+ Q Z Bl(ql)Jl(ql)'T[f - (D, (ql)ql”+ql’Cl(ql)ql }c G; (ql)] ey
kIf we let | l = |
Thén frbm "qu(c‘ 1) and (C.2), we o_btain follqwing two equations. B

2P+Q ZBl(ql)H ’ :," o | (c3)

B - J;(q,rT[f O (D)4 G }c2 Gl(ql)l ey

l(t)-{Dl(ql)ql”+ql’Cl(ql)ql Je? +G1(q1)+Jx(ql)TH ey

T e

'V'S'ijnce | F i m equatlons (13) and (20) are arbltrary (C 3) and: (C 4) are equlvalent ,
"expressmns for eq (20) and (13), respectlvely “ : IR

: :Q. E;. D.
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Robot 1

Fig. 2. Dual 3-DOF robots in cooperative manipulatio‘n.v'

manipulator n
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Fig. 3. Three configurations according to shc)uldér, position

" (a) shoulder up-up  (b) shoulder down-up
~ (c) shoulder up-down L
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Fig. 4(a) Torque Profiles from the algorithm without constraints
- on the internal forces (% =3.988 ).
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Fig. 4(b) Force profiles from the algorithm without constraints
~ on the internal forces (¢ =3.988 ). -
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Fig. 5(a) Torque Profiles from the algorithm with constraints
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Fig. 5 (a)v_FOrce'Probfibles from the algorithm with constraints
on the internal forces, -2 < f;, <2,and -1 < v, <1

(c2=2949).
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Fig. 6 = Torque Profiles from thé algorithm with the even distribution
with zero internal forces (¢%=2.779).
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Fig. 7(a) Torque profiles from the algorithm with constraints
on the internal forces, -2 <f;, <2,and -1 <v;, <1

in down-down cbnﬁguration (c2=2.516).
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Fig. 7(b) Force profiles from the algon'thm with constraints
on the internal forces, -2 <f;, £2,and -1 <v;, <1

in down-down configuration ( ¢ =2.516).
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Fig. 8 Torque proﬁles from the algorithm with even load
distribution with zero internal forces in down-down

configuration ( ¢ = 2.406).
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